WorldWideScience

Sample records for brain states promoting

  1. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Science.gov (United States)

    Chikahisa, Sachiko; Kodama, Tohru; Soya, Atsushi; Sagawa, Yohei; Ishimaru, Yuji; Séi, Hiroyoshi; Nishino, Seiji

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v)) mice. No significant difference was found in the basal amount of sleep/wake between W/W(v) mice and their wild-type littermates (WT), although W/W(v) mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v) mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v) mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v) mice. W/W(v) mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  2. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Directory of Open Access Journals (Sweden)

    Sachiko Chikahisa

    Full Text Available Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS. Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v mice. No significant difference was found in the basal amount of sleep/wake between W/W(v mice and their wild-type littermates (WT, although W/W(v mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v mice. Injection of H1 antagonists (triprolidine and mepyramine significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v mice. W/W(v mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  3. Histamine from Brain Resident MAST Cells Promotes Wakefulness and Modulates Behavioral States

    OpenAIRE

    Sachiko Chikahisa; Tohru Kodama; Atsushi Soya; Yohei Sagawa; Yuji Ishimaru; Hiroyoshi Séi; Seiji Nishino

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing espec...

  4. Training brain networks and states.

    Science.gov (United States)

    Tang, Yi-Yuan; Posner, Michael I

    2014-07-01

    Brain training refers to practices that alter the brain in a way that improves cognition, and performance in domains beyond those involved in the training. We argue that brain training includes network training through repetitive practice that exercises specific brain networks and state training, which changes the brain state in a way that influences many networks. This opinion article considers two widely used methods - working memory training (WMT) and meditation training (MT) - to demonstrate the similarities and differences between network and state training. These two forms of training involve different areas of the brain and different forms of generalization. We propose a distinction between network and state training methods to improve understanding of the most effective brain training.

  5. Promoting Motor Function by Exercising the Brain

    Directory of Open Access Journals (Sweden)

    Stephane Perrey

    2013-01-01

    Full Text Available Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients, this review presents some findings emphasizing training paradigms for restoring motor function.

  6. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  7. Traumatic brain injury among Indiana state prisoners.

    Science.gov (United States)

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment.

  8. Persimmon leaf flavonoid promotes brain ischemic tolerance**

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Ming Bai; Linan Wang

    2013-01-01

    Persimmon leaf flavonoid has been shown to enhance brain ischemic tolerance in mice, but its mechanism of action remains unclear. The bilateral common carotid arteries were occluded using a micro clip to block blood flow for 10 minutes. After 10 minutes of ischemic preconditioning, 200, 100, and 50 mg/kg persimmon leaf flavonoid or 20 mg/kg ginaton was intragastrical y administered per day for 5 days. At 1 hour after the final administration, ischemia/reperfusion models were estab-lished by blocking the middle cerebral artery for 2 hours. At 24 hours after model establishment, compared with cerebral ischemic rats without ischemic preconditioning or drug intervention, plasma endothelin, thrombomodulin and von Wil ebrand factor levels significantly decreased and intercel-lular adhesion molecule-1 expression markedly reduced in brain tissue from rats with ischemic pre-conditioning. Simultaneously, brain tissue injury reduced. Ischemic preconditioning combined with drug exposure noticeably improved the effects of the above-mentioned indices, and the effects of 200 mg/kg persimmon leaf flavonoid were similar to 20 mg/kg ginaton treatment. These results indicate that ischemic preconditioning produces tolerance to recurrent severe cerebral ischemia. However, persimmon leaf flavonoid can elevate ischemic tolerance by reducing inflammatory reactions and vascular endothelial injury. High-dose persimmon leaf flavonoid showed an identical effect to ginaton.

  9. 唑吡坦对脑损伤植物状态患者促醒疗效的观察%Efficacy of zolpidem in promoting awakening from persistent vegetative state in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    蔡坤皓; 刘丽君; 戴黎萌; 陈东; 徐菲; 万勇; 杜波; 赵永阳

    2008-01-01

    目的 观察非常规促醒药物唑吡坦对脑损伤昏迷植物状态患者的促醒作用,分析该作用是否存在干预时间相关性. 方法 采用单光子发射型计算机体层摄影技术观察7例服用唑吡坦的持续性植物状态患者服药0.5 h前后及1周后99Tcm-双半光乙酯(ECD)脑灌注显像.做可视化分析;应用脑状态监测仪(CSM)进行检测,对比用药前后脑状态指数、肌电指数、爆发抑制指数的变化;观察患者临床指标变化,包括语言功能、肢体运动功能、肌张力、睡眠质量等的变化. 结果 (1)患者服药后脑状态指数、肌电指数均高于服药前爆发抑制指数低于用药前,差异均有统计学意义(P<0.05).(2)服药后7例患者脑损害区血流较服药前明显增加.(3)7例患者中3例成功促醒,表现为服药后0.5 h能与家人及医生进行简单的交流,用药后第2天便能做简单的数学运算,下肢可遵嘱做屈曲运动.其中1例原有的肢体震颤及扭转痉挛明显缓解:余4例肌张力及睡眠质量改善. 结论 唑吡坦能恢复部分脑损害持续性植物状态患者的脑功能,脑功能的改善与服药时间长短无关,脑功能的改善是"一步到位"而非"逐步改善".%Objective To investigate the effect of zolpidem in promoting awakening from persistent vegetative state in patients with brain injury and analyze the relation between the timing of drug administration and the awakening of the patients. Methods Brain 99mTc-ethyl cysteinate dimer (99mTc-ECD) single-photon emission computed tomography (SPECT) was performed in 7 patients in persistent vegetative state following brain injury 30 min before and 30 min and 7 days after treatment with 10 mg zolpidem administered through a nasogastric tube. Visual analysis of cerebral perfusion changes in the injured brain regions after the treatment was performed. A cerebral state monitor was used to observe the changes in the cerebral state index, electromyogram index

  10. Brain network adaptability across task states.

    Directory of Open Access Journals (Sweden)

    Elizabeth N Davison

    2015-01-01

    Full Text Available Activity in the human brain moves between diverse functional states to meet the demands of our dynamic environment, but fundamental principles guiding these transitions remain poorly understood. Here, we capitalize on recent advances in network science to analyze patterns of functional interactions between brain regions. We use dynamic network representations to probe the landscape of brain reconfigurations that accompany task performance both within and between four cognitive states: a task-free resting state, an attention-demanding state, and two memory-demanding states. Using the formalism of hypergraphs, we identify the presence of groups of functional interactions that fluctuate coherently in strength over time both within (task-specific and across (task-general brain states. In contrast to prior emphases on the complexity of many dyadic (region-to-region relationships, these results demonstrate that brain adaptability can be described by common processes that drive the dynamic integration of cognitive systems. Moreover, our results establish the hypergraph as an effective measure for understanding functional brain dynamics, which may also prove useful in examining cross-task, cross-age, and cross-cohort functional change.

  11. Research project: "Promotion of optimum brain ageing"

    CERN Multimedia

    IT Department

    2009-01-01

    The Rehabilitation and Geriatrics Department of the Geneva University Hospitals (HUG) has signed a research protocol with CERN with a view to promoting better understanding of the mechanisms that trigger Alzheimer’s disease. Alzheimer’s disease is a form of dementia associated with memory loss, inability to make plans and spatial disorientation. With 24 million sufferers worldwide at present, a figure that is predicted to rise to 29 million by 2020, it represents a major challenge for the coming decades. Prevention is a key factor in slowing the alarming spread of this disease. Delaying the onset of the disease could reduce the total number of cases by 50%. Why CERN? CERN is an international research organisation with a workforce that is predominantly male (a section of the population that has been little studied so far) and has a high level of education. Moreover, its pensioners are easy to reach since the majority live in the Geneva area. The aim of the study is to ev...

  12. Brain Content of Branes' States

    CERN Document Server

    Mkrtchyan, R L

    2003-01-01

    The problem of decomposition of unitary irreps of (super) tensorial (i.e. extended with tensorial charges) Poincare algebra w.r.t. its different subgroups is considered. This requires calculation of little groups for different configurations of tensor charges. Particularly, for preon states (i.e. states with maximal supersymmetry) in different dimensions the particle content is calculated, i.e. the spectrum of usual Poincare representations in the preon representation of tensorial Poincare. At d=4 results coincide with (and may provide another point of view on) the Vasiliev's results in field theories in generalized space-time. The translational subgroup of little groups of massless particles and branes is shown to be (and coincide with, at d=4) a subgroup of little groups of "pure branes" algebras, i.e. tensorial Poincare algebras without vector generators. Possible existence of corresponding field theories is discussed. At 11d it is shown that, contrary to lower dimensions, spinors are not homogeneous space...

  13. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    PURPOSE OF REVIEW: Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS...... therapeutic efficacy. SUMMARY: This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic...... response? How often should NIBS be repeated? Is the functional state of the brain during or before NIBS relevant to therapeutic efficacy of NIBS? We argue that these questions need to be tackled to obtain sufficient mechanistic understanding of how NIBS facilitates the recovery of function. This knowledge...

  14. Neural mass model-based tracking of anesthetic brain states

    NARCIS (Netherlands)

    Kuhlmann, Levin; Freestone, Dean R.; Manton, Jonathan H.; Heyse, Bjorn; Vereecke, Hugo E. M.; Lipping, Tarmo; Struys, Michel M. R. F.; Liley, David T. J.

    2016-01-01

    Neural mass model-based tracking of brain states from electroencephalographic signals holds the promise of simultaneously tracking brain states while inferring underlying physiological changes in various neuroscientific and clinical applications. Here, neural mass model-based tracking of brain state

  15. Neural correlates of establishing, maintaining, and switching brain states.

    Science.gov (United States)

    Tang, Yi-Yuan; Rothbart, Mary K; Posner, Michael I

    2012-06-01

    Although the study of brain states is an old one in neuroscience, there has been growing interest in brain state specification owing to MRI studies tracing brain connectivity at rest. In this review, we summarize recent research on three relatively well-described brain states: the resting, alert, and meditation states. We explore the neural correlates of maintaining a state or switching between states, and argue that the anterior cingulate cortex and striatum play a critical role in state maintenance, whereas the insula has a major role in switching between states. Brain state may serve as a predictor of performance in a variety of perceptual, memory, and problem solving tasks. Thus, understanding brain states is critical for understanding human performance.

  16. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  17. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  18. Decoding Brain States Based on Magnetoencephalography From Prespecified Cortical Regions.

    Science.gov (United States)

    Zhang, Jinyin; Li, Xin; Foldes, Stephen T; Wang, Wei; Collinger, Jennifer L; Weber, Douglas J; Bagić, Anto

    2016-01-01

    Brain state decoding based on whole-head MEG has been extensively studied over the past decade. Recent MEG applications pose an emerging need of decoding brain states based on MEG signals originating from prespecified cortical regions. Toward this goal, we propose a novel region-of-interest-constrained discriminant analysis algorithm (RDA) in this paper. RDA integrates linear classification and beamspace transformation into a unified framework by formulating a constrained optimization problem. Our experimental results based on human subjects demonstrate that RDA can efficiently extract the discriminant pattern from prespecified cortical regions to accurately distinguish different brain states.

  19. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  20. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor

  1. Antidepressive interventions : On state and vulnerability of the brain

    NARCIS (Netherlands)

    Korf, J

    1996-01-01

    An attempt is made to relate drug and non-drug antidepressive interventions to brain processes. In the present context two concepts are proposed: vulnerability towards depressogenic factors and depression as a state of the brain. Accordingly, it is assumed that the current antidepressants make the b

  2. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  3. Promoting brain-science literacy in the k-12 classroom.

    Science.gov (United States)

    Labriole, Michaela

    2010-07-01

    There are many simple ways to incorporate neuroscience into the K-12 classroom, even when the subject is not explicitly part of the curriculum. Here, Michaela Labriole, a science instructor at the New York Hall of Science, provides tangible examples of how teachers can encourage brain-science literacy in students at a time when growing knowledge of the brain is shaping our understanding of how to best foster learning.

  4. Does State Merit-Based Aid Stem Brain Drain?

    Science.gov (United States)

    Zhang, Liang; Ness, Erik C.

    2010-01-01

    In this study, the authors use college enrollment and migration data to test the brain drain hypothesis. Their results suggest that state merit scholarship programs do indeed stanch the migration of "best and brightest" students to other states. In the aggregate and on average, the implementation of state merit aid programs increases the…

  5. Brain imaging of pain: state of the art.

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony Kp

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.

  6. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    Science.gov (United States)

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-02-22

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band.

  7. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution.

  8. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  9. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Ole eJensen

    2011-05-01

    Full Text Available Large efforts are currently being made to develop and improve online analysis of brain activity which can be used e.g. for brain-computer interfacing (BCI. A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from EEG/MEG studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

  10. Understanding How Exercise Promotes Cognitive Integrity in the Aging Brain.

    Science.gov (United States)

    Laitman, Benjamin M; John, Gareth R

    2015-01-01

    Alterations in the structure and organization of the aging central nervous system (CNS), and associated functional deficits, result in cognitive decline and increase susceptibility to neurodegeneration. Age-related changes to the neurovascular unit (NVU), and their consequences for cerebrovascular function, are implicated as driving cognitive impairment during aging as well as in neurodegenerative disease. The molecular events underlying these effects are incompletely characterized. Similarly, the mechanisms underlying effects of factors that reduce the impact of aging on the brain, such as physical exercise, are also opaque. A study in this issue of PLOS Biology links the NVU to cognitive decline in the aging brain and suggests a potential underlying molecular mechanism. Notably, the study further links the protective effects of chronic exercise on cognition to neurovascular integrity during aging.

  11. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  12. Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review.

    Science.gov (United States)

    Holland, Jessica N; Schmidt, Adam T

    2015-01-01

    Traumatic brain injury (TBI) is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience) for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history) and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise). Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc.) following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.

  13. Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review

    Directory of Open Access Journals (Sweden)

    Jessica N. Holland

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise. Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc. following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.

  14. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  15. Homogeneous MGMT Immunoreactivity Correlates with an Unmethylated MGMT Promoter Status in Brain Metastases of Various Solid Tumors

    OpenAIRE

    Barbara Ingold; Peter Schraml; Heppner, Frank L.; Holger Moch

    2009-01-01

    The O(6)-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived fr...

  16. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    Directory of Open Access Journals (Sweden)

    Bimal Lakhani

    2016-01-01

    Full Text Available Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI, the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus. In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults.

  17. Neuromodulation of the conscious state following severe brain injuries.

    Science.gov (United States)

    Fridman, Esteban A; Schiff, Nicholas D

    2014-12-01

    Disorders of consciousness (DOC) following severe structural brain injuries globally affect the conscious state and the expression of goal-directed behaviors. In some subjects, neuromodulation with medications or electrical stimulation can markedly improve the impaired conscious state present in DOC. We briefly review recent studies and provide an organizing framework for considering the apparently widely disparate collection of medications and approaches that may modulate the conscious state in subjects with DOC. We focus on neuromodulation of the anterior forebrain mesocircuit in DOC and briefly compare mechanisms supporting recovery from structural brain injuries to those underlying facilitated emergence from unconsciousness produced by anesthesia. We derive some general principles for approaching the problem of restoration of consciousness after severe structural brain injuries, and suggest directions for future research.

  18. Prompt recognition of brain states by their EEG signals

    DEFF Research Database (Denmark)

    Peters, B.O.; Pfurtscheller, G.; Flyvbjerg, H.

    1997-01-01

    Brain states corresponding to intention of movement of left and right index finger and right foot are classified by a ''committee'' of artificial neural networks processing individual channels of 56-electrode electroencephalograms (EEGs). Correct recognition is achieved in 83% of cases not previo......Brain states corresponding to intention of movement of left and right index finger and right foot are classified by a ''committee'' of artificial neural networks processing individual channels of 56-electrode electroencephalograms (EEGs). Correct recognition is achieved in 83% of cases...... not previously seen by the system on the basis of 1 sec long EEGs....

  19. Resting-state brain organization revealed by functional covariance networks.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    Full Text Available BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN and structural covariance network (SCN have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.

  20. THE VALORIZATION OF THE BRAIN CIRCULATION PHENOMENON FOR PROMOTING ROMANIA’S IMAGE AND IDENTITY

    Directory of Open Access Journals (Sweden)

    Denisa Adriana COTÎRLEA

    2015-08-01

    Full Text Available This article was written in order to provide an overview regarding the opportunities of promoting Romania’s image and identity through the brain circulation phenomenon; it deals with skilled migration from a developing country perspective, while emphasizing the influences that the Brain Circulation phenomenon can have in promoting Romania’s image and identity abroad, within the nation branding process. Perceived as being one of the most important and sustainable assets that assures continuous development, the subject of nation branding became a widely approached one; thus, due to its complexity, the promotion of a nation within the nation branding process met various methods and techniques, while one of the most important elements has been avoided: the subject of the brain drain circulation, whose perspective regarding its image of the country of origin can suffer modifications while traveling abroad and who can influence other’s opinion by becoming authentic representatives of their nation, country ambassadors across the borders. Considering this, the paper aims at facilitating readers’ understanding regarding nation branding process, country image promotion and brain circulation phenomenon by identifying and explaining their connections and by highlighting their role in assuring long term prosperity.

  1. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Qi-shan Ran; Yun-hu Yu; Xiao-hong Fu; Yuan-chao Wen

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling path-way using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endo-thelial progenitor cells. Activation of the Notch signaling pathwayin vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These ifndings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  2. Brain imaging of pain: state of the art

    Directory of Open Access Journals (Sweden)

    Morton DL

    2016-09-01

    Full Text Available Debbie L Morton, Javin S Sandhu, Anthony KP Jones Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK Abstract: Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. Keywords: fMRI, PET, EEG, arthritis, fibromyalgia

  3. State of the Art Review: Poverty and the Developing Brain.

    Science.gov (United States)

    Johnson, Sara B; Riis, Jenna L; Noble, Kimberly G

    2016-04-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home.

  4. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Brain entropy (BEN mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI, reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS, a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.

  5. Sales Promotion Strategies of Financial Institutions in Bayelsa State

    Directory of Open Access Journals (Sweden)

    Banabo Ekankumo

    2011-08-01

    Full Text Available Sales promotion is a veritable tool in the hands of marketers to not only serve as a defensive strategy but an offensive weapon to combat the ever increasing competitive environment of the organization. Its primary objective is to act as a conduit through which marketers can build loyalty of consumers as well induce quick profit as a result of return purchase. Therefore, the study is an attempt to critically and empirically examine the sales promotion strategies of financial institution in Nigeria. The main objectives was to find out if such a review is necessary in a dynamic business environment and to underscore whether or not sales promotion strategies are effectively adopted in the banking industry in Bayelsa State. Total is 15 banks was randomly selected with 278 respondents who are marketers structured questionnaires were admitted and results gathered were analyzed using tabulation and single percentage method. The summary of the result was that sales promotion is aptly adopted by majority of banks in Yenagoa, and it subsequently recommended that the widest possible understand of the strategy has to be communicated to all levels of the organization to provide the detailed promotional plan of the banks.

  6. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  7. Brain communication in the locked-in state.

    Science.gov (United States)

    De Massari, Daniele; Ruf, Carolin A; Furdea, Adrian; Matuz, Tamara; van der Heiden, Linda; Halder, Sebastian; Silvoni, Stefano; Birbaumer, Niels

    2013-06-01

    Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional

  8. Information content in cortical spike trains during brain state transitions.

    Science.gov (United States)

    Arnold, Maria M; Szczepanski, Janusz; Montejo, Noelia; Amigó, José M; Wajnryb, Eligiusz; Sanchez-Vives, Maria V

    2013-02-01

    Even in the absence of external stimuli there is ongoing activity in the cerebral cortex as a result of recurrent connectivity. This paper attempts to characterize one aspect of this ongoing activity by examining how the information content carried by specific neurons varies as a function of brain state. We recorded from rats chronically implanted with tetrodes in the primary visual cortex during awake and sleep periods. Electro-encephalogram and spike trains were recorded during 30-min periods, and 2-4 neuronal spikes were isolated per tetrode off-line. All the activity included in the analysis was spontaneous, being recorded from the visual cortex in the absence of visual stimuli. The brain state was determined through a combination of behavior evaluation, electroencephalogram and electromyogram analysis. Information in the spike trains was determined by using Lempel-Ziv Complexity. Complexity was used to estimate the entropy of neural discharges and thus the information content (Amigóet al. Neural Comput., 2004, 16: 717-736). The information content in spike trains (range 4-70 bits s(-1) ) was evaluated during different brain states and particularly during the transition periods. Transitions toward states of deeper sleep coincided with a decrease of information, while transitions to the awake state resulted in an increase in information. Changes in both directions were of the same magnitude, about 30%. Information in spike trains showed a high temporal correlation between neurons, reinforcing the idea of the impact of the brain state in the information content of spike trains.

  9. State activities that promote fuel cell and hydrogen infrastructure development

    Energy Technology Data Exchange (ETDEWEB)

    Gangi, J. [Fuel Cells 2000, Washington, DC (United States). Breakthrough Technologies Inst.

    2007-07-01

    The fuel cell and hydrogen industry provide environmental benefits in addition to economic benefits in the form of jobs and business. This presentation outlined the initiatives, policy and partnerships that individual states are initiating to promote the commercialization of fuel cells and hydrogen fuels. Multi-state partnerships and regional organizations and initiatives were highlighted along with state programs, regulations, demonstrations and incentives that include hydrogen, fuel cells and zero emission vehicles. It was shown that 47 states and the District of Columbia (DC) are involved in the promotion of fuel cell or hydrogen legislation and funding. Breakthrough Technologies Institute, the parent organization of Fuel Cells 2000, and the U.S. Department of Energy's Hydrogen Program has launched a searchable database that catalogues all stationary installations, hydrogen fueling stations and vehicle demonstration programs in the United States, including cars, buses and specialty vehicles. The database is intended to be a guide for local, state and federal lawmakers to implement similar legislation and initiatives in their jurisdictions. The database includes regulations such as interconnection standards, renewable portfolio standards and net metering as well as legislation such as tax credits, grants, and loans. Roadmaps and funding/support for business incubators and relocation are included. The database is also an important tool for the general public who are trying to learn more about the technology. Although federal research money has mainly focused on transportation and related fuel technologies, individual states are targeting other applications and areas such as materials and components, stationary power and fuel storage.

  10. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?

    Science.gov (United States)

    Boly, M; Phillips, C; Tshibanda, L; Vanhaudenhuyse, A; Schabus, M; Dang-Vu, T T; Moonen, G; Hustinx, R; Maquet, P; Laureys, S

    2008-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain-behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto-cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level-dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark.

  11. Glial promoter selectivity following AAV-delivery to the immature brain.

    Directory of Open Access Journals (Sweden)

    Georg von Jonquieres

    Full Text Available Recombinant adeno-associated virus (AAV vectors are versatile tools for gene transfer to the central nervous system (CNS and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP expression driven by the myelin basic protein (MBP or glial fibrillary acidic protein (GFAP promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.

  12. A Plastic Temporal Brain Code for Conscious State Generation

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2009-01-01

    Full Text Available Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms.

  13. Source Localization of Brain States Associated with Canonical Neuroimaging Postures.

    Science.gov (United States)

    Lifshitz, Michael; Thibault, Robert T; Roth, Raquel R; Raz, Amir

    2017-02-14

    Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)-an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclined postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen's d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results-from supine neuroimaging measurements to erect positions typical of ecological human behavior-would call for considering the influence that posture wields on brain dynamics.

  14. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  15. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  16. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    Science.gov (United States)

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  17. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  18. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report.

    Science.gov (United States)

    Abdolmaleky, Hamid Mostafavi; Cheng, Kuang-hung; Russo, Andrea; Smith, Cassandra L; Faraone, Stephen V; Wilcox, Marsha; Shafa, Rahim; Glatt, Stephen J; Nguyen, Giang; Ponte, Joe F; Thiagalingam, Sam; Tsuang, Ming T

    2005-04-05

    DNA methylation changes could provide a mechanism for DNA plasticity and dynamism for short-term adaptation, enabling a type of cell memory to register cellular history under different environmental conditions. Some environmental insults may also result in pathological methylation with corresponding alteration of gene expression patterns. Evidence from several studies has suggested that in schizophrenia and bipolar disorder, mRNA of the reelin gene (RELN), which encodes a protein necessary for neuronal migration, axonal branching, synaptogenesis, and cell signaling, is severely reduced in post-mortem brains. Therefore, we investigated the methylation status of the RELN promoter region in schizophrenic patients and normal controls as a potential mechanism for down regulation of its expression. Ten post-mortem frontal lobe brain samples from male schizophrenic patients and normal controls were obtained from the Harvard Brain Tissue Resources Center. DNA was extracted using a standard phenol-chloroform DNA extraction protocol. To evaluate differences between patients and controls, we applied methylation specific PCR (MSP) using primers localized to CpG islands flanking a potential cyclic AMP response element (CRE) and a stimulating protein-1 (SP1) binding site located in the promoter region. For each sample, DNA extraction, bisulfite treatment, and MSP were independently repeated at least four times to accurately determine the methylation status of the target region. Forty-three PCR trials were performed on the test and control samples. MSP analysis of the RELN promoter revealed an unmethylated signal in all reactions (43 of 43) using DNA from the frontal brain tissue, derived from either the schizophrenic patients or normal controls indicating that this region of the RELN promoter is predominantly unmethylated. However, we observed a distinct methylated signal in 73% of the trials (16 of 22) in schizophrenic patients compared with 24% (5 of 21) of controls. Thus, the

  19. Animal emotions, behaviour and the promotion of positive welfare states.

    Science.gov (United States)

    Mellor, D J

    2012-01-01

    This paper presents a rationale that may significantly boost the drive to promote positive welfare states in animals. The rationale is based largely, but not exclusively, on an experimentally supported neuropsychological understanding of relationships between emotions and behaviour, an understanding that has not yet been incorporated into animal welfare science thinking. Reference is made to major elements of the neural/cognitive foundations of motivational drives that energise and direct particular behaviours and their related subjective or emotional experiences. These experiences are generated in part by sensory inputs that reflect the animal's internal functional state and by neural processing linked to the animal's perception of its external circumstances. The integrated subjective or emotional outcome of these inputs corresponds to the animal's welfare status. The internally generated subjective experiences represent motivational urges or drives that are predominantly negative and include breathlessness, thirst, hunger and pain. They are generated by, and elicit specific behaviours designed to correct, imbalances in the animal's internal functional state. Externally generated subjective experiences are said to be integral to the operation of interacting 'action-orientated systems' that give rise to particular behaviours and their negative or positive emotional contents. These action-orientated systems, described in neuropsychological terms, give rise to negative emotions that include fear, anger and panic, and positive emotions that include comfort, vitality, euphoria and playfulness. It is argued that early thinking about animal welfare management focused mainly on minimising disturbances to the internal functional states that generate associated unpleasant motivational urges or drives. This strategy produced animal welfare benefits, but at best it could only lift a poor net welfare status to a neutral one. In contrast, strategies designed to manipulate the

  20. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors.

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available The O(6-methylguanine-methyltransferase (MGMT promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91, breast (n = 72 kidney (n = 49 and from malignant melanomas (n = 113 by methylation-specific polymerase chain reaction (MS-PCR and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6% revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5% followed by those from breast carcinoma (28.8%, malignant melanoma (24.7% and from renal carcinoma (20%. A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43% tumors lacking MGMT immunoreactivity, in 17 of 63 (27% metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9% showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes.

  1. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  2. The influence of low-grade glioma on resting state oscillatory brain activity : a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I; Stam, C J; Douw, L; Bartolomei, F; Heimans, J J; van Dijk, B W; Postma, T J; Klein, M; Reijneveld, J C

    2008-01-01

    PURPOSE: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  3. Frequency dependent topological patterns of resting-state brain networks.

    Directory of Open Access Journals (Sweden)

    Long Qian

    Full Text Available The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD, CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks.

  4. Deep brain stimulation for the treatment of vegetative state.

    Science.gov (United States)

    Yamamoto, Takamitsu; Katayama, Yoichi; Kobayashi, Kazutaka; Oshima, Hideki; Fukaya, Chikashi; Tsubokawa, Takashi

    2010-10-01

    One hundred and seven patients in vegetative state (VS) were evaluated neurologically and electrophysiologically over 3 months (90 days) after the onset of brain injury. Among these patients, 21 were treated with deep brain stimulation (DBS). The stimulation sites were the mesencephalic reticular formation (two patients) and centromedian-parafascicularis nucleus complex (19 cases). Eight of the patients recovered from VS and were able to obey verbal commands at 13 and 10 months in the case of head trauma and at 19, 14, 13, 12, 12 and 8 months in the case of vascular disease after comatose brain injury, and no patients without DBS recovered from VS spontaneously within 24 months after brain injury. The eight patients who recovered from VS showed desynchronization on continuous EEG frequency analysis. The Vth wave of the auditory brainstem response and N20 of the somatosensory evoked potential could be recorded, although with a prolonged latency, and the pain-related P250 was recorded with an amplitude of > 7 μV. Sixteen (14.9%) of the 107 VS patients satisfied these criteria in our electrophysiological evaluation, 10 of whom were treated with DBS and six of whom were not treated with DBS. In these 16 patients, the recovery rate from VS was different between the DBS therapy group and the no DBS therapy group (P < 0.01, Fisher's exact probability test) These findings indicate that DBS may be useful for the recovery of patients from VS if the candidates are selected on the basis of electrophysiological criteria.

  5. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  6. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-02-14

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  7. Stability of thalamocortical synaptic transmission across awake brain states.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Swadlow, Harvey A

    2009-05-27

    Sensory cortical neurons are highly sensitive to brain state, with many neurons showing changes in spatial and/or temporal response properties and some neurons becoming virtually unresponsive when subjects are not alert. Although some of these changes are undoubtedly attributable to state-related filtering at the thalamic level, another likely source of such effects is the thalamocortical (TC) synapse, where activation of nicotinic receptors on TC terminals have been shown to enhance synaptic transmission in vitro. However, monosynaptic TC synaptic transmission has not been directly examined during different states of alertness. Here, in awake rabbits that shifted between alert and non-alert EEG states, we examined the monosynaptic TC responses and short-term synaptic dynamics generated by spontaneous impulses of single visual and somatosensory TC neurons. We did this using spike-triggered current source-density analysis, an approach that enables assessment of monosynaptic extracellular currents generated in different cortical layers by impulses of single TC afferents. Spontaneous firing rates of TC neurons were higher, and burst rates were much lower in the alert state. However, we found no state-related changes in the amplitude of monosynaptic TC responses when TC spikes with similar preceding interspike interval were compared. Moreover, the relationship between the preceding interspike interval of the TC spike and postsynaptic response amplitude was not influenced by state. These data indicate that TC synaptic transmission and dynamics are highly conserved across different states of alertness and that observed state-related changes in receptive field properties that occur at the cortical level result from other mechanisms.

  8. Effects of APOE promoter polymorphism on the topological organization of brain structural connectome in nondemented elderly.

    Science.gov (United States)

    Shu, Ni; Li, Xin; Ma, Chao; Zhang, Junying; Chen, Kewei; Liang, Ying; Chen, Yaojing; Zhang, Zhanjun

    2015-12-01

    The polymorphism of the Apolipoprotein E (APOE) promoter rs405509 can regulate the transcriptional activity of the APOE gene and is related to Alzheimer's disease (AD). However, its effects on cognitive performance and the underlying brain mechanisms remain unknown. Here, we performed a battery of neuropsychological tests in a large sample (837 subjects) of nondemented elderly Chinese people, and explored the related brain mechanisms via the construction of diffusion MRI-based structural connectome and graph analysis from a subset (84 subjects) of the sample. Cognitively, the rs405509 risk allele (TT) carriers showed decreased attention and execution functions compared with noncarriers (GG/GT). Regarding the topological alterations of the brain connectome, the risk allele group exhibited reduced global and local efficiency of white matter structural networks, mainly in the left anterior and posterior cingulate cortices (PCC). Importantly, the efficiency of the left PCC is correlated with the impaired attention function and mediates the impacts of the rs405509 genotype on attention. These results demonstrated that the rs405509 polymorphism affects attention function in nondemented elderly people, possibly by modulating brain structural connectivity of the PCC. This polymorphism may help us to understand the neural mechanisms of cognitive aging and to serve as a potential marker assessing the risk of AD.

  9. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    Science.gov (United States)

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  10. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration

    Science.gov (United States)

    Yip, Ping Kei; Carrillo-Jimenez, Alejandro; King, Paul; Vilalta, Anna; Nomura, Koji; Chau, Chi Cheng; Egerton, Alexander Michael Scott; Liu, Zhuo-Hao; Shetty, Ashray Jayaram; Tremoleda, Jordi L.; Davies, Meirion; Deierborg, Tomas; Priestley, John V.; Brown, Guy Charles; Michael-Titus, Adina Teodora; Venero, Jose Luis; Burguillos, Miguel Angel

    2017-01-01

    Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1β, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy. PMID:28128358

  11. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia.

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-11-15

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  12. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Institute of Scientific and Technical Information of China (English)

    Wenqing Wang; Aihui Wang; Limin Yu; Xuesong Han; Guiyun Jiang; Changshui Weng; Hongwei Zhang; Zhiqiang Zhou

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  13. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  14. Is Brain in a Superfluid State? Physics of Consciousness

    CERN Document Server

    Chakraverty, Benoy

    2010-01-01

    The article "Physics of Consciousness" treats mind as an abstract Hilbert space with a set of orthogonal base vectors to describe information like particles, which are considered to be the elementary excitation of a quantum field. A non-Hermitian operator of Self is introduced to create these information like particles which in turn will constitute a coherent information field. The non - zero average of this self operator is shown to constitute our basic I. Awareness and consciousness is described very simply as a response function of these operators to external world. We show with a very simple neural model how a baby less than two years old develop self-awareness as the neural connectivity achieves a critical value. The all-important I is the basic cognitive order parameter of each human brain and is a result of thermodynamic phase transition from a chaotic disordered state to a symmetry broken coherent ordered state, very akin to physics of superfluidity.

  15. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism.

    Science.gov (United States)

    Glorioso, Christin; Oh, Sunghee; Douillard, Gaelle Guilloux; Sibille, Etienne

    2011-02-01

    Mechanisms determining characteristic age-of-onset for neurological diseases are largely unknown. Normal brain aging associates with robust and progressive transcriptome changes ("molecular aging"), but the intersection with disease pathways is mostly uncharacterized. Here, using cross-cohort microarray analysis of four human brain areas, we show that neurological disease pathways largely overlap with molecular aging and that subjects carrying a newly-characterized low-expressing polymorphism in a putative longevity gene (Sirtuin5; SIRT5(prom2)) have older brain molecular ages. Specifically, molecular aging was remarkably conserved across cohorts and brain areas, and included numerous developmental and transcription-regulator genes. Neurological disease-associated genes were highly overrepresented within age-related genes and changed almost unanimously in pro-disease directions, together suggesting an underlying genetic "program" of aging that progressively promotes disease. To begin testing this putative pathway, we developed and used an age-biosignature to assess five candidate longevity gene polymorphisms' association with molecular aging rates. Most robustly, aging was accelerated in cingulate, but not amygdala, of subjects carrying a SIRT5 promoter polymorphism (+9 years, p=0.004), in concordance with cingulate-specific decreased SIRT5 expression. This effect was driven by a set of core transcripts (+24 years, p=0.0004), many of which were mitochondrial, including Parkinson's disease genes, PINK-1 and DJ-1/PARK7, hence suggesting that SIRT5(prom2) may represent a risk factor for mitochondrial dysfunction-related diseases, including Parkinson's, through accelerated molecular aging of disease-related genes. Based on these results we speculate that a "common mechanism" may underlie age-of-onset across several neurological diseases. Confirming this pathway and its regulation by common genetic variants would provide new strategies for predicting, delaying, and

  16. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion.

    Science.gov (United States)

    Uchiyama, Satoshi; Carlin, Aaron F; Khosravi, Arya; Weiman, Shannon; Banerjee, Anirban; Quach, Darin; Hightower, George; Mitchell, Tim J; Doran, Kelly S; Nizet, Victor

    2009-08-31

    In humans, Streptococcus pneumoniae (SPN) is the leading cause of bacterial meningitis, a disease with high attributable mortality and frequent permanent neurological sequelae. The molecular mechanisms underlying the central nervous system tropism of SPN are incompletely understood, but include a primary interaction of the pathogen with the blood-brain barrier (BBB) endothelium. All SPN strains possess a gene encoding the surface-anchored sialidase (neuraminidase) NanA, which cleaves sialic acid on host cells and proteins. Here, we use an isogenic SPN NanA-deficient mutant and heterologous expression of the protein to show that NanA is both necessary and sufficient to promote SPN adherence to and invasion of human brain microvascular endothelial cells (hBMECs). NanA-mediated hBMEC invasion depends only partially on sialidase activity, whereas the N-terminal lectinlike domain of the protein plays a critical role. NanA promotes SPN-BBB interaction in a murine infection model, identifying the protein as proximal mediator of CNS entry by the pathogen.

  17. Metabolic resting-state brain networks in health and disease.

    Science.gov (United States)

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  18. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  19. Brain mechanisms of altered conscious states during epileptic seizures.

    Science.gov (United States)

    Cavanna, Andrea Eugenio; Monaco, Francesco

    2009-05-01

    Impaired consciousness has long been considered the hallmark of epileptic seizures. Both generalized seizures and complex partial seizures are characterized by a multifaceted spectrum of altered conscious states, in terms of the general level of awareness and the subjective contents of consciousness. Complete loss of consciousness occurs when epileptic activity involves both cortical and subcortical structures, as in tonic-clonic seizures and absence seizures. Medial temporal lobe discharges can selectively impair experience in complex partial seizures (with affected responsiveness) and certain simple partial seizures (with unaffected responsiveness). Electrical stimulation of temporal lobe structures has been shown to evoke similar subjective experiences. Findings from neurophysiological and brain-imaging studies in epilepsy have now demonstrated that involvement of the bilateral thalamus and upper brainstem leads to selective impairment of frontoparietal association cortices and midline 'default mode' networks, which results in ictal loss of consciousness. The spread of epileptic discharges from the medial temporal lobe to the same subcortical structures can ultimately cause impairment in the level of consciousness in the late ictal and immediate postictal phase of complex partial seizures. This paper reviews novel insights into the brain mechanisms that underlie alterations of consciousness during epileptic seizures and the implications for clinical practice in terms of diagnosis and management.

  20. Why and how physical activity promotes experience-induced brain plasticity

    Directory of Open Access Journals (Sweden)

    Gerd eKempermann

    2010-12-01

    Full Text Available Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, that the likelihood of cognitive challenges increases. In the wild (other than in front of a TV, no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading an active life but an evolutionarily fundamental aspect of activity, which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback.

  1. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization.

    Science.gov (United States)

    Banerjee, Anirban; Van Sorge, Nina M; Sheen, Tamsin R; Uchiyama, Satoshi; Mitchell, Tim J; Doran, Kelly S

    2010-11-01

    Streptococcus pneumoniae (SPN), the leading cause of meningitis in children and adults worldwide, is associated with an overwhelming host inflammatory response and subsequent brain injury. Here we examine the global response of the blood-brain barrier to SPN infection and the role of neuraminidase A (NanA), an SPN surface anchored protein recently described to promote central nervous system tropism. Microarray analysis of human brain microvascular endothelial cells (hBMEC) during infection with SPN or an isogenic NanA-deficient (ΔnanA) mutant revealed differentially activated genes, including neutrophil chemoattractants IL-8, CXCL-1, CXCL-2. Studies using bacterial mutants, purified recombinant NanA proteins and in vivo neutrophil chemotaxis assays indicated that pneumococcal NanA is necessary and sufficient to activate host chemokine expression and neutrophil recruitment during infection. Chemokine induction was mapped to the NanA N-terminal lectin-binding domain with a limited contribution of the sialidase catalytic activity, and was not dependent on the invasive capability of the organism. Furthermore, pretreatment of hBMEC with recombinant NanA protein significantly increased bacterial invasion, suggesting that NanA-mediated activation of hBMEC is a prerequisite for efficient SPN invasion. These findings were corroborated in an acute murine infection model where we observed less inflammatory infiltrate and decreased chemokine expression following infection with the ΔnanA mutant.

  2. Resting-state functional brain networks in Parkinson's disease.

    Science.gov (United States)

    Baggio, Hugo C; Segura, Bàrbara; Junque, Carme

    2015-10-01

    The network approach is increasingly being applied to the investigation of normal brain function and its impairment. In the present review, we introduce the main methodological approaches employed for the analysis of resting-state neuroimaging data in Parkinson's disease studies. We then summarize the results of recent studies that used a functional network perspective to evaluate the changes underlying different manifestations of Parkinson's disease, with an emphasis on its cognitive symptoms. Despite the variability reported by many studies, these methods show promise as tools for shedding light on the pathophysiological substrates of different aspects of Parkinson's disease, as well as for differential diagnosis, treatment monitoring and establishment of imaging biomarkers for more severe clinical outcomes.

  3. What should be the roles of conscious states and brain states in theories of mental activity?

    Directory of Open Access Journals (Sweden)

    Donelson E Dulany

    2011-03-01

    Full Text Available Answers to the title's question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and "free will" in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness?

  4. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  5. Brain activation and inhibition after acupuncture at Taichong andTaixi:resting-state functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Shao-qun Zhang; Chun-zhi Tang; Yan-jie Wang; Ji-ping Zhang; Jun-qi Chen; Chun-xiao Wu; Zhi-peng Li; Jia-rong Chen; Huai-liang Ouyang; Yong Huang

    2015-01-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture atTaichong (LR3) andTaixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture atTaichong andTaixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic res-onance imaging, which revealed that the amplitude of low-frequency lfuctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferi-or frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present ifndings indicate that acupuncture atTaichong andTaixi speciifcally promote blood lfow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  6. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.

    Science.gov (United States)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R; Born, Jan; Marshall, Lisa

    2009-09-08

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding.

  7. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    Science.gov (United States)

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.

  8. Glymphatic clearance controls state-dependent changes in brain lactate concentration

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra

    2016-01-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lacta...

  9. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Science.gov (United States)

    2013-02-12

    ...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... Traumatic Brain Injury Act of 2008 (Pub. L. 110- 206). Under this authority, the HRSA TBI Program is charged... HUMAN SERVICES Health Resources and Services Administration Current Traumatic Brain Injury......

  10. Health promotion in smaller workplaces in the United States.

    Science.gov (United States)

    Harris, Jeffrey R; Hannon, Peggy A; Beresford, Shirley A A; Linnan, Laura A; McLellan, Deborah L

    2014-01-01

    Most American workplaces are smaller, with fewer than 1,000 employees. Many of these employees are low-wage earners and at increased risk for chronic diseases. Owing to the challenges smaller workplaces face to offering health-promotion programs, their employees often lack access to health-promotion opportunities available at larger workplaces. Many smaller employers do not offer health insurance, which is currently the major funding vehicle for health-promotion services. They also have few health-promotion vendors to serve them and low internal capacity for, and commitment to, delivery of on-site programs. The programs they offer, whether aimed at health promotion alone or integrated with health protection, are rarely comprehensive and are understudied. Research priorities for health promotion in smaller workplaces include developing programs feasible for the smallest workplaces with fewer than 20 employees. Policy priorities include incentives for smaller workplaces to implement comprehensive programs and an ongoing system for monitoring and evaluation.

  11. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie

    2017-01-01

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release...... of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether...... astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we...

  12. Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites.

    Science.gov (United States)

    Mika, Agnieszka; Fleshner, Monika

    2016-02-01

    The 100 trillion microorganisms residing within our intestines contribute roughly 5 million additional genes to our genetic gestalt, thus posing the potential to influence many aspects of our physiology. Microbial colonization of the gut shortly after birth is vital for the proper development of immune, neural and metabolic systems, while sustaining a balanced, diverse gut flora populated with beneficial bacteria is necessary for maintaining optimal function of these systems. Although symbiotic host-microbial interactions are important throughout the lifespan, these interactions can have greater and longer lasting impacts during certain critical developmental periods. A better understanding of these sensitive periods is necessary to improve the impact and effectiveness of health-promoting interventions that target the microbial ecosystem. We have recently reported that exercise initiated in early life increases gut bacterial species involved in promoting psychological and metabolic health. In this review, we emphasize the ability of exercise during this developmentally receptive time to promote optimal brain and metabolic function across the lifespan through microbial signals.

  13. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain

    Directory of Open Access Journals (Sweden)

    Teppei Fujioka

    2017-02-01

    Full Text Available Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration.

  14. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    Science.gov (United States)

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  15. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain.

    Science.gov (United States)

    Fujioka, Teppei; Kaneko, Naoko; Ajioka, Itsuki; Nakaguchi, Kanako; Omata, Taichi; Ohba, Honoka; Fässler, Reinhard; García-Verdugo, José Manuel; Sekiguchi, Kiyotoshi; Matsukawa, Noriyuki; Sawamoto, Kazunobu

    2017-02-01

    Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration.

  16. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended stim

  17. TMS-evoked changes in brain-state dynamics quantified by using EEG data.

    Science.gov (United States)

    Mutanen, Tuomas; Nieminen, Jaakko O; Ilmoniemi, Risto J

    2013-01-01

    To improve our understanding of the combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) method in general, it is important to study how the dynamics of the TMS-modulated brain activity differs from the dynamics of spontaneous activity. In this paper, we introduce two quantitative measures based on EEG data, called mean state shift (MSS) and state variance (SV), for evaluating the TMS-evoked changes in the brain-state dynamics. MSS quantifies the immediate TMS-elicited change in the brain state, whereas SV shows whether the rate at which the brain state changes is modulated by TMS. We report a statistically significant increase for a period of 100-200 ms after the TMS pulse in both MSS and SV at the group level. This indicates that the TMS-modulated brain state differs from the spontaneous one. Moreover, the TMS-modulated activity is more vigorous than the natural activity.

  18. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.

    Science.gov (United States)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Goncalves, Daisy; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Bäckhed, Fredrik; Mithieux, Gilles

    2014-01-16

    Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.

  19. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R;

    2009-01-01

    typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted......The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...

  20. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke.

    Science.gov (United States)

    Cook, Douglas J; Nguyen, Cynthia; Chun, Hyun N; L Llorente, Irene; Chiu, Abraham S; Machnicki, Michal; Zarembinski, Thomas I; Carmichael, S Thomas

    2017-03-01

    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.

  1. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia.

    Science.gov (United States)

    Mori, Marco Aurélio; Meyer, Erika; Soares, Ligia Mendes; Milani, Humberto; Guimarães, Francisco Silveira; de Oliveira, Rúbia Maria Weffort

    2017-04-03

    This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.

  2. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  3. Meditation promotes insightful problem-solving by keeping people in a mindful and alert conscious state.

    Science.gov (United States)

    Ren, Jun; Huang, Zhihui; Luo, Jing; Wei, Gaoxia; Ying, Xiaoping; Ding, Zhiguang; Wu, Yibin; Luo, Fei

    2011-10-01

    Although previous studies have shown that sleep can inspire insight, it is still unclear whether meditation can promote insight. Meditation differs from other types of passive rest such as relaxation and sleep because it requires full consciousness and mindfulness of targets such as one's breathing. Forty-eight university students without meditation experience were recruited to learn a simple meditation technique. They were given a list of 10 insight problems to solve (the pre-test session). In this study, we focused on the unsolved problems and examined if they could be successfully solved after a 20 min rest interval with or without meditation. Results showed that relative to the control group that listened to Chinese or English words and made a language judgment, the groups who learned meditation successfully solved significantly more failed problems from the pre-test session, providing direct evidence for the role of meditation in promoting insight. Further analysis showed that maintaining a mindful and alert state during meditation (raising a hand to report every 10 deep breaths compared to every 100 deep breaths) resulted in more insight regarding the failed items from the pre-test session. This implies that it was watchfulness in meditation, rather than relaxation, that actually contributed to insight. Consistently, in the meditation session or control task, the percentage of alpha waves-a brain index of mental relaxation-was negatively correlated with insight. These results suggest a meditation-based insight-promoting mechanism different from that involved in passive rest such as relaxation and sleep.

  4. 78 FR 77368 - Peanut Promotion, Research, and Information Order; Amendment to Primary Peanut-Producing States...

    Science.gov (United States)

    2013-12-23

    ... Agricultural Marketing Service 7 CFR Part 1216 Peanut Promotion, Research, and Information Order; Amendment to... primary peanut-producing State under the Peanut Promotion, Research, and Information Order (Order). The... or to the Promotion and Economics Division, Fruit and Vegetable Program, AMS, USDA, 1400...

  5. 76 FR 28625 - Sorghum Promotion, Research, and Information Program; State Referendum Results

    Science.gov (United States)

    2011-05-18

    ... Service 7 CFR 1221 Sorghum Promotion, Research, and Information Program; State Referendum Results AGENCY..., 2011, through February 28, 2011, have approved the continuation of the Sorghum Promotion, Research, and... Promotion, Research, and Information Act of 1996 (Act) (7 U.S.C. 7411-7425), the Department of...

  6. Sales Promotion Strategies of Financial Institutions in Bayelsa State

    OpenAIRE

    Banabo Ekankumo; Koroye Braye Henry

    2011-01-01

    Sales promotion is a veritable tool in the hands of marketers to not only serve as a defensive strategy but an offensive weapon to combat the ever increasing competitive environment of the organization. Its primary objective is to act as a conduit through which marketers can build loyalty of consumers as well induce quick profit as a result of return purchase. Therefore, the study is an attempt to critically and empirically examine the sales promotion strategies of financial institution in Ni...

  7. [Carbohydrate metabolism in the brain in comatose states].

    Science.gov (United States)

    Khapiĭ, Kh Kh; Gruzman, A B

    1990-01-01

    The article confirms an earlier discovered phenomenon that during comas and in post-coma periods the brain releases glucose and consumes lactate. It is suggested that the phenomenon is based on glucogenesis taking place in the brain from non-carbohydrate glucose precursors, which is phylogenetically predetermined and biologically expedient.

  8. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  9. Rebalancing brain drain: exploring resource reallocation to address health worker migration and promote global health.

    Science.gov (United States)

    Mackey, Timothy Ken; Liang, Bryan Albert

    2012-09-01

    Global public health is threatened by an imbalance in health worker migration from resource-poor countries to developed countries. This "brain drain" results in health workforce shortages, health system weakening, and economic loss and waste, threatening the well-being of vulnerable populations and effectiveness of global health interventions. Current structural imbalances in resource allocation and global incentive structures have resulted in 57 countries identified by WHO as having a "critical shortage" of health workers. Yet current efforts to strengthen domestic health systems have fallen short in addressing this issue. Instead, global solutions should focus on sustainable forms of equitable resource sharing. This can be accomplished by adoption of mandatory global resource and staff-sharing programs in conjunction with implementation of state-based health services corps.

  10. State of the art survey on MRI brain tumor segmentation.

    Science.gov (United States)

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized.

  11. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  12. Promoting "Academic Entrepreneurship" in Europe and the United States

    DEFF Research Database (Denmark)

    Tvarnø, Christina D.; Bagley, Constance E.

    2016-01-01

    States (“U.S.”). Our comparative analysis of the EU and U.S. approaches to translational medicine shows that there are lessons to be shared. The EU can apply the experiences from the U.S. Bayh-Dole Act and PPPPs in the United States, and the United States can emulate certain of the open innovation...... aspects of the European Innovative Medicines Initiative and the tighter patenting standards imposed by the European Patent Office. Thus, a secondary purpose of this article is suggesting amendments to the U.S. laws governing the patenting and licensing of government-funded technology to prevent undue...

  13. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    Science.gov (United States)

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  14. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain.

    Science.gov (United States)

    Boroujerdi, Amin; Milner, Richard

    2015-01-01

    In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.

  15. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Liao Z

    2009-01-01

    Full Text Available Background : Traumatic brain injury (TBI is an important cause of adult mortality and morbidity. Erythropoietin (Epo has been shown to promote the viability of cerebral cells by upregulating Bcl-2 gene; however, Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. Aim : The present study examined the neuroprotective effect of Epo as a survival factor through the regulation of the Bax. Materials and Methods : Wistar rats were randomly divided into three groups: Recombinant human EPO treated (rhEPO TBI, vehicle-treated TBI, and sham-operated. Traumatic brain injury was induced by the Feeney free-falling model. Rats were killed 5, 12, 24, 72, 120, or 168 h after TBI. Regulation of Bcl-2 was detected by reverse transcription-polymerase chain reaction (RT-PCR, western blotting and immunofluorescence. Results : Bax mRNA and protein levels were lower in the rhEPO-treated rat brains than in the vehicle-treated rat brains. Induction of Bax expression peaked at 24 h and remained stable for 72-120 h in vehicle-treated rat brains, whereas induction of Bax expression was only slightly elevated in rhEPO-treated rat brains. The number of TdT-mediated dUTP Nick-End Labeling(TUNEL-positive cells in the rhEPO-treated rat brains was far fewer than in the vehicle-treated rat brains. Conclusions : Epo exerts neuroprotective effect against traumatic brain injury via reducing Bax gene expression involved in inhibiting TBI-induced neuronal cell death.

  16. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  17. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography.

    Science.gov (United States)

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P

    2010-12-28

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  18. 78 FR 63052 - United States-Panama Trade Promotion Agreement

    Science.gov (United States)

    2013-10-23

    ... goods originating in Panama for which, as in the case of goods originating in Canada, Mexico, Singapore, Chile, Morocco, El Salvador, Guatemala, Honduras, Nicaragua, the Dominican Republic, Costa Rica, Bahrain... demonstration, if brought into the United States by a resident of Canada, Mexico, Singapore, Chile, Morocco,...

  19. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    Science.gov (United States)

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  20. The Relationship between Promotions Committees' Identification of Problem Medical Students and Subsequent State Medical Board Actions

    Science.gov (United States)

    Santen, Sally A.; Petrusa, Emil; Gruppen, Larry D.

    2015-01-01

    Studies have found unprofessional behavior in medical school was associated with disciplinary action by state medical boards. For medical schools, promotions committees are responsible for identifying which students do not demonstrate academic performance and professional behavior acceptable for promotion and graduation. The objective of this…

  1. Guiding Opinions of the State Council on Promoting Technological Transformation of Enterprises Released

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Recently, the State Council released the Guiding Opinions on Promoting Technological Transformation of Enterprises (Guo Fa [2012] No. 44). The Guiding Opinions includes three parts, i.e. overall requirements, key tasks and supporting measures, which requires all regions and all depart- ments to further unify the idea, deeply understand the importance and urgency of promoting techno- logical transformation of enterprises,

  2. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    Science.gov (United States)

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.

  3. An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease*****

    Institute of Scientific and Technical Information of China (English)

    Jie Xiang; Hao Guo; Rui Cao; Hong Liang; Junjie Chen

    2013-01-01

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradual y increased, while clustering coefficients gradual y decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-mer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventual y lead to diffuse brain injury and other cognitive impairments.

  4. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  5. 76 FR 19174 - State Trade and Export Promotion (STEP) Pilot Grant Program

    Science.gov (United States)

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION State Trade and Export Promotion (STEP) Pilot Grant Program AGENCY: Office of International Trade; U.S. Small Business Administration (SBA) ACTION: SBA Program Announcement No....

  6. Current state of our knowledge on brain tumor epidemiology.

    Science.gov (United States)

    Ostrom, Quinn T; Barnholtz-Sloan, Jill S

    2011-06-01

    The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.

  7. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  8. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  9. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Science.gov (United States)

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  10. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  11. Brain insults in rats induce increased expression of the BDNF gene through differential use of multiple promoters.

    Science.gov (United States)

    Kokaia, Z; Metsis, M; Kokaia, M; Bengzon, J; Elmér, E; Smith, M L; Timmusk, T; Siesjö, B K; Persson, H; Lindvall, O

    1994-04-01

    The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5'-exons linked to separate promoters and one 3'-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n = 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.

  12. The Chinese herbal formula Tongluo Jiunao promotes expression of brain-derived neurotrophic factor/tropomyosin-related kinase B pathways in a rat model of ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Peiman Alesheikh; Yangyang Yan; Huiling Tang; Pengtao Li; Wei Zhang; Yanshu Pan; Arezou Mashoufi; Liyun Zhao; Runjun Wang; Bo Di

    2011-01-01

    The neurotrophin-Trk receptor pathway is an intrinsic pathway to relieve damage to the central nervous system. The present study observed the effects of Tongluo Jiunao (TLJN), which comprises Panax Notoginseng and Gardenia Jasminoides, on expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in a rat model of focal cerebral ischemic injury. Xue Sai Tong (XST), comprising Panax Notoginseng, served as the positive control. Mechanisms of neuroprotection were analyzed following TLJN injection. Following establishment of the middle cerebral artery occlusion models, TLJN and XST were intraperitoneally injected, and 2, 3, 5-triphenyltetrazolium chloride staining results revealed that TLJN injection reduced infarct volume, suggesting that TLJN exerted a neuroprotective effect. Enzyme-linked immunosorbent assay results showed that TLJN elevated BDNF and growth associated protein-43 expression in ischemic brain tissues, as well as serum BDNF levels. Reverse-transcription polymerase chain reaction and western blot results showed that TLJN injection did not affect TrkB expression in the ischemic brain tissues of rats. These results suggested that TLJN injection reduced damage to ischemic brain tissues and increased BDNF expression. In addition, TLJN injection resulted in better promoting effects on neurotrophic factor expression compared with XST.

  13. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    Science.gov (United States)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie; Nedergaard, Maiken

    2017-02-16

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca(2+) signaling in response to activation of the noradrenergic system, but whether astrocytic Ca(2+) signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca(2+) signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.

  14. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    OpenAIRE

    Guan, Jian; Guillermo, Rosamond B.; Yang, Panzao; Vickers, Mark H.; McJarrow, Paul

    2015-01-01

    Background: Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats.Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory.Design: The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistoche...

  15. 77 FR 24759 - Implementation of United States-Colombia Trade Promotion Agreement Tariff-Rate Quota for Imports...

    Science.gov (United States)

    2012-04-25

    ... TRADE REPRESENTATIVE Implementation of United States-Colombia Trade Promotion Agreement Tariff-Rate...-Colombia Trade Promotion Agreement will be administered using certificates of quota eligibility. DATES..., the United States entered into the United States-Colombia Trade Promotion Agreement (the...

  16. 7 CFR 1150.153 - Qualified State or regional dairy product promotion, research or nutrition education programs.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Qualified State or regional dairy product promotion... § 1150.153 Qualified State or regional dairy product promotion, research or nutrition education programs. (a) Any organization which conducts a State or regional dairy product promotion, research...

  17. Characterization of task-free and task-performance brain states via functional connectome patterns.

    Science.gov (United States)

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain.

  18. S-Nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Gilg Anne G

    2011-07-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces primary and secondary damage in both the endothelium and the brain parenchyma, collectively termed the neurovascular unit. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury in the neurovascular unit following TBI. In activated endothelial cells, excessive superoxide reacts with nitric oxide (NO to form peroxynitrite. Peroxynitrite has been implicated in blood brain barrier (BBB leakage, altered metabolic function, and neurobehavioral impairment. S-nitrosoglutathione (GSNO, a nitrosylation-based signaling molecule, was reported not only to reduce brain levels of peroxynitrite and oxidative metabolites but also to improve neurological function in TBI, stroke, and spinal cord injury. Therefore, we investigated whether GSNO promotes the neurorepair process by reducing the levels of peroxynitrite and the degree of oxidative injury. Methods TBI was induced by controlled cortical impact (CCI in adult male rats. GSNO or 3-Morpholino-sydnonimine (SIN-1 (50 μg/kg body weight was administered orally two hours following CCI. The same dose was repeated daily until endpoints. GSNO-treated (GSNO group or SIN-1-treated (SIN-1 group injured animals were compared with vehicle-treated injured animals (TBI group and vehicle-treated sham-operated animals (Sham group in terms of peroxynitrite, NO, glutathione (GSH, lipid peroxidation, blood brain barrier (BBB leakage, edema, inflammation, tissue structure, axon/myelin integrity, and neurotrophic factors. Results SIN-1 treatment of TBI increased whereas GSNO treatment decreased peroxynitrite, lipid peroxides/aldehydes, BBB leakage, inflammation and edema in a short-term treatment (4-48 hours. GSNO also reduced brain infarctions and enhanced the levels of NO and GSH. In a long-term treatment (14 days, GSNO protected axonal integrity, maintained myelin levels, promoted synaptic plasticity

  19. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain.

    Science.gov (United States)

    Lerchner, W; Corgiat, B; Der Minassian, V; Saunders, R C; Richmond, B J

    2014-03-01

    We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.

  20. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    Science.gov (United States)

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis.

  1. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...... and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10...

  2. Brain state and changes of mind: Probing the neural bases of multi-stable perceptual dynamics

    NARCIS (Netherlands)

    Kloosterman, N.A.

    2015-01-01

    The internal state of our brain changes constantly, affecting the way in which the cerebral cortex processes information. Changes of cortical state have traditionally been associated with slow and largely automatic fluctuations of wakefulness and arousal, but they can also occur on a rapid (sub-seco

  3. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification.

    Science.gov (United States)

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha

    2012-01-01

    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  4. Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter.

    Science.gov (United States)

    Andersen, J K; Frim, D M; Isacson, O; Breakefield, X O

    1993-10-01

    1. Herpesvirus infection with genetically engineered vectors is a way to deliver foreign gene products to various cell populations in culture and in vivo. Selective neuronal gene expression can be achieved using the neuron-specific enolase (NSE) promoter regulating expression of a transgene placed in and delivered by a herpesvirus vector. 2. We sought to determine the anatomical specificity and efficiency of herpesvirus-mediated gene transfer into the rat brain following placement of virus particles carrying a transgene (lacZ) under control of the NSE promoter. The virus utilized was thymidine kinase (TK) deficient and therefore replication deficient in the brain. 3. Infusion of 10(6) plaque-forming units of virus into the striatum caused a limited number of striatal neurons to express the lacZ transgene mRNA and protein product 7 days postinfection. In addition, small numbers of neurons expressing the transgene mRNA and protein were found ipsilateral to the viral injection in the frontal cortex, substantia nigra pars compacta, and thalamus. Neurons at these anatomic loci project directly to the striatal injection site. No other cells within the brains of injected animals expressed the lacZ gene. 4. While this herpesvirus NSE vector was capable of introducing novel functional genetic information into postmitotic neurons within defined neuroanatomic constraints, the numbers of neurons expressing detectable levels of beta-galactosidase was minimal. The calculated efficiency of delivery and transgene expression at 7 days postinfection was 1 transgenic neuron per 10(4) virus particles infused. 5. We conclude that NSE probably is not an optimal promoter for use in gene delivery to CNS neurons in herpesvirus vectors and that the efficacy of gene delivery using other neuron-specific promoters placed at various sites in the herpes viral genome needs to be explored.

  5. Spin-glass model predicts metastable brain states that diminish in anesthesia.

    Science.gov (United States)

    Hudetz, Anthony G; Humphries, Colin J; Binder, Jeffrey R

    2014-01-01

    Patterns of resting state connectivity change dynamically and may represent modes of cognitive information processing. The diversity of connectivity patterns (global brain states) reflects the information capacity of the brain and determines the state of consciousness. In this work, computer simulation was used to explore the repertoire of global brain states as a function of cortical activation level. We implemented a modified spin glass model to describe UP/DOWN state transitions of neuronal populations at a mesoscopic scale based on resting state BOLD fMRI data. Resting state fMRI was recorded in 20 participants and mapped to 10,000 cortical regions (sites) defined on a group-aligned cortical surface map. Each site represented the population activity of a ~20 mm(2) area of the cortex. Cross-correlation matrices of the mapped BOLD time courses of the set of sites were calculated and averaged across subjects. In the model, each cortical site was allowed to interact with the 16 other sites that had the highest pair-wise correlation values. All sites stochastically transitioned between UP and DOWN states under the net influence of their 16 pairs. The probability of local state transitions was controlled by a single parameter T corresponding to the level of global cortical activation. To estimate the number of distinct global states, first we ran 10,000 simulations at T = 0. Simulations were started from random configurations that converged to one of several distinct patterns. Using hierarchical clustering, at 99% similarity, close to 300 distinct states were found. At intermediate T, metastable state configurations were formed suggesting critical behavior with a sharp increase in the number of metastable states at an optimal T. Both reduced activation (anesthesia, sleep) and increased activation (hyper-activation) moved the system away from equilibrium, presumably incompatible with conscious mentation. During equilibrium, the diversity of large-scale brain states

  6. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  7. A pairwise maximum entropy model accurately describes resting-state human brain networks.

    Science.gov (United States)

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks.

  8. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation

    Science.gov (United States)

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood–brain barrier, conventional CD11b+CD27+ NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  9. Mental states as macrostates emerging from brain electrical dynamics

    Science.gov (United States)

    Allefeld, Carsten; Atmanspacher, Harald; Wackermann, Jiří

    2009-03-01

    Psychophysiological correlations form the basis for different medical and scientific disciplines, but the nature of this relation has not yet been fully understood. One conceptual option is to understand the mental as "emerging" from neural processes in the specific sense that psychology and physiology provide two different descriptions of the same system. Stating these descriptions in terms of coarser- and finer-grained system states (macro- and microstates), the two descriptions may be equally adequate if the coarse-graining preserves the possibility to obtain a dynamical rule for the system. To test the empirical viability of our approach, we describe an algorithm to obtain a specific form of such a coarse-graining from data, and illustrate its operation using a simulated dynamical system. We then apply the method to an electroencephalographic recording, where we are able to identify macrostates from the physiological data that correspond to mental states of the subject.

  10. Music Composition from the Brain Signal: Representing the Mental State by Music

    OpenAIRE

    Dan Wu; Chaoyi Li; Yu Yin; Changzheng Zhou; Dezhong Yao

    2010-01-01

    This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics...

  11. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  12. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    Science.gov (United States)

    Lecrux, C; Hamel, E

    2016-10-05

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  13. Geomagnetic Storms and their Influence on the Human Brain Functional State

    Directory of Open Access Journals (Sweden)

    Elchin S. Babayev

    2005-01-01

    Full Text Available An investigation of the influence of geomagnetic storms of various intensities on healthy adults' human brain activity and its functional state was conducted. Results of electroencephalogram (EEG investigations were used as the most objective method reflecting functional state of the human brain. Studies on the influence of geomagnetic storms on the human brain functional state of healthy adult women patients (permanent group in states of relaxation, photo-stimulation and hyper-ventilation have revealed a negative influence of severe geomagnetic storms on functional state of the human brain. As a rule, during periods of strong geomagnetic disturbances, indisposition, weakness and presence of indistinct localized headaches were recorded for majority of patients. Complex of nonspecific shifts on EEG reflects disorganization of functional activity of cortex of large hemispheres of the human brain at geomagnetically disturbed days, which is likely connected with dysfunction of integrative subcortical systems, with disbalance of its ascending synchronizing and desynchronizing influences. Imbalance of activating and deactivating mechanisms including dysfunctions of ergo- and tropho-tropic over-segmentary centers was registered. Strengthening cortical connections in the right cortical hemisphere and their short circuit on temporal sections during geomagnetically disturbed days were observed, while, in geomagnetically quiet days, a profile of correlation interrelations reflected weak internal- and inter-hemispheric connections. The threshold of convulsive (spasmodic readiness of the human brain is reduced, which is especially dangerous for risk group persons. It is established that, in general, weak and moderate geomagnetic storms exert stimulating influence while strong disturbances of geomagnetic conditions activate braking (inhibiting processes.

  14. Can hyper-synchrony in meditation lead to seizures? Similarities in meditative and epileptic brain states.

    Science.gov (United States)

    Lindsay, Shane

    2014-10-01

    Meditation is used worldwide by millions of people for relaxation and stress relief. Given sufficient practice, meditators may also experience a variety of altered states of consciousness. These states can lead to a variety of unusual experiences, including physical, emotional and psychic disturbances. This paper highlights the correspondences between brain states associated with these experiences and the symptoms and neurophysiology of epileptic simple partial seizures. Seizures, like meditation practice, can result in both positive and negative experiences. The neurophysiology and chemistry underlying simple partial seizures are characterised by a high degree of excitability and high levels of neuronal synchrony in gamma-band brain activity. Following a survey of the literature that shows that meditation practice is also linked to high power gamma activity, an account of how meditation could cause such activity is provided. This paper discusses the diagnostic challenges for the claim that meditation practices lead to brain states similar to those found in epileptic seizures, and seeks to develop our understanding of the range of pathological and non-pathological states that result from a hyper-excited and hyper-synchronous brain.

  15. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    Directory of Open Access Journals (Sweden)

    Lubin Wang

    Full Text Available The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI. In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  16. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  17. Behavioral state classification in epileptic brain using intracranial electrophysiology

    Science.gov (United States)

    Kremen, Vaclav; Duque, Juliano J.; Brinkmann, Benjamin H.; Berry, Brent M.; Kucewicz, Michal T.; Khadjevand, Fatemeh; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Worrell, Gregory A.

    2017-04-01

    Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age 34+/- 12 , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1–600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80–250 Hz), Fast Ripple (250–600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.

  18. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    Science.gov (United States)

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  19. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  20. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted...

  1. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  2. Auditory Hallucinations and the Brain's Resting-State Networks : Findings and Methodological Observations

    NARCIS (Netherlands)

    Alderson-Day, Ben; Diederen, Kelly; Fernyhough, Charles; Ford, Judith M; Horga, Guillermo; Margulies, Daniel S; McCarthy-Jones, Simon; Northoff, Georg; Shine, James M; Turner, Jessica; van de Ven, Vincent; van Lutterveld, Remko; Waters, Flavie; Jardri, Renaud

    2016-01-01

    In recent years, there has been increasing interest in the potential for alterations to the brain's resting-state networks (RSNs) to explain various kinds of psychopathology. RSNs provide an intriguing new explanatory framework for hallucinations, which can occur in different modalities and populati

  3. Hypoxic-state estimation of brain cells by using wireless near-infrared spectroscopy.

    Science.gov (United States)

    Kuo, Jinn-Rung; Lin, Bor-Shyh; Cheng, Chih-Lun; Chio, Chung-Ching

    2014-01-01

    Near-infrared spectroscopy (NIRS) is a modern measuring technology in neuroscience. It can be used to noninvasively measure the relative concentrations of oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoHb), which can reflect information related to cerebral blood volume and cerebral oxygen saturation. Therefore, it has the potential for noninvasive monitoring of cerebral ischemia. However, there is still a lack of reliable physiological information on the relationship between the concentrations of OxyHb and DeoHb in cerebral blood and the exact hypoxic state of brain cells under cerebral ischemia. In this study, we describe a wireless multichannel NIRS system, which we designed to noninvasively monitor the relative concentrations of OxyHb and DeoHb in bilateral cerebral blood before, during, and after middle cerebral artery occlusion. By comparing the results with the lactate/pyruvate ratio measured by microdialysis, we investigated the correlation between the relative concentrations of OxyHb and DeoHb in cerebral blood and the hypoxic state of brain cells. The results showed that the relationship between the concentration changes of DeoHb in cerebral blood and the hypoxic state of brain cells was significant. Therefore, by monitoring the changes in concentrations of DeoHb, the wireless NIRS can be used to estimate the hypoxic state of brain cells indirectly.

  4. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  5. Dissociative states in dreams and brain chaos: Implications for creative awareness

    Directory of Open Access Journals (Sweden)

    Petr eBob

    2015-09-01

    Full Text Available This article reviews recent findings indicating some common brain processes during dissociative states and dreaming with the aim to outline a perspective that neural chaotic states during dreaming can be closely related to dissociative states that may manifest in dreams scenery. These data are in agreement with various clinical findings that dissociated states can be projected into the dream scenery in REM sleep periods and dreams may represent their specific interactions that may uncover unusual psychological potential of creativity in psychotherapy, art and scientific discoveries.

  6. Using brain-computer interfaces to overcome the extinction of goal-directed thinking in minimally conscious state patients.

    Science.gov (United States)

    Liberati, Giulia; Birbaumer, Niels

    2012-08-01

    Minimally conscious state (MCS) is a condition of severely altered consciousness, in which patients appear to be wakeful and exhibit fluctuating but reproducible signs of awareness. MCS patients do not respond and are therefore dependent on others. In agreement with the embodied cognition assumption that motor actions influence our cognition, the absence of movement and the decrease in consequences for any type of covert or overt response may cause an extinction of goal-directed thinking. Brain-computer interfaces, which allow a direct output without muscular involvement, may be used to promote goal-directed thinking by allowing the performance of spatial and motor imagery tasks and could facilitate the interaction of MCS patients with their environment, possibly regaining some degree of communication and autonomy.

  7. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation. PMID:26582977

  8. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms.

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  9. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury.

    Science.gov (United States)

    Stevens, Michael C; Lovejoy, David; Kim, Jinsuh; Oakes, Howard; Kureshi, Inam; Witt, Suzanne T

    2012-06-01

    Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

  10. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  11. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  12. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  13. Traffic jam at the blood-brain barrier promotes greater accumulation of Alzheimer's disease amyloid-β proteins in the cerebral vasculature.

    Science.gov (United States)

    Agyare, Edward K; Leonard, Sarah R; Curran, Geoffry L; Yu, Caroline C; Lowe, Val J; Paravastu, Anant K; Poduslo, Joseph F; Kandimalla, Karunya K

    2013-05-06

    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer's disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 shows preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain, and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other copathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA.

  14. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    OpenAIRE

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial pr...

  15. Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to Cognitive Decline and Dementia

    Directory of Open Access Journals (Sweden)

    Jack C. de la Torre

    2012-01-01

    Full Text Available Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer’s disease (AD. This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE4, atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia.

  16. A role for community health promoters in tuberculosis control in the state of Chiapas, Mexico.

    Science.gov (United States)

    Herce, Michael E; Chapman, Jacob A; Castro, Arachu; García-Salyano, Gabriel; Khoshnood, Kaveh

    2010-04-01

    We conducted a qualitative study employing structured interviews with 38 community health workers, known as health promoters, from twelve rural municipalities of Chiapas, Mexico in order to characterize their work and identify aspects of their services that would be applicable to community-based tuberculosis (TB) control programs. Health promoters self-identify as being of Mayan Indian ethnicity. Most are bilingual, speaking Spanish and one of four indigenous Mayan languages native to Chiapas. They volunteer 11 h each week to conduct clinical and public health work in their communities. Over half (53%) work with a botiquín, a medicine cabinet stocked with essential medicines. Fifty-three percent identify TB as a major problem affecting the health of their communities, with one-fifth (21%) of promoters reporting experience caring for patients with known or suspected TB and 29% having attended to patients with hemoptysis. One-third of health promoters have access to antibiotics (32%) and one-half have experience with their administration; 55% complement their biomedical treatments with traditional Mayan medicinal plant therapies in caring for their patients. We describe how health promoters employ both traditional and allopathic medicine to treat the symptoms and diseases they encounter most frequently which include fever, diarrhea, and parasitic infections. We contend that given the complex sociopolitical climate in Chiapas and the state's unwavering TB epidemic and paucity of health care infrastructure in rural areas, efforts to implement comprehensive, community-based TB control would benefit from employing the services of health promoters.

  17. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain.

    Science.gov (United States)

    Philips, Mari-Anne; Lilleväli, Kersti; Heinla, Indrek; Luuk, Hendrik; Hundahl, Christian Ansgar; Kongi, Karina; Vanaveski, Taavi; Tekko, Triin; Innos, Jürgen; Vasar, Eero

    2015-01-01

    Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in "classic" limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.

  18. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  19. A novel EEG for alpha brain state training, neurobiofeedback and behavior change.

    Science.gov (United States)

    Stinson, Bruce; Arthur, David

    2013-08-01

    Mindfulness meditation, with the resulting alpha brain state, is gaining a strong following as an adjunct to health, so too is applying self-affirmation to stimulate behavior change through subconscious re-programming. Until recently the EEG technology needed to demonstrate this has been cumbersome and required specialist training. This paper reports a pilot study using a remote EEG headband, which through a sophisticated algorithm, provides a real-time EEG readout unencumbered by conventional artifacts. In a convenience sample of 13, the difference in brain waves was examined while the subjects were occupied in an 'attention' and an 'alpha mind state' exercise. There was a significant difference in the mean scores for theta, delta, beta and gamma brain waves. Alpha brain waves remained static suggesting an ability of the headset to discriminate a mindful state and to provide real-time, easy to interpret feedback for the facilitator and subject. The findings provide encouragement for research applications in health care activities providing neurobiofeedback to subjects involved in mindfulness behavior change activities.

  20. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    Science.gov (United States)

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  1. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.

    Science.gov (United States)

    Yang, Fan; Liu, Yunhui; Tu, Jie; Wan, Jun; Zhang, Jie; Wu, Bifeng; Chen, Shanping; Zhou, Jiawei; Mu, Yangling; Wang, Liping

    2014-12-17

    Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.

  2. Neuroethics and Disorders of Consciousness: Discerning Brain States in Clinical Practice and Research.

    Science.gov (United States)

    Fins, Joseph J

    2016-12-01

    Decisions about end-of-life care and participation in clinical research for patients with disorders of consciousness begin with diagnostic discernment. Accurately distinguishing between brain states clarifies clinicians' ethical obligations and responsibilities. Central to this effort is the obligation to provide neuropalliative care for patients in the minimally conscious state who can perceive pain and to restore functional communication through neuroprosthetics, drugs, and rehabilitation to patients with intact but underactivated neural networks. Efforts to bring scientific advances to patients with disorders of consciousness are reviewed, including the investigational use of deep brain stimulation in patients in the minimally conscious state. These efforts help to affirm the civil rights of a population long on the margins.

  3. Music Composition from the Brain Signal: Representing the Mental State by Music

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2010-01-01

    Full Text Available This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics and structure were taken into consideration. With EEGs during various sleep stages as an example, the music generated from them had different patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may be a potential tool for EEG monitoring, biofeedback therapy, and so forth.

  4. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    Science.gov (United States)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  5. Music composition from the brain signal: representing the mental state by music.

    Science.gov (United States)

    Wu, Dan; Li, Chaoyi; Yin, Yu; Zhou, Changzheng; Yao, Dezhong

    2010-01-01

    This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics and structure) were taken into consideration. With EEGs during various sleep stages as an example, the music generated from them had different patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may be a potential tool for EEG monitoring, biofeedback therapy, and so forth.

  6. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    Directory of Open Access Journals (Sweden)

    Silvia Pagliardini

    Full Text Available Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS and activated patterns resembling rapid eye movement (REM sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like to activated (REM-like states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  7. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder

    Science.gov (United States)

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    Objective This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Methods Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t-test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Results Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). Conclusion OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD. PMID:28243104

  8. The entropic brain:A theory of conscious states informed by neuroimaging research with psychedelic drugs

    Directory of Open Access Journals (Sweden)

    Robin Lester Carhart-Harris

    2014-02-01

    Full Text Available Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neural dynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of ‘primary states’ is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. It is noted that elevated entropy in this sense, is a characteristic of systems exhibiting ‘self-organised criticality’, i.e., a property of systems that gravitate towards a ‘critical’ point in a transition zone between order and disorder in which certain phenomena such as power-law scaling appear. This implies that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organised activity within the default-mode network (DMN and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled. These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as REM sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetised state.

  9. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions.

    Science.gov (United States)

    Matsuda, Keiko; Yuzaki, Michisuke

    2011-04-01

    Cbln1 (a.k.a. precerebellin) is a unique bidirectional synaptic organizer that plays an essential role in the formation and maintenance of excitatory synapses between granule cells and Purkinje cells in the mouse cerebellum. Cbln1 secreted from cerebellar granule cells directly induces presynaptic differentiation and indirectly serves as a postsynaptic organizer by binding to its receptor, the δ2 glutamate receptor. However, it remains unclear how Cbln1 binds to the presynaptic sites and interacts with other synaptic organizers. Furthermore, although Cbln1 and its family members Cbln2 and Cbln4 are expressed in brain regions other than the cerebellum, it is unknown whether they regulate synapse formation in these brain regions. In this study, we showed that Cbln1 and Cbln2, but not Cbln4, specifically bound to its presynaptic receptor -α and β isoforms of neurexin carrying the splice site 4 insert [NRXs(S4+)] - and induced synaptogenesis in cerebellar, hippocampal and cortical neurons in vitro. Cbln1 competed with synaptogenesis mediated by neuroligin 1, which lacks the splice sites A and B, but not leucine-rich repeat transmembrane protein 2, possibly by sharing the presynaptic receptor NRXs(S4+). However, unlike neurexins/neuroligins or neurexins/leucine-rich repeat transmembrane proteins, the interaction between NRX1β(S4+) and Cbln1 was insensitive to extracellular Ca(2+) concentrations. These findings revealed the unique and general roles of Cbln family proteins in mediating the formation and maintenance of synapses not only in the cerebellum but also in various other brain regions.

  10. Anesthetics rapidly promote synaptogenesis during a critical period of brain development.

    Directory of Open Access Journals (Sweden)

    Mathias De Roo

    Full Text Available Experience-driven activity plays an essential role in the development of brain circuitry during critical periods of early postnatal life, a process that depends upon a dynamic balance between excitatory and inhibitory signals. Since general anesthetics are powerful pharmacological modulators of neuronal activity, an important question is whether and how these drugs can affect the development of synaptic networks. To address this issue, we examined here the impact of anesthetics on synapse growth and dynamics. We show that exposure of young rodents to anesthetics that either enhance GABAergic inhibition or block NMDA receptors rapidly induce a significant increase in dendritic spine density in the somatosensory cortex and hippocampus. This effect is developmentally regulated; it is transient but lasts for several days and is also reproduced by selective antagonists of excitatory receptors. Analyses of spine dynamics in hippocampal slice cultures reveals that this effect is mediated through an increased rate of protrusions formation, a better stabilization of newly formed spines, and leads to the formation of functional synapses. Altogether, these findings point to anesthesia as an important modulator of spine dynamics in the developing brain and suggest the existence of a homeostatic process regulating spine formation as a function of neural activity. Importantly, they also raise concern about the potential impact of these drugs on human practice, when applied during critical periods of development in infants.

  11. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  12. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders.

  13. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  14. Distinct resting-state brain activity in patients with functional constipation.

    Science.gov (United States)

    Zhu, Qiang; Cai, Weiwei; Zheng, Jianyong; Li, Guanya; Meng, Qianqian; Liu, Qiaoyun; Zhao, Jizheng; von Deneen, Karen M; Wang, Yuanyuan; Cui, Guangbin; Duan, Shijun; Han, Yu; Wang, Huaning; Tian, Jie; Zhang, Yi; Nie, Yongzhan

    2016-10-01

    Functional constipation (FC) is a common functional gastrointestinal disorder (FGID) with a higher prevalence in clinical practice. The primary brain regions involved in emotional arousal regulation, somatic, sensory and motor control processing have been identified with neuroimaging in FGID. It remains unclear how these factors interact to influence the baseline brain activity of patients with FC. In the current study, we combined resting-state fMRI (RS-fMRI) with Granger causality analysis (GCA) to investigate the causal interactions of the brain areas in 14 patients with FC and in 26 healthy controls (HC). Our data showed significant differences in baseline brain activities in a number of major brain regions implicated in emotional process modulation (i.e. dorsal anterior cingulate cortex-dACC, anterior insula-aINS, orbitofrontal cortex-OFC, hippocampus-HIPP), somatic and sensory processing, and motor control (i.e., supplementary motor area-SMA, precentral gyrus-PreCen) (Ppropel limbic regions at the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the SMA and PreCen, which are regions involved with somatic, sensory and motor control, propel the aINS and HIPP, suggesting abnormalities of sensory and behavioral responses. Such information of basal level functional abnormalities expands our current understanding of neural mechanisms underlying functional constipation.

  15. Abnormal functional MRI BOLD contrast in the vegetative state after severe traumatic brain injury.

    Science.gov (United States)

    Heelmann, Volker; Lippert-Grüner, Marcela; Rommel, Thomas; Wedekind, Christoph

    2010-06-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal consciousness close to the vegetative state were studied clinically, electrophysiologically, and by means of functional magnetic resonance imaging. Visual, sensory, and acoustic paradigms were used for stimulation. In three patients examined less than 2 months after trauma, a consistent decrease in blood oxygen level dependent (BOLD) signal ('negative activation') was observed for visual stimulation; one case even showed a decrease in BOLD activation for all three activation paradigms. In the remaining three cases examined more than 6 months after trauma, visual stimulation yielded positive BOLD contrast or no activation. In all cases, sensory stimulation was followed by a decrease in BOLD signal or no activation, whereas auditory stimulation failed to elicit any activation with the exception of one case. Functional magnetic resonance imaging in the vegetative state indicates retained yet abnormal brain function; this abnormality can be attributed to the impairment of cerebral vascular autoregulation or an increase in the energy consumption of activated neocortex in severe traumatic brain injury.

  16. An overview of the EU Member States support schemes for the promotion of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2012-07-01

    In this work, an overview of the European Union (EU) Member States support schemes for the promotion of renewable energy sources (RES) is provided. In particular, the status of the electricity generation capacity as well as the RES mixture in the Member States is described. Moreover, the different support schemes such as, investment support, feed-in tariffs (FiTs), tradable green certificates, and fiscal and financial measures which the Member States have adopted for the promotion of RES technologies are discussed in detail. Some Member States are implementing a single support scheme for the promotion of RES for power generation (RES-E), e.g., seven Member States use FiTs, or implement a hybrid support scheme by combining all or some of the four categories of the RES-E supporting schemes. Although, these support schemes have increased the penetration of the RES-E technologies in the Member States, still there is a long way in order to achieve the 2020 target. The reason for this may be that the way these schemes have been used so far, i.e., either as single support schemes or in combination of FiTs or tradable green certificates with investment support and fiscal and financial measures, has been ineffective. A more effective combination could be a hybrid scheme consisting of FiTs with tradable green certificates measures, as in the case of Italy and United Kingdom, that will increase the RES-E penetration and eliminate the possible technical problems which will arise from this increased penetration and have an effect in the stability of the power system.

  17. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    Science.gov (United States)

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  18. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Science.gov (United States)

    Grade, Sofia; Weng, Yuan C; Snapyan, Marina; Kriz, Jasna; Malva, João O; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  19. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Directory of Open Access Journals (Sweden)

    Sofia Grade

    Full Text Available Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS. The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF, a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  20. c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain.

    Science.gov (United States)

    Wey, Alice; Knoepfler, Paul S

    2010-06-01

    myc genes are associated with a wide variety of human cancers including most types of nervous system tumors. While the mechanisms by which myc overexpression causes tumorigenesis are multifaceted and have yet to be clearly elucidated, they are at least in part related to endogenous myc function in normal cells. Knockout (KO) of either c-myc or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre impairs mouse brain growth and mutation of N-myc also causes microcephaly in humans in Feingold Syndrome. To further define myc function in NSC and nervous system development, we created a double KO (DKO) for c- and N-myc using nestin-cre. The DKO mice display profoundly impaired overall brain growth associated with decreased cell cycling and migration of NSC, which are strikingly decreased in number. The DKO brain also exhibits specific changes in gene expression including downregulation of genes involved in protein and nucleotide metabolism, mitosis, and chromatin structure as well as upregulation of genes associated with differentiation. Together these data support a model of nervous system tumorigenesis in which excess myc aberrantly locks in a developmentally active chromatin state characterized by overactive cell cycling, and metabolism as well as blocked differentiation.

  1. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    Science.gov (United States)

    Kimbler, Donald E; Shields, Jessica; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  2. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Donald E Kimbler

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG, a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP, a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4, an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  3. Healthy aging persons and their brains: promoting resilience through creative engagement.

    Science.gov (United States)

    McFadden, Susan H; Basting, Anne D

    2010-02-01

    Creative engagement, as an expression of and a support for resilience, may have a neuroprotective effect among older adults, contributing to retention of cognitive capacity. Recent research on creative activities shows that they strengthen social networks and give persons a sense of control; both outcomes have been associated with brain health. The authors cite evidence suggesting that positive social interactions can nurture resilience and creative engagement among older persons, including those living with dementia. The motivational, attentional, affective, and social components of creative activities combine to offer older persons meaningful opportunities to express and strengthen their resilience, regardless of their cognitive status, despite the biopsychosocial challenges of aging. The article addresses implications for future research, clinical practice, and public policy, and suggests how gaps in current research on resilience and creativity might be addressed.

  4. Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca(2+ ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK(-/-. MCAO was performed in BK(-/- and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK(-/- mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK(-/- vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK(-/- mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK(-/- than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage.

  5. Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival.

    Science.gov (United States)

    Liao, Yiliu; Kristiansen, Ase-Marit; Oksvold, Cecilie P; Tuvnes, Frode A; Gu, Ning; Rundén-Pran, Elise; Ruth, Peter; Sausbier, Matthias; Storm, Johan F

    2010-12-30

    Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca(2+) ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO) in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK(-/-)). MCAO was performed in BK(-/-) and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK(-/-) mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD) flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK(-/-) vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK(-/-) mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK(-/-) than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage.

  6. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  7. Resting-State and Task-Based Functional Brain Connectivity in Developmental Dyslexia.

    Science.gov (United States)

    Schurz, Matthias; Wimmer, Heinz; Richlan, Fabio; Ludersdorfer, Philipp; Klackl, Johannes; Kronbichler, Martin

    2015-10-01

    Reading requires the interaction between multiple cognitive processes situated in distant brain areas. This makes the study of functional brain connectivity highly relevant for understanding developmental dyslexia. We used seed-voxel correlation mapping to analyse connectivity in a left-hemispheric network for task-based and resting-state fMRI data. Our main finding was reduced connectivity in dyslexic readers between left posterior temporal areas (fusiform, inferior temporal, middle temporal, superior temporal) and the left inferior frontal gyrus. Reduced connectivity in these networks was consistently present for 2 reading-related tasks and for the resting state, showing a permanent disruption which is also present in the absence of explicit task demands and potential group differences in performance. Furthermore, we found that connectivity between multiple reading-related areas and areas of the default mode network, in particular the precuneus, was stronger in dyslexic compared with nonimpaired readers.

  8. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury.

    Science.gov (United States)

    Yoshioka, Nozomu; Hisanaga, Shin-Ichi; Kawano, Hitoshi

    2010-09-15

    The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.

  9. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Ali Bashashati

    2007-01-01

    the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement. It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1% in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1% in the context of a 2-state self-paced BCI.

  10. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.

    Science.gov (United States)

    Winkler, Ulrike; Hirrlinger, Johannes

    2015-12-01

    The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ's energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD(+)/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD(+)/NADH redox state. Vice versa, a number of signaling events like astroglial Ca(2+) signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD(+)/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD(+)/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.

  11. Resting state brain dynamics and its transients: a combined TMS-EEG study

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-01-01

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain’s relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks. PMID:27488504

  12. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  13. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.

    Science.gov (United States)

    Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè

    2015-02-01

    Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.

  14. A default mode of brain function in altered states of consciousness.

    Science.gov (United States)

    Guldenmund, P; Vanhaudenhuyse, A; Boly, M; Laureys, S; Soddu, A

    2012-01-01

    Using modern brain imaging techniques, new discoveries are being made concerning the spontaneous activity of the brain when it is devoid of attention-demanding tasks. Spatially separated patches of neuronal assemblies have been found to show synchronized oscillatory activity behavior and are said to be functionally connected. One of the most robust of these is the default mode network, which is associated with intrinsic processes like mind wandering and self-projection. Furthermore, activity in this network is anticorrelated with activity in a network that is linked to attention to external stimuli. The integrity of both networks is disturbed in altered states of consciousness, like sleep, general anesthesia and hypnosis. In coma and related disorders of consciousness, encompassing the vegetative state (unresponsive wakefulness syndrome) and minimally conscious state, default mode network integrity correlates with the level of remaining consciousness, offering the possibility of using this information for diagnostic and prognostic purposes. Functional brain imaging is currently being validated as a valuable addition to the standardized behavioral assessments that are already in use.

  15. The evolution of brain waves in altered states of consciousness (REM sleep and meditation

    Directory of Open Access Journals (Sweden)

    Irina E. Chiş

    2009-12-01

    Full Text Available Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years. The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to them. This was made to avoid errors that could compromise the wholestudy. Results: It was shown that an appropriate musical background has a positive effect on brainactivity and especially on alpha waves. There were no significant results regarding REM sleep, althougha slight increase in the frequency by which the periods of REM sleep occurred was noticed. On theother hand, in meditation, the appropriate musical background had a major influence on the period inwhich the subjects entered the alpha state. This period was considerably reduced. Conclusion: Anadequate type of music can help our brain entering in, and maintaining the alpha state.

  16. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  17. Brain functional network connectivity based on a visual task:visual information processing-related brain regions are signiifcantly activated in the task state

    Institute of Scientific and Technical Information of China (English)

    Yan-li Yang; Hong-xia Deng; Gui-yang Xing; Xiao-luan Xia; Hai-fang Li

    2015-01-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  18. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  19. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    Science.gov (United States)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the

  20. Extraversion and Neuroticism relate to topological properties of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Qing eGao

    2013-06-01

    Full Text Available With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e. betweenness centrality (BC, was positively associated with neuroticism scores in the right precentral gyrus, right caudate nucleus, right olfactory cortex and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus, indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  1. Robust brain parcellation using sparse representation on resting-state fMRI.

    Science.gov (United States)

    Zhang, Yu; Caspers, Svenja; Fan, Lingzhong; Fan, Yong; Song, Ming; Liu, Cirong; Mo, Yin; Roski, Christian; Eickhoff, Simon; Amunts, Katrin; Jiang, Tianzi

    2015-11-01

    Resting-state fMRI (rs-fMRI) has been widely used to segregate the brain into individual modules based on the presence of distinct connectivity patterns. Many parcellation methods have been proposed for brain parcellation using rs-fMRI, but their results have been somewhat inconsistent, potentially due to various types of noise. In this study, we provide a robust parcellation method for rs-fMRI-based brain parcellation, which constructs a sparse similarity graph based on the sparse representation coefficients of each seed voxel and then uses spectral clustering to identify distinct modules. Both the local time-varying BOLD signals and whole-brain connectivity patterns may be used as features and yield similar parcellation results. The robustness of our method was tested on both simulated and real rs-fMRI datasets. In particular, on simulated rs-fMRI data, sparse representation achieved good performance across different noise levels, including high accuracy of parcellation and high robustness to noise. On real rs-fMRI data, stable parcellation of the medial frontal cortex (MFC) and parietal operculum (OP) were achieved on three different datasets, with high reproducibility within each dataset and high consistency across these results. Besides, the parcellation of MFC was little influenced by the degrees of spatial smoothing. Furthermore, the consistent parcellation of OP was also well corresponding to cytoarchitectonic subdivisions and known somatotopic organizations. Our results demonstrate a new promising approach to robust brain parcellation using resting-state fMRI by sparse representation.

  2. Tobacco Advertising and Promotional Expenditures in Sports and Sporting Events - United States, 1992-2013.

    Science.gov (United States)

    Agaku, Israel T; Odani, Satomi; Sturgis, Stephanie; Harless, Charles; Glover-Kudon, Rebecca

    2016-08-19

    Smokeless tobacco has been actively promoted by tobacco companies using endorsements by major sport figures, and research indicates that tobacco advertising can lead to youth initiation of tobacco use (1,2). Television and radio advertisements for cigarettes and smokeless tobacco have been prohibited since 1969,* and the 1998 Master Settlement Agreement(†) further prohibited tobacco companies from targeting youths with tobacco product advertisements in specified areas. In 2010, the Food and Drug Administration (FDA), under authority of the 2009 Family Smoking Prevention and Tobacco Control Act (FSPTCA), prohibited tobacco-brand sponsorship (i.e., sponsorship of sports and entertainment events or other social or cultural events using the tobacco brand name or anything identifiable with any brand of cigarettes or smokeless tobacco).(§) However, corporate-name tobacco sponsorship (i.e., sponsorship using the name of the corporation that manufactures regulated tobacco products) is still permitted under certain conditions.(¶) To monitor tobacco advertising and promotional activities in sports in the United States, CDC analyzed trends in sports-related marketing expenditures for cigarettes and smokeless tobacco during 1992-2013 using data from the Federal Trade Commission (FTC). During 1992-2013, sports-related marketing expenditures, adjusted by the consumer price index to constant 2013 dollars, decreased significantly for both cigarettes (from $136 million in 1992 to $0 in 2013) and smokeless tobacco (from $34.8 million in 1992 to $2.1 million in 2013). During 2010-2013, after the prohibition of tobacco-brand sponsorship in sports under the FSPTCA, cigarette manufacturers reported no spending (i.e., $0) on sports-related advertising and promotional activities; in contrast, smokeless tobacco manufacturers reported expenditures of $16.3 million on advertising and promoting smokeless tobacco in sports during 2010-2013. These findings indicate that despite prohibitions

  3. Synthesis of Brain-State-in-a-Box (BSB) based associative memories.

    Science.gov (United States)

    Lillo, W E; Miller, D C; Hui, S; Zak, S H

    1994-01-01

    Presents a novel synthesis procedure to realize an associative memory using the Generalized-Brain-State-in-a-Box (GBSB) neural model. The implementation yields an interconnection structure that guarantees that the desired memory patterns are stored as asymptotically stable equilibrium points and that possesses very few spurious states. Furthermore, the interconnection structure is in general non-symmetric. Simulation examples are given to illustrate the effectiveness of the proposed synthesis method. The results obtained for the GBSB model are successfully applied to other neural network models.

  4. IDH1/2 Mutation and MGMT Promoter Methylation - the Relevant Survival Predictors in Czech Patients with Brain Gliomas.

    Science.gov (United States)

    Kramář, F; Minárik, M; Benešová, L; Halková, T; Netuka, D; Bradáč, O; Beneš, V

    2016-01-01

    Gliomas are a heterogeneous group of tumours varying in prognosis, treatment approach, and overall survival. Recently, novel markers have been identified which are linked to patient prognosis and therapeutic response. Especially the mutation of the enzyme isocitrate dehydrogenase 1 or 2 (IDH1/2) gene and the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status seem to be the most important predictors of survival. From 2012 to 2015, 94 Czech patients with primary brain tumours were enrolled into the study. The IDH1/2 mutation was detected by denaturing capillary electrophores.The methylation status of the MGMT gene and other 46 genes was revealed by MS-MLPA. In all 94 patients, the clinical data were correlated with molecular markers by Kaplan-Meier analyses and Cox regression model. The MGMT promoter methylation status was established and compared to clinical data. In our study eight different probes were used to elucidate the MGMT methylation status; hypermethylation was proclaimed if four and more probes were positive. This 3 : 5 ratio was tested and confirmed by Kaplan-Meier and Cox analyses. The study confirmed the importance of the IDH1/2 mutation and hypermethylation of the MGMT gene promoter being present in tumour tissue. Both markers are independent positive survival predictors; in the Cox model the IDH hazard ratio was 0.10 and in the case of MGMT methylation it reached 0.32. The methylation analysis of the panel of additional 46 genes did not reveal any other significant epigenetic markers; none of the candidate genes have been confirmed in the Cox regression analyses as an independent prognostic factor.

  5. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain.

    Science.gov (United States)

    Gibson, Erin M; Purger, David; Mount, Christopher W; Goldstein, Andrea K; Lin, Grant L; Wood, Lauren S; Inema, Ingrid; Miller, Sarah E; Bieri, Gregor; Zuchero, J Bradley; Barres, Ben A; Woo, Pamelyn J; Vogel, Hannes; Monje, Michelle

    2014-05-01

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.

  6. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jakob Madsen Pedersen

    Full Text Available To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.

  7. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    Science.gov (United States)

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  8. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    Science.gov (United States)

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  9. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  10. Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways.

    Science.gov (United States)

    Zhao, Yun; Pang, Qiongyi; Liu, Meixia; Pan, Jingzi; Xiang, Bingwu; Huang, Tingting; Tu, Fengxia; Liu, Chan; Chen, Xiang

    2017-02-01

    Using a model of middle cerebral artery occlusion (MCAO), we have previously demonstrated that treadmill exercise promotes angiogenesis in the ischemic penumbra through caveolin-1/VEGF signaling pathways. However, the function of caveolin-1/VEGF signaling in neurogenesis after MCAO has not been determined. In this study, we aimed to investigate the potential of treadmill exercise to promote neurogenesis after MCAO and whether caveolin-1/VEGF signaling pathways are involved. After MCAO, rats were subjected to a program of treadmill exercise. Daidzein (a specific inhibitor of caveolin-1 protein expression, 0.4 mg/kg) was used to confirm the effect of caveolin-1/VEGF signaling on exercise-mediated neurogenesis. We found that the total protein expression of both caveolin-1 and VEGF was increased by exercise and consistent with the improved neurological recovery, decreased infarct volumes and increased 5-bromo-2'-deoxyuridine (BrdU) in the ipsilateral Subventricular zone (SVZ), as well as increased numbers of BrdU/DCX and BrdU/Neun-positive cells in the peri-infarct region. Furthermore, we observed that the treadmill exercise-induced increased VEGF expression, improved neurological recovery, decreased infarct volumes, increased BrdU/DCX and BrdU/Neun-positive cells were significantly inhibited by the caveolin-1 inhibitor. Our results indicate that treadmill exercise improves neurological recovery in ischemic rats, possibly by enhancement of SVZ-derived neural stem cell (NSC) proliferation, migration and differentiation in the penumbra. Moreover, caveolin-1/VEGF signaling is involved in exercise-mediated NSC migration and neuronal differentiation.

  11. Effective promotion of breastfeeding among Latin American women newly immigrated to the United States.

    Science.gov (United States)

    Denman-Vitale, S; Murillo, E K

    1999-07-01

    Across the United States, advance practice nurses (APNs) are increasingly encountering recently immigrated Latin American populations. This article provides an overview of the situation of Latin Americans in the United States and discusses aspects of Latin American culture such as, respeto (respect), confianza (confidence), the importance of family, and the value of a personal connection. Strategies that will assist practitioners to incorporate culturally holistic principles in the promotion of breastfeeding among Latin American women who are new arrivals in the United States are described. If practitioners are to respond to the increasing numbers of Latin American women who need health care services, and also provide thorough, holistic health care then health care activities must be integrated with cultural competence.

  12. Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks

    Science.gov (United States)

    Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga

    2015-09-01

    Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration

  13. Disrutpted resting-state functional architecture of the brain after 45-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-06-01

    Full Text Available Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI to study whether the functional architecture of the brain is altered after 45 days of -6° head-down tilt (HDT bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of -6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC, to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC analysis. We found decreased DC in two regions, the left anterior insula (aINS and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies, in the male volunteers after 45 days of -6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function and central neural activity.

  14. The impact of normalization and segmentation on resting-state brain networks.

    Science.gov (United States)

    Magalhães, Ricardo; Marques, Paulo; Soares, José; Alves, Victor; Sousa, Nuno

    2015-04-01

    Graph theory has recently received a lot of attention from the neuroscience community as a method to represent and characterize brain networks. Still, there is a lack of a gold standard for the methods that should be employed for the preprocessing of the data and the construction of the networks, as well as a lack of knowledge on how different methodologies can affect the metrics reported. The authors used graph theory analysis applied to resting-state functional magnetic resonance imaging to investigate the influence of different node-defining strategies and the effect of normalizing the functional acquisition on several commonly reported metrics used to characterize brain networks. The nodes of the network were defined using either the individual FreeSurfer segmentation of each subject or the FreeSurfer segmented Montreal National Institute (MNI) 152 template, using the Destrieux and subcortical atlas. The functional acquisition was either kept on the functional native space or normalized into MNI standard space. The comparisons were done at three levels: on the connections, on the edge properties, and on the network properties levels. The results reveal that different registration and brain parcellation strategies have a strong impact on all the levels of analysis, possibly favoring the use of individual segmentation strategies and conservative registration approaches. In conclusion, several technical aspects must be considered so that graph theoretical analysis of connectivity MRI data can provide a framework to understand brain pathologies.

  15. Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI.

    Directory of Open Access Journals (Sweden)

    Ting Xue

    Full Text Available BACKGROUND: Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN in resting functional magnetic resonance imaging (fMRI data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine. METHODS/PRINCIPAL FINDINGS: Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA and 23 age- and gender-matched healthy controls (HC were analyzed using independent component analysis (ICA, in combination with a "dual-regression" technique to identify the group differences of three important pain-related networks [default mode network (DMN, bilateral central executive network (CEN, salience network (SN] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine. CONCLUSIONS: Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.

  16. MTR variations in normal adult brain structures using balanced steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Meritxell; Wetzel, Stephan G.; Radue, Ernst-Wilhelm [University of Basel Hospital, Department of Neuroradiology, Institute of Radiology, Basel (Switzerland); Gloor, Monika; Bieri, Oliver; Scheffler, Klaus [University of Basel Hospital, Division of Radiological Physics, Institute of Radiology, Basel (Switzerland)

    2011-03-15

    Magnetization transfer (MT) is sensitive to the macromolecular environment of water protons and thereby provides information not obtainable from conventional magnetic resonance imaging (MRI). Compared to standard methods, MT-sensitized balanced steady-state free precession (bSSFP) offers high-resolution images with significantly reduced acquisition times. In this study, high-resolution magnetization transfer ratio (MTR) images from normal appearing brain structures were acquired with bSSFP. Twelve subjects were studied on a 1.5 T scanner. MTR values were calculated from MT images acquired in 3D with 1.3 mm isotropic resolution. The complete MT data set was acquired within less than 3.5 min. Forty-one brain structures of the white matter (WM) and gray matter (GM) were identified for each subject. MTR values were higher for WM than GM. In general, MTR values of the WM and GM structures were in good accordance with the literature. However, MTR values showed more homogenous values within WM and GM structures than previous studies. MT-sensitized bSSFP provides isotropic high-resolution MTR images and hereby allows assessment of reliable MTR data in also very small brain structures in clinically feasible acquisition times and is thus a promising sequence for being widely used in the clinical routine. The present normative data can serve as a reference for the future characterization of brain pathologies. (orig.)

  17. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    Science.gov (United States)

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.

  18. Changes in the regional homogeneity of resting-state brain activity in minimal hepatic encephalopathy.

    Science.gov (United States)

    Chen, Hua-Jun; Zhu, Xi-Qi; Yang, Ming; Liu, Bin; Zhang, Yi; Wang, Yu; Teng, Gao-Jun

    2012-01-17

    Resting-state functional magnetic resonance imaging (fMRI) has facilitated the study of spontaneous brain activity by measuring low-frequency oscillations in blood-oxygen-level-dependent signals. Analyses of regional homogeneity (ReHo), which reflects the local synchrony of neural activity, have been used to reveal the mechanisms underlying the brain dysfunction in various neuropsychiatric diseases. However, it is not known whether the ReHo is altered in cirrhotic patients with minimal hepatic encephalopathy (MHE). We recruited 18 healthy controls and 18 patients with MHE. The ReHo was calculated to assess the strength of the local signal synchrony. Compared with the healthy controls, the patients with MHE had significantly decreased ReHo in the cuneus and adjacent precuneus, and left inferior parietal lobe, whereas the regions showing increased ReHo in patients with MHE included the left parahippocampal gyrus, right cerebellar vermis, and bilateral anterior cerebellar lobes. We found a positive correlation between the mean ReHo in the cuneus and adjacent precuneus and the score on the digit-symbol test in the patient group. In conclusion, the analysis of the regional homogeneity of resting-state brain activity may provide additional information with respect to a clinical definition of MHE.

  19. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development.

  20. Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Takashi Ueyama

    Full Text Available Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC strength is affected by the regional autocorrelation coefficient (AC. In this study, we used resting-state functional MRI (fMRI and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC (rGC and with taking into account the effect of AC (rGCa to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.

  1. Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study.

    Science.gov (United States)

    Ueyama, Takashi; Donishi, Tomohiro; Ukai, Satoshi; Ikeda, Yorihiko; Hotomi, Muneki; Yamanaka, Noboru; Shinosaki, Kazuhiro; Terada, Masaki; Kaneoke, Yoshiki

    2013-01-01

    Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC) strength is affected by the regional autocorrelation coefficient (AC). In this study, we used resting-state functional MRI (fMRI) and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC (rGC) and with taking into account the effect of AC (rGCa) to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.

  2. Children and young adults in a vegetative or minimally conscious state after brain injury. Diagnosis, rehabilitation and outcome.

    NARCIS (Netherlands)

    Eilander, H.J.

    2008-01-01

    Severe brain injury can result in long lasting loss of consciousness. After recovering from a comatose state, some patients move over into a vegetative state that remains for weeks, months or even years. The presence of patients in a prolonged unconscious state is demanding for families, as well as

  3. Exploring altered consciousness states by magnetic resonance imaging in brain injury.

    Science.gov (United States)

    Lescot, Thomas; Galanaud, Damien; Puybasset, Louis

    2009-03-01

    Traumatic brain injury (TBI) occurs abruptly, involves multiple specialized teams, calls on the health-care system in its emergency dimension, and engages the well-being of the patient and his relatives for a lifetime period. Clinicians in charge of these patients are faced with issues of uppermost importance: medical issues such as predicting the long-term neurological outcome of the comatose patient; ethical issues because of the influence of intensive care on the long-term survival of patients in a vegetative and minimally conscious state; legal issues because of the law that has set the concept of proportionality of care as the legal rule; and social issues as the result of the very high cost of these pathologies. Today's larger availability of magnetic resonance imaging (MRI) in ventilated patients and the recent improvements in hardware and in imaging techniques that have made the last-developed imaging techniques such as diffusion tensor imaging and magnetic resonance spectroscopy available in brain-trauma patients, are changing the paradigm in neurointensive care regarding outcome prediction. The old paradigm that no individual prognosis could be made at the subacute phase in TBI patients does not hold true anymore. This major change opens new challenging ethical questions. This review focuses on the brain explorations that are required, such as MRI, magnetic resonance spectroscopy, and diffusion tensor imaging, to provide the clinician with a multimodal assessment of the brain state to predict outcome of coma. Such an assessment will become mandatory in the near future to answer the crucial question of proportionality of care in these patients.

  4. Assessing Capacity to Promote Science-Based Programs: A Key Informant Study of State Teen Pregnancy Prevention Organizations

    Science.gov (United States)

    Saunders, Edward; Sabri, Bushra; Huberman, Barbara; Klaus, T. W.; Davis, Laura

    2011-01-01

    The purpose of this qualitative study was to identify significant external and internal challenges that state organization leaders face in promoting science-based teen pregnancy prevention programs within their states. The state organization administrators were chosen because their organizations were funded by the U.S. Centers for Disease Control…

  5. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available INTRODUCTION: Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom. METHODS: A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system. RESULTS: A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites. CONCLUSION: Chinese XLHED carriers often have a hypermethylated EDA promoter.

  6. The Brain Functional State of Music Creation: an fMRI Study of Composers.

    Science.gov (United States)

    Lu, Jing; Yang, Hua; Zhang, Xingxing; He, Hui; Luo, Cheng; Yao, Dezhong

    2015-07-23

    In this study, we used functional magnetic resonance imaging (fMRI) to explore the functional networks in professional composers during the creation of music. We compared the composing state and resting state imagery of 17 composers and found that the functional connectivity of primary networks in the bilateral occipital lobe and bilateral postcentral cortex decreased during the composing period. However, significantly stronger functional connectivity appeared between the anterior cingulate cortex (ACC), the right angular gyrus and the bilateral superior frontal gyrus during composition. These findings indicate that a specific brain state of musical creation is formed when professional composers are composing, in which the integration of the primary visual and motor areas is not necessary. Instead, the neurons of these areas are recruited to enhance the functional connectivity between the ACC and the default mode network (DMN) to plan the integration of musical notes with emotion.

  7. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An

    2013-01-01

    Background Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness.However,there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI.This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI.Methods We consecutively enrolled 17 patients with VS after HIBI,who experienced cardiopulmonary resuscitation.Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from t7 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis.Additionally,we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis.Results Compared with normal controls,the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus,bilateral posterior cingulate gyrus,bilateral middle frontal gyri,bilateral superior parietal gyri,bilateral middle occipital gyri,bilateral precentral gyri (PFEw correctecd <0.0001),and increased brain metabolism in bilateral insula,bilateral cerebella,and the brainstem (PFEw correctecd <0.0001).In covariance analysis,the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected <0.005).Conclusions Our study demonstrated that the precuneus,the posterior cingulate area and the frontoparietal cortex,which is a component of neural correlate for consciousness,may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI.In post-resuscitated HIBI,measurement of brain

  8. 78 FR 29779 - Labor Affairs Council of the United States-Colombia Trade Promotion Agreement; Notice of Public...

    Science.gov (United States)

    2013-05-21

    ... of the Secretary Labor Affairs Council of the United States-Colombia Trade Promotion Agreement... Article 17.5 of the U.S.-Colombia Trade Promotion Agreement (TPA), the International Labor Affairs Bureau...) of the U.S.-Colombia TPA, including activities of the Labor Cooperation Mechanism established...

  9. A Bayesian Double Fusion Model for Resting State Brain Connectivity Using Joint Functional and Structural Data.

    Science.gov (United States)

    Kang, Hakmook; Ombao, Hernando; Fonnesbeck, Christopher; Ding, Zhaohua; Morgan, Victoria L

    2017-03-19

    Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatio-temporal model that incorporates structural connectivity into estimating FC. In our proposed approach, structural connectivity (SC) based on DTI data is used to construct an informative prior for functional connectivity based on resting state fMRI data via the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.

  10. N-methyl-D-aspartate receptor subtype 3A promotes apoptosis in developing mouse brain exposed to hyperoxia

    Institute of Scientific and Technical Information of China (English)

    Jimei Li; Shanping Yu; Zhongyang Lu; Osama Mohamad; Ling Wei

    2012-01-01

    In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyl-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2'-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN+ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen.

  11. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.;

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...

  12. [Music-Acoustic Signals Controlled by Subject's Brain Potentials in the Correction of Unfavorable Functional States].

    Science.gov (United States)

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2016-01-01

    Literature review and the results of own studies on the development and experimental testing of musical EEG neurofeedback technology are presented. The technology is based on exposure of subjects to music or music-like signals that are organized in strict accordance with the current values of brain potentials of the patient. The main attention is paid to the analysis of the effectiveness of several versions of the technology, using specific and meaningful for the individual narrow-frequency EEG oscillators during the correction of unfavorable changes of the functional state.

  13. Critical issues in state-of-the-art brain-computer interface signal processing.

    Science.gov (United States)

    Krusienski, Dean J; Grosse-Wentrup, Moritz; Galán, Ferran; Coyle, Damien; Miller, Kai J; Forney, Elliott; Anderson, Charles W

    2011-04-01

    This paper reviews several critical issues facing signal processing for brain-computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation.

  14. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients.

    Science.gov (United States)

    Dong, E; Ruzicka, W B; Grayson, D R; Guidotti, A

    2015-09-01

    The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity.

  15. The effectiveness of different policy regimes for promoting wind power: Experiences from the states

    Energy Technology Data Exchange (ETDEWEB)

    Menz, Fredric C. [School of Business, Clarkson University, Bertrand H. Snell Hall, Potsdam, NY 13699-5767 (United States) and Center for International Climate and Environmental Research-Oslo, Norway (CICERO) (Norway)]. E-mail: menzf@clarkson.edu; Vachon, Stephan [School of Business, Clarkson University, Bertrand H. Snell Hall, Potsdam, NY 13699-5767 (United States)]. E-mail: svachon@clarkson.edu

    2006-09-15

    Governments at the state (and to a lesser extent, local) level in the United States have adopted an array of policies to promote wind and other types of 'green' energy, including solar, geothermal, low-impact hydropower, and certain forms of biomass. However, because of different regulatory environments, energy resource endowments, political interests, and other factors, there is considerable variation among the states in their green power policies. This paper analyzes the contribution to wind power development of several state-level policies (renewable portfolio standards (RPS), fuel generation disclosure rules, mandatory green power options, and public benefits funds), along with retail choice (RET) facilitated by electricity restructuring. The empirical results support existing anecdotal and case studies in finding a positive relationship between RPS and wind power development. We also found that requiring electricity suppliers to provide green power options to customers is positively related to development of wind energy, while there is a negative relationship between wind energy development and RET (i.e., allowing retail customers to choose their electricity source)

  16. Brain activation, affect, and aerobic exercise: an examination of both state-independent and state-dependent relationships.

    Science.gov (United States)

    Petruzzello, S J; Tate, A K

    1997-09-01

    Resting electroencephalograph (EEG) asymmetry is a biological marker of the propensity to respond affectively to, and a measure of change in affect associated with, acute aerobic exercise. This study examined the EEG-affect-exercise relationship. Twenty participants performed each of three randomly assigned 30-min conditions: (a) a nonexercise control, (b) a cycling exercise at 55% VO2max, and (c) a cycling exercise at 70% VO2max. EEG and affect were assessed pre- and 0, 5, 10, 20, and 30 min postcondition. No significant results were seen in the control or 55% conditions. In the 70% exercise condition, greater relative left frontal activation preexercise predicted increased positive affect and reduced state anxiety postexercise. Participants (n = 7) with extreme relative left frontal activation postexercise reported concomitant decreases in anxiety, whereas participants (n = 7) with extreme relative right frontal activation postexercise reported increases in anxiety. These findings (a) replicate prior work, (b) suggest a dose-response intensity effect, and (c) support the idea that exercise is an emotion-eliciting event. Affective responses seem to be mediated in part by differential resting levels of activation in the anterior brain regions. Ongoing anterior brain activation reflected concurrent postexercise affect.

  17. High transition frequencies of dynamic functional connectivity states in the creative brain

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-01-01

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity. PMID:28383052

  18. High transition frequencies of dynamic functional connectivity states in the creative brain.

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-04-06

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity.

  19. Spontaneous conscious covert cognition states and brain electric spectral states in canonical correlations.

    Science.gov (United States)

    Lehmann, D; Grass, P; Meier, B

    1995-02-01

    Correlations between subjective, conscious, spontaneous cognitions and EEG power spectral profiles were investigated in 20 normal volunteers (2 sessions each) during relaxation-drowsiness-sleep onset. Four-channel EEG (temporal-parietal and parietal-central, left and right) was continuously recorded. The subjects were prompted 15 times per session to give brief reports of their ongoing thoughts. The reports were rated on 23 scales, and the 16 seconds of EEG recording preceding the prompts were spectral analyzed. Canonical correlation analysis was applied to the data (23 cognition ratings and 124 EEG spectral values for each of the 538 prompts). Four of the 23 pairs of canonical EEG variables and cognition variables were significant (p covert, cognitive-emotional states in a no-input, no-task, no-response paradigm.

  20. Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity.

    Science.gov (United States)

    Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A

    2017-01-02

    Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc.

  1. Induced arousal following zolpidem treatment in a vegetative state after brain injury in 7 cases Analysis using visual single photon emission computerized tomography and digitized cerebral state monitor

    Institute of Scientific and Technical Information of China (English)

    Bo Du; Aijun Shan; Di Yang; Wei Xiang

    2008-01-01

    BACKGROUND: Several studies have reported the use of zolpidem for induced arousal after permanent vegetative states. However, changes in brain function and EMG after zolpidem treatment requires further investigation. OBJECTIVE: To investigate the effect of zolpidem, an unconventional drug, on inducing arousal in patients in a permanent vegetative state after brain injury using visual single photon emission computerized tomography and digitized cerebral state monitor. DESIGN: A self-controlled observation. SETTING: Shenzhen People's Hospital.PARTICIPANTS: Seven patients in a permanent vegetative state were selected from the Department of Neurosurgery, Shenzhen People's Hospital from March 2005 to May 2007. The group included 5 males and 2 females, 24–55 years of age, with a mean age of 38.5 years. All seven patients had been in a permanent vegetative statement for at least six months. The patient group included three comatose patients, who had sustained injuries to the cerebral cortex, basal ganglia, or thalamus in motor vehicle accidents, and four patients, who had suffered primary/secondary brain stem injury. Informed consents were obtained from the patients’ relatives. METHODS: The patients brains were imaged by 99Tcm ECD single photon emission computerized tomography prior to treatment with zolpidem [Sanofi Winthrop Industrie, France, code number approved by the State Food & Drug Administration (SFDA) J20040033, specification 10 mg per tablet. At 8:00 p.m., 10 mg zolpidem was dissolved with distilled water and administered through a nasogastric tube at 1 hour before and after treatment and 1 week following treatment, respectively. Visual analysis of cerebral perfusion changes in the injured brain regions before and after treatment was performed. Simultaneously, three monitoring parameters were obtained though a cerebral state monitor, which included cerebral state index, electromyographic index, and burst suppression index. MAIN OUTCOME MEASURES: Comparison

  2. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Directory of Open Access Journals (Sweden)

    José del R. Millán

    2010-09-01

    Full Text Available In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT. In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication & Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  3. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.

    Science.gov (United States)

    Millán, J D R; Rupp, R; Müller-Putz, G R; Murray-Smith, R; Giugliemma, C; Tangermann, M; Vidaurre, C; Cincotti, F; Kübler, A; Leeb, R; Neuper, C; Müller, K-R; Mattia, D

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain-computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, "Communication and Control", "Motor Substitution", "Entertainment", and "Motor Recovery". We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users' mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  4. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  5. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  6. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  7. A Comparison of Brain Death Criteria between China and the United States

    Directory of Open Access Journals (Sweden)

    Ze-Yu Ding

    2015-01-01

    Full Text Available Background: Criteria for determining brain death (BD vary between China and the United States. We reported the results of an investigation designed to compare procedures to determine BD in two countries. Methods: The latest criteria in the United states were published in 2010. The latest criteria in China were published in 2009. We used these two types of BD criteria to evaluate patients who were considered to be BD. The time, cost, and accuracy of the diagnosis were compared. Results: From January 1, 2012 to October 8, 2013, there were 37 patients which were applied for BD evaluation in the Neurological Intensive Care Unit of Beijing Tiantan Hospital. The cause of coma were known as subarachnoid hemorrhage (18 patients, 48.6%, intracerebral hemorrhage (8 patients, 21.6%, cerebral ischemia (9 patients, 24.3%, brain stem tumor (1 patient, 2.7%, and intracranial infection (1 patient, 2.7%. The clinical examinations were done for all of the patients except 1 patient who had low blood pressure. Three patients had brainstem reflexes that were excluded from BD. Twenty-five patients had apnea tests, and 20 tests were completed that were all positive. Confirmatory tests were completed differently: Transcranial Doppler (30 patients, positive rate 86.7%, electroencephalogram (25 patients, positive rate 100%, and somatosensory evoked potential (16 patients, positive rate 100%. Thirty-three patients were diagnosed BD by criteria of the United States. Only 9 patients were diagnosed BD by Chinese criteria. The use of time and money in the USA criteria was obviously fewer than those in Chinese criteria (P = 0.000. Conclusion: Compared with BD criteria of the United States, Chinese criteria were stricter, lower positive rate, more cost in money and time, and more reliable by families and doctors.

  8. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  9. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  10. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-03-03

    NAD is an essential metabolite that exists in NAD(+) or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD(+)/NADH redox state and modulating cellular signaling processes through the activity of the NAD(+)-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD(+) and NADH contents and the NAD(+)/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD(+), total NAD contents, and NAD(+)/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ.

  11. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  12. Meal Replacement: Calming the Hot-State Brain Network of Appetite

    Directory of Open Access Journals (Sweden)

    Brielle ePaolini

    2014-03-01

    Full Text Available There is a growing awareness in the field of neuroscience that the self-regulation of eating behavior is driven by complex networks within the brain. These networks may be vulnerable to hot states which people can move into and out of dynamically throughout the course of a day as a function of changes in affect or visceral cues. The goal of the current study was to identify and determine differences in the Hot-state Brain Network of Appetite (HBN-A that exists after a brief period of food restraint followed either by the consumption of a meal replacement (MR or water. Fourteen overweight/obese adults came to our laboratory on two different occasions. Both times they consumed a controlled breakfast meal and then were restricted from eating for 2.5 hours prior to an MRI scan. On one visit, they consumed a meal replacement (MR liquid meal after this period of food restriction; on the other visit they consumed an equal amount of water. After these manipulations, the participants underwent a resting fMRI scan. Our first study aim employed an exploratory, data-driven approach to identify hubs relevant to the HBN-A. Using data from the water condition, five regions were found to be the hubs or nodes of the HBN-A: insula, anterior cingulated cortex, the superior temporal pole, the amygdala, and the hippocampus. We then demonstrated that the consumption of a liquid MR dampened interconnectivity between the nodes of the HBN-A as compared to water. Importantly and consistent with these network data, the consumption of a MR beverage also lowered state cravings and hunger.

  13. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  14. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    Science.gov (United States)

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance.

  15. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy.

    Science.gov (United States)

    Xiang, Yanhui; Kong, Feng; Wen, Xue; Wu, Qihan; Mo, Lei

    2016-11-15

    Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy.

  16. Moral competence and brain connectivity: A resting-state fMRI study.

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control.

  17. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  18. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.;

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...

  19. Activated and deactivated functional brain areas in the Deqi state A functional MRI study

    Institute of Scientific and Technical Information of China (English)

    Yong Huang; Tongjun Zeng; Guifeng Zhang; Ganlong Li; Na Lu; Xinsheng Lai; Yangjia Lu; Jiarong Chen

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state,as reported by physicians and subjects during acupuncture.Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint.Real-time cerebral functional MRI showed that compared with non-sensation after sham needling,true needling activated Brodmann areas 3,6,8,9,10,11,13,20,21,37,39,40,43,and 47,the head of the caudate nucleus,the parahippocampal gyrus,thalamus and red nucleus.True needling also deactivated Brodmann areas 1,2,3,4,5,6,7,9,10,18,24,31,40 and 46.

  20. Optimal and robust design of brain-state-in-a-box neural associative memories.

    Science.gov (United States)

    Park, Yonmook

    2010-03-01

    This paper presents a new optimization approach to the design of associative memories via the brain-state-in-a-box (BSB) neural network. The optimization approach proposed in this paper provides the large and uniform domains of attraction of the prototype patterns, the large robustness margin for the weight matrix of the perturbed BSB neural network, the asymptotic stability of the prototype patterns, and the global stability of the BSB neural network. Based on some known qualitative properties of the BSB neural network and theoretical results presented in this paper, a synthesis method of the BSB-based associative memory is established. The synthesis method presented in this paper is given in the form of a linear matrix inequality-based optimization problem, which can be efficiently solved by a readily available software. Design examples are given to demonstrate the applicability of the proposed method and to compare with the existing synthesis methods.

  1. Performance of dry electrode with bristle in recording EEG rhythms across brain state changes.

    Science.gov (United States)

    Kitoko, Vangu; Nguyen, Tuan N; Nguyen, Jordan S; Tran, Yvonne; Nguyen, Hung T

    2011-01-01

    In this paper we evaluate the physiological performance of a silver-silver chloride dry electrode with bristle (B-Electrode) in recording EEG data. For this purpose, we compare the performance of the bristle electrode in recording EEG data with the standard wet gold-plated cup electrode (G-Electrode) using two different brain state change tasks including resting condition with eyes-closed and performing mathematical task with eyes-open. Using a 2 channel recording device, eyes-closed command data were collected from each of 6 participants for a period of 20 sec and the same procedure was applied for the mathematical calculation task. These data were used for statistical and classification analyse. Although, B-electrode has shown a slightly higher performance compared with G-electrode in both tasks, but analyse did not reveal any significant differences between both electrodes in all six subjects tested.

  2. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  3. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury.

  4. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  5. A Comparison of Brain Death Criteria between China and the United States

    Institute of Scientific and Technical Information of China (English)

    Ze-Yu Ding; Qian Zhang; Jian-Wei Wu; Zhong-Hua Yang; Xing-Quan Zhao

    2015-01-01

    Background:Criteria for determining brain death (BD) vary between China and the United States.We reported the results of an investigation designed to compare procedures to determine BD in two countries.Methods:The latest criteria in the United states were published in 2010.The latest criteria in China were published in 2009.We used these two types of BD criteria to evaluate patients who were considered to be BD.The time,cost,and accuracy of the diagnosis were compared.Results:From January 1,2012 to October 8,2013,there were 37 patients which were applied for BD evaluation in the Neurological Intensive Care Unit of Beijing Tiantan Hospital.The cause of coma were known as subarachnoid hemorrhage (18 patients,48.6%),intracerebral hemorrhage (8 patients,21.6%),cerebral ischemia (9 patients,24.3%),brain stem tumor (1 patient,2.7%),and intracranial infection (1 patient,2.7%).The clinical examinations were done for all of the patients except 1 patient who had low blood pressure.Three patients had brainstem reflexes that were excluded from BD.Twenty-five patients had apnea tests,and 20 tests were completed that were all positive.Confirmatory tests were completed differently:Transcranial Doppler (30 patients,positive rate 86.7%),electroencephalogram (25 patients,positive rate 100%),and somatosensory evoked potential (16 patients,positive rate 100%).Thirty-three patients were diagnosed BD by criteria of the United States.Only 9 patients were diagnosed BD by Chinese criteria.The use of time and money in the USA criteria was obviously fewer than those in Chinese criteria (P =0.000).Conclusion:Compared with BD criteria of the United States,Chinese criteria were stricter,lower positive rate,more cost in money and time,and more reliable by families and doctors.

  6. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An; Sang Hee Im

    2010-01-01

    Background Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury.Methods We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scare. Statistical analysis was performed using statistical parametric mapping.Results Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (Pcorrected <0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (Pcorrected <0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (Puncorrected <0.005).Conclusion Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism

  7. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  8. Intrinsic brain connectivity in chronic pain: A resting-state fMRI study in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Pär eFlodin

    2016-03-01

    Full Text Available AbstractBackground. Rheumatoid arthritis (RA is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods. 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results. When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e. P50-joint and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters.Conclusion. Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients.

  9. Using community volunteers to promote exclusive breastfeeding in Sokoto State, Nigeria

    Directory of Open Access Journals (Sweden)

    Asma Misbah Qureshi

    2011-09-01

    Full Text Available for 6 months, were older (P=0.00 multi-parous (P=0.05 and more educated (P=0.00 compared to those who did not practice EBF. Among them, significantly increased proportion of women agreed that EBF should be continued during the night (P=0.03, infant should be fed on demand (P=0.05, sick child could be given medication (P=0.02, EBF offered protection against childhood diarrhea (P=0.01, and helped mothers with birth spacing (P=0.00. CONCLUSION: This study shows that there is a need for reaching women with reliable information about infant nutrition in Sokoto State. The results show decreased EBF practice among working mothers, young women, mothers with poor education and fewer than five children. Counseling is a useful strategy for promoting the duration of EBF for six months and for developing support systems for nursing mothers. Working mothers may need additional resources in this setting to enable them to practice EBF.

  10. State of catecxolaminergine systems of the brain in forming of sydnocarb psychosis

    Directory of Open Access Journals (Sweden)

    Al Nasir Eiad

    2014-03-01

    Full Text Available Violations of mnestic reactions are one of substantial signs of disorders of nervous activity. On the basis of it, as a criterion of forming of experimental psychosis, in our supervisions, the state of processes of conditionally-reflex memory was studied in rats. To cover up mechanisms of derangements of conditionally reflex activity in the process of forming of psychotic symptomatic complex, maintenance of adrenalin, noradrenalinum and neurospecific albumen S - 100 in the brain structures, that take a direct part in the processes of memory was studied. Derangements of cognitive function, that are the result of neurotoxic action of sydnocarb, are related to reduction of maintenance of noradrenalinum in the frontal cortex, as well as adrenalin in the pons varolii. That is, sydnocarb psychosis is accompanied by reduction of activating role of the cortex and trunk structures, negatively affecting the state of mnestic reactions. In the hippocampus and striate body excitation causes violation of memory processes and on the contrary, concentration of noradrenalinum rose. Thus, the presented model of experimental psychosis, created by subacute introduction of sydnocarb, is an adequate and alternative methodology of psychotic disorders forming in animals resulted from direct participation of the catecholaminergetic systems of CNS.

  11. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2013-10-01

    to the head which disrupts normal brain functioning and leads to either transient or chronic impairments in physical, cognitive, emotional , and/or...to either tran- sient or chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civil- ian population, TBI is...212-221. [6] Reeves TM, Lyeth BG, Povlishock JT (1995) Long-term potentiation deficits and excitability changes following trau- matic brain injury

  12. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  13. The effect of lithium on resting-state brain networks in patients with bipolar depression

    Institute of Scientific and Technical Information of China (English)

    Chunhong Liu; Xin Ma; Yuan Zhen; Yu Zhang; Lirong Tang; Feng Li; Changle Tie; Chuanyue Wang

    2016-01-01

    Objective: Although lithium has been a commonly prescribed neurotrophic/neuroprotective mood-stabilizing agents, its effect on spontaneous brain activity in patients with bipolar depression remains un-clear. The aim of this study is to reveal the basic mech-anism underlying the pathological influences of lithium on resting-state brain function of bipolar depression pa-tients. Methods:97 subjects including 9 bipolar depres-sion patients with lithium treatment, 19 bipolar depres-sion patients without lithium treatment and 69 healthy controls, were recruited to participate in this study. Amplitude of low-frequency fluctuation ( ALFF ) and fractional amplitude of low-frequency fluctuation ( fALFF) were used to capture the changes of spontane-ous brain activity among different groups. In addition, further analysis in terms of Hamilton Depression Rating Scale, the number of depressive episodes, and illness duration in pooled bipolar depression patients were con-ducted, which combined FLEF and fALEF to identify the basic neural features of bipolar depression patients. Results: It was observed from the imaging results that both the bipolar depression patients receiving lithium treatment and healthy control subjects showed signifi-cantly decreased ALFF/fALFF values in the right anteri-or cingulate cortex and right middle frontal gyrus com-pared to that from the bipolar depression patients with-out lithium treatmetn. The ALFF values of the right middle temporal gyrus was also found to be negative re-lated to the number of depressive episode and the total episodes. Conclusions:Our findings suggested that the bipolar depression subjects were identified to have ab-normal ALFF/ fALFF in the cortico-limbic systems, in-cluding regions like right anterior cingulate cortex, bi-lateral middle frontal gyrus, right orbital frontal gyrus, and right middle temporal gyrus. In addition, it was al-so revealed that the decreased ALFF/fALFF in the right anterior cingulate cortex and right

  14. Steady state visually evoked potentials based Brain computer interface test outside the lab

    Directory of Open Access Journals (Sweden)

    Eduardo Francisco Caicedo Bravo

    2016-06-01

    Full Text Available Context: Steady State Visually Evoked Potentials (SSVEP are brain signals which are one of the most promising signals for Brain Computer Interfaces (BCIs implementation, however, SSVEP based BCI generally are proven in a controlled environment and there are a few tests in demanding conditions.Method: We present a SSVEP based BCI system that was used outside the lab in a noisy environment with distractions, and with the presence of public. For the tests, we showed a maze in a laptop where the user could move an avatar looking for a target that is represented by a house.  In order to move the avatar, the volunteer must stare at one of the four visual stimuli; the four visual stimuli represent the four directions: right, up, left, and down. The system is proven without any calibration procedure.Results: 32 volunteers utilized the system and 20 achieved the target with an accuracy above 60%, including 9 with an accuracy of 100%, 7 achieved the target with an accuracy below 60% and 5 left without achieving the goal. For the volunteers who reached accuracy above 60%, the results of the performance achieved an average of 6,4s for command detections, precision of 79% and information transfer rate (ITR of 8,78 bits/s.Conclusions: We showed a SSVEP based BCI system with low cost, it was proved in a public event, it did not have calibration procedures, it was easy to install, and it was used for people in a wide age range. The results show that it is possible to bring this kind of systems to environments outside the laboratory.

  15. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    Science.gov (United States)

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  17. Frequency specificity of regional homogeneity in the resting-state human brain.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Song

    Full Text Available Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01-0.04 Hz while long-distance connections within subcortical networks distribute over a wider frequency range (0.01-0.14 Hz. However, the frequency characteristics of regional homogeneity (ReHo in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD, was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02-0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz. The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04-0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.

  18. Altered Resting-State Brain Activity and Connectivity in Depressed Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    Full Text Available Depressive symptoms are common in Parkinson's disease (PD, but the neurophysiological mechanisms of depression in PD are poorly understood. The current study attempted to examine disrupted spontaneous local brain activities and functional connectivities that underlie the depression in PD. We recruited a total of 20 depressed PD patients (DPD, 40 non-depressed PD patients (NDPD and 43 matched healthy controls (HC. All the subjects underwent neuropsychological tests and resting-state fMRI scanning. The between-group differences in the amplitude of low frequency fluctuations (ALFF of BOLD signals were examined using post-hoc tests after the analysis of covariance. Compared with the NDPD and HC, the DPD group showed significantly increased ALFF in the left median cingulated cortex (MCC. The functional connectivity (FC between left MCC and all the other voxels in the brain were then calculated. Compared with the HC and NDPD group, the DPD patients showed stronger FC between the left MCC and some of the major nodes of the default mode network (DMN, including the post cingulated cortex/precuneus, medial prefrontal cortex, inferior frontal gyrus, and cerebellum. Correlation analysis revealed that both the ALFF values in the left MCC and the FC between the left MCC and the nodes of DMN were significantly correlated with the Hamilton Depression Rating Scale score. Moreover, higher local activities in the left MCC were associated with increased functional connections between the MCC and the nodes of DMN in PD. These abnormal activities and connectivities of the limbic-cortical circuit may indicate impaired high-order cortical control or uncontrol of negative mood in DPD, which suggested a possible neural mechanism of the depression in PD.

  19. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  20. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.

    Science.gov (United States)

    Lee, Hong J; Lim, In J; Lee, Min C; Kim, Seung U

    2010-11-15

    Intracerebral hemorrhage (ICH) is a lethal stroke type; mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, so an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and promote functional recovery in rat ICH model, and others have shown that intracerebral infusion of brain-derived neurotrophic factor (BDNF) results in improved structural and functional outcome from cerebral ischemia. We postulated that human NSCs overexpressing BDNF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs and increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by injection of bacterial collagenase into striatum. The HB1.F3.BDNF (F3.BDNF) human NSC line produces sixfold higher amounts of BDNFF over the parental F3 cell line in vitro, induces behavioral improvement, and produces a threefold increase in cell survival at 2 weeks and 8 weeks posttransplantation. Brain transplantation of human NSCs overexpressing BDNF provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results indicate that the F3.BDNF human NSCs should be of great value as a cellular source for experimental studies involving cellular therapy for human neurological disorders, including ICH.

  1. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    Science.gov (United States)

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.

  2. A study of the brain's resting state based on alpha band power, heart rate and fMRI

    NARCIS (Netherlands)

    de Munck, J.C.; Goncalves, S.I.; Faes, T.J.C.; Kuijer, J.P.A.; Pouwels, P.J.W.; Heethaar, R.M.; Lopes da Silva, F.H.

    2008-01-01

    Considering that there are several theoretical reasons why fMRI data is correlated to variations in heart rate, these correlations are explored using experimental resting state data. In particular, the possibility is discussed that the "default network", being a brain area that deactivates during no

  3. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  4. Altered brain functional networks in people with Internet gaming disorder: Evidence from resting-state fMRI.

    Science.gov (United States)

    Wang, Lingxiao; Wu, Lingdan; Lin, Xiao; Zhang, Yifen; Zhou, Hongli; Du, Xiaoxia; Dong, Guangheng

    2016-08-30

    Although numerous neuroimaging studies have detected structural and functional abnormality in specific brain regions and connections in subjects with Internet gaming disorder (IGD), the topological organization of the whole-brain network in IGD remain unclear. In this study, we applied graph theoretical analysis to explore the intrinsic topological properties of brain networks in Internet gaming disorder (IGD). 37 IGD subjects and 35 matched healthy control (HC) subjects underwent a resting-state functional magnetic resonance imaging scan. The functional networks were constructed by thresholding partial correlation matrices of 90 brain regions. Then we applied graph-based approaches to analysis their topological attributes, including small-worldness, nodal metrics, and efficiency. Both IGD and HC subjects show efficient and economic brain network, and small-world topology. Although there was no significant group difference in global topology metrics, the IGD subjects showed reduced regional centralities in the prefrontal cortex, left posterior cingulate cortex, right amygdala, and bilateral lingual gyrus, and increased functional connectivity in sensory-motor-related brain networks compared to the HC subjects. These results imply that people with IGD may be associated with functional network dysfunction, including impaired executive control and emotional management, but enhanced coordination among visual, sensorimotor, auditory and visuospatial systems.

  5. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition.

  6. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    Science.gov (United States)

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Kandpal, Raj P.; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants, namely, GluR6B, GluR6C, GluR6D and GluR6E in fibroblast cell lines. The variants GluR6D and GluR6E have not been described before, and appear to be specific for non-neuronal cells. Genomic analysis and cloning of the sequence preceding the transcribed region led to the identification of two tissue specific promoters designated as neuronal promoter PN and non-neuronal promoter PNN. We have used RNA ligase mediated RACE and in silico analyses to locate two sets of transcription start sites, and confirmed specific transcripts initiated by PN and PNN in brain cells and fibroblasts, respectively. The domain structure of variants GluR6D and GluR6E revealed the absence of three transmembrane domains. The lack of these domains suggests that the mature receptors arising from these variant subunits may not function as active channels. Based on these structural features in GluR6D and GluR6E, and the observations that GluR6B, GluR6C, GluR6D and GluR6E are exclusively expressed in non-neuronal cells, it is likely that these receptor subunits function as non-channel signaling proteins. PMID:20230879

  7. 75 FR 24373 - Cotton Research and Promotion Program: Designation of Cotton-Producing States

    Science.gov (United States)

    2010-05-05

    ... Federal Regulations is sold by the Superintendent of Documents. #0;Prices of new books are listed in the... Service 7 CFR Part 1205 RIN 0581-AC84 Cotton Research and Promotion Program: Designation of Cotton... Marketing Service (AMS) is amending the Cotton Research and Promotion Order (Cotton Order) following...

  8. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment

    Institute of Scientific and Technical Information of China (English)

    Xianying Wang; Honghai Wu; Gai Xue; Yanning Hou

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.

  9. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  10. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  11. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    (DW-MRI) as a quantitative method for detecting EP-induced membrane permeabilization of brain tissue using a rat brain model. MATERIAL AND METHODS: Fifty-four anesthetized Sprague-Dawley male rats were electroporated in the right hemisphere, using different voltage levels to induce no permeabilization......-induced permeabilization of brain tissue and to some extent of differentiating NP, TMP and PMP using appropriate scan timing....

  12. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    Science.gov (United States)

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes.

  13. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    Science.gov (United States)

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  14. Deep brain stimulation for psychiatric disorders--state of the art.

    Science.gov (United States)

    Schläpfer, T E; Bewernick, B H

    2009-01-01

    A substantial number of patients suffering from severe neuropsychiatric disorders do not respond to conventional therapeutic approaches. Results from functional neuroimaging research and the development of neuromodulatory treatments lead to novel putative strategies. Recently, one of those methods, deep brain stimulation (DBS) has been applied in selected patient with major depression and obsessive-compulsive disorder (OCD) and major depression. We summarize in this review, the state of art of knowledge about the neurobiology of depression and OCD and historical treatment methods. Principles of DBS and reasons for the use of DBS in neuropsychiatry are discussed. Different targets have been chosen in a hypothesis-guided way and first results have demonstrated that DBS might be able to modulate dysfunctional neural networks in both major depression and OCD. Although DBS is a unique and promising method for otherwise treatment resistant psychiatric patients, mandatory treatment standards have to be applied for patient and target selection. Therefore, a distinct focus of this review lies on ethical aspects for DBS in neuropsychiatric disorders.

  15. Approaching dysphoric mood: state-effects of mindfulness meditation on frontal brain asymmetry.

    Science.gov (United States)

    Keune, Philipp M; Bostanov, Vladimir; Hautzinger, Martin; Kotchoubey, Boris

    2013-04-01

    Meditation-based interventions reduce the relapse risk in recurrently depressed patients. Randomized trials utilizing neurophysiologic outcome measures, however, have yielded inconsistent results with regard to a prophylactic effect. Although frontal brain asymmetry, assessed through electroencephalographic (EEG) alpha activity (8-13 Hz), is indicative of approach vs. withdrawal-related response dispositions and represents a vulnerability marker of depression, clinical trials have provided mixed results as to whether meditation has beneficial effects on alpha asymmetry. Inconsistencies might have arisen since such trials relied on resting-state recordings, instead of active paradigms under challenge, as suggested by contemporary notions of alpha asymmetry. We examined two groups of remitted, recurrently depressed females. In a "mindfulness support group", EEG was recorded during neutral rest, and rest following a negative mood induction. Subsequently, participants received initial meditation instructions. EEG was then obtained during an active period of guided mindfulness meditation and rest following the active period. In a "rumination challenge group", EEG was obtained during the same resting conditions, whereas in the active period, initial meditation instructions were followed by a rumination challenge. A significant shift in mid-frontal asymmetry, yielding a pattern indicative of approach motivation, was observed in the mindfulness support group, specifically during the meditation period. This indicates that mindfulness meditation may have a transient beneficial effect, which enables patients to take an approach-related motivational stance, particularly under circumstances of risk.

  16. Learning and Forgetting in Generalized Brain-state-in-a-box (BSB) Neural Associative Memories.

    Science.gov (United States)

    Hui, Stefen; Lillo, Walter E.; Zak, Stanislaw H.

    1996-07-01

    We propose learning and forgetting techniques for the generalized brain-state-in-a-box (BSB) based associative memories. A generalization of the BSB model allows each neuron to have its own bias and the synaptic weight matrix does not have to be symmetric. A pattern is learned by a memory if its noisy or an incomplete version presented to the memory is mapped back to this pattern. A pattern, previously stored, is forgotten or deleted from the memory if a stimulus that is a perturbed version of the pattern, when presented to the memory, is not mapped back to this pattern. In this paper we propose "on-line" memory storage and deletion methods using an iterative method of computing the pseudo-inverse of a given matrix. The proposed methods allow one to "add" or "delete" a memory pattern by updating, rather than recomputing from scratch, the current synaptic weight matrix in a single step. We first analyze the desired characteristics of neural network associative memories. After that, we review the existing methods for design of neural associative memories. Then we discuss the generalized BSB neural model and its possible function as an associative memory and proffer arguments in support of using such models for neural associative memories. In particular, the generalized BSB type models are easier to analyze, synthesize, and implement than other neural networks. The results obtained are illustrated by numerical examples. Copyright 1996 Elsevier Science Ltd

  17. A multi-signature brain-computer interface: use of transient and steady-state responses

    Science.gov (United States)

    Severens, Marianne; Farquhar, Jason; Duysens, Jacques; Desain, Peter

    2013-04-01

    Objective. The aim of this paper was to increase the information transfer in brain-computer interfaces (BCI). Therefore, a multi-signature BCI was developed and investigated. Stimuli were designed to simultaneously evoke transient somatosensory event-related potentials (ERPs) and steady-state somatosensory potentials (SSSEPs) and the ERPs and SSSEPs in isolation. Approach. Twelve subjects participated in two sessions. In the first session, the single and combined stimulation conditions were compared on these somatosensory responses and on the classification performance. In the second session the on-line performance with the combined stimulation was evaluated while subjects received feedback. Furthermore, in both sessions, the performance based on ERP and SSSEP features was compared. Main results. No difference was found in the ERPs and SSSEPs between stimulation conditions. The combination of ERP and SSSEP features did not perform better than with ERP features only. In both sessions, the classification performances based on ERP and combined features were higher than the classification based on SSSEP features. Significance. Although the multi-signature BCI did not increase performance, it also did not negatively impact it. Therefore, such stimuli could be used and the best performing feature set could then be chosen individually.

  18. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model.

    Science.gov (United States)

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The "paradoxically" high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  19. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    Directory of Open Access Journals (Sweden)

    Kazuhito eNakao

    2014-07-01

    Full Text Available In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 sec, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1 a broadband increase in spontaneous LFP power in the absence of external inputs, and (2 a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The paradoxically high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  20. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    Science.gov (United States)

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells

  1. Researching the Practice, Practicing the Research, and Promoting Responsible Policy: Usable Knowledge in Mind, Brain, and Education

    Science.gov (United States)

    Christodoulou, Joanna A.; Daley, Samantha G.; Katzir, Tami

    2009-01-01

    The theme of Usable Knowledge in Mind, Brain, and Education will be a special section that will appear regularly in the journal. The section will focus on the synergistic connections between biology, cognitive science, and human development on the one hand and educational thought, policy, and practice on the other. Efforts to create usable…

  2. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    Ho, Wei Zhao, Roberto Sanchez, Merina Varghese, Daniel Freire , Giulio Maria Pasinetti, Activation of ectopically expressed olfactory receptors in the...disease: a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S, Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V

  3. Beyond neural cubism: promoting a multidimensional view of brain disorders by enhancing the integration of neurology and psychiatry in education.

    Science.gov (United States)

    Taylor, Joseph J; Williams, Nolan R; George, Mark S

    2015-05-01

    Cubism was an influential early-20th-century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stemmed from different organ systems. Maintaining two isolated clinical disciplines fractionalizes the brain in the same way that Pablo Picasso fractionalized figures and objects in his Cubist art. This Neural Cubism perpetuates a clinical divide that does not reflect the scope and depth of neuroscience. All brain disorders are complex and multidimensional, with aberrant circuitry and resultant psychopharmacology manifesting as altered behavior, affect, mood, or cognition. Trainees should receive a multidimensional education based on modern neuroscience, not a partial education based on clinical precedent. The authors briefly outline the rationale for increasing the integration of neurology and psychiatry and discuss a nested model with which clinical neuroscientists (neurologists and psychiatrists) can approach and treat brain disorders.

  4. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to

  5. Neural Mechanisms Linking Mild Traumatic Brain Injury and Anxiety States in an Animal Model

    Science.gov (United States)

    2012-03-01

    region cortices) as defined by Paxinos and Watson (1998). The volume of each brain region of interest was measured from cresyl violet stained...Kurume Med. J. 56, 49-59. Paxinos , C., Watson, C., 1997. The Rat Brain in Stereotaxic Coordinates, 3rd ed. Academic Press, New York. 30 Ptito

  6. Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2014-01-01

    Conclusions: The present study confirms that chronic tinnitus patients have aberrant ALFF in many brain regions, which is associated with specific clinical tinnitus characteristics. ALFF disturbance in specific brain regions might be used to identify the neuro-pathophysiological mechanisms in chronic tinnitus patients.

  7. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    Science.gov (United States)

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  8. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art.

    Science.gov (United States)

    de Lima Oliveira, Marcelo; Kairalla, Ana Carolina; Fonoff, Erich Talamoni; Martinez, Raquel Chacon Ruiz; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2014-08-01

    Cerebral microdialysis (CMD) is a laboratory tool that provides on-line analysis of brain biochemistry via a thin, fenestrated, double-lumen dialysis catheter that is inserted into the interstitium of the brain. A solute is slowly infused into the catheter at a constant velocity. The fenestrated membranes at the tip of the catheter permit free diffusion of molecules between the brain interstitium and the perfusate, which is subsequently collected for laboratory analysis. The major molecules studied using this method are glucose, lactate, pyruvate, glutamate, and glycerol. The collected substances provide insight into the neurochemical features of secondary injury following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) and valuable information about changes in brain metabolism within a short time frame. In this review, the authors detail the CMD technique and its associated markers and then describe pertinent findings from the literature about the clinical application of CMD in TBI and SAH.

  9. Adolescent brain development and underage drinking in the United States: identifying risks of alcohol use in college populations.

    Science.gov (United States)

    Silveri, Marisa M

    2012-01-01

    Alcohol use typically is initiated during adolescence, a period that coincides with critical structural and functional maturation of the brain. Brain maturation and associated improvements in decision making continue into the third decade of life, reaching a plateau within the period referred to as emerging adulthood (18-24 years). This particular period covers that of traditionally aged college students, and includes the age (21 years) when alcohol consumption becomes legal in the United States. This review highlights neurobiological evidence indicating the vulnerabilities of the emerging-adult brain to the effects of alcohol. Factors increasing the risks associated with underage alcohol use include the age group's reduced sensitivity to alcohol sedation and increased sensitivity to alcohol-related disruptions in memory. On the individual level, factors increasing those risks are a positive family history of alcoholism, which has a demonstrated effect on brain structure and function, and emerging comorbid psychiatric conditions. These vulnerabilities-of the age group, in general, as well as of particular individuals-likely contribute to excessive and unsupervised drinking in college students. Discouraging alcohol consumption until neurobiological adulthood is reached is important for minimizing alcohol-related disruptions in brain development and decision-making capacity, and for reducing the negative behavioral consequences associated with underage alcohol use.

  10. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI.

    Directory of Open Access Journals (Sweden)

    Russell W Chan

    Full Text Available Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI and resting-state functional MRI (rsfMRI were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline and seventeen days after mating (G17. G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.

  11. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI.

    Science.gov (United States)

    Chan, Russell W; Ho, Leon C; Zhou, Iris Y; Gao, Patrick P; Chan, Kevin C; Wu, Ed X

    2015-01-01

    Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.

  12. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain

    Science.gov (United States)

    Li, HY; Wu, SY; Ma, Q; Shi, N

    2015-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) plays a critical role in the mammalian response to chemical and oxidative stress through induction of phase II detoxification enzymes and oxidative stress response proteins. We reported that Nrf2 expression was activated by deltamethrin (DM), a prototype of the widely used pyrithroid pesticides, in PC12 cells. However, no study has examined Nrf2 nuclear translocation and free radical production, two hallmarks of oxidative stress, in the mammalian brain in vivo. To this end, we examined translocation of Nrf2 and production of free radicals in rat brain exposed to DM. Indeed, DM initiated nuclear translocation of Nrf2 in a dose-dependent manner. Furthermore, Nrf2 translocation was accompanied by the expression of heme oxygenase-1 gene, an Nrf2-regulated gene linked to free radical production. Deltamethrin exposure promoted free radical formation in rat brain and reactive oxygen species generation in PC12 cells. Translocation of Nrf2 may be a response to DM-dependent induction of free radicals and DM may act as a mammalian neurotoxin by initiating oxidative stress. PMID:21398409

  13. HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3'UTR mRNA.

    Directory of Open Access Journals (Sweden)

    Megan Allen

    Full Text Available Complex regulation of brain-derived neurotrophic factor (BDNF governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3'end processing of the BDNF transcripts generates either a long or a short 3'untranslated region (3'UTR. Previous reports indicate that distinct RNA sequence in the BDNF 3'UTRs differentially regulates BDNF production in the brain to accommodate neuronal activity changes, conceivably through differential interactions with undefined trans-acting factors that regulate stability and translation of these BDNF mRNA isoforms. In this study, we report that the neuronal RNA-binding protein (RBP HuD interacts with a highly conserved AU-rich element (ARE specifically located in the BDNF long 3'UTR. Such interaction is necessary and sufficient for selective stabilization of mRNAs that contain the BDNF long 3'UTR in vitro and in vivo. Moreover, in a HuD transgenic mouse model, the BDNF long 3'UTR mRNA is increased in the hippocampal dentate granule cells (DGCs, leading to elevated expression of BDNF protein that is transported and stored in the mossy fiber (MF terminals. Our results identify HuD as the first trans-acting factor that enhances BDNF expression specifically through the long 3'UTR and a novel mechanism that regulates BDNF protein production in selected neuronal populations by HuD abundance.

  14. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.

    Science.gov (United States)

    Chien, Mei-Yin; Chuang, Cheng-Hung; Chern, Chang-Ming; Liou, Kou-Tong; Liu, Der-Zen; Hou, Yu-Chang; Shen, Yuh-Chiang

    2016-10-01

    Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection.

  15. Predicting 14-day mortality after severe traumatic brain injury: application of the IMPACT models in the brain trauma foundation TBI-trac® New York State database.

    Science.gov (United States)

    Roozenbeek, Bob; Chiu, Ya-Lin; Lingsma, Hester F; Gerber, Linda M; Steyerberg, Ewout W; Ghajar, Jamshid; Maas, Andrew I R

    2012-05-01

    Prognostic models for outcome prediction in patients with traumatic brain injury (TBI) are important instruments in both clinical practice and research. To remain current a continuous process of model validation is necessary. We aimed to investigate the performance of the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic models in predicting mortality in a contemporary New York State TBI registry developed and maintained by the Brain Trauma Foundation. The Brain Trauma Foundation (BTF) TBI-trac® database contains data on 3125 patients who sustained severe TBI (Glasgow Coma Scale [GCS] score ≤ 8) in New York State between 2000 and 2009. The outcome measure was 14-day mortality. To predict 14-day mortality with admission data, we adapted the IMPACT Core and Extended models. Performance of the models was assessed by determining calibration (agreement between observed and predicted outcomes), and discrimination (separation of those patients who die from those who survive). Calibration was explored graphically with calibration plots. Discrimination was expressed by the area under the receiver operating characteristic (ROC) curve (AUC). A total of 2513 out of 3125 patients in the BTF database met the inclusion criteria. The 14-day mortality rate was 23%. The models showed excellent calibration. Mean predicted probabilities were 20% for the Core model and 24% for the Extended model. Both models showed good discrimination with AUCs of 0.79 (Core) and 0.83 (Extended). We conclude that the IMPACT models validly predict 14-day mortality in the BTF database, confirming generalizability of these models for outcome prediction in TBI patients.

  16. Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Rachakonda, Srinivas; He, Hao; Gruner, William; Pearlson, Godfrey; Kiehl, Kent A; Calhoun, Vince D

    2011-01-01

    Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses) has also been found in SZ by a previous resting state functional magnetic resonance imaging (fMRI) study. However, no study has yet determined if topological properties of FNC are also altered in SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs) and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent components (ICs) by group independent component analysis (ICA). FNC maps were constructed via a partial correlation analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS). These findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain networks.

  17. Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study

    Institute of Scientific and Technical Information of China (English)

    Yihong Zhu; Bin Gao; Jianming Hua; Weibo Liu; Yichao Deng; Lijie Zhang; Biao Jiang

    2013-01-01

    Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD).Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI),few studies have focused on spontaneous brain activity.In the current study,we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18normal adult males.A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication,and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo,order counterbalanced between participants).We demonstrated that:(1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPH-related regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo.Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults,even though there are no behavioral differences.This method can be applied to patients with mental illness who may be treated with MPH,and be used to compare the difference between patients taking MPH and normal participants,to help reveal the mechanism of how MPH works.

  18. Beyond Neural Cubism: Promoting a Multidimensional View of Brain Disorders by Enhancing the Integration of Neurology and Psychiatry in Education

    OpenAIRE

    2015-01-01

    Cubism was an influential early 20th century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stem from different organ systems. Maintaining two isolated clinical d...

  19. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimers Disease

    Science.gov (United States)

    2015-12-01

    chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civilian population, TBI is typically associated with...functioning, which leads to either tran- sient or chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civil...expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res 89, 212-221. [6] Reeves TM, Lyeth BG, Povlishock

  20. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice.

    Science.gov (United States)

    Fluiter, Kees; Opperhuizen, Anne Loes; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2014-03-01

    Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. We generated a C6 antisense oligonucleotide that blocks MAC formation by inhibiting C6, and we compared its therapeutic effect to that of Ornithodoros moubata complement inhibitor (OmCI), a known inhibitor of C5 activation that blocks generation of the anaphylatoxin C5a and C5b, an essential component of MAC. Severe closed head injury in mice induced abundant MAC deposition in the brain. Treatment with C6 antisense reduced C6 synthesis (85%) and serum levels (90%), and inhibited MAC deposition in the injured brain (91-96%). Treatment also reduced accumulation of microglia/macrophages (50-88%), neuronal apoptosis, axonal loss and weight loss (54-93%), and enhanced neurologic performance (84-92%) compared with placebo-treated controls after injury. These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.

  1. Effects of long-term acupuncture treatment on resting-state brain activity in migraine patients: a randomized controlled trial on active acupoints and inactive acupoints.

    Directory of Open Access Journals (Sweden)

    Ling Zhao

    Full Text Available BACKGROUND: Acupuncture has been commonly used for preventing migraine attacks and relieving pain during a migraine, although there is limited knowledge on the physiological mechanism behind this method. The objectives of this study were to compare the differences in brain activities evoked by active acupoints and inactive acupoints and to investigate the possible correlation between clinical variables and brain responses. METHODS AND RESULTS: A randomized controlled trial and resting-state functional magnetic resonance imaging (fMRI were conducted. A total of eighty migraineurs without aura were enrolled to receive either active acupoint acupuncture or inactive acupoint acupuncture treatment for 8 weeks, and twenty patients in each group were randomly selected for the fMRI scan at the end of baseline and at the end of treatment. The neuroimaging data indicated that long-term active acupoint therapy elicited a more extensive and remarkable cerebral response compared with acupuncture at inactive acupoints. Most of the regions were involved in the pain matrix, lateral pain system, medial pain system, default mode network, and cognitive components of pain processing. Correlation analysis showed that the decrease in the visual analogue scale (VAS was significantly related to the increased average Regional homogeneity (ReHo values in the anterior cingulate cortex in the two groups. Moreover, the decrease in the VAS was associated with increased average ReHo values in the insula which could be detected in the active acupoint group. CONCLUSIONS: Long-term active acupoint therapy and inactive acupoint therapy have different brain activities. We postulate that acupuncture at the active acupoint might have the potential effect of regulating some disease-affected key regions and the pain circuitry for migraine, and promote establishing psychophysical pain homeostasis. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-TRC-13003635.

  2. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury.

  3. Life Expectancy after Inpatient Rehabilitation for Traumatic Brain Injury in the United States.

    Science.gov (United States)

    Harrison-Felix, Cynthia; Pretz, Christopher; Hammond, Flora M; Cuthbert, Jeffrey P; Bell, Jeneita; Corrigan, John; Miller, A Cate; Haarbauer-Krupa, Juliet

    2015-12-01

    This study characterized life expectancy after traumatic brain injury (TBI). The TBI Model Systems (TBIMS) National Database (NDB) was weighted to represent those ≥16 years of age completing inpatient rehabilitation for TBI in the United States (US) between 2001 and 2010. Analyses included Standardized Mortality Ratios (SMRs), Cox regression, and life expectancy. The US mortality rates by age, sex, race, and cause of death for 2005 and 2010 were used for comparison purposes. Results indicated that a total of 1325 deaths occurred in the weighted cohort of 6913 individuals. Individuals with TBI were 2.23 times more likely to die than individuals of comparable age, sex, and race in the general population, with a reduced average life expectancy of 9 years. Independent risk factors for death were: older age, male gender, less-than-high school education, previously married at injury, not employed at injury, more recent year of injury, fall-related TBI, not discharged home after rehabilitation, less functional independence, and greater disability. Individuals with TBI were at greatest risk of death from seizures; accidental poisonings; sepsis; aspiration pneumonia; respiratory, mental/behavioral, or nervous system conditions; and other external causes of injury and poisoning, compared with individuals in the general population of similar age, gender, and race. This study confirms prior life expectancy study findings, and provides evidence that the TBIMS NDB is representative of the larger population of adults receiving inpatient rehabilitation for TBI in the US. There is an increased risk of death for individuals with TBI requiring inpatient rehabilitation.

  4. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.

    Science.gov (United States)

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H J

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  5. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    Directory of Open Access Journals (Sweden)

    Viola ePriesemann

    2014-06-01

    Full Text Available In self-organized critical (SOC systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore we analyzed highly parallel spike recordings from awake rats and monkeys, anaesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1 subsampling, (2 increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition, and (3 making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes, and for the dependence of all these measures on the temporal bin size.Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  6. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art.

    Science.gov (United States)

    Gastaldi, Lucia; Battaglia, Luigi; Peira, Elena; Chirio, Daniela; Muntoni, Elisabetta; Solazzi, Ilaria; Gallarate, Marina; Dosio, Franco

    2014-08-01

    Central nervous system disorders are already prevalent and steadily increasing among populations worldwide. However, most of the pharmaceuticals present on world markets are ineffective in treating cerebral diseases, because they cannot effectively cross the blood brain barrier (BBB). Solid lipid nanoparticles (SLN) are nanospheres made from biocompatible solid lipids, with unique advantages among drug carriers: they can be used as vehicles to cross the BBB. This review examines the main aspects surrounding brain delivery with SLN, and illustrates the principal mechanisms used to enhance brain uptake of the delivered drug.

  7. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect.

    Science.gov (United States)

    Yang, Chuan-Chih; Barrós-Loscertales, Alfonso; Pinazo, Daniel; Ventura-Campos, Noelia; Borchardt, Viola; Bustamante, Juan-Carlos; Rodríguez-Pujadas, Aina; Fuentes-Claramonte, Paola; Balaguer, Raúl; Ávila, César; Walter, Martin

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.

  8. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    Directory of Open Access Journals (Sweden)

    Chuan-Chih Yang

    2016-01-01

    Full Text Available The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation and between time points (before versus after training were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.

  9. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti- Reward

    Directory of Open Access Journals (Sweden)

    Kenneth Blum

    2015-02-01

    Full Text Available Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana, Δ9-tetrahydrocannabinol (THC enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1 receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718 have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Longterm blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and nonsubstance (behavioral addictions.

  10. Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression

    OpenAIRE

    Tadayonnejad, Reza; Yang, Shaolin; Kumar, Anand; Ajilore, Olusola

    2014-01-01

    The pervasive and persistent nature of depressive symptoms has made resting-state functional magnetic resonance imaging (rs-fMRI) an appropriate approach for understanding the underlying mechanisms of major depressive disorder. The majority of rs-fMRI research has focused on depression-related alterations in the interregional coordination of brain baseline low frequency oscillations (LFOs). However, alteration of the regional amplitude of LFOs in depression, particularly its clinical, cogniti...

  11. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    Directory of Open Access Journals (Sweden)

    Delong eZhang

    2015-02-01

    Full Text Available The present study examined directional connections in the brain among resting-state networks (RSNs when the participant had their eyes open (EO or had their eyes closed (EC. The resting-state fMRI data were collected from 20 healthy participants (11 males, 20.17 ± 2.74 years under the EO and EC states. Independent component analysis (ICA was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks, and the Gaussian Bayesian network (BN learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salient attention network to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the attention (salient and dorsal-related directional connections were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salient and dorsal attention networks were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the attention system (the salient and the dorsal attention network might have important roles in resting-state brain networks and the neural substrate underpinning of switching between the EO and EC states.

  12. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  13. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available Sensory processing sensitivity (SPS is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89 were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a "gene score" that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality.

  14. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons.

    Science.gov (United States)

    Fang, Hung; Chartier, Joanne; Sodja, Caroline; Desbois, Angele; Ribecco-Lutkiewicz, Maria; Walker, P Roy; Sikorska, Marianna

    2003-07-18

    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.

  15. Putting the Mind in the Brain: Promoting an Appreciation of the Biological Basis to Understanding Human Behavior

    Science.gov (United States)

    Neumann, David L.

    2010-01-01

    A surprising number of students in psychology, behavioral science, and related social science classes fail to appreciate the importance of biological mechanisms to understanding behavior. To help teachers promote this understanding, this paper outlines six sources of evidence. These are (a) phylogenetic, (b) genetic/developmental, (c) clinical,…

  16. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  17. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  18. Deciphering the spatio-temporal expression and stress regulation of Fam107B, the paralog of the resilience-promoting protein DRR1 in the mouse brain.

    Science.gov (United States)

    Masana, M; Jukic, M M; Kretzschmar, A; Wagner, K V; Westerholz, S; Schmidt, M V; Rein, T; Brodski, C; Müller, M B

    2015-04-02

    Understanding the molecular mechanisms that promote stress resilience might open up new therapeutic avenues to prevent stress-related disorders. We recently characterized a stress and glucocorticoid-regulated gene, down-regulated in renal cell carcinoma - DRR1 (Fam107A). DRR1 is expressed in the mouse brain; it is up-regulated by stress and glucocorticoids and modulates neuronal actin dynamics. In the adult mouse, DRR1 was shown to facilitate specific behaviors which might be protective against some of the deleterious consequences of stress exposure: in the hippocampal CA3 region, DRR1 improved cognitive performance whereas in the septum, it specifically increased social behavior. Therefore DRR1 was suggested as a candidate protein promoting stress-resilience. Fam107B (family with sequence similarity 107, member B) is the unique paralog of DRR1, and both share high sequence similarities, predicted glucocorticoid response elements, heat-shock induction and tumor suppressor properties. So far, the role of Fam107B in the central nervous system was not studied. The aim of the present investigation, therefore, was to analyze whether Fam107B and DRR1 display comparable mRNA expression patterns in the brain and whether both are modulated by stress and glucocorticoids. Spatio-temporal mapping of Fam107B mRNA expression in the embryonic and adult mouse brain, by means of in situ hybridization, showed that Fam107B was expressed during embryogenesis and in the adulthood, with particularly high and specific expression in the forming telencephalon suggestive of an involvement in corticogenesis. In the adult mouse, expression was restricted to neurogenic niches, like the dentate gyrus. In contrast to DRR1, Fam107B mRNA expression failed to be modulated by glucocorticoids and social stress in the adult mouse. In summary, Fam107B and DRR1 show different spatio-temporal expression patterns in the central nervous system, suggesting at least partially different functional roles in

  19. Brain-derived Neurotrophic Factor Promotes Differentiation and Maturation of Adult-born Neurons Through GABAergic Transmission

    OpenAIRE

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L.; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type mice, but not from Bdnfklox/klox mice where the long 3′ untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated rele...

  20. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    Science.gov (United States)

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units.

  1. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  2. A Two-Stage State Recognition Method for Asynchronous SSVEP-Based Brain-Computer Interface System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zimu; DENG Zhidong

    2013-01-01

    A two-stage state recognition method is proposed for asynchronous SSVEP (steady-state visual evoked potential) based brain-computer interface (SBCI) system.The two-stage method is composed of the idle state (IS) detection and control state (CS) discrimination modules.Based on blind source separation and continuous wavelet transform techniques,the proposed method integrates functions of multi-electrode spatial filtering and feature extraction.In IS detection module,a method using the ensemble IS feature is proposed.In CS discrimination module,the ensemble CS feature is designed as feature vector for control intent classification.Further,performance comparisons are investigated among our IS detection module and other existing ones.Also the experimental results validate the satisfactory performance of our CS discrimination module.

  3. Riding the Hype: The Role of State-Owned Enterprise Elite Actors in the Promotion of Jatropha in Indonesia

    Directory of Open Access Journals (Sweden)

    Deasy Simandjuntak

    2014-06-01

    Full Text Available Within a few years following its ambitious promotion in 2006, the development of jatropha in Indonesia came to a halt. Claimed as a potential solution to problems in energy and poverty, the introduction of jatropha in Indonesia’s energy policy had been triggered by the high oil prices in 2005. While studies by biofuel scholars have generally focused on what brought the end of the “miracle crop” hype by underlining various technical problems and the absence of market structure as the cause of its failure, few have examined jatropha as part of a policy-making trajectory, which began with, and was influenced by, the development narratives disseminated by individual actors. This article sheds light on the role of elite actors in the making of biofuel energy policy in Indonesia. Taking the case of the promotion of jatropha in 2005–2007, the article illustrates the role of the director of Indonesia’s leading sugar state-owned enterprise (SOE, Rajawali Nusantara Indonesia (RNI, whose decision in promoting jatropha became influential in forwarding its narratives into the national energy and development policy in 2006. In order to discover why a specific elite actor decided to promote jatropha, the article relies on data, including the SOE’s documents and interviews with key actor(s. The analysis is conducted using an actor-oriented approach, which underlines the discrepancy between the ideals and the operational practice of developmental goals.

  4. State Legislative Recommendations to Promote Fair and Effective School Discipline. NEPC Discipline Resource Sheet

    Science.gov (United States)

    Losen, Daniel J.

    2011-01-01

    This document presents a summary of the larger report "Discipline Policies, Successful Schools, and Racial Justice." State legislation is an important lever for improving the equity of student discipline policies. However, states vary tremendously, and only some provide accurate public reports on school discipline, support effective programs like…

  5. EU Rural Development Policy in the New Member States: Promoting Multifunctionality?

    Science.gov (United States)

    Ramniceanu, Irina; Ackrill, Robert

    2007-01-01

    European Union (EU) enlargement has seen 10 new member states (NMS) adopt the full range of EU policies. Within this, the rural development arm of the Common Agricultural Policy offers particular points of interest. Member states chose from an extensive list of policy measures developed within the EU15 and intended, in particular, to…

  6. Pediatric sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Yue, John K; Winkler, Ethan A; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0-17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03-0.07, p injury incurred during roller sports was independently associated with prolonged hospital LOS compared

  7. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT. A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm(3 (13 voxels, which corresponded with the corrected threshold of P<0.05 determined by AlphaSim. Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.

  8. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    Science.gov (United States)

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  9. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection.

    Science.gov (United States)

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Hayes, Melissa A; Beagan, Jonathan A; Hallett, Penelope J; Isacson, Ole

    2014-07-25

    Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.

  10. A supervised clustering approach for fMRI-based inference of brain states

    CERN Document Server

    Michel, Vincent; Varoquaux, Gaël; Eger, Evelyn; Keribin, Christine; Thirion, Bertrand; 10.1016/j.patcog.2011.04.006

    2011-01-01

    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus ac...

  11. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    Science.gov (United States)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  12. Using architecture and technology to promote improved quality of life for military service members with traumatic brain injury.

    Science.gov (United States)

    Pasquina, Paul F; Pasquina, Lavinia Fici; Anderson-Barnes, Victoria C; Giuggio, Jeffrey S; Cooper, Rory A

    2010-02-01

    Today, injured service members are surviving wounds that would have been fatal in previous wars. A recent RAND report estimates that approximately 320,000 service members may have experienced a traumatic brain injury (TBI) during deployment, and it is not uncommon for a soldier to sustain multiple associated injuries such as limb loss, paralysis, sensory loss, and psychological damage. As a result, many military service members and their families face significant challenges returning to a high quality of independent life. The architectural concepts of universal design (UD) and evidence-based design (EBD) are gaining interest as an integral part of the rehabilitation process of veterans with TBI. This article examines the possibilities presented by UD and EBD in accordance with the Americans with Disabilities Act of 1990, in terms of high-end building and interior design quality, and possible technological options for individuals with disabilities.

  13. Neocortical-hippocampal dynamics of working memory in healthy and diseased brain states based on functional connectivity

    Directory of Open Access Journals (Sweden)

    Pablo eCampo

    2012-03-01

    Full Text Available Working memory is the ability to transiently maintain and manipulate internal representations beyond its external availability to the senses. This process is thought to support high level cognitive abilities and been shown to be strongly predictive of individual intelligence and reasoning abilities. While early models of working memory have relied on a modular perspective of brain functioning, more recent evidence suggests that cognitive functions emerge from the interactions of multiple brain regions to generate large-scale networks. Here we will review the current research on functional connectivity of working memory processes to highlight the critical role played by neural interactions in healthy and pathological brain states. Recent findings demonstrate that working memory abilities are not determined solely by local brain activity, but also rely on the functional coupling of neocortical-hippocampal regions to support working memory processes. Although the hippocampus has long been held to be important for long-term declarative memory, recent evidence suggests that the hippocampus may also be necessary to coordinate disparate cortical regions supporting the periodic reactivation of internal representations in working memory. Furthermore, recent brain imaging studies using connectivity measures, have shown that changes in cortico-limbic interactions can be useful to characterize working memory impairments observed in different neuropathological conditions. Recent advances in electrophysiological and neuroimaging techniques to model network activity has led to important insights into how neocortical and hippocampal regions support working memory processes and how disruptions along this network can lead to the memory impairments commonly reported in many neuropathological populations.

  14. 76 FR 10082 - Office of International Trade; State Trade and Export Promotion (STEP) Grant Program

    Science.gov (United States)

    2011-02-23

    ... increase direct and indirect supply chain exporting; export match- making events; formation of export outreach teams composed of State, local, Federal, etc. personnel; sector-specific projects unique to...

  15. Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present work, through the path integral of Gaussian type correlation function, a new formalism based on Fermi-Golden Rule for calculating the rate constant of nonradiative decay process with Duschinsky rotation effect in polyatomic molecules is developed. The advantage of the present path-integral formalism is promoting-mode free. In order to get the rate constant, a "transition rate matrix" needs to be calculated. The rate constant calculated previously is only an approximation of diagonal elements of our "transition rate matrix " . The total rate should be the summation over all the matrix elements.

  16. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks

    Directory of Open Access Journals (Sweden)

    Mathias eVukelić

    2015-07-01

    Full Text Available The mechanisms of learning involved in brain self-regulation have still to be unveiled to exploit the full potential of this methodology for therapeutic interventions. This skill of volitionally changing brain activity presumably resembles motor skill learning which in turn is accompanied by plastic changes modulating resting state networks. Along these lines, we hypothesized that brain regulation and neurofeedback would similarly modify intrinsic networks at rest while presenting a distinct spatio-temporal pattern. High-resolution EEG preceded and followed a single neurofeedback training intervention of modulating circumscribed sensorimotor low β -activity by motor imagery in eleven healthy participants. They were kept in the deliberative phase of skill acquisition with high demands for learning self-regulation through stepwise increases of task difficulty. By applying the corrected imaginary part of the coherency function, we observed increased functional connectivity of both the primary motor and the primary somatosensory cortex with their respective contralateral homologous cortices in the low β-frequency band which was self-regulated during feedback. At the same time, the primary motor cortex - but none of the surrounding cortical areas - showed connectivity to contralateral supplementary motor and dorsal premotor areas in the high β-band. Simultaneously, the neurofeedback target displayed a specific increase of functional connectivity with an ipsilateral fronto-parietal network in the α-band while presenting a de-coupling with contralateral primary and secondary sensorimotor areas in the very same frequency band.Brain self-regulating modifies resting state connections spatially selective to the neurofeedback target of the dominant hemisphere. These are anatomically distinct with regard to the cortico-cortical connectivity pattern and are functionally specific with regard to the time domain of coherent activity consistent with a Hebbian

  17. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  18. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... Videos mild Traumatic Brain Injury 94447 reads Please Log in You must be logged in to access ... Brain Injury (DCoE) to promote the processes of building resilience, facilitating recovery and supporting reintegration of returning ...

  19. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    Science.gov (United States)

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  20. Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas.

    Science.gov (United States)

    Keresztes, Attila; Kaiser, Daniel; Kovács, Gyula; Racsmány, Mihály

    2014-11-01

    The testing effect refers to the phenomenon that repeated retrieval of memories promotes better long-term retention than repeated study. To investigate the neural correlates of the testing effect, we used event-related functional magnetic resonance imaging methods while participants performed a cued recall task. Prior to the neuroimaging experiment, participants learned Swahili-German word pairs, then half of the word pairs were repeatedly studied, whereas the other half were repeatedly tested. For half of the participants, the neuroimaging experiment was performed immediately after the learning phase; a 1-week retention interval was inserted for the other half of the participants. We found that a large network of areas identified in a separate 2-back functional localizer scan were active during the final recall of the word pair associations. Importantly, the learning strategy (retest or restudy) of the word pairs determined the manner in which the retention interval affected the activations within this network. Recall of previously restudied memories was accompanied by reduced activation within this network at long retention intervals, but no reduction was observed for previously retested memories. We suggest that retrieval promotes learning via stabilizing cue-related activation patterns in a network of areas usually associated with cognitive and attentional control functions.

  1. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    NARCIS (Netherlands)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-01-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an

  2. Visual processing during recovery from vegetative state to consciousness: Comparing behavioral indices to brain responses

    NARCIS (Netherlands)

    Wijnen, V.J.; Eilander, H.J.; Gelder, B. de; Boxtel, G.J. Van

    2014-01-01

    BACKGROUND: Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to

  3. Effects of hunger state on food-related brain responses across the lifespan

    NARCIS (Netherlands)

    Charbonnier, L.

    2016-01-01

    Thesis aims The studies conducted in this thesis were part of the Full4Health project. The aims of the Full4Health project were to assess the differences in the brain responses to food presentation and food choice and how these responses are modulated by hunger and gut signals in lean and obese subj

  4. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  5. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain

    Science.gov (United States)

    Choi, Jung-Yun; Park, Mi-Na; Kim, Chong-Su; Lee, Young-Kwan; Choi, Eun Young; Chun, Woo Young; Shin, Dong-Mi

    2017-01-01

    Overconsumption of sugar-sweetened beverages (SSBs) is known to be a key contributor to the obesity epidemic; however, its effects on behavioral changes are yet to be fully studied. In the present study, we examined the long-term effects of SSB on social aggression in mice. Three-week-old weaned mice started to drink either a 30 w/v% sucrose solution (S30), plain water (CT), or an aspartame solution with sweetness equivalent to the sucrose solution (A30) and continued to drink until they were 11-week-old adults. Aggressive behaviors were assessed by the resident-intruder test. We found that SSB significantly promoted social aggression, accompanied by heightened serum corticosterone and reduced body weight. To understand the underlying mechanism, we performed transcriptome analyses of brain. The profiles of mice on S30 were dramatically different from those on CT or A30. Transcriptional networks related to immunological function were significantly dysregulated by SSB. FACS analysis of mice on S30 revealed increased numbers of inflammatory cells in peripheral blood. Interestingly, the artificial sweetener failed to mimic the effects of sugar on social aggression and inflammatory responses. These results demonstrate that SSB promotes aggressive behaviors and provide evidence that sugar reduction strategies may be useful in efforts to prevent social aggression. PMID:28393871

  6. Promoting cross-sector partnerships in child welfare: qualitative results from a five-state strategic planning process.

    Science.gov (United States)

    Collins-Camargo, Crystal; Armstrong, Mary I; McBeath, Bowen; Chuang, Emmeline

    2013-01-01

    Little is known about effective strategic planning for public and private child welfare agencies working together to serve families. During a professionally facilitated, strategic planning event, public and private child welfare administrators from five states explored partnership challenges and strengths with a goal of improving collaborative interactions in order to improve outcomes for children and families. Summarizing thematic results of session notes from the planning event, this article describes effective strategies for facilitation of such processes as well as factors that challenge or promote group processes. Implications for conducting strategic planning in jurisdictions seeking to improve public/private partnerships are discussed.

  7. The Protective Effects of Sufentanil Pretreatment on Rat Brains under the State of Cardiopulmonary Bypass.

    Science.gov (United States)

    Zhang, Kun; Li, Man; Peng, Xiao-Chun; Wang, Li-Shen; Dong, Ai-Ping; Shen, Shu-Wei; Wang, Rong

    2015-01-01

    This study aimed to observe the protective effects of sufentanil pretreatment on rat cerebral injury during cardiopulmonary bypass (CPB) and to explore the underlying mechanism. Twenty-four male adult Sprague Dawley (SD) rats were divided into 4 groups. Then, the rat CPB model was established. A 14G trocar was inserted into the atrium dextrum. For rats in S1 and S5 groups, sufentanil (1 µgKg(-1) and 5 µgKg(-1)) were applied before CPB process. After the operation, rat brain samples were harvested for measurement of the water content of the brains, total calcium in brain tissue and the level of serum S100β. Compared with the Sham group, the water content and the total calcium of the brain tissue, and the expression of S100β in serum were significantly increased in the CPB group (PCPB group, sufentanil treatment significantly reduced the water content of the brains, the total calcium and S100β expression (PCPB, S1, and S5 compared with Sham group during CPB. Compared with the Sham group, the levels of pH and blood lactate in other groups were decreased and increased, respectively, in the post-CPB period. During the CPB and post-CPB periods, the hematocrit levels were significantly down-regulated in groups CPB, S1, and S5 compared with Sham group. In conclusion, sufentanil pretreatment was effective in reducing the cerebral injury during CPB. Reduction in calcium overload may be a potential mechanism in such process.

  8. Risperidone Effects on Brain Dynamic Connectivity—A Prospective Resting-State fMRI Study in Schizophrenia

    Science.gov (United States)

    Lottman, Kristin K.; Kraguljac, Nina V.; White, David M.; Morgan, Charity J.; Calhoun, Vince D.; Butt, Allison; Lahti, Adrienne C.

    2017-01-01

    Resting-state functional connectivity studies in schizophrenia evaluating average connectivity over the entire experiment have reported aberrant network integration, but findings are variable. Examining time-varying (dynamic) functional connectivity may help explain some inconsistencies. We assessed dynamic network connectivity using resting-state functional MRI in patients with schizophrenia, while unmedicated (n = 34), after 1 week (n = 29) and 6 weeks of treatment with risperidone (n = 24), as well as matched controls at baseline (n = 35) and after 6 weeks (n = 19). After identifying 41 independent components (ICs) comprising resting-state networks, sliding window analysis was performed on IC timecourses using an optimal window size validated with linear support vector machines. Windowed correlation matrices were then clustered into three discrete connectivity states (a relatively sparsely connected state, a relatively abundantly connected state, and an intermediately connected state). In unmedicated patients, static connectivity was increased between five pairs of ICs and decreased between two pairs of ICs when compared to controls, dynamic connectivity showed increased connectivity between the thalamus and somatomotor network in one of the three states. State statistics indicated that, in comparison to controls, unmedicated patients had shorter mean dwell times and fraction of time spent in the sparsely connected state, and longer dwell times and fraction of time spent in the intermediately connected state. Risperidone appeared to normalize mean dwell times after 6 weeks, but not fraction of time. Results suggest that static connectivity abnormalities in schizophrenia may partly be related to altered brain network temporal dynamics rather than consistent dysconnectivity within and between functional networks and demonstrate the importance of implementing complementary data analysis techniques. PMID:28220083

  9. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    Directory of Open Access Journals (Sweden)

    David Seelig

    Full Text Available Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV, a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section. Psychophysiological interaction (PPI analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and

  10. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  11. Promoting positive states: the effect of early human handling on play and exploratory behaviour in pigs.

    Science.gov (United States)

    Zupan, M; Rehn, T; de Oliveira, D; Keeling, L J

    2016-01-01

    It is known that tactile stimulation (TS) during ontogeny modifies brain plasticity and enhances the motor and cognitive skills. Our hypothesis was that early handling including TS would increase play and exploratory behaviour in commercial pigs under standardized test conditions. Piglets from 13 litters were subjected to three handling treatments from 5 to 35 days of age: all the piglets were handled (H), none of the piglets were handled (NH) or half of the piglets in the litter were handled (50/50). At 42 days of age, the pigs' behaviour was observed in pairs in a novel pen with a 'toy' (tug rope). The main results were that more locomotor play was performed by pigs from litters where all or half of them had been handled, whereas social exploratory behaviour was more pronounced in pigs from litters where half of them had been handled. Although behaviour was affected by the interaction of treatment with sex or with weight category, we propose that the handling procedure does seem to have acted to increase locomotor skills and that handling half of the piglets in the litter may have triggered a series of socio-emotional interactions that were beneficial for the whole group.

  12. The Influence of Sales Promotion on Customer Acquisition: A Study in Hospitality in Santa Catarina State – Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Savi Mondo

    2013-06-01

    Full Text Available The actions of marketing communication implemented by organizations serve different purposes including attracting and capturing customers. Sales promotion, a form of communication, stands out as an effective short-term action. Based on these considerations, the main purpose of this study is to analyze the influence of sales promotion on hotels in Santa Catarina State - Brazil. The study is characterized as exploratory and descriptive, and utilizes both a qualitative and a quantitative approach. The qualitative phase consisted of data from 13 hotels and the quantitative phase consisted of respondents from 52 hotels. All hotels surveyed are linked to the Hospitality Industry Association-SC (ABIH-SC. The survey was conducted from March to August 2010. The main results indicate that sales promotion is primarily used during the least busy season (low season, with the focus on increasing occupancy, corresponding to what the theory suggests - short-term solutions. Moreover, the action was considered very important for attracting customers because it provides the basis for the increase in occupancy during the low season.   DOI: 10.5585/remark.v12i2.2296

  13. USBF recognized President Ilves for promoting relations between the Baltic countries and the United States

    Index Scriptorium Estoniae

    2008-01-01

    President Toomas Hendrik Ilves pälvis Balti riikide ja Ameerika Ühendriikide suhete edendamise eest Ameerika-Balti Fondi (USBF - The United States-Baltic Foundation) autasu - Baltic Statesmanship Award'i. Vabariigi President töövisiidil Ameerika Ühendriikides 17.-23.04.2008

  14. Gender Differences in Promotion Experiences at Two Elite Private Liberal Arts Colleges in the United States

    Science.gov (United States)

    Berheide, Catherine White; Christenson, Lisa; Linden, Rena; Bray, Una

    2013-01-01

    In colleges and universities throughout the United States, women are underrepresented at the rank of full professor. This national pattern holds true at two highly selective small private liberal arts colleges in the Northeast, one formerly a men's college and the other formerly a women's college. Analysis of personnel data at the former women's…

  15. Latent modulation: a basis for non-disruptive promotion of two incompatible behaviors by a single network state.

    Science.gov (United States)

    Dacks, Andrew M; Weiss, Klaudiusz R

    2013-02-27

    Behavioral states often preferentially enhance specific classes of behavior and suppress incompatible behaviors. In the nervous system, this may involve upregulation of the efficacy of neural modules that mediate responses to one stimulus and suppression of modules that generate antagonistic or incompatible responses to another stimulus. In Aplysia, prestimulation of egestive inputs [esophageal nerve (EN)] facilitates subsequent EN-elicited egestive responses and weakens ingestive responses to ingestive inputs [Cerebral-Buccal Interneuron (CBI-2)]. However, a single state can also promote incompatible behaviors in response to different stimuli. This is the case in Aplysia, where prestimulation of CBI-2 inputs not only enhances subsequent CBI-2-elicited ingestive responses, but also strengthens EN-elicited egestive responses. We used the modularly organized feeding network of Aplysia to characterize the organizational principles that allow a single network state to promote two opposing behaviors, ingestion and egestion, without the two interfering with each other. We found that the CBI-2 prestimulation-induced state upregulates the excitability of neuron B65 which, as a member of the egestive module, increases the strength of egestive responses. Furthermore, we found that this upregulation is likely mediated by the actions of the neuropeptides FCAP (Feeding Circuit Activating Peptide) and CP2 (Cerebral Peptide 2). This increased excitability is mediated by a form of modulation that we refer to as "latent modulation" because it is established during stimulation of CBI-2, which does not activate B65. However, when B65 is recruited into EN-elicited egestive responses, the effects of the latent modulation are expressed as a higher B65 firing rate and a resultant strengthening of the egestive response.

  16. Repetition Priming Influences Distinct Brain Systems: Evidence From Task-Evoked Data and Resting-State Correlations

    Science.gov (United States)

    Wig, Gagan S.; Buckner, Randy L.; Schacter, Daniel L.

    2009-01-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems. PMID:19225167

  17. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry

    DEFF Research Database (Denmark)

    Garnier, C.; Lafitte, D.; Jorgensen, T.J.;

    2001-01-01

    HSP90 purified from pig brain. The two protein isoforms were clearly distinguished by ESI-MS, the alpha isoform being approximately six times more abundant than the beta isoform. ESI-MS in combination with lambda phosphatase treatment provided direct evidence of the existence of four phosphorylated...... such as actin-microfilament, tubulin-microtubule and intermediate filaments, and also exhibits conventional chaperone functions. This protein exists in two isoforms alpha-HSP90 and beta-HSP90, and it forms dimers which are crucial species for its biological activity. PAGE, ESI-MS and MALDI-MS were used to study...... forms of native pig brain alpha-HSP90, with the diphosphorylated form being the most abundant. For the beta isoform, the di-phosphorylated was also the most abundant. MALDI mass spectra of HSP90 samples after chemical cross-linking showed a high percentage of alpha-alpha homodimers. In addition...

  18. Is lactate a volume transmitter of metabolic states of the brain?

    DEFF Research Database (Denmark)

    Bergersen, Linda H; Gjedde, Albert

    2012-01-01

    We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance...... of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD(+) redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator...... of metabolic information rather than metabolic substrate answers a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function....

  19. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    Science.gov (United States)

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  20. Is lactate a Volume Transmitter of Metabolic States of the Brain?

    Directory of Open Access Journals (Sweden)

    Linda H. Bergersen

    2012-03-01

    Full Text Available We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD+ redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The roles of lactate as mediator of metabolic information rather than metabolic substrate answer a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function.

  1. [Memorandum on sustainable reinforcement of prevention and health promotion: challenges at the federal, state and local level].

    Science.gov (United States)

    Walter, U; Nöcker, G; Pawils, S; Robra, B-P; Trojan, A; Franz, M; Grossmann, B; Schmidt, T-A; Lehmann, H; Bauer, U; Göpel, E; Janz, A; Kuhn, J; Naegele, G; Müller-Kohlenberg, H; Plaumann, M; Stender, K-P; Stolzenberg, R; Süß, W; Trenker, M; Wanek, V; Wildner, M

    2015-05-01

    Research-based evidence and practice-based experience are core requirements for the effective implementation of preventive interventions. The knowledge gained in the Prevention Research Funding Initiative of the German Federal Ministry of Education and Research (2004-2013) was therefore amalgamated, reflected and consolidated in the Cooperation for Sustainable Prevention Research (KNP) meta-project. In annual strategy meetings, researchers and practitioners from the field and other experts developed 3 memoranda providing recommendations for the further development of research and practice in the field of prevention and health promotion. Memorandum III is primarily aimed at decision-makers in politics and administration at the federal, state and local level, in civil society and in the workplace. Its recommendations show that structuring efforts are urgently needed to achieve sustainable policy, particularly in the fields of health, education, employment and social affairs. Memorandum III brings together the knowledge extracted and problems identified in research projects. More so than its 2 predecessors, Memorandum III abstracts knowledge from the individual projects and attempts to derive guidance for action and decision-making, as shown by the 7 recommendations that appear to useful for consensus-building in practice and research. Value judgments are inevitable. Prevention and health promotion are an investment in the future: of social health, social capital and social peace. Improvement of the framework conditions is needed to achieve the harmonized awareness and the sustained effectiveness of these structure-building efforts in different policy areas, spheres of life, fields of action, and groups of actors. This includes the implementation of an overall national strategy as well as the expansion of sources of funding, extension of the legal framework, overarching coordination, and the establishment of a National Center of Excellence to develop and safeguard

  2. The Role of the State and the Economy in the promotion of heat pumps on the market

    Energy Technology Data Exchange (ETDEWEB)

    Rognon, F.

    2008-07-01

    The laws defining the tasks of the Swiss Federal Office of Energy (SFOE) do not allow it to dictate measures, but to collaborate on the basis of voluntary actions. In the heat pump sector, the SwissEnergy action programme binds together 1 state, 26 cantons, 3000 communes, 50 manufacturers, 3500 installers, 1200 electricity companies and environmental agencies. In order to promote the use of renewable energies, the SFOE took the lead by creating the Swiss heat pump promotion group (GSP) in 1993. The idea was to bundle the market's forces to actively market and promote heat pumps for heating purposes. Under the umbrella of the Energy2000 (1990-2000) and the SwissEnergy (2001-2010) promotion programmes, the disparate heat pump sector was brought together and consolidated into being a key player on the heating market. The role of the SFOE and the GSP has changed with time. At the beginning, the SFOE decided what was to be done and the GSP did the job on a mandatory base. The SFOE was responsible for achieving the goals. The GSP gradually grew, so that since 2001 it has been able to determine the action plans itself. The SFOE sets the goals and the GSP is responsible for fulfilling them. The SFOE assures the coordination and the efficient use of resources. Its domain manager is responsible for the coordination of the whole chain from research and development to market, including quality management for all of the activities and the products as well. In this way, the government laid the foundations for the sector to become a success. This model can be applied to other domains or to other countries if some of the assessments and conditions described in the article are met. (author)

  3. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.

    Directory of Open Access Journals (Sweden)

    Yafeng Qiu

    Full Text Available C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase and mutant strain of H99 deficient in laccase (lac1Δ in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1 diminished pulmonary eosinophilia; 2 increased accumulation of CD4+ and CD8+ T cells; 3 increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4 lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.

  4. Agmatine promotes expression of brain-derived neurotrophic factor in brainstem facial nucleus in the rat facial nerve injury model

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Wenlong Luo

    2008-01-01

    BACKGROUND: Studies have shown that agmatine can reduce inhibition of neuronal regeneration by increasing cyclic adenosine monophosphate and brain-derived neurotrophic factor (BDNF) in the hippocampus of morphine-dependent rats. The hypothesis that agmatine exerts similar effects on facial nerve injury deserves further analysis.OBJECTIVE: To study the effects of peritoneal agmatine injection on BDNF levels in the rat brainstem after facial nerve injury.DESIGN, TIME AND SETTING: A controlled animal experiment was performed at the Department of Otolaryngology-Head and Neck Surgery at the Second Affiliated Hospital, Chongqing University of Medical Sciences (Chongqing, China), between October and December in 2007.MATERIALS: Twenty-four male Sprague-Dawley rats were randomly divided into a control, a lesion, and an agmatine treatment group, with eight rats in each group. Bilateral facial nerve anastomosis was induced in the lesion and agmatine treatment groups, while the control group remained untreated. A rat BDNF Enzyme-linked immunosorbent assay kit was used to measure BDNF levels in the brainstem facial nucleus.METHODS: Starting on the day of lesion, the agmatine group received a peritoneal injection of 100 mg/kg agmatine, once per day, for a week, whereas rats in the lesion group received saline injections.MAIN OUTCOME MEASURES: BDNF levels in the brainstem containing facial nucleus were measured by ELISA.RESULTS: Twenty-four rats were included in the final analysis without any loss. Two weeks after lesion, BDNF levels were significantly higher in the lesion group than in the control group (P<0.01). A significant increase was noted in the agmatine group compared to the lesion group (P<0.01).CONCLUSION: Agmatine can substantially increase BDNF levels in the rat brainstem after facial nerve injury.

  5. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis.

    Directory of Open Access Journals (Sweden)

    Ho Seong Seo

    Full Text Available The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC, the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS attachment to hBMEC via the direct interaction of its binding region (BR with human fibrinogen. When assessed by Far Western blotting, Srr1 was the only protein in GBS extracts that bound fibrinogen. Studies using recombinant Srr1-BR and purified fibrinogen in vitro confirmed a direct protein-protein interaction. Srr1-BR binding was localized to amino acids 283-410 of the fibrinogen Aα chain. Structural predictions indicated that the conformation of Srr1-BR is likely to resemble that of SdrG and other related staphylococcal proteins that bind to fibrinogen through a "dock, lock, and latch" mechanism (DLL. Deletion of the predicted latch domain of Srr1-BR abolished the interaction of the BR with fibrinogen. In addition, a mutant GBS strain lacking the latch domain exhibited reduced binding to hBMEC, and was significantly attenuated in an in vivo model of meningitis. These results indicate that Srr1 can bind fibrinogen directly likely through a DLL mechanism, which has not been described for other streptococcal adhesins. This interaction was important for the pathogenesis of GBS central nervous system invasion and subsequent disease progression.

  6. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  7. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.

    Science.gov (United States)

    Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M; Dietrich, W Dalton

    2015-02-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post-surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism toward contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  8. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    that it is difficult to target common patterns of brain activity, or to recycle data across subjects as a way to, for example, cut down the 20-30...some previous work in the BCI field focused on transfer learning, which is the general procedure of recycling data across subjects to reduce or...scheme (Fries, 2005; Snyder & Raichle, 2012). DISTRIBUTION A: Distribution approved for public release. Positron emission tomography ( PET ) and functional

  9. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks.

    Science.gov (United States)

    Karahanoğlu, Fikret Işik; Van De Ville, Dimitri

    2015-07-16

    Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new window onto the organizational principles of brain function. Using state-of-the-art signal processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from resting-state fMRI. The iCAPs' maps are spatially overlapping and their sustained-activity signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the rich spatiotemporal structure of functional components that dynamically assemble known resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to four iCAPs occur simultaneously in combinations that are consistent with their behaviour profiles. In contrast to conventional connectivity analysis, which suggests a negative correlation between fluctuations in the default-mode network (DMN) and task-positive networks, we instead find evidence for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact with the attention network. These findings demonstrate how the fMRI resting state can be functionally decomposed into spatially and temporally overlapping building blocks using iCAPs.

  10. Affect and the brain's functional organization: a resting-state connectivity approach.

    Directory of Open Access Journals (Sweden)

    Christiane S Rohr

    Full Text Available The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a right-lateralized dominance in emotional processing, (b hemispheric dominance according to positive or negative valence, (c one network for all emotional processing and (d region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes.

  11. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  12. Promoting plumbing fixture and fitting replacement: Recommendations and review for state and local water resource authorities

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C.; Lutz, J.D.; Pickle, S.J.

    1995-06-01

    Lawrence Berkeley National Laboratory (LBNL) has prepared this report to facilitate compliance with the requirements of Section 123 of the Energy Policy Act of 1992 (EPACT). Section 123 requires the Department of Energy to issue recommendations for establishing state and local incentive programs to encourage acceleration of voluntary consumer replacement of existing water closets, urinals, showerheads and faucets with water-saving products meeting EPACT standards. The authors recommend that state and local authorities working together and also with utilities: (A) investigate the cost-effectiveness of voluntary replacement of plumbing fixtures and fittings as an effective component of a water efficiency incentive program; (B) allow utilities to distribute the costs of water saving products by billing at pre-installation rates until devices have been paid for; (C) encourage decreased water usage by establishing rate structures such as increasing block rates or seasonal pricing; (D) add additional incentive to rebate programs by making the rebates untaxable income. (E) require municipalities or utilities to exhaust every reasonable method of water conservation before applying for permits to construct water supply or water treatment systems; (F) require high-efficiency toilets, urinals, showerheads, and faucets in new construction and changing plumbing codes to incorporate different pipe sizing needs; and (G) and mandate installation of meters to correctly measure water consumption. Following the introduction, a general overview of these recommendations is presented. Each recommendation is discussed briefly. After determining the cost-effectiveness of a plumbing replacement program (or plumbing replacement aspect of a larger program) states can encourage replacement of toilets, urinals, showerheads, and faucets in a number of ways. This report lists both legislative and economic measures that can be implemented on the state level that impact local programs.

  13. Promoting the Contributions of Willing and Able States: Australia’s Response to Transnational Extremism

    Science.gov (United States)

    2006-03-15

    Terrorism: The Threat to Australia (Australia: Department of Foreign Affairs and Trade, 2004), viii. 33 Greg Fealy and Aldo Borgu , “Local Jihad...Walid Phares, Future Jihad: Terrorist Strategies Against America (United States: Palgrave MacMillan, 2005), 202-203. 36 Aldo Borgu , “Understanding...Butts and Reynolds, 126. 108 Rolfe, 7. 109 Australian Government, Department of Prime Minister and Cabinet, xi. 110 Borgu , 9. 111 Eric G. John., “The

  14. Social status and personality: stability in social state can promote consistency of behavioural responses.

    Science.gov (United States)

    Favati, Anna; Leimar, Olof; Radesäter, Tommy; Løvlie, Hanne

    2014-01-07

    Stability of 'state' has been suggested as an underlying factor explaining behavioural stability and animal personality (i.e. variation among, and consistency within individuals in behavioural responses), but the possibility that stable social relationships represent such states remains unexplored. Here, we investigated the influence of social status on the expression and consistency of behaviours by experimentally changing social status between repeated personality assays. We used male domestic fowl (Gallus gallus domesticus), a social species that forms relatively stable dominance hierarchies, and showed that behavioural responses were strongly affected by social status, but also by individual characteristics. The level of vigilance, activity and exploration changed with social status, whereas boldness appeared as a stable individual property, independent of status. Furthermore, variation in vocalization predicted future social status, indicating that individual behaviours can both be a predictor and a consequence of social status, depending on the aspect in focus. Our results illustrate that social states contribute to both variation and stability in behavioural responses, and should therefore be taken into account when investigating and interpreting variation in personality.

  15. Convergence of the Policies for Promoting Total Quality Management in the Public Administrations of Balkan States – European Union Member States

    Directory of Open Access Journals (Sweden)

    Ani MATEI

    2011-03-01

    Full Text Available In the past three decades, total quality management (TQM has been appreciated as “fundamental modality in view to improve the activity in the public and private sectors” (Boyne and Walker, 2002, p. 1. For the time being, in public administrations, we witness an extension of the policies for promoting TQM, although the experiences have not always been positive.The European Administrative Space (EAS incorporates TQM, in different manners at national level, taking into consideration its recognised impact on the efficiency of public administration, one of EAS fundamental principles (Zurga, 2008, pp. 39-49. In the context of analysing EAS evolution, the administrative convergence will also comprise the convergence of TQM policies. In fact, the field literature (Hackman, Wageman, 1995 reveals, in the context of national TQM policy-making, the concepts of ”Convergent validity” and ”Discriminant validity”, reflecting ”the degree to which the version of TQM promulgated by the founders and observed in organizational practice share a common set of assumptions and prescriptions” (Hackman, Wageman, 1995, pp. 318-319.By a comparative analysis on TQM policies in the national public administrations of Balkan states, EU Member States: Greece, Cyprus, Slovenia, Bulgaria and Romania, the current paper aims to reveal the level of their convergence as well as the theoretical consistency of the conceptual and practical framework for TQM assertion.The comparative analysis will be based on a comprehensive vision on TQM, provided by Dean and Bowen (1994, Boyne and Walker (2002, namely its approach should be characterised on own principles, practices and techniques, grouped on customer focus, continuous improvement and team work (Boyne and Walker, 2002, pp. 4-5.The tradition on promoting TQM in public administration in the above-mentioned states is relatively recent: since 1990s – Cyprus, since 1995 – Greece and Slovenia, since 2000 – Bulgaria and

  16. An elevated level of circulating galanin promotes developmental expression of myelin basic protein in the mouse brain.

    Science.gov (United States)

    Lyubetska, H; Zhang, L; Kong, J; Vrontakis, M

    2015-01-22

    Myelinogenesis is a scheduled process that is regulated by the intrinsic properties of the cell and extracellular signals. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system. Chronic increase in circulating GAL levels protects the demyelination processes. Furthermore, GAL is synthesized in myelin-producing glial cells, such as oligodendrocytes and its expression level is at its highest between postnatal days 10 and 40. In the present study, we use our GAL transgenic mouse model to examine the effects of GAL on postnatal myelinogenesis in the CNS. Although we observed no difference in the proliferation of oligodendrocyte precursor cells, we found that GAL has a strong pro-myelinating effect. The transgenic mice at postnatal day 10 appeared to undergo myelinogenesis at an accelerated rate, as demonstrated by the increase in myelin basic protein (MBP) synthesis. The immunohistochemical results are consistent with our preliminary findings that suggest that GAL is a regulator of myelination and may be one of the myelination promoters. This finding is especially important for studies focusing on endogenous molecules for treating myelin-related diseases, such as multiple sclerosis and other leukodystrophies.

  17. Aging Triggers a Repressive Chromatin State at Bdnf Promoters in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Ernest Palomer

    2016-09-01

    Full Text Available Cognitive capacities decline with age, an event accompanied by the altered transcription of synaptic plasticity genes. Here, we show that the transcriptional induction of Bdnf by a mnemonic stimulus is impaired in aged hippocampal neurons. Mechanistically, this defect is due to reduced NMDA receptor (NMDAR-mediated activation of CaMKII. Decreased NMDAR signaling prevents changes associated with activation at specific Bdnf promoters, including displacement of histone deacetylase 4, recruitment of the histone acetyltransferase CBP, increased H3K27 acetylation, and reduced H3K27 trimethylation. The decrease in NMDA-CaMKII signaling arises from constitutive reduction of synaptic cholesterol that occurs with normal aging. Increasing the levels of neuronal cholesterol in aged neurons in vitro, ex vivo, and in vivo restored NMDA-induced Bdnf expression and chromatin remodeling. Furthermore, pharmacological prevention of age-associated cholesterol reduction rescued signaling and cognitive deficits of aged mice. Thus, reducing hippocampal cholesterol loss may represent a therapeutic approach to reverse cognitive decline during aging.

  18. POLICIES FOR PROMOTING THE KNOWLEDGE ECONOMY IN THE STATE OF SINALOA, MEXICO

    Directory of Open Access Journals (Sweden)

    Santos López-Leyva

    2015-01-01

    Full Text Available This paper offers a perspective for the formulation of public policy in science, technology and innovation (STI for the State of Sinaloa. Today, the productive processes of the regions are developed in what is called "knowledge economy". There are two main theoretical frameworks for the study of this subject. The neoclassical school explains the technological change using production functions and growth models; in second place is evolutionary thinking that builds national and regional categories of innovation systems, technological trajectories and paradigms in science and technology. For the construction of a regional policy in this field is more useful this second school of thought, which complemented an institutionalist vision adequately. A progressive verification method is used for checking each one of the components of the Regional Innovation System (RIS in the case of universities are taken each of the dimensions of quality set by Levin (2006 . The meaning and scope of a regional innovation system is shown and the categories of this construct are hard to visualize Sinaloa developing policy proposals for the development of the region. Stresses elements such as the need to strengthen the pillars of RIS; Sinaloa enroll in the knowledge economy; build the city of knowledge; improve visibility of the knowledge produced in the state, and strengthen the institutional base of the STI. The second element addresses are universities as knowledge producers. A theoretical framework is developed using the concepts of triple helix, two mode of knowledge production, innovative university, Pasteur's quadrant, and academic capitalism. In the qualification of higher education in the state twelve dimensions are used: excellence in research, academic freedom and proper intellectual atmosphere, capacity for self-government, to have adequate facilities and funding, to practice respect for diversity, to achieve internationalization activities, to exercise

  19. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

    Science.gov (United States)

    Mang, Cameron S; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2013-12-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  20. 中药活血化淤法改善脑出积压患者运动功能疗效观察%Observation of improvement of movement function by Chinese drugs through promoting circulation by removing blood stasis in patients with brain hemorrhage

    Institute of Scientific and Technical Information of China (English)

    尹德铭; 高聪; 沈岩松

    2002-01-01

    @@ Background:Disability rate following brain hemorrhage is high.Rcovery and improvement of movement function is closely related to management of brain hemorrhage during acute phage,absorption of hematoma.According to traditional medicine principle,Chinese drugs promote absorption and functional recovery through promoting blood circulation by removing blood stasis.The Chinese drugs are safe in clinic

  1. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure.

    Science.gov (United States)

    Isono, Takayuki; Kamo, Hiromichi; Ueda, Akira; Takahashi, Kazuyuki; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Kobayashi, Kensuke; Murakami, Youichi; Mori, Hatsumi

    2013-01-01

    Purely organic materials are generally insulating. Some charge-carrier generation, however, can provide them with electrical conductivity. In multi-component organic systems, carrier generation by intermolecular charge transfer has given many molecular metals. By contrast, in purely organic single-component systems, metallic states have rarely been realized although some neutral-radical semiconductors have been reported. Here we uncover a new type of purely organic single-component molecular conductor by utilizing strong hydrogen-bonding interactions between tetrathiafulvalene-based electron-donor molecules. These conductors are composed of highly symmetric molecular units constructed by the strong intra-unit hydrogen bond. Moreover, we demonstrate that, in this system, charge carriers are produced by the partial oxidation of the donor molecules and delocalized through the formation of the symmetric intra-unit hydrogen bonds. As a result, our conductors show the highest room-temperature electrical conductivity and the metallic state under the lowest physical pressure among the purely organic single-component systems, to our knowledge.

  2. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals.

    Science.gov (United States)

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-04-30

    Brain activity often consists of interactions between internal-or on-going-and external-or sensory-activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal's on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40Hz. Our software's architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system "StimOMatic" is available freely as open-source.

  3. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.

    Science.gov (United States)

    Sidlauskaite, Justina; Wiersema, Jan R; Roeyers, Herbert; Krebs, Ruth M; Vassena, Eliana; Fias, Wim; Brass, Marcel; Achten, Eric; Sonuga-Barke, Edmund

    2014-09-01

    The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement.

  4. Brain-computer interface research a state-of-the-art summary 3

    CERN Document Server

    Guger, Christoph; Allison, Brendan

    2014-01-01

    This book provides a cutting-edge overview of the latest developments in Brain-Computer-Interfaces (BCIs), reported by leading research groups. As the reader will discover, BCI research is moving ahead rapidly, with many new ideas, research initiatives, and improved technologies, e.g. BCIs that enable people to communicate just by thinking - without any movement at all. Several different groups are helping severely disabled users communicate using BCIs, and BCI technology is also being extended to facilitate recovery from stroke, epilepsy, and other conditions. Each year, hundreds of the top

  5. Cognitive Rehabilitation in Patients with Gliomas and Other Brain Tumors: State of the Art

    Directory of Open Access Journals (Sweden)

    E. Bergo

    2016-01-01

    Full Text Available Disease prognosis is very poor in patients with brain tumors. Cognitive deficits due to disease or due to its treatment have an important weight on the quality of life of patients and caregivers. Studies often take into account quality of life as a fundamental element in the management of disease and interventions have been developed for cognitive rehabilitation of neuropsychological deficits with the aim of improving the quality of life and daily-life autonomy of patients. In this literature review, we will consider the published studies of cognitive rehabilitation over the past 20 years.

  6. Brain-computer interface research a state-of-the-art summary

    CERN Document Server

    Allison, Brendan; Edlinger, Günter; Leuthardt, E C

    Brain-computer interfaces (BCIs) are rapidly developing into a mainstream, worldwide research endeavor. With so many new groups and projects, it can be difficult to identify the best ones. This book summarizes ten leading projects from around the world. About 60 submissions were received in 2011 for the highly competitive BCI Research Award, and an international jury selected the top ten. This Brief gives a concise but carefully illustrated and fully up-to-date description of each of these projects, together with an introduction and concluding chapter by the editors.

  7. Does short-term fasting promote changes in state body image?

    Science.gov (United States)

    Schaumberg, Katherine; Anderson, Drew A

    2014-03-01

    Fasting, or going a significant amount of time without food, is a predictor of eating pathology in at-risk samples. The current study examined whether acute changes in body image occur after an episode of fasting in college students. Furthermore, it evaluated whether individual difference variables might inform the relationship between fasting and shifts in body image. Participants (N=186) included male (44.7%) and female college students who completed the Body Image States Scale (BISS) and other eating-related measures before a 24-h fast. Participants completed the BISS again after fasting. While no overall changes in BISS scores emerged during the study, some individuals evidenced body image improvement. Baseline levels of disinhibition and self-reported fasting at least once per week uniquely predicted improvement in body image. Individual difference variables may play a role in how fasting could be reinforced by shifts in body image.

  8. Promoting Public Health through State Cancer Control Plans: A Review of Capacity and Sustainability

    Directory of Open Access Journals (Sweden)

    Marcia G Ory

    2015-03-01

    Full Text Available The Centers for Disease Prevention and Control’s National Comprehensive Cancer Control Program oversees Comprehensive Cancer Control (CCC programs designed to develop and implement CCC plans via CCC coalitions, alliances or consortia of program stakeholders. We reviewed 40 up-to-date plans for states and the District of Columbia in order to assess how capacity building and sustainability, two evidence-based practices necessary for organizational readiness, positive growth, and maintenance are addressed. We employed an electronic key word search, supplemented by full text reviews of each plan to complete a content analysis of the CCC plans. Capacity is explicitly addressed in just over half of the plans (53%, generally from a conceptual point of view, with few specifics as to how capacity will be developed or enhanced. Roles and responsibilities, timelines for action, and measurements for evaluation of capacity building are infrequently mentioned. Almost all (92% of the 40 up-to-date plans address sustainability on at least a cursory level, through efforts aimed at funding or seeking funding, policy initiatives and/or partnership development. However, few details as to how these strategies will be implemented are found in the plans. We present the Texas plan as a case study offering detailed insight into how one plan incorporated capacity building and sustainability into its development and implementation. Training, technical assistance, templates and tools may help CCC Coalition members address capacity and sustainability in future planning efforts and assure the inclusion of capacity building and sustainability approaches in CCC plans at both the state, tribal, territorial and jurisdiction levels.

  9. Promoting public health through state cancer control plans: a review of capacity and sustainability.

    Science.gov (United States)

    Ory, Marcia G; Sanner, Brigid; Vollmer Dahlke, Deborah; Melvin, Cathy L

    2015-01-01

    The Centers for Disease Prevention and Control's National Comprehensive Cancer Control (CCC) Program oversee CCC programs designed to develop and implement CCC plans via CCC coalitions, alliances, or consortia of program stakeholders. We reviewed 40 up-to-date plans for states and the District of Columbia in order to assess how capacity building and sustainability, two evidence-based practices necessary for organizational readiness, positive growth, and maintenance are addressed. We employed an electronic key word search, supplemented by full text reviews of each plan to complete a content analysis of the CCC plans. Capacity is explicitly addressed in just over half of the plans (53%), generally from a conceptual point of view, with few specifics as to how capacity will be developed or enhanced. Roles and responsibilities, timelines for action, and measurements for evaluation of capacity building are infrequently mentioned. Almost all (92%) of the 40 up-to-date plans address sustainability on at least a cursory level, through efforts aimed at funding or seeking funding, policy initiatives, and/or partnership development. However, few details as to how these strategies will be implemented are found in the plans. We present the Texas plan as a case study offering detailed insight into how one plan incorporated capacity building and sustainability into its development and implementation. Training, technical assistance, templates, and tools may help CCC coalition members address capacity and sustainability in future planning efforts and assure the inclusion of capacity building and sustainability approaches in CCC plans at the state, tribal, territorial, and jurisdiction levels.

  10. Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Directory of Open Access Journals (Sweden)

    Martin eDinov

    2016-05-01

    Full Text Available Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches and the sum squared error (SSE from a multilayer perceptron (MLP prediction of the EEG timeseries, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach.

  11. Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5.

    Science.gov (United States)

    Liu, Dong; Liu, Zhen; Liu, Huaxiang; Li, Hao; Pan, Xinliang; Li, Zhenzhong

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) is critical for sensory neuron survival and is necessary for vesicular glutamate transporter 3 (VGLUT3) expression. Whether the transcription factors Etv4 and Etv5 are involved in these BDNF-induced effects remains unclear. In the present study, primary cultured dorsal root ganglion (DRG) neurons were used to test the link between BDNF and transcription factors Etv4 and Etv5 on VGLUT3 expression and neurite outgrowth. BDNF promoted the mRNA and protein expression of Etv4 and Etv5 in DRG neurons. These effects were blocked by extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor PD98059 but not phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or phospholipase C-γ (PLC-γ) inhibitor U73122. Etv4 siRNA and Etv5 siRNA effectively blocked the VGLUT3 expression and neurite elongation induced by BNDF. The overexpression of Etv4 or Etv5 potentiated the effects of BNDF-induced neurite elongation and growth-associated protein 43 (GAP-43), medium neurofilament (NF-M), and light neurofilament (NF-L) expression while these effects could be inhibited by Etv4 and Etv5 siRNA. These data imply that Etv4 and Etv5 are essential transcription factors in modulating BDNF/TrkB signaling-mediated VGLUT3 expression and neurite outgrowth. BDNF, through the ERK1/2 signaling pathway, activates Etv4 and Etv5 to initiate GAP-43 expression, promote neurofilament (NF) protein expression, induce neurite outgrowth, and mediate VGLUT3 expression for neuronal function improvement. The biological effects initiated by BDNF/TrkB signaling linked to E26 transformation-specific (ETS) transcription factors are important to elucidate neuronal differentiation, axonal regeneration, and repair in various pathological states.

  12. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    Science.gov (United States)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  13. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges

    NARCIS (Netherlands)

    Mühl, Christian; Allison, Brandan; Nijholt, Anton; Chanel, Guillaume

    2014-01-01

    Affective states, moods and emotions, are an integral part of the human nature: they shape our thoughts, govern the behavior of the individual, and influence our interpersonal relationships. The last decades have seen a growing interest in the automatic detection of such states from voice, facial ex

  14. Human mesenchymal stem cells promote survival of T cells in a quiescent state.

    Science.gov (United States)

    Benvenuto, Federica; Ferrari, Stefania; Gerdoni, Ezio; Gualandi, Francesca; Frassoni, Francesco; Pistoia, Vito; Mancardi, Gianluigi; Uccelli, Antonio

    2007-07-01

    Mesenchymal stem cells (MSC) are part of the bone marrow that provides signals supporting survival and growth of bystander hematopoietic stem cells (HSC). MSC modulate also the immune response, as they inhibit proliferation of lymphocytes. In order to investigate whether MSC can support survival of T cells, we investigated MSC capacity of rescuing T lymphocytes from cell death induced by different mechanisms. We observed that MSC prolong survival of unstimulated T cells and apoptosis-prone thymocytes cultured under starving conditions. MSC rescued T cells from activation induced cell death (AICD) by downregulation of Fas receptor and Fas ligand on T cell surface and inhibition of endogenous proteases involved in cell death. MSC dampened also Fas receptor mediated apoptosis of CD95 expressing Jurkat leukemic T cells. In contrast, rescue from AICD was not associated with a significant change of Bcl-2, an inhibitor of apoptosis induced by cell stress. Accordingly, MSC exhibited a minimal capacity of rescuing Jurkat cells from chemically induced apoptosis, a process disrupting the mitochondrial membrane potential regulated by Bcl-2. These results suggest that MSC interfere with the Fas receptor regulated process of programmed cell death. Overall, MSC can inhibit proliferation of activated T cells while supporting their survival in a quiescent state, providing a model of their activity inside the HSC niche. Disclosure of potential conflicts of interest is found at the end of this article.

  15. A Cross-Sectional Study of Tobacco Advertising, Promotion, and Sponsorship in Airports across Europe and the United States.

    Science.gov (United States)

    Soong, Andrea; Navas-Acien, Ana; Pang, Yuanjie; Lopez, Maria Jose; Garcia-Esquinas, Esther; Stillman, Frances A

    2016-09-28

    Tobacco advertising, promotion, and sponsorship (TAPS) bans are effective and are increasingly being implemented in a number of venues and countries, yet the state of TAPS in airports and their effect on airport smoking behavior is unknown. The objective of this study was to evaluate the presence of TAPS in airports across Europe and the US, and to begin to examine the relationship between TAPS and smoking behaviors in airports. We used a cross-sectional study design to observe 21 airports in Europe (11) and the US (10). Data collectors observed points of sale for tobacco products, types of products sold, advertisements and promotions, and branding or logos that appeared in the airport. Tobacco products were sold in 95% of all airports, with significantly more sales in Europe than the US. Advertisements appeared mostly in post-security areas; however, airports with advertisements in pre-security areas had significantly more smokers observed outdoors than airports without advertisements in pre-security areas. Tobacco branding appeared in designated smoking rooms as well as on non-tobacco products in duty free shops. TAPS are widespread in airports in Europe and the US and might be associated with outdoor smoking, though further research is needed to better understand any relationship between the two. This study adds to a growing body of research on tobacco control in air transit and related issues. As smoke-free policies advance, they should include comprehensive TAPS bans that extend to airport facilities.

  16. A Cross-Sectional Study of Tobacco Advertising, Promotion, and Sponsorship in Airports across Europe and the United States

    Directory of Open Access Journals (Sweden)

    Andrea Soong

    2016-09-01

    Full Text Available Tobacco advertising, promotion, and sponsorship (TAPS bans are effective and are increasingly being implemented in a number of venues and countries, yet the state of TAPS in airports and their effect on airport smoking behavior is unknown. The objective of this study was to evaluate the presence of TAPS in airports across Europe and the US, and to begin to examine the relationship between TAPS and smoking behaviors in airports. We used a cross-sectional study design to observe 21 airports in Europe (11 and the US (10. Data collectors observed points of sale for tobacco products, types of products sold, advertisements and promotions, and branding or logos that appeared in the airport. Tobacco products were sold in 95% of all airports, with significantly more sales in Europe than the US. Advertisements appeared mostly in post-security areas; however, airports with advertisements in pre-security areas had significantly more smokers observed outdoors than airports without advertisements in pre-security areas. Tobacco branding appeared in designated smoking rooms as well as on non-tobacco products in duty free shops. TAPS are widespread in airports in Europe and the US and might be associated with outdoor smoking, though further research is needed to better understand any relationship between the two. This study adds to a growing body of research on tobacco control in air transit and related issues. As smoke-free policies advance, they should include comprehensive TAPS bans that extend to airport facilities.

  17. A Cross-Sectional Study of Tobacco Advertising, Promotion, and Sponsorship in Airports across Europe and the United States

    Science.gov (United States)

    Soong, Andrea; Navas-Acien, Ana; Pang, Yuanjie; Lopez, Maria Jose; Garcia-Esquinas, Esther; Stillman, Frances A.

    2016-01-01

    Tobacco advertising, promotion, and sponsorship (TAPS) bans are effective and are increasingly being implemented in a number of venues and countries, yet the state of TAPS in airports and their effect on airport smoking behavior is unknown. The objective of this study was to evaluate the presence of TAPS in airports across Europe and the US, and to begin to examine the relationship between TAPS and smoking behaviors in airports. We used a cross-sectional study design to observe 21 airports in Europe (11) and the US (10). Data collectors observed points of sale for tobacco products, types of products sold, advertisements and promotions, and branding or logos that appeared in the airport. Tobacco products were sold in 95% of all airports, with significantly more sales in Europe than the US. Advertisements appeared mostly in post-security areas; however, airports with advertisements in pre-security areas had significantly more smokers observed outdoors than airports without advertisements in pre-security areas. Tobacco branding appeared in designated smoking rooms as well as on non-tobacco products in duty free shops. TAPS are widespread in airports in Europe and the US and might be associated with outdoor smoking, though further research is needed to better understand any relationship between the two. This study adds to a growing body of research on tobacco control in air transit and related issues. As smoke-free policies advance, they should include comprehensive TAPS bans that extend to airport facilities. PMID:27690072

  18. Toward a semi-self-paced EEG brain computer interface: decoding initiation state from non-initiation state in dedicated time slots.

    Directory of Open Access Journals (Sweden)

    Lingling Yang

    Full Text Available Brain computer interfaces (BCIs offer a broad class of neurologically impaired individuals an alternative means to interact with the environment. Many BCIs are "synchronous" systems, in which the system sets the timing of the interaction and tries to infer what control command the subject is issuing at each prompting. In contrast, in "asynchronous" BCIs subjects pace the interaction and the system must determine when the subject's control command occurs. In this paper we propose a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is able to determine when control commands are issued by decoding the subject's intention for initiating control in dedicated time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs.

  19. Disorganization of Equilibrium Directional Interactions in the Brain Motor Network of Parkinson's disease: New Insight of Resting State Analysis Using Granger Causality and Graphical Approach

    OpenAIRE

    Ghasemi, Mahdieh; Mahloojifar, Ali

    2013-01-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movements. Particular changes related to various pathological attacks in PD could result in causal interactions of the brain network from resting state functional magnetic resonance imaging (rs-fMRI) data. In this paper, we aimed to disclose the network structure of the directed influences over the brain using multivariate Granger causality analysis and graph theory in patients w...

  20. Changing me to keep you: state jealousy promotes perceiving similarity between the self and a romantic rival.

    Science.gov (United States)

    Slotter, Erica B; Lucas, Gale M; Jakubiak, Brittany; Lasslett, Heather

    2013-10-01

    Individuals sometimes alter their self-views to be more similar to others--traditionally romantic partners--because they are motivated to do so. A common motivating force is the desire to affiliate with a partner. The current research examined whether a different motivation--romantic jealousy--might promote individuals to alter their self-views to be more similar to a romantic rival, rather than a partner. Romantic jealousy occurs when individuals perceive a rival as a threat to their relationship and motivates individuals to defend their relationship. We proposed that one novel way that individuals might defend their relationship is by seeing themselves as more similar to a perceived romantic rival. We predicted individuals would alter their self-views to be more similar to a rival that they believed their partner found attractive. Importantly, we predicted that state romantic jealousy would motivate these self-alterations. Three studies confirmed these hypotheses.

  1. Immigration Policy Reform in the United States: Reframing the enforcement discourse to fight human trafficking and promote shared prosperity

    Directory of Open Access Journals (Sweden)

    Ana Avendaño

    2013-11-01

    Full Text Available At the time of this writing, the United States Senate has passed the Border Security, Economic Opportunity, and Immigration Modernization Act (S. 744. The bill is the product of countless political compromises and would significantly transform the U.S. immigration system. This paper explores shortcomings in U.S. immigration policy, deconstructs provisions in the bill, and makes policy proposals that would protect and empower migrants who interface with the U.S. immigration system in dangerous and under-regulated environments at the border and in sending communities, in labour recruitment networks, and in the U.S. workforce. Ultimately, the paper seeks to continue an ongoing conversation that challenges the criminalisation of migration which perpetuates vulnerability, and instead forwards rights-based policies that would promote shared prosperity.

  2. rAAV-mediated delivery of brain-derived neurotrophic factor promotes neurite outgrowth and protects neurodegeneration in focal ischemic model.

    Science.gov (United States)

    Zhang, Jingyu; Yu, Zhigang; Yu, Zhiqiang; Yang, Zichao; Zhao, Hong; Liu, Luran; Zhao, Jiexu

    2011-06-20

    Stroke is one of the neurological diseases which lead to permanently neuronal damage after temporary or long-term occlusion of vessels or after heart attack. However, there are few efficient strategies to prevent or treat this kind of insult in clinical because the consequence is irreversible and could be long-lasting after the onset of stroke. Gene therapy especially using viral system has long been addressed to be of great potential to reduce the damage. Here, we generated recombinant adeno-associated virus (rAAV) carrying brain-derived neurotrophic factor (BDNF) gene. Cells infected with rAAV-BDNF could be able to produce functional BDNF which promoted neurite outgrowth and protected neurons from apoptosis induced by serum deprivation. Further more, single injection of rAAV showed neuroprotection against cell death in focal ischemic model. These results showed that rAAV-mediated gene delivery is functional, which shed light to the future application of viral system-based gene therapy in clinical.

  3. TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson's disease brains.

    Science.gov (United States)

    Zucchelli, Silvia; Codrich, Marta; Marcuzzi, Federica; Pinto, Milena; Vilotti, Sandra; Biagioli, Marta; Ferrer, Isidro; Gustincich, Stefano

    2010-10-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra and the formation of ubiquitin- and alpha-synuclein (aSYN)-positive cytoplasmic inclusions called Lewy bodies (LBs). Although most PD cases are sporadic, families with genetic mutations have been found. Mutations in PARK7/DJ-1 have been associated with autosomal recessive early-onset PD, while missense mutations or duplications of aSYN (PARK1, PARK4) have been linked to dominant forms of the disease. In this study, we identify the E3 ubiquitin ligase tumor necrosis factor-receptor associated factor 6 (TRAF6) as a common player in genetic and sporadic cases. TRAF6 binds misfolded mutant DJ-1 and aSYN. Both proteins are substrates of TRAF6 ligase activity in vivo. Interestingly, rather than conventional K63 assembly, TRAF6 promotes atypical ubiquitin linkage formation to both PD targets that share K6-, K27- and K29- mediated ubiquitination. Importantly, TRAF6 stimulates the accumulation of insoluble and polyubiquitinated mutant DJ-1 into cytoplasmic aggregates. In human post-mortem brains of PD patients, TRAF6 protein colocalizes with aSYN in LBs. These results reveal a novel role for TRAF6 and for atypical ubiquitination in PD pathogenesis.

  4. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    Science.gov (United States)

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  5. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  6. A sustained depressive state promotes a guanfacine reversible susceptibility to alcohol seeking in rats.

    Science.gov (United States)

    Riga, Danai; Schmitz, Leanne J M; van der Harst, Johanneke E; van Mourik, Yvar; Hoogendijk, Witte J G; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-04-01

    High rates of comorbidity between alcohol use disorder (AUD) and major depressive disorder (MDD) are reported. Preclinical models examining effects of primary depression on secondary AUD are currently absent, preventing adequate testing of drug treatment. Here, we combined social defeat-induced persistent stress (SDPS) and operant alcohol self-administration (SA) paradigms to assess causality between these two neuropsychiatric disorders. We then exploited guanfacine, an FDA-approved adrenergic agent reported to reduce drug craving in humans, against SDPS-induced modulation of operant alcohol SA. Wistar rats were socially defeated and isolated for a period of ≥9 weeks, during which depression-like symptomatology (cognitive and social behavioral symptoms) was assessed. Subsequently, animals were subjected to a 5-month operant alcohol SA paradigm, examining acquisition, motivation, extinction, and cue-induced reinstatement of alcohol seeking. The effects of guanfacine on motivation and relapse were measured at >6 months following defeat. SDPS rats exhibited significant disruption of social and cognitive behavior, including short-term spatial and long-term social memory, several months following defeat. Notably, SDPS increased motivation to obtain alcohol, and cue-induced relapse vulnerability. Guanfacine reversed the SDPS-induced effects on motivation and relapse. Together, our model mimics core symptomatology of a sustained depressive-like state and a subsequent vulnerability to alcohol abuse. We show that SDPS is strongly associated with an enhanced motivation for alcohol intake and relapse. Finally, we show that the clinically employed drug guanfacine has potential as a novel treatment option in comorbid patients, as it effectively reduced the enhanced sensitivity to alcohol and alcohol-associated stimuli.

  7. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States.

    Directory of Open Access Journals (Sweden)

    Jessica M Dunn

    Full Text Available Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis and use the white-footed mouse (Peromyscus leucopus as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R0 for B. microti to be below the threshold for persistence (<1, a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.

  8. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge.

    Science.gov (United States)

    Bruce, Erica D; Konda, Sneha; Dean, Dana D; Wang, Ernest W; Huang, Jason H; Little, Deborah M

    2015-05-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in every developed country in the world and is believed to be a risk factor in the later development of depression, anxiety disorders and neurodegenerative diseases including chronic traumatic encephalopathy (CTE), Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS). One challenge faced by those who conduct research into TBI is the lack of a verified and validated biomarker that can be used to diagnose TBI or for use as a prognostic variable which can identify those at risk for poor recovery following injury or at risk for neurodegeneration later in life. Neuroimaging continues to hold promise as a TBI biomarker but is limited by a lack of clear relationship between the neuropathology of injury/recovery and the quantitative and image based data that is obtained. Specifically lacking is the data on biochemical and biologic changes that lead to alterations in neuroimaging markers. There are multiple routes towards developing the knowledge required to more definitively link pathology to imaging but the most efficient approach is expanded leveraging of in vivo human blood, serum, and imaging biomarkers with both in vivo and ex vivo animal findings. This review describes the current use and limitations of imaging in TBI including a discussion of currently used animal injury models and the available animal imaging data and extracted markers that hold the greatest promise for helping translate alterations in imaging back to injury pathology. Further, it reviews both the human and animal TBI literature supporting current standards, identifies the remaining voids in the literature, and briefly highlights recent advances in molecular imaging. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  9. Sensitive Biomarkers of Alcoholism's Effect on Brain Macrostructure: Similarities and Differences between France and the United States

    Directory of Open Access Journals (Sweden)

    Anne-Pascale eLe Berre

    2015-06-01

    Full Text Available Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism’s effects on brain cerebrospinal fluid (CSF and white matter volumes between France and the United States (U.S.. MRI data from two French sites (Caen and Orsay and a U.S. laboratory (SRI/Stanford University were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC, and 26 alcoholics with Korsakoff’s Syndrome (KS. All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS.

  10. Sensitive biomarkers of alcoholism's effect on brain macrostructure: similarities and differences between France and the United States

    Science.gov (United States)

    Le Berre, Anne-Pascale; Pitel, Anne-Lise; Chanraud, Sandra; Beaunieux, Hélène; Eustache, Francis; Martinot, Jean-Luc; Reynaud, Michel; Martelli, Catherine; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2015-01-01

    Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS. PMID:26157376

  11. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions.

    Science.gov (United States)

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  12. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions

    Science.gov (United States)

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M.; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  13. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  14. Effect of brain-based learning strategy on students achievement in senior secondary school mathematics in Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Adejare Awolola

    2011-06-01

    Full Text Available One dominant factor on how well students learn mathematics is the quality of teaching. Studies have shown that typical mathematics classroom is frosted with teaching technique that centered on explain – practice – memorize. There is a paucity particularly in Nigeria. This study therefore, investigated the effect of brain-based learning strategy on the achievement regarding the learning of Mathematics of 522 Senior Secondary School Students in Oyo State, Nigeria. The moderator effect of cognitive style was also examined on independent variable (instructional strategy and dependent variable (mathematics achievement. The study adopted a pretest-posttest non-equivalent control group design in a quasi – experimental setting. The ANCOVA statistic was used to analyzed the data collected fro the study. The result revealed significant main effect of treatment, (F(1,510 = 75.0; P < 0.05, cognitive style (F(1,510 = 23.78; P < 0.05 and significant interaction effect of treatment and cognitive style (F(1,510 = 5.027; P < 0.05 on achievement in mathematics. The result showed that brain-based instructional strategy enhanced students’ achievement in mathematics more than the conventional lecture method. It is therefore recommended that Teachers of mathematics should adopt the strategy in teaching mathematics in senior secondary school.

  15. Modular Reorganization of Brain Resting State Networks and Its Independent Validation in Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Guangyu eChen

    2013-08-01

    Full Text Available Previous studies have demonstrated disruption in structural and functional connectivity occurring in the Alzheimer’s Disease (AD. However, it is not known how these disruptions alter brain network reorganization. With the modular analysis method of graph theory, and datasets acquired by the resting-state functional connectivity MRI (R-fMRI method, we investigated and compared the brain organization patterns between the AD group and the cognitively normal control (CN group. Our main finding is that the largest homotopic module (defined as the insula module in the CN group was broken down to the pieces in the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus, transverse temporal gyri, superior temporal gyrus, and superior temporal pole of the insula module had lost symmetric functional connection properties, and the corresponding gray matter concentration (GMC was significant lower in AD group. We further quantified the functional connectivity changes with an index (index A and structural changes with the GMC index in the insula module to demonstrate their great potential as AD biomarkers. We further validated these results with six additional independent datasets (271 subjects in six groups. Our results demonstrated specific underlying structural and functional reorganization from young to old, and for diseased subjects. Further, it is suggested that by combining the structural GMC analysis and functional modular analysis in the insula module, a new biomarker can be developed at the single-subject level.

  16. Traumatic Brain and Spinal Cord Fatalities Among High School and College Football Players - United States, 2005-2014.

    Science.gov (United States)

    Kucera, Kristen L; Yau, Rebecca K; Register-Mihalik, Johna; Marshall, Stephen W; Thomas, Leah C; Wolf, Susanne; Cantu, Robert C; Mueller, Frederick O; Guskiewicz, Kevin M

    2017-01-06

    An estimated 1.1 million high school and 75,000 college athletes participate in tackle football annually in the United States. Football is a collision sport; traumatic injuries are frequent (1,2), and can be fatal (3). This report updates the incidence and characteristics of deaths caused by traumatic brain injury and spinal cord injury (4) in high school and college football and presents illustrative case descriptions. Information was analyzed from the National Center for Catastrophic Sport Injury Research (NCCSIR). During 2005-2014, a total of 28 deaths (2.8 deaths per year) from traumatic brain and spinal cord injuries occurred among high school (24 deaths) and college football players (four deaths) combined. Most deaths occurred during competitions and resulted from tackling or being tackled. All four of the college deaths and 14 (58%) of the 24 high school deaths occurred during the last 5 years (2010-2014) of the 10-year study period. These findings support the need for continued surveillance and safety efforts (particularly during competition) to ensure proper tackling techniques, emergency planning for severe injuries, availability of medical care onsite during competitions, and assessment that it is safe to return to play following a concussion.

  17. The brain on silent: mind wandering, mindful awareness, and states of mental tranquility.

    Science.gov (United States)

    Vago, David R; Zeidan, Fadel

    2016-06-01

    Mind wandering and mindfulness are often described as divergent mental states with opposing effects on cognitive performance and mental health. Spontaneous mind wandering is typically associated with self-reflective states that contribute to negative processing of the past, worrying/fantasizing about the future, and disruption of primary task performance. On the other hand, mindful awareness is frequently described as a focus on present sensory input without cognitive elaboration or emotional reactivity, and is associated with improved task performance and decreased stress-related symptomology. Unfortunately, such distinctions fail to acknowledge similarities and interactions between the two states. Instead of an inverse relationship between mindfulness and mind wandering, a more nuanced characterization of mindfulness may involve skillful toggling back and forth between conceptual and nonconceptual processes and networks supporting each state, to meet the contextually specified demands of the situation. In this article, we present a theoretical analysis and plausible neurocognitive framework of the restful mind, in which we attempt to clarify potentially adaptive contributions of both mind wandering and mindful awareness through the lens of the extant neurocognitive literature on intrinsic network activity, meditation, and emerging descriptions of stillness and nonduality. A neurophenomenological approach to probing modality-specific forms of concentration and nonconceptual awareness is presented that may improve our understanding of the resting state. Implications for future research are discussed.

  18. Identifying major depressive disorder using Hurst exponent of resting-state brain networks.

    Science.gov (United States)

    Wei, Maobin; Qin, Jiaolong; Yan, Rui; Li, Haoran; Yao, Zhijian; Lu, Qing

    2013-12-30

    Resting-state functional magnetic resonance imaging (fMRI) studies of major depressive disorder (MDD) have revealed abnormalities of functional connectivity within or among the resting-state networks. They provide valuable insight into the pathological mechanisms of depression. However, few reports were involved in the "long-term memory" of fMRI signals. This study was to investigate the "long-term memory" of resting-state networks by calculating their Hurst exponents for identifying depressed patients from healthy controls. Resting-state networks were extracted from fMRI data of 20 MDD and 20 matched healthy control subjects. The Hurst exponent of each network was estimated by Range Scale analysis for further discriminant analysis. 95% of depressed patients and 85% of healthy controls were correctly classified by Support Vector Machine with an accuracy of 90%. The right fronto-parietal and default mode network constructed a deficit network (lower memory and more irregularity in MDD), while the left fronto-parietal, ventromedial prefrontal and salience network belonged to an excess network (longer memory in MDD), suggesting these dysfunctional networks may be related to a portion of the complex of emotional and cognitive disturbances. The abnormal "long-term memory" of resting-state networks associated with depression may provide a new possibility towards the exploration of the pathophysiological mechanisms of MDD.

  19. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    Directory of Open Access Journals (Sweden)

    Burke R

    2005-01-01

    Full Text Available This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  20. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    Science.gov (United States)

    Lalor, E. C.; Kelly, S. P.; Finucane, C.; Burke, R.; Smith, R.; Reilly, R. B.; McDarby, G.

    2005-12-01

    This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP) generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  1. Towards closed-loop deep brain stimulation: decision tree-based essential tremor patient's state classifier and tremor reappearance predictor.

    Science.gov (United States)

    Shukla, Pitamber; Basu, Ishita; Tuninetti, Daniela

    2014-01-01

    Deep Brain Stimulation (DBS) is a surgical procedure to treat some progressive neurological movement disorders, such as Essential Tremor (ET), in an advanced stage. Current FDA-approved DBS systems operate open-loop, i.e., their parameters are unchanged over time. This work develops a Decision Tree (DT) based algorithm that, by using non-invasively measured surface EMG and accelerometer signals as inputs during DBS-OFF periods, classifies the ET patient's state and then predicts when tremor is about to reappear, at which point DBS is turned ON again for a fixed amount of time. The proposed algorithm achieves an overall accuracy of 93.3% and sensitivity of 97.4%, along with 2.9% false alarm rate. Also, the ratio between predicted tremor delay and the actual detected tremor delay is about 0.93, indicating that tremor prediction is very close to the instant where tremor actually reappeared.

  2. Echography in brain imaging in intensive care unit: State of the art

    Institute of Scientific and Technical Information of China (English)

    Anselmo; Caricato; Sara; Pitoni; Luca; Montini; Maria; Grazia; Bocci; Pina; Annetta; Massimo; Antonelli

    2014-01-01

    Transcranial sonography(TCS)is an ultrasound-based imaging technique,which allows the identification of several structures within the brain parenchyma.In the past it has been applied for bedside assessment of different intracranial pathologies in children.Pres-ently,TCS is also used on adult patients to diagnose intracranial space occupying lesions of various origins,intracranial hemorrhage,hydrocephalus,midline shift and neurodegenerative movement disorders,in both acute and chronic clinical settings.In comparison with conventional neuroimaging methods(such as com-puted tomography or magnetic resonance),TCS has the advantages of low costs,short investigation times,repeatability,and bedside availability.These noninva-sive characteristics,together with the possibility of of-fering a continuous patient neuro-monitoring system,determine its applicability in the monitoring of multiple emergency and non-emergency settings.Currently,TCS is a still underestimated imaging modality that requires a wider diffusion and a qualified training process.In this review we focused on the main indications of TCSfor the assessment of acute neurologic disorders in in-tensive care unit.

  3. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  4. Global Integration of the Hot-State Brain Network of Appetite Predicts Short Term Weight Loss in Older Adult

    Directory of Open Access Journals (Sweden)

    Brielle M Paolini

    2015-05-01

    Full Text Available Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE. The present work is a sub-study (n = 56 of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC, superior temporal pole, amygdala and the parahippocampal gyrus were highly integrated as evidenced by the results of a principal component analysis. After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  5. Comparative Brain and Central Nervous System Tumor Incidence and Survival between the United States and Taiwan based on Population-Based Registry

    Directory of Open Access Journals (Sweden)

    Li-Nien Chien

    2016-07-01

    Full Text Available Purpose: Reasons for worldwide variability in the burden of primary malignant brain and central nervous system (CNS tumors remain unclear. This study compares the incidence and survival of malignant brain and CNS tumors by selected histologic types between the United States (US and Taiwan. Methods: Data from 2002 to 2010 were selected from two population-based cancer registries