WorldWideScience

Sample records for brain states promoting

  1. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Directory of Open Access Journals (Sweden)

    Sachiko Chikahisa

    Full Text Available Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS. Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v mice. No significant difference was found in the basal amount of sleep/wake between W/W(v mice and their wild-type littermates (WT, although W/W(v mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v mice. Injection of H1 antagonists (triprolidine and mepyramine significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v mice. W/W(v mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  2. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Science.gov (United States)

    Chikahisa, Sachiko; Kodama, Tohru; Soya, Atsushi; Sagawa, Yohei; Ishimaru, Yuji; Séi, Hiroyoshi; Nishino, Seiji

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v)) mice. No significant difference was found in the basal amount of sleep/wake between W/W(v) mice and their wild-type littermates (WT), although W/W(v) mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v) mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v) mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v) mice. W/W(v) mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  3. Histamine from Brain Resident MAST Cells Promotes Wakefulness and Modulates Behavioral States

    OpenAIRE

    Sachiko Chikahisa; Tohru Kodama; Atsushi Soya; Yohei Sagawa; Yuji Ishimaru; Hiroyoshi Séi; Seiji Nishino

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing espec...

  4. Quantum Brain States

    CERN Document Server

    Mould, R A

    2003-01-01

    If conscious observers are to be included in the quantum mechanical universe, we need to find the rules that engage observers with quantum mechanical systems. The author has proposed five rules that are discovered by insisting on empirical completeness; that is, by requiring the rules to draw empirical information from Schrodinger's solutions that is more complete than is currently possible with the (Born) probability interpretation. I discard Born's interpretation, introducing probability solely through probability current. These rules tell us something about brains. They require the existence of observer brain states that are neither conscious nor unconscious. I call them 'ready' brain states because they are on stand-by, ready to become conscious the moment they are stochastically chosen. Two of the rules are selection rules involving ready brain states. The place of these rules in a wider theoretical context is discussed. Key Words: boundary conditions, consciousness, decoherence, macroscopic superpositio...

  5. Training brain networks and states.

    Science.gov (United States)

    Tang, Yi-Yuan; Posner, Michael I

    2014-07-01

    Brain training refers to practices that alter the brain in a way that improves cognition, and performance in domains beyond those involved in the training. We argue that brain training includes network training through repetitive practice that exercises specific brain networks and state training, which changes the brain state in a way that influences many networks. This opinion article considers two widely used methods - working memory training (WMT) and meditation training (MT) - to demonstrate the similarities and differences between network and state training. These two forms of training involve different areas of the brain and different forms of generalization. We propose a distinction between network and state training methods to improve understanding of the most effective brain training.

  6. Promoting motor function by exercising the brain.

    Science.gov (United States)

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  7. Brain orexin promotes obesity resistance.

    Science.gov (United States)

    Kotz, Catherine; Nixon, Joshua; Butterick, Tammy; Perez-Leighton, Claudio; Teske, Jennifer; Billington, Charles

    2012-08-01

    Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in stricter form, spontaneous physical activity (SPA), may be an attractive modifiable variable for obesity prevention. In this review, we discuss individual variability in SPA and NEAT (nonexercise thermogenesis, or the energy expended by SPA) and its relationship to obesity resistance. The hypothalamic neuropeptide orexin (hypocretin) may play a key role in regulating SPA and NEAT. We discuss how elevated orexin signaling capacity, in the context of a brain network modulating SPA, may play a major role in defining individual variability in SPA and NEAT. Greater activation of this SPA network leads to a lower propensity for fat mass gain and therefore may be an attractive target for obesity prevention and therapy. PMID:22803681

  8. Promoting Motor Function by Exercising the Brain

    Directory of Open Access Journals (Sweden)

    Stephane Perrey

    2013-01-01

    Full Text Available Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients, this review presents some findings emphasizing training paradigms for restoring motor function.

  9. Optimal Trajectories of Brain State Transitions

    OpenAIRE

    Gu, Shi; Betzel, Richard F.; Cieslak, Matthew; Delio, Philip R; Grafton, Scott T; Pasqualetti, Fabio; Danielle S Bassett

    2016-01-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how the organization of white matter architecture constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question from a computational perspective by defining a brain state as a pattern of activity across brain regions. Drawing on recent advances in network control theory, we model the underlying mechanisms of brain state transitions as eli...

  10. Promoting Motor Function by Exercising the Brain

    OpenAIRE

    Stephane Perrey

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. ...

  11. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  12. Persimmon leaf flavonoid promotes brain ischemic tolerance**

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Ming Bai; Linan Wang

    2013-01-01

    Persimmon leaf flavonoid has been shown to enhance brain ischemic tolerance in mice, but its mechanism of action remains unclear. The bilateral common carotid arteries were occluded using a micro clip to block blood flow for 10 minutes. After 10 minutes of ischemic preconditioning, 200, 100, and 50 mg/kg persimmon leaf flavonoid or 20 mg/kg ginaton was intragastrical y administered per day for 5 days. At 1 hour after the final administration, ischemia/reperfusion models were estab-lished by blocking the middle cerebral artery for 2 hours. At 24 hours after model establishment, compared with cerebral ischemic rats without ischemic preconditioning or drug intervention, plasma endothelin, thrombomodulin and von Wil ebrand factor levels significantly decreased and intercel-lular adhesion molecule-1 expression markedly reduced in brain tissue from rats with ischemic pre-conditioning. Simultaneously, brain tissue injury reduced. Ischemic preconditioning combined with drug exposure noticeably improved the effects of the above-mentioned indices, and the effects of 200 mg/kg persimmon leaf flavonoid were similar to 20 mg/kg ginaton treatment. These results indicate that ischemic preconditioning produces tolerance to recurrent severe cerebral ischemia. However, persimmon leaf flavonoid can elevate ischemic tolerance by reducing inflammatory reactions and vascular endothelial injury. High-dose persimmon leaf flavonoid showed an identical effect to ginaton.

  13. COHERENT STATES, FRACTALS AND BRAIN WAVES

    OpenAIRE

    Vitiello, Giuseppe

    2009-01-01

    I show that a functional representation of self-similarity (as the one occurring in fractals) is provided by squeezed coherent states. In this way, the dissipative model of brain is shown to account for the self-similarity in brain background activity suggested by power-law distributions of power spectral densities of electrocorticograms. I also briefly discuss the action-perception cycle in the dissipative model with reference to intentionality in terms of trajectories in the memory state sp...

  14. Brain network adaptability across task states.

    Directory of Open Access Journals (Sweden)

    Elizabeth N Davison

    2015-01-01

    Full Text Available Activity in the human brain moves between diverse functional states to meet the demands of our dynamic environment, but fundamental principles guiding these transitions remain poorly understood. Here, we capitalize on recent advances in network science to analyze patterns of functional interactions between brain regions. We use dynamic network representations to probe the landscape of brain reconfigurations that accompany task performance both within and between four cognitive states: a task-free resting state, an attention-demanding state, and two memory-demanding states. Using the formalism of hypergraphs, we identify the presence of groups of functional interactions that fluctuate coherently in strength over time both within (task-specific and across (task-general brain states. In contrast to prior emphases on the complexity of many dyadic (region-to-region relationships, these results demonstrate that brain adaptability can be described by common processes that drive the dynamic integration of cognitive systems. Moreover, our results establish the hypergraph as an effective measure for understanding functional brain dynamics, which may also prove useful in examining cross-task, cross-age, and cross-cohort functional change.

  15. Research project: "Promotion of optimum brain ageing"

    CERN Multimedia

    IT Department

    2009-01-01

    The Rehabilitation and Geriatrics Department of the Geneva University Hospitals (HUG) has signed a research protocol with CERN with a view to promoting better understanding of the mechanisms that trigger Alzheimer’s disease. Alzheimer’s disease is a form of dementia associated with memory loss, inability to make plans and spatial disorientation. With 24 million sufferers worldwide at present, a figure that is predicted to rise to 29 million by 2020, it represents a major challenge for the coming decades. Prevention is a key factor in slowing the alarming spread of this disease. Delaying the onset of the disease could reduce the total number of cases by 50%. Why CERN? CERN is an international research organisation with a workforce that is predominantly male (a section of the population that has been little studied so far) and has a high level of education. Moreover, its pensioners are easy to reach since the majority live in the Geneva area. The aim of the study is to ev...

  16. MGMT promoter methylation in non-neoplastic brain.

    Science.gov (United States)

    Hsu, Chih-Yi; Ho, Hsiang-Ling; Chang-Chien, Yi-Chun; Chang, Yi-Wen; Ho, Donald Ming-Tak

    2015-02-01

    O(6)-methylguanine-DNA-methyltransferase (MGMT) is mainly regulated by cytosine-guanine island promoter methylation that is believed to occur only in neoplastic tissue. The present study was undertaken to investigate whether methylation occurs also in non-neoplastic brains by collecting 45 non-neoplastic brains from autopsies and 56 lobectomy specimens from epileptic surgeries. The promoter methylation status of MGMT was studied by methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ), while protein expression was studied by immunohistochemical stain (IHC). The methylation rates, as determined by MSP and PSQ, were 3.0 % (3/101) and 2.9 % (2/69), respectively. Of note, no case had positive result concomitantly from both MSP and PSQ (3 were MSP+/PSQ- and 2 were MSP-/PSQ+), and all the positive samples were further confirmed by cloning and Sanger sequencing. All the methylated cases, except for those having indeterminate IHC results from autopsy specimens, revealed no loss of MGMT protein expression and similar staining pattern to that of the unmethylated cases. In conclusion, the current study demonstrated that MGMT promoter methylation could occur in a low percentage of non-neoplastic brains but did not affect the status of protein expression, which could be regarded as a normal variation in non-neoplastic brains. PMID:25391970

  17. Brain Content of Branes' States

    CERN Document Server

    Mkrtchyan, R L

    2003-01-01

    The problem of decomposition of unitary irreps of (super) tensorial (i.e. extended with tensorial charges) Poincare algebra w.r.t. its different subgroups is considered. This requires calculation of little groups for different configurations of tensor charges. Particularly, for preon states (i.e. states with maximal supersymmetry) in different dimensions the particle content is calculated, i.e. the spectrum of usual Poincare representations in the preon representation of tensorial Poincare. At d=4 results coincide with (and may provide another point of view on) the Vasiliev's results in field theories in generalized space-time. The translational subgroup of little groups of massless particles and branes is shown to be (and coincide with, at d=4) a subgroup of little groups of "pure branes" algebras, i.e. tensorial Poincare algebras without vector generators. Possible existence of corresponding field theories is discussed. At 11d it is shown that, contrary to lower dimensions, spinors are not homogeneous space...

  18. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain.

    Directory of Open Access Journals (Sweden)

    Patrick O McGowan

    Full Text Available BACKGROUND: Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS: We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE: This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide.

  19. Brain state-dependent neuronal computation

    Directory of Open Access Journals (Sweden)

    Pascale eQuilichini

    2012-10-01

    Full Text Available Neuronal firing pattern, which includes both the frequency and the timing of action potentials, is a key component of information processing in the brain. Although the relationship between neuronal output (the firing pattern and function (during a task/behavior is not fully understood, there is now considerable evidence that a given neuron can show very different firing patterns according to brain state. Thus, such neurons assembled into neuronal networks generate different rhythms (e.g. theta, gamma, sharp wave ripples, which sign specific brain states (e.g. learning, sleep. This implies that a given neuronal network, defined by its hard-wired physical connectivity, can support different brain state-dependent activities through the modulation of its functional connectivity. Here, we review data demonstrating that not only the firing pattern, but also the functional connections between neurons, can change dynamically. We then explore the possible mechanisms of such versatility, focusing on the intrinsic properties of neurons and the properties of the synapses they establish, and how they can be modified by neuromodulators, i.e. the different ways that neurons can use to switch from one mode of communication to the other.

  20. State-dependencies of learning across brain scales

    OpenAIRE

    Petra eRitter; Jan eBorn; Michael eBrecht; Hubert eDinse; Uwe eHeinemann; Burkhard ePleger; Dietmar eSchmitz; Susanne eSchreiber; Arno eVillringer; Richard eKempter

    2015-01-01

    Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous ‘spontaneous’ shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, parti...

  1. State-dependencies of learning across brain scales

    OpenAIRE

    Ritter, Petra; Born, Jan; Brecht, Michael; Dinse, Hubert R.; Heinemann, Uwe; Pleger, Burkhard; Schmitz, Dietmar; Schreiber, Susanne; Villringer, Arno; Kempter, Richard

    2015-01-01

    Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous "spontaneous" shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, parti...

  2. Neural correlates of establishing, maintaining, and switching brain states.

    Science.gov (United States)

    Tang, Yi-Yuan; Rothbart, Mary K; Posner, Michael I

    2012-06-01

    Although the study of brain states is an old one in neuroscience, there has been growing interest in brain state specification owing to MRI studies tracing brain connectivity at rest. In this review, we summarize recent research on three relatively well-described brain states: the resting, alert, and meditation states. We explore the neural correlates of maintaining a state or switching between states, and argue that the anterior cingulate cortex and striatum play a critical role in state maintenance, whereas the insula has a major role in switching between states. Brain state may serve as a predictor of performance in a variety of perceptual, memory, and problem solving tasks. Thus, understanding brain states is critical for understanding human performance.

  3. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  4. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  5. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  6. A regulatory toolbox of MiniPromoters to drive selective expression in the brain.

    Science.gov (United States)

    Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M

    2010-09-21

    The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748

  7. Decoding Brain States Based on Magnetoencephalography From Prespecified Cortical Regions.

    Science.gov (United States)

    Zhang, Jinyin; Li, Xin; Foldes, Stephen T; Wang, Wei; Collinger, Jennifer L; Weber, Douglas J; Bagić, Anto

    2016-01-01

    Brain state decoding based on whole-head MEG has been extensively studied over the past decade. Recent MEG applications pose an emerging need of decoding brain states based on MEG signals originating from prespecified cortical regions. Toward this goal, we propose a novel region-of-interest-constrained discriminant analysis algorithm (RDA) in this paper. RDA integrates linear classification and beamspace transformation into a unified framework by formulating a constrained optimization problem. Our experimental results based on human subjects demonstrate that RDA can efficiently extract the discriminant pattern from prespecified cortical regions to accurately distinguish different brain states.

  8. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    Science.gov (United States)

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  9. Antidepressive interventions : On state and vulnerability of the brain

    NARCIS (Netherlands)

    Korf, J

    1996-01-01

    An attempt is made to relate drug and non-drug antidepressive interventions to brain processes. In the present context two concepts are proposed: vulnerability towards depressogenic factors and depression as a state of the brain. Accordingly, it is assumed that the current antidepressants make the b

  10. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor

  11. Decoding Spontaneous Emotional States in the Human Brain

    Science.gov (United States)

    Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.

    2016-01-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  12. Decoding Spontaneous Emotional States in the Human Brain.

    Science.gov (United States)

    Kragel, Philip A; Knodt, Annchen R; Hariri, Ahmad R; LaBar, Kevin S

    2016-09-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  13. Addiction Related Alteration in Resting-state Brain Connectivity

    OpenAIRE

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the ...

  14. Does State Merit-Based Aid Stem Brain Drain?

    Science.gov (United States)

    Zhang, Liang; Ness, Erik C.

    2010-01-01

    In this study, the authors use college enrollment and migration data to test the brain drain hypothesis. Their results suggest that state merit scholarship programs do indeed stanch the migration of "best and brightest" students to other states. In the aggregate and on average, the implementation of state merit aid programs increases the total…

  15. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    PURPOSE OF REVIEW: Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS as a the...

  16. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  17. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    OpenAIRE

    Bimal Lakhani; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Sue Peters; Anica Villamayor; MacKay, Alex L.; Vavasour, Irene M.; Alexander Rauscher; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent ch...

  18. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Ole eJensen

    2011-05-01

    Full Text Available Large efforts are currently being made to develop and improve online analysis of brain activity which can be used e.g. for brain-computer interfacing (BCI. A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from EEG/MEG studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

  19. Default network connectivity decodes brain states with simulated microgravity.

    Science.gov (United States)

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity. PMID:27066149

  20. Resting state brain networks and their implications in neurodegenerative disease

    Science.gov (United States)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  1. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  2. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  3. 77 FR 59064 - United States-Colombia Trade Promotion Agreement

    Science.gov (United States)

    2012-09-26

    ..., (77 FR 29519), modified the Harmonized Tariff Schedule of the United States (``HTSUS'') as set forth..., 1993 (58 FR 51735, October 4, 1993), because it pertains to a foreign affairs function of the United... 178 RIN 1515-AD88 United States-Colombia Trade Promotion Agreement AGENCY: U.S. Customs and...

  4. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity.

    Science.gov (United States)

    Lakhani, Bimal; Borich, Michael R; Jackson, Jacob N; Wadden, Katie P; Peters, Sue; Villamayor, Anica; MacKay, Alex L; Vavasour, Irene M; Rauscher, Alexander; Boyd, Lara A

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  5. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    Directory of Open Access Journals (Sweden)

    Bimal Lakhani

    2016-01-01

    Full Text Available Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI, the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus. In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults.

  6. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    Science.gov (United States)

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  7. Maintaining Brain Health by Monitoring Inflammatory Processes: a Mechanism to Promote Successful Aging

    OpenAIRE

    Rosano, Caterina; Marsland, Anna L.; Gianaros, Peter J.

    2011-01-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests th...

  8. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors

    OpenAIRE

    Barbara Ingold; Peter Schraml; Heppner, Frank L.; Holger Moch

    2009-01-01

    The O(6)-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived fr...

  9. Neuromodulation of the conscious state following severe brain injuries.

    Science.gov (United States)

    Fridman, Esteban A; Schiff, Nicholas D

    2014-12-01

    Disorders of consciousness (DOC) following severe structural brain injuries globally affect the conscious state and the expression of goal-directed behaviors. In some subjects, neuromodulation with medications or electrical stimulation can markedly improve the impaired conscious state present in DOC. We briefly review recent studies and provide an organizing framework for considering the apparently widely disparate collection of medications and approaches that may modulate the conscious state in subjects with DOC. We focus on neuromodulation of the anterior forebrain mesocircuit in DOC and briefly compare mechanisms supporting recovery from structural brain injuries to those underlying facilitated emergence from unconsciousness produced by anesthesia. We derive some general principles for approaching the problem of restoration of consciousness after severe structural brain injuries, and suggest directions for future research.

  10. Prompt recognition of brain states by their EEG signals

    DEFF Research Database (Denmark)

    Peters, B.O.; Pfurtscheller, G.; Flyvbjerg, H.

    1997-01-01

    Brain states corresponding to intention of movement of left and right index finger and right foot are classified by a ''committee'' of artificial neural networks processing individual channels of 56-electrode electroencephalograms (EEGs). Correct recognition is achieved in 83% of cases not previo......Brain states corresponding to intention of movement of left and right index finger and right foot are classified by a ''committee'' of artificial neural networks processing individual channels of 56-electrode electroencephalograms (EEGs). Correct recognition is achieved in 83% of cases...

  11. State of the Art Review: Poverty and the Developing Brain.

    Science.gov (United States)

    Johnson, Sara B; Riis, Jenna L; Noble, Kimberly G

    2016-04-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home. PMID:26952506

  12. Measuring Asymmetric Interactions in Resting State Brain Networks.

    Science.gov (United States)

    Joshi, Anand A; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M

    2015-01-01

    Directed graph representations of brain networks are increasingly being used to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  13. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    Science.gov (United States)

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze

    2016-01-01

    Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS. PMID:26727514

  14. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Brain entropy (BEN mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI, reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS, a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.

  15. Promoting brain health through exercise and diet in older adults: a physiological perspective.

    Science.gov (United States)

    Jackson, Philippa A; Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I; Eskes, Gail A; Poulin, Marc J

    2016-08-15

    The rise in incidence of age-related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter-individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote 'brain health'. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792

  16. Brain drain and productivity growth: are small states different?

    OpenAIRE

    Schiff, Maurice; Wang, Yanling

    2008-01-01

    This paper examines the impact of North-South trade-related technology diffusion on TFP growth in small and large states in the South. The main findings are: i) TFP growth increases with North-South trade-related technology diffusion, with education, and with the interaction between the two, and it decreases with the emigration of skilled labor (brain drain); ii) these effects are substantially (over three times) larger in small states than in large ones. Small states also exhibit a much high...

  17. Sales Promotion Strategies of Financial Institutions in Bayelsa State

    Directory of Open Access Journals (Sweden)

    Banabo Ekankumo

    2011-08-01

    Full Text Available Sales promotion is a veritable tool in the hands of marketers to not only serve as a defensive strategy but an offensive weapon to combat the ever increasing competitive environment of the organization. Its primary objective is to act as a conduit through which marketers can build loyalty of consumers as well induce quick profit as a result of return purchase. Therefore, the study is an attempt to critically and empirically examine the sales promotion strategies of financial institution in Nigeria. The main objectives was to find out if such a review is necessary in a dynamic business environment and to underscore whether or not sales promotion strategies are effectively adopted in the banking industry in Bayelsa State. Total is 15 banks was randomly selected with 278 respondents who are marketers structured questionnaires were admitted and results gathered were analyzed using tabulation and single percentage method. The summary of the result was that sales promotion is aptly adopted by majority of banks in Yenagoa, and it subsequently recommended that the widest possible understand of the strategy has to be communicated to all levels of the organization to provide the detailed promotional plan of the banks.

  18. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  19. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2016-09-01

    Melatonin is a neurohormone and has high potent of antioxidant that is widely reported to be active against methamphetamine (METH)-induced toxicity to neuron, glial cells, and brain endothelial cells. However, the role of melatonin on the inflammatory responses which are mostly caused by blood-brain barrier (BBB) impairment by METH administration has not been investigated. This study used the primary rat brain microvascular endothelial cells (BMVECs) to determine the protective mechanism of melatonin on METH-induced inflammatory responses in the BBB via nuclear factor-ĸB (NF-κB) and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Herein, we demonstrated that melatonin reduced the level of the inflammatory mediators, including intercellular adhesion molecules (ICAM)-1, vascular cell adhesion molecules (VCAM)-1, matrix metallopeptidase (MMP)-9, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) caused by METH. These responses were related to the decrease of the expression and translocation of the NF-κB p65 subunit and the activity of NADPH oxidase (NOX)-2. In addition, melatonin promoted the antioxidant processes, modulated the expression and translocation of Nrf2, and also increased the level of heme oxygenase (HO)-1, NAD (P) H: quinone oxidoreductase (NQO)-1, γ-glutamylcysteine synthase (γ-GCLC), and the activity of superoxide dismutase (SOD) through NOX2 mechanism. In addition, we found that the protective role of melatonin in METH-induced inflammatory responses in the BBB was mediated through melatonin receptors (MT1/2). We concluded that the interaction of melatonin with its receptor prevented METH-induced inflammatory responses by suppressing the NF-κB signaling and promoting the Nrf2 signaling before BBB impairment. PMID:27268413

  20. Construction of Stretch-Induced Reporter using Human Brain Natriuretic Peptide Promoter

    OpenAIRE

    Kim, Sung Min

    2014-01-01

    Heart disease and the resultant heart failure is one of the leading causes of death in the world. Although advances in treating heart failure have improved patient outcomes, the morbidity and mortality of the disease still remains high. Based on the finding that up-regulation of brain natriuretic peptide (BNP) is a biomarker of heart failure, which can be a result of abnormal stretch of cardiomyocytes, in this thesis, we attempted to make adenoviral reporter constructs using BNP promoter that...

  1. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    OpenAIRE

    Song, Changwei; Fang, Shiqiang; Gang LV; Mei, Xifan

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin t...

  2. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    Directory of Open Access Journals (Sweden)

    Shang Ma

    Full Text Available Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  3. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    Science.gov (United States)

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  4. A Plastic Temporal Brain Code for Conscious State Generation

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2009-01-01

    Full Text Available Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms.

  5. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  6. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors.

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available The O(6-methylguanine-methyltransferase (MGMT promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91, breast (n = 72 kidney (n = 49 and from malignant melanomas (n = 113 by methylation-specific polymerase chain reaction (MS-PCR and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6% revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5% followed by those from breast carcinoma (28.8%, malignant melanoma (24.7% and from renal carcinoma (20%. A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43% tumors lacking MGMT immunoreactivity, in 17 of 63 (27% metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9% showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes.

  7. State Advertising in Television and promotion of Culture of Peace

    Directory of Open Access Journals (Sweden)

    Dr. Alfonso Cortés González

    2008-02-01

    Full Text Available Advertising is considered as a major mass communication tool, because of its great capacity to influence the social imaginary, although this form of communication sometimes is overestimated. Moreover, welfare state has got the obligation to arrange properly the Civil Society, and also ought to favour the citizens education and all those fields associated to the “common good” maxim. In this paper we research how is this advertising like, and which would be State communication goals. Culture of peace is a project defended and promoted by UNESCO, vertebrated in a whole theoretical and conceptual universe, that not only means the absense of war, but focuses all kind of human and social relationships. In order to this purpose, we have analyzed carefully 61 Government’s campaigns, over a big sample of more than 190.

  8. Effects of APOE promoter polymorphism on the topological organization of brain structural connectome in nondemented elderly.

    Science.gov (United States)

    Shu, Ni; Li, Xin; Ma, Chao; Zhang, Junying; Chen, Kewei; Liang, Ying; Chen, Yaojing; Zhang, Zhanjun

    2015-12-01

    The polymorphism of the Apolipoprotein E (APOE) promoter rs405509 can regulate the transcriptional activity of the APOE gene and is related to Alzheimer's disease (AD). However, its effects on cognitive performance and the underlying brain mechanisms remain unknown. Here, we performed a battery of neuropsychological tests in a large sample (837 subjects) of nondemented elderly Chinese people, and explored the related brain mechanisms via the construction of diffusion MRI-based structural connectome and graph analysis from a subset (84 subjects) of the sample. Cognitively, the rs405509 risk allele (TT) carriers showed decreased attention and execution functions compared with noncarriers (GG/GT). Regarding the topological alterations of the brain connectome, the risk allele group exhibited reduced global and local efficiency of white matter structural networks, mainly in the left anterior and posterior cingulate cortices (PCC). Importantly, the efficiency of the left PCC is correlated with the impaired attention function and mediates the impacts of the rs405509 genotype on attention. These results demonstrated that the rs405509 polymorphism affects attention function in nondemented elderly people, possibly by modulating brain structural connectivity of the PCC. This polymorphism may help us to understand the neural mechanisms of cognitive aging and to serve as a potential marker assessing the risk of AD.

  9. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  10. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  11. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Institute of Scientific and Technical Information of China (English)

    Wenqing Wang; Aihui Wang; Limin Yu; Xuesong Han; Guiyun Jiang; Changshui Weng; Hongwei Zhang; Zhiqiang Zhou

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  12. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair.

    Science.gov (United States)

    Zhang, Zhen-Qiang; Song, Jun-Ying; Jia, Ya-Quan; Zhang, Yun-Ke

    2016-03-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury. PMID:27127482

  13. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair

    Institute of Scientific and Technical Information of China (English)

    Zhen-qiang Zhang; Jun-ying Song; Ya-quan Jia; Yun-ke Zhang

    2016-01-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically givenBuyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reper-fusion injury was established by middle cerebral artery occlusion. In rats administeredBuyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrinαvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects ofBuyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest thatBuyanghuanwu de-coction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  14. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  15. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia.

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-11-15

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  16. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia.

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-11-15

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  17. Frequency dependent topological patterns of resting-state brain networks.

    Directory of Open Access Journals (Sweden)

    Long Qian

    Full Text Available The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD, CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks.

  18. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Science.gov (United States)

    2013-02-12

    ... HUMAN SERVICES Health Resources and Services Administration Current Traumatic Brain Injury State...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently reauthorized by...

  19. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  20. The influence of low-grade glioma on resting state oscillatory brain activity : a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I; Stam, C J; Douw, L; Bartolomei, F; Heimans, J J; van Dijk, B W; Postma, T J; Klein, M; Reijneveld, J C

    2008-01-01

    PURPOSE: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  1. Stability of thalamocortical synaptic transmission across awake brain states.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Swadlow, Harvey A

    2009-05-27

    Sensory cortical neurons are highly sensitive to brain state, with many neurons showing changes in spatial and/or temporal response properties and some neurons becoming virtually unresponsive when subjects are not alert. Although some of these changes are undoubtedly attributable to state-related filtering at the thalamic level, another likely source of such effects is the thalamocortical (TC) synapse, where activation of nicotinic receptors on TC terminals have been shown to enhance synaptic transmission in vitro. However, monosynaptic TC synaptic transmission has not been directly examined during different states of alertness. Here, in awake rabbits that shifted between alert and non-alert EEG states, we examined the monosynaptic TC responses and short-term synaptic dynamics generated by spontaneous impulses of single visual and somatosensory TC neurons. We did this using spike-triggered current source-density analysis, an approach that enables assessment of monosynaptic extracellular currents generated in different cortical layers by impulses of single TC afferents. Spontaneous firing rates of TC neurons were higher, and burst rates were much lower in the alert state. However, we found no state-related changes in the amplitude of monosynaptic TC responses when TC spikes with similar preceding interspike interval were compared. Moreover, the relationship between the preceding interspike interval of the TC spike and postsynaptic response amplitude was not influenced by state. These data indicate that TC synaptic transmission and dynamics are highly conserved across different states of alertness and that observed state-related changes in receptive field properties that occur at the cortical level result from other mechanisms.

  2. Is Brain in a Superfluid State? Physics of Consciousness

    CERN Document Server

    Chakraverty, Benoy

    2010-01-01

    The article "Physics of Consciousness" treats mind as an abstract Hilbert space with a set of orthogonal base vectors to describe information like particles, which are considered to be the elementary excitation of a quantum field. A non-Hermitian operator of Self is introduced to create these information like particles which in turn will constitute a coherent information field. The non - zero average of this self operator is shown to constitute our basic I. Awareness and consciousness is described very simply as a response function of these operators to external world. We show with a very simple neural model how a baby less than two years old develop self-awareness as the neural connectivity achieves a critical value. The all-important I is the basic cognitive order parameter of each human brain and is a result of thermodynamic phase transition from a chaotic disordered state to a symmetry broken coherent ordered state, very akin to physics of superfluidity.

  3. United States policy initiatives in promoting the RERTR program

    International Nuclear Information System (INIS)

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been successful in furthering efforts to reduce and eventually eliminate highly enriched uranium (HEU) from international commerce. Three key policy initiatives are underway to further promote the RERTR program. The first initiative is implementation of a new nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Under this policy, the United States will accept over the next 13 years research reactor spent fuel from 41 countries that have converted or plan to convert to use LEU fuels. The second initiative is to pursue cooperative efforts to expand the RERTR program to new regions of the globe, including Russia and China. The third initiative is to restart the advanced LEU fuels development program at the Argonne National Laboratory in order to increase the number of reactors that can convert to use LEU without significant detriment to their performance

  4. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques.

    Science.gov (United States)

    Boggio, Paulo S; Asthana, Manish K; Costa, Thiago L; Valasek, Cláudia A; Osório, Ana A C

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  5. Promoting social plasticity in developmental disorders with non invasive brain stimulation techniques

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Boggio

    2015-09-01

    Full Text Available Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where noninvasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD and Williams Syndrome (WS. There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS and transcranial magnetic stimulation (TMS in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity.

  6. Why and how physical activity promotes experience-induced brain plasticity

    Directory of Open Access Journals (Sweden)

    Gerd eKempermann

    2010-12-01

    Full Text Available Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, that the likelihood of cognitive challenges increases. In the wild (other than in front of a TV, no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading an active life but an evolutionarily fundamental aspect of activity, which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback.

  7. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  8. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  9. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory. PMID:25883630

  10. Brain activation and inhibition after acupuncture at Taichong andTaixi:resting-state functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Shao-qun Zhang; Chun-zhi Tang; Yan-jie Wang; Ji-ping Zhang; Jun-qi Chen; Chun-xiao Wu; Zhi-peng Li; Jia-rong Chen; Huai-liang Ouyang; Yong Huang

    2015-01-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture atTaichong (LR3) andTaixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture atTaichong andTaixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic res-onance imaging, which revealed that the amplitude of low-frequency lfuctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferi-or frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present ifndings indicate that acupuncture atTaichong andTaixi speciifcally promote blood lfow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  11. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    Science.gov (United States)

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  12. What should be the roles of conscious states and brain states in theories of mental activity?

    Directory of Open Access Journals (Sweden)

    Donelson E Dulany

    2011-03-01

    Full Text Available Answers to the title's question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and "free will" in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness?

  13. Brain Factor and Its Stating Role in Enterprises’ Competitive Recovery

    OpenAIRE

    Mikhail N. Dudin; Nikolai V. Lyasnikov; Yuri V. Horikov

    2013-01-01

    The article deals with general theses of the brain capital concept as the factor of business competitive recovery, as well as the entrepreneurship aspects in knowledge economy. The article shows the role of brain factor in enterprises’ competitive recovery

  14. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended stim

  15. Plasticity of resting state brain networks in recovery from stress

    Directory of Open Access Journals (Sweden)

    Jose Miguel Soares

    2013-12-01

    Full Text Available Chronic stress has been widely reported to have deleterious impact in multiple biological systems. Specifically, structural and functional remodelling of several brain regions following prolonged stress exposure have been described; importantly, some of these changes are eventually reversible. Recently, we showed the impact of stress on resting state networks (RSNs, but nothing is known about the plasticity of RSNs after recovery from stress. Herein, we examined the plasticity of RSNs, both at functional and structural levels, by comparing the same individuals before and after recovery from the exposure to chronic stress; results were also contrasted with a control group. Here we show that the stressed individuals after recovery displayed a decreased resting functional connectivity in the default mode network (DMN, ventral attention network (VAN and sensorimotor network (SMN when compared to themselves immediately after stress; however, this functional plastic recovery was only partial as when compared with the control group, as there were still areas of increased connectivity in dorsal attention network (DAN, SMN and primary visual network (VN in participants recovered from stress. Data also shows that participants after recovery from stress displayed increased deactivations in DMN, SMN and auditory network (AN, to levels similar to those of controls, showing a normalization of the deactivation pattern in RSNs after recovery from stress. In contrast, structural changes (volumetry of the brain areas involving these networks are absent after the recovery period. These results reveal plastic phenomena in specific RSNs and a functional remodeling of the activation-deactivation pattern following recovery from chronic-stress, which is not accompanied by significant structural plasticity.

  16. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for ai

  17. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  19. TMS-evoked changes in brain-state dynamics quantified by using EEG data.

    Science.gov (United States)

    Mutanen, Tuomas; Nieminen, Jaakko O; Ilmoniemi, Risto J

    2013-01-01

    To improve our understanding of the combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) method in general, it is important to study how the dynamics of the TMS-modulated brain activity differs from the dynamics of spontaneous activity. In this paper, we introduce two quantitative measures based on EEG data, called mean state shift (MSS) and state variance (SV), for evaluating the TMS-evoked changes in the brain-state dynamics. MSS quantifies the immediate TMS-elicited change in the brain state, whereas SV shows whether the rate at which the brain state changes is modulated by TMS. We report a statistically significant increase for a period of 100-200 ms after the TMS pulse in both MSS and SV at the group level. This indicates that the TMS-modulated brain state differs from the spontaneous one. Moreover, the TMS-modulated activity is more vigorous than the natural activity.

  20. Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity.

    Science.gov (United States)

    Han, Murui; Chang, JuOae; Kim, Jonghan

    2016-09-01

    The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative

  1. Brain-derived neurotrophic factor gene transfection promotes neuronal repair and neurite regeneration after diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Yin Yu; Chao Du; Xingli Zhao; Jiajia Shao; Qiang Shen; Tao Jiang; Wei Wu; Dong Zhu; Yu Tian; Yongchuan Guo

    2011-01-01

    This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.

  2. Plasticity of brain wave network interactions and evolution across physiologic states

    Directory of Open Access Journals (Sweden)

    Kang K. L. Liu

    2015-10-01

    Full Text Available Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very

  3. Plasticity of brain wave network interactions and evolution across physiologic states.

    Science.gov (United States)

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  4. Plasticity of brain wave network interactions and evolution across physiologic states

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  5. Brain Network Reconfiguration and Perceptual Decoupling During an Absorptive State of Consciousness.

    Science.gov (United States)

    Hove, Michael J; Stelzer, Johannes; Nierhaus, Till; Thiel, Sabrina D; Gundlach, Christopher; Margulies, Daniel S; Van Dijk, Koene R A; Turner, Robert; Keller, Peter E; Merker, Björn

    2016-07-01

    Trance is an absorptive state of consciousness characterized by narrowed awareness of external surroundings and has long been used-for example, by shamans-to gain insight. Shamans across cultures often induce trance by listening to rhythmic drumming. Using functional magnetic resonance imaging (fMRI), we examined the brain-network configuration associated with trance. Experienced shamanic practitioners (n = 15) listened to rhythmic drumming, and either entered a trance state or remained in a nontrance state during 8-min scans. We analyzed changes in network connectivity. Trance was associated with higher eigenvector centrality (i.e., stronger hubs) in 3 regions: posterior cingulate cortex (PCC), dorsal anterior cingulate cortex (dACC), and left insula/operculum. Seed-based analysis revealed increased coactivation of the PCC (a default network hub involved in internally oriented cognitive states) with the dACC and insula (control-network regions involved in maintaining relevant neural streams). This coactivation suggests that an internally oriented neural stream was amplified by the modulatory control network. Additionally, during trance, seeds within the auditory pathway were less connected, possibly indicating perceptual decoupling and suppression of the repetitive auditory stimuli. In sum, trance involved coactive default and control networks, and decoupled sensory processing. This network reconfiguration may promote an extended internal train of thought wherein integration and insight can occur. PMID:26108612

  6. Meditation promotes insightful problem-solving by keeping people in a mindful and alert conscious state.

    Science.gov (United States)

    Ren, Jun; Huang, Zhihui; Luo, Jing; Wei, Gaoxia; Ying, Xiaoping; Ding, Zhiguang; Wu, Yibin; Luo, Fei

    2011-10-01

    Although previous studies have shown that sleep can inspire insight, it is still unclear whether meditation can promote insight. Meditation differs from other types of passive rest such as relaxation and sleep because it requires full consciousness and mindfulness of targets such as one's breathing. Forty-eight university students without meditation experience were recruited to learn a simple meditation technique. They were given a list of 10 insight problems to solve (the pre-test session). In this study, we focused on the unsolved problems and examined if they could be successfully solved after a 20 min rest interval with or without meditation. Results showed that relative to the control group that listened to Chinese or English words and made a language judgment, the groups who learned meditation successfully solved significantly more failed problems from the pre-test session, providing direct evidence for the role of meditation in promoting insight. Further analysis showed that maintaining a mindful and alert state during meditation (raising a hand to report every 10 deep breaths compared to every 100 deep breaths) resulted in more insight regarding the failed items from the pre-test session. This implies that it was watchfulness in meditation, rather than relaxation, that actually contributed to insight. Consistently, in the meditation session or control task, the percentage of alpha waves-a brain index of mental relaxation-was negatively correlated with insight. These results suggest a meditation-based insight-promoting mechanism different from that involved in passive rest such as relaxation and sleep.

  7. Brain Factor and Its Stating Role in Enterprises’ Competitive Recovery

    Directory of Open Access Journals (Sweden)

    Mikhail N. Dudin

    2013-01-01

    Full Text Available The article deals with general theses of the brain capital concept as the factor of business competitive recovery, as well as the entrepreneurship aspects in knowledge economy. The article shows the role of brain factor in enterprises’ competitive recovery

  8. Sales Promotion Strategies of Financial Institutions in Bayelsa State

    OpenAIRE

    Banabo Ekankumo; Koroye Braye Henry

    2011-01-01

    Sales promotion is a veritable tool in the hands of marketers to not only serve as a defensive strategy but an offensive weapon to combat the ever increasing competitive environment of the organization. Its primary objective is to act as a conduit through which marketers can build loyalty of consumers as well induce quick profit as a result of return purchase. Therefore, the study is an attempt to critically and empirically examine the sales promotion strategies of financial institution in Ni...

  9. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J; O'Keefe, James H

    2015-11-01

    Ketogenic diets are markedly neuroprotective, but the basis of this effect is still poorly understood. Recent studies demonstrate that ketone bodies increase neuronal levels of hypoxia-inducible factor-1α (HIF-1α), possibly owing to succinate-mediated inhibition of prolyl hydroxylase activity. Moreover, there is reason to suspect that ketones can activate Sirt1 in neurons, in part by increasing cytoplasmic and nuclear levels of Sirt1's obligate cofactor NAD(+). Another recent study has observed reduced activity of mTORC1 in the hippocampus of rats fed a ketogenic diet - an effect plausibly attributable to Sirt1 activation. Increased activities of HIF-1 and Sirt1, and a decrease in mTORC1 activity, could be expected to collaborate in the induction of neuronal macroautophagy. Considerable evidence points to moderate up-regulation of neuronal autophagy as a rational strategy for prevention of neurodegenerative disorders; elimination of damaged mitochondria that overproduce superoxide, as well as clearance of protein aggregates that mediate neurodegeneration, presumably contribute to this protection. Hence, autophagy may mediate some of the neuroprotective benefits of ketogenic diets. Brain-permeable agents which activate AMP-activated kinase, such as metformin and berberine, as well as the Sirt1 activator nicotinamide riboside, can also boost neuronal autophagy, and may have potential for amplifying the impact of ketogenesis on this process. Since it might not be practical for most people to adhere to ketogenic diets continuously, alternative strategies are needed to harness the brain-protective potential of ketone bodies. These may include ingestion of medium-chain triglycerides or coconut oil, intermittent ketogenic dieting, and possibly the use of supplements that promote hepatic ketogenesis - notably carnitine and hydroxycitrate - in conjunction with dietary regimens characterized by long daily episodes of fasting or carbohydrate avoidance. PMID:26306884

  10. Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity.

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    Full Text Available BACKGROUND: Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI data, as inputs to efficient classifiers such as support vector machines (SVM and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we introduce a novel framework where in both functional connectivity (FC based on instantaneous temporal correlation and effective connectivity (EC based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects. CONCLUSIONS/SIGNIFICANCE: The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state

  11. The Effect of Aging on Resting-State Brain Function: An fMRI Study

    Directory of Open Access Journals (Sweden)

    A. H. Batouli

    2009-11-01

    Full Text Available Background/Objective: Healthy aging may be accompanied by some types of cognitive impairment; moreover, normal aging may cause natural atrophy in the healthy human brain. The hypothesis of the healthy aging brain is the structural changes together with the functional impairment happening. The brain struggles to over-compensate for those functional age-related impairments to continue as a healthy brain in its functions. Our goal in this study was to evaluate the effects of aging on the resting-state activation network of the brain using the multi-session probabilistic independent component analysis algorithm (PICA. "nPatients and Methods: We compared the resting-state brain activities between two groups of healthy aged and young subjects, so we examined 30 right-handed subjects and finally 12 healthy aging and 11 controls were enrolled in the study. "nResults: Our results showed that during the resting-state, older brains benefit from larger areas of activation, while in young competent brains, higher activation occurs in terms of greater intensity. These results were obtained in prefrontal areas as regions with regard to memory function as well as the posterior cingulate cortex (PCC as parts of the default mode network. Meanwhile, we reached the same results after normalization of activation size with total brain volume. "nConclusion: The difference in activation patterns between the two groups shows the brain's endeavor to compensate the functional impairment.

  12. Acute effects of modafinil on brain resting state networks in young healthy subjects.

    Directory of Open Access Journals (Sweden)

    Roberto Esposito

    Full Text Available BACKGROUND: There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. METHODOLOGY: A single dose (100 mg of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven's Advanced Progressive Matrices II set (APM before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. PRINCIPAL FINDINGS: Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04 and Dorsal Attention (DAN; p<0.04 networks. No modifications in structural connectivity were observed. CONCLUSIONS AND SIGNIFICANCE: Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306.

  13. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for ai

  14. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  15. 76 FR 68067 - United States-Peru Trade Promotion Agreement

    Science.gov (United States)

    2011-11-03

    ... protection and conservation, promoting sustainable development, and strengthening cooperation on..., which was published in the Federal Register on January 22, 2009 (74 FR 4105), modified the Harmonized..., Guatemala, Honduras, Nicaragua, the Dominican Republic, Costa Rica, Bahrain, or Oman, no bond or...

  16. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Liao Z

    2009-01-01

    Full Text Available Background : Traumatic brain injury (TBI is an important cause of adult mortality and morbidity. Erythropoietin (Epo has been shown to promote the viability of cerebral cells by upregulating Bcl-2 gene; however, Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. Aim : The present study examined the neuroprotective effect of Epo as a survival factor through the regulation of the Bax. Materials and Methods : Wistar rats were randomly divided into three groups: Recombinant human EPO treated (rhEPO TBI, vehicle-treated TBI, and sham-operated. Traumatic brain injury was induced by the Feeney free-falling model. Rats were killed 5, 12, 24, 72, 120, or 168 h after TBI. Regulation of Bcl-2 was detected by reverse transcription-polymerase chain reaction (RT-PCR, western blotting and immunofluorescence. Results : Bax mRNA and protein levels were lower in the rhEPO-treated rat brains than in the vehicle-treated rat brains. Induction of Bax expression peaked at 24 h and remained stable for 72-120 h in vehicle-treated rat brains, whereas induction of Bax expression was only slightly elevated in rhEPO-treated rat brains. The number of TdT-mediated dUTP Nick-End Labeling(TUNEL-positive cells in the rhEPO-treated rat brains was far fewer than in the vehicle-treated rat brains. Conclusions : Epo exerts neuroprotective effect against traumatic brain injury via reducing Bax gene expression involved in inhibiting TBI-induced neuronal cell death.

  17. Promotion

    OpenAIRE

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed.

  18. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving

    OpenAIRE

    Garcia, Javier O.; Brooks, Justin; Kerick, Scott; Johnson, Tony,; Mullen, Tim; Vettel, Jean M.

    2016-01-01

    Conventional neuroimaging analyses have revealed the computational specificity of localized brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to...

  19. Glymphatic clearance controls state-dependent changes in brain lactate concentration

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra;

    2016-01-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lactate...... concentration. Suppression of glymphatic function via acetazolamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipulations diminished...

  20. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  1. Promoting "Academic Entrepreneurship" in Europe and the United States

    DEFF Research Database (Denmark)

    Tvarnø, Christina D.; E. Bagley, Constance

    2016-01-01

    States (“U.S.”). Our comparative analysis of the EU and U.S. approaches to translational medicine shows that there are lessons to be shared. The EU can apply the experiences from the U.S. Bayh-Dole Act and PPPPs in the United States, and the United States can emulate certain of the open innovation.......” This article builds on our earlier work on structuring efficient pharmaceutical public-private partnerships (“PPPPs”), but focuses on the regulatory infrastructure necessary to support the efficient commercialization of publicly funded university medical research in both the European Union and the United...

  2. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1−/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  3. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  4. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  5. Bicycle helmet promotion programs--Canada, Australia, and United States.

    Science.gov (United States)

    1993-03-26

    The use of bicycle helmets substantially reduces the risk for serious head injuries during bicycle-related crashes. Despite this benefit, epidemiologic data indicate a worldwide low prevalence of helmet use. Strategies to increase the use of bicycle helmets in the United States and other countries include subsidies, legislation, and education. This report summarizes information regarding three strategies to increase bicycle helmet use and the impact of implementing these approaches in Canada (helmet subsidies), Australia (legislation), and the United States (education). PMID:8446097

  6. An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease*****

    Institute of Scientific and Technical Information of China (English)

    Jie Xiang; Hao Guo; Rui Cao; Hong Liang; Junjie Chen

    2013-01-01

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradual y increased, while clustering coefficients gradual y decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-mer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventual y lead to diffuse brain injury and other cognitive impairments.

  7. The Chinese herbal formula Tongluo Jiunao promotes expression of brain-derived neurotrophic factor/tropomyosin-related kinase B pathways in a rat model of ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Peiman Alesheikh; Yangyang Yan; Huiling Tang; Pengtao Li; Wei Zhang; Yanshu Pan; Arezou Mashoufi; Liyun Zhao; Runjun Wang; Bo Di

    2011-01-01

    The neurotrophin-Trk receptor pathway is an intrinsic pathway to relieve damage to the central nervous system. The present study observed the effects of Tongluo Jiunao (TLJN), which comprises Panax Notoginseng and Gardenia Jasminoides, on expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in a rat model of focal cerebral ischemic injury. Xue Sai Tong (XST), comprising Panax Notoginseng, served as the positive control. Mechanisms of neuroprotection were analyzed following TLJN injection. Following establishment of the middle cerebral artery occlusion models, TLJN and XST were intraperitoneally injected, and 2, 3, 5-triphenyltetrazolium chloride staining results revealed that TLJN injection reduced infarct volume, suggesting that TLJN exerted a neuroprotective effect. Enzyme-linked immunosorbent assay results showed that TLJN elevated BDNF and growth associated protein-43 expression in ischemic brain tissues, as well as serum BDNF levels. Reverse-transcription polymerase chain reaction and western blot results showed that TLJN injection did not affect TrkB expression in the ischemic brain tissues of rats. These results suggested that TLJN injection reduced damage to ischemic brain tissues and increased BDNF expression. In addition, TLJN injection resulted in better promoting effects on neurotrophic factor expression compared with XST.

  8. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation

    OpenAIRE

    Hao He; Tingting Geng; Piyun Chen; Meixiang Wang; Jingxia Hu; Li Kang; Wengang Song; Hua Tang

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood–brain barrier, conventional CD11b+CD27+ NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, dep...

  9. A Functional Requirement for Astroglia in Promoting Blood Vessel Development in the Early Postnatal Brain

    OpenAIRE

    Shang Ma; Hyo Jun Kwon; Zhen Huang

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in p...

  10. 78 FR 63052 - United States-Panama Trade Promotion Agreement

    Science.gov (United States)

    2013-10-23

    ... governmentally-owned, including any corporation, trust, partnership, sole proprietorship, joint venture, or other... FR 66507), modified the Harmonized Tariff Schedule of the United States (``HTSUS'') as set forth in...) Goods that are wholly obtained or produced entirely in the territory of one or both of the Parties;...

  11. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

    Science.gov (United States)

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-01-01

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF. DOI: http://dx.doi.org/10.7554/eLife.15092.001 PMID:27253067

  12. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    Science.gov (United States)

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  13. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia;

    2012-01-01

    Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage and...... downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10...

  14. Characterization of task-free and task-performance brain states via functional connectome patterns.

    Science.gov (United States)

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain.

  15. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  16. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification.

    Science.gov (United States)

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha

    2012-01-01

    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  17. 77 FR 24759 - Implementation of United States-Colombia Trade Promotion Agreement Tariff-Rate Quota for Imports...

    Science.gov (United States)

    2012-04-25

    ... TRADE REPRESENTATIVE Implementation of United States-Colombia Trade Promotion Agreement Tariff-Rate...-Colombia Trade Promotion Agreement will be administered using certificates of quota eligibility. DATES..., the United States entered into the United States-Colombia Trade Promotion Agreement (the...

  18. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  19. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    OpenAIRE

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  20. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Directory of Open Access Journals (Sweden)

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  1. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation.

    Science.gov (United States)

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood-brain barrier, conventional CD11b(+)CD27(+) NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  2. Resting-state fMRI: A window into human brain plasticity

    OpenAIRE

    Guerra-Carrillo, B; Mackey, AP; Bunge, SA

    2014-01-01

    © The Author(s) 2014. Although brain plasticity is greatest in the first few years of life, the brain continues to be shaped by experience throughout adulthood. Advances in fMRI have enabled us to examine the plasticity of large-scale networks using blood oxygen level-dependent (BOLD) correlations measured at rest. Resting-state functional connectivity analysis makes it possible to measure task-independent changes in brain function and therefore could provide unique insights into experience-d...

  3. Steady state visually evoked potentials based Brain computer interface test outside the lab

    OpenAIRE

    Eduardo Francisco Caicedo Bravo; Jaiber Evelio Cardona Aristizábal

    2016-01-01

    Context: Steady State Visually Evoked Potentials (SSVEP) are brain signals which are one of the most promising signals for Brain Computer Interfaces (BCIs) implementation, however, SSVEP based BCI generally are proven in a controlled environment and there are a few tests in demanding conditions.Method: We present a SSVEP based BCI system that was used outside the lab in a noisy environment with distractions, and with the presence of public. For the tests, we showed a maze in a laptop where th...

  4. The evolution of brain waves in altered states of consciousness (REM sleep and meditation)

    OpenAIRE

    Irina E. Chiş

    2009-01-01

    Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years). The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to ...

  5. State Initiatives to Promote Technological Innovation and Economic Growth. Postsecondary Education Research Reports.

    Science.gov (United States)

    Breslin, Janice

    Activities undertaken by 43 states including Maryland to promote technological innovation and economic growth and the impact of these activities are identified. Implications for Maryland are also noted in a brief section of recommendations. State initiatives include: sponsoring research and development at colleges and companies, improving the…

  6. Spin-glass model predicts metastable brain states that diminish in anesthesia

    Directory of Open Access Journals (Sweden)

    Anthony G Hudetz

    2014-12-01

    Full Text Available Patterns of resting state connectivity change dynamically and may represent modes of cognitive information processing. The diversity of connectivity patterns (global brain states reflects the information capacity of the brain and determines the state of consciousness. In this work, computer simulation was used to explore the repertoire of global brain states as a function of cortical activation level. We implemented a modified spin glass model to describe UP/DOWN state transitions of neuronal populations at a mesoscopic scale based on resting state BOLD fMRI data. Resting state fMRI was recorded in 20 participants and mapped to 10,000 cortical regions defined on a group-aligned cortical surface map. Each region represented the population activity of a ~20mm2 area of the cortex. Cross-correlation matrices of the mapped BOLD time courses of the set of regions were calculated and averaged across subjects. In the model, each cortical region was allowed to interact with the 16 other regions that had the highest pair-wise correlation values. All regions stochastically transitioned between UP and DOWN states under the net influence of their 16 pairs. The probability of local state transitions was controlled by a single parameter T corresponding to the level of global cortical activation. To estimate the number of distinct global states, first we ran 10,000 simulations at T=0. Simulations were started from random configurations that converged to one of several distinct patterns. Using hierarchical clustering, at 99% similarity, close to 300 distinct states were found. At intermediate T, metastable state configurations were formed suggesting critical behavior with a sharp increase in the number of metastable states at an optimal T. Both reduced activation (anesthesia, sleep and increased activation (hyper-activation moved the system away from equilibrium, presumably incompatible with conscious mentation. During equilibrium, the diversity of large

  7. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  8. Meal Replacement: Calming the Hot-State Brain Network of Appetite

    OpenAIRE

    Brielle ePaolini; Laurienti, Paul J.; James eNorris; W. Jack eRejeski

    2014-01-01

    There is a growing awareness in the field of neuroscience that the self-regulation of eating behavior is driven by complex networks within the brain. These networks may be vulnerable to hot states which people can move into and out of dynamically throughout the course of a day as a function of changes in affect or visceral cues. The goal of the current study was to identify and determine differences in the Hot-state Brain Network of Appetite (HBN-A) that exists after a brief period of food re...

  9. Music Composition from the Brain Signal: Representing the Mental State by Music

    OpenAIRE

    Dan Wu; Chaoyi Li; Yu Yin; Changzheng Zhou; Dezhong Yao

    2010-01-01

    This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics...

  10. Dynamic Multiscale Modes of Resting State Brain Activity Detected by Entropy Field Decomposition.

    Science.gov (United States)

    Frank, Lawrence R; Galinsky, Vitaly L

    2016-09-01

    The ability of functional magnetic resonance imaging (FMRI) to noninvasively measure fluctuations in brain activity in the absence of an applied stimulus offers the possibility of discerning functional networks in the resting state of the brain. However, the reconstruction of brain networks from these signal fluctuations poses a significant challenge because they are generally nonlinear and nongaussian and can overlap in both their spatial and temporal extent. Moreover, because there is no explicit input stimulus, there is no signal model with which to compare the brain responses. A variety of techniques have been devised to address this problem, but the predominant approaches are based on the presupposition of statistical properties of complex brain signal parameters, which are unprovable but facilitate the analysis. In this article, we address this problem with a new method, entropy field decomposition, for estimating structure within spatiotemporal data. This method is based on a general information field-theoretic formulation of Bayesian probability theory incorporating prior coupling information that allows the enumeration of the most probable parameter configurations without the need for unjustified statistical assumptions. This approach facilitates the construction of brain activation modes directly from the spatial-temporal correlation structure of the data. These modes and their associated spatial-temporal correlation structure can then be used to generate space-time activity probability trajectories, called functional connectivity pathways, which provide a characterization of functional brain networks. PMID:27391678

  11. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia.

    Science.gov (United States)

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  12. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    Science.gov (United States)

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  13. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  14. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted ...

  15. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  16. Geomagnetic Storms and their Influence on the Human Brain Functional State

    Directory of Open Access Journals (Sweden)

    Elchin S. Babayev

    2005-01-01

    Full Text Available An investigation of the influence of geomagnetic storms of various intensities on healthy adults' human brain activity and its functional state was conducted. Results of electroencephalogram (EEG investigations were used as the most objective method reflecting functional state of the human brain. Studies on the influence of geomagnetic storms on the human brain functional state of healthy adult women patients (permanent group in states of relaxation, photo-stimulation and hyper-ventilation have revealed a negative influence of severe geomagnetic storms on functional state of the human brain. As a rule, during periods of strong geomagnetic disturbances, indisposition, weakness and presence of indistinct localized headaches were recorded for majority of patients. Complex of nonspecific shifts on EEG reflects disorganization of functional activity of cortex of large hemispheres of the human brain at geomagnetically disturbed days, which is likely connected with dysfunction of integrative subcortical systems, with disbalance of its ascending synchronizing and desynchronizing influences. Imbalance of activating and deactivating mechanisms including dysfunctions of ergo- and tropho-tropic over-segmentary centers was registered. Strengthening cortical connections in the right cortical hemisphere and their short circuit on temporal sections during geomagnetically disturbed days were observed, while, in geomagnetically quiet days, a profile of correlation interrelations reflected weak internal- and inter-hemispheric connections. The threshold of convulsive (spasmodic readiness of the human brain is reduced, which is especially dangerous for risk group persons. It is established that, in general, weak and moderate geomagnetic storms exert stimulating influence while strong disturbances of geomagnetic conditions activate braking (inhibiting processes.

  17. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  18. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase

    Science.gov (United States)

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Background Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Methods Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Results Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. Conclusion The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects. PMID:24755675

  19. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  20. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus

    OpenAIRE

    Gao, Xiang; Enikolopov, Grigori; Chen, Jinhui

    2009-01-01

    Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. We here used a transgenic reporter Nestin-GFP mouse line, in...

  1. Music Making as a Tool for Promoting Brain Plasticity across the Life Span

    OpenAIRE

    Wan, Catherine Y.; Schlaug, Gottfried

    2010-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) wh...

  2. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice. PMID:27425845

  3. Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to Cognitive Decline and Dementia

    Directory of Open Access Journals (Sweden)

    Jack C. de la Torre

    2012-01-01

    Full Text Available Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer’s disease (AD. This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE4, atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia.

  4. Postoperative mortality after surgery for brain tumors by patient insurance status in the United States

    NARCIS (Netherlands)

    Momin, E.N.; Adams, H.; Shinohara, R.T.; Frangakis, C.; Brem, H.; Quinones-Hinojosa, A.

    2012-01-01

    OBJECTIVE To examine whether being uninsured is associated with higher in-hospital postoperative mortality when undergoing surgery in the United States for a brain tumor. DESIGN Retrospective cohort study using the Nationwide Inpatient Sample, January 1, 1999, through December 31, 2008. SETTING The

  5. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  6. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain.

    Science.gov (United States)

    Philips, Mari-Anne; Lilleväli, Kersti; Heinla, Indrek; Luuk, Hendrik; Hundahl, Christian Ansgar; Kongi, Karina; Vanaveski, Taavi; Tekko, Triin; Innos, Jürgen; Vasar, Eero

    2015-01-01

    Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in "classic" limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.

  7. Using brain-computer interfaces to overcome the extinction of goal-directed thinking in minimally conscious state patients.

    Science.gov (United States)

    Liberati, Giulia; Birbaumer, Niels

    2012-08-01

    Minimally conscious state (MCS) is a condition of severely altered consciousness, in which patients appear to be wakeful and exhibit fluctuating but reproducible signs of awareness. MCS patients do not respond and are therefore dependent on others. In agreement with the embodied cognition assumption that motor actions influence our cognition, the absence of movement and the decrease in consequences for any type of covert or overt response may cause an extinction of goal-directed thinking. Brain-computer interfaces, which allow a direct output without muscular involvement, may be used to promote goal-directed thinking by allowing the performance of spatial and motor imagery tasks and could facilitate the interaction of MCS patients with their environment, possibly regaining some degree of communication and autonomy.

  8. An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface

    OpenAIRE

    Yijun Wang; Dan Zhang; Xiaorong Gao; Bo Hong; Shangkai Gao

    2007-01-01

    For a robust brain-computer interface (BCI) system based on motor imagery (MI), it should be able to tell when the subject is not concentrating on MI tasks (the “idle state”) so that real MI tasks could be extracted accurately. Moreover, because of the diversity of idle state, detecting idle state without training samples is as important as classifying MI tasks. In this paper, we propose an algorithm for solving this ...

  9. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms.

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  10. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Directory of Open Access Journals (Sweden)

    Anne ePetzold

    2015-10-01

    Full Text Available Cholinergic neurons of the pedunculopontine nucleus (PPN are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state. During the transition, neurons were predominantly excited (phasically or tonically, but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  11. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation. PMID:26582977

  12. Decoding the Large-Scale Structure of Brain Function by Classifying Mental States Across Individuals

    OpenAIRE

    Poldrack, Russell A.; Halchenko, Yaroslav ,; Hanson, Stephen José

    2009-01-01

    Brain-imaging research has largely focused on localizing patterns of activity related to specific mental processes, but recent work has shown that mental states can be identified from neuroimaging data using statistical classifiers. We investigated whether this approach could be extended to predict the mental state of an individual using a statistical classifier trained on other individuals, and whether the information gained in doing so could provide new insights into how mental processes ar...

  13. Dissociative states in dreams and brain chaos: Implications for creative awareness

    Directory of Open Access Journals (Sweden)

    Petr eBob

    2015-09-01

    Full Text Available This article reviews recent findings indicating some common brain processes during dissociative states and dreaming with the aim to outline a perspective that neural chaotic states during dreaming can be closely related to dissociative states that may manifest in dreams scenery. These data are in agreement with various clinical findings that dissociated states can be projected into the dream scenery in REM sleep periods and dreams may represent their specific interactions that may uncover unusual psychological potential of creativity in psychotherapy, art and scientific discoveries.

  14. Analysis of Brain Cognitive State for Arithmetic Task and Motor Task Using Electroencephalography Signal

    Directory of Open Access Journals (Sweden)

    R Kalpana

    2013-08-01

    Full Text Available To localize the brain dynamics for cognitive processes from EEG signature has been a challenging taskfrom last two decades. In this paper we explore the spatial-temporal correlations of brain electricalneuronal activity for cognitive task such as Arithmetic and Motor Task using 3D cortical distributionmethod. Ten healthy right handed volunteers participated in the experiment. EEG signal was acquiredduring resting state with eyes open and eyes closed; performing motor task and arithmetic calculations.The signal was then computed for three dimensional cortical distributions on realistic head model withMNI152 template using standardized low resolution brain electromagnetic tomography (sLORETA. Thiswas followed by an appropriate standardization of the current density, producing images of electricneuronal activity without localization bias. Neuronal generators responsible for cognitive state such asArithmetic Task and Motor Task were localized. The result was correlated with the previous neuroimaging(fMRI study investigation. Hence our result directed that the neuronal activity from EEG signal can bedemonstrated in cortical level with good spatial resolution. 3D cortical distribution method, thus, may beused to obtain both spatial and temporal information from EEG signal and may prove to be a significanttechnique to investigate the cognitive functions in mental health and brain dysfunctions. Also, it may behelpful for brain/human computer interfacing.

  15. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-01-01

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks. PMID:27488504

  16. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  17. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.

    Science.gov (United States)

    Yang, Fan; Liu, Yunhui; Tu, Jie; Wan, Jun; Zhang, Jie; Wu, Bifeng; Chen, Shanping; Zhou, Jiawei; Mu, Yangling; Wang, Liping

    2014-12-17

    Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.

  18. Resting State Brain Connectivity After Surgical and Behavioral Weight Loss

    Science.gov (United States)

    Lepping, Rebecca J.; Bruce, Amanda S.; Francisco, Alex; Yeh, Hung-Wen; Martin, Laura E.; Powell, Joshua N.; Hancock, Laura; Patrician, Trisha M.; Breslin, Florence J.; Selim, Niazy; Donnelly, Joseph E.; Brooks, William M.; Savage, Cary R.; Simmons, W. Kyle; Bruce, Jared M.

    2015-01-01

    OBJECTIVE We previously reported changes in food-cue neural reactivity associated with behavioral and surgical weight loss interventions. Resting functional connectivity represents tonic neural activity that may contribute to weight loss success. Here we explore whether intervention type is associated with differences in functional connectivity after weight loss. METHODS Fifteen obese participants were recruited prior to adjustable gastric banding surgery. Thirteen demographically matched obese participants were selected from a separate behavioral diet intervention. Resting state fMRI was collected three months after surgery/behavioral intervention. ANOVA was used to examine post-weight loss differences between the two groups in connectivity to seed regions previously identified as showing differential cue-reactivity after weight loss. RESULTS Following weight loss, behavioral dieters exhibited increased connectivity between left precuneus/superior parietal lobule (SPL) and bilateral insula pre- to post-meal and bariatric patients exhibited decreased connectivity between these regions pre- to post-meal (pcorrected<.05). CONCLUSIONS Behavioral dieters showed increased connectivity pre- to post-meal between a region associated with processing of self-referent information (precuneus/SPL) and a region associated with interoception (insula) whereas bariatric patients showed decreased connectivity between these regions. This may reflect increased attention to hunger signals following surgical procedures, and increased attention to satiety signals following behavioral diet interventions. PMID:26053145

  19. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    OpenAIRE

    Shao-qun Zhang; Yan-jie Wang; Ji-ping Zhang; Jun-qi Chen; Chun-xiao Wu; Zhi-peng Li; Jia-rong Chen; Huai-liang Ouyang; Yong Huang; Chun-zhi Tang

    2015-01-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupunctur...

  20. 76 FR 10082 - Office of International Trade; State Trade and Export Promotion (STEP) Grant Program

    Science.gov (United States)

    2011-02-23

    ... ADMINISTRATION Office of International Trade; State Trade and Export Promotion (STEP) Grant Program AGENCY: U.S... translation fees, The design of international marketing products or campaigns, An export trade show exhibit... Administrator of the Office of International Trade (OIT) that does not duplicate the services of other...

  1. 76 FR 28625 - Sorghum Promotion, Research, and Information Program; State Referendum Results

    Science.gov (United States)

    2011-05-18

    ... the November 18, 2010, Federal Register (75 FR 70573) outlining the procedures for conducting the... Service 7 CFR 1221 Sorghum Promotion, Research, and Information Program; State Referendum Results AGENCY... Marketing Service (AMS) is announcing that sorghum producers voting in a national referendum from February...

  2. Child and Adolescent Inpatient Restraint Reduction: A State Initiative to Promote Strength-Based Care.

    Science.gov (United States)

    LeBel, Janice; Stromberg, Nan; Duckworth, Ken; Kerzner, Joan; Goldstein, Robert; Weeks, Michael; Harper, Gordon; LaFlair, Lareina; Sudders, Marylou

    2004-01-01

    Objective: To reduce the use of restraint and seclusion with children and adolescents in psychiatric inpatient units by promoting a preventive, strength-based model of care. Method: The State Mental Health Authority used data analysis, quality improvement strategies, regulatory oversight, and technical assistance to develop and implement system…

  3. Meal replacement: calming the hot-state brain network of appetite

    OpenAIRE

    Brielle M Paolini; Laurienti, Paul J.; Norris, James; Rejeski, W. Jack

    2014-01-01

    There is a growing awareness in the field of neuroscience that the self-regulation of eating behavior is driven by complex networks within the brain. These networks may be vulnerable to “hot states” which people can move into and out of dynamically throughout the course of a day as a function of changes in affect or visceral cues. The goal of the current study was to identify and determine differences in the Hot-state Brain Network of Appetite (HBN-A) that exists after a brief period of food ...

  4. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  5. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    Science.gov (United States)

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  6. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.

    Science.gov (United States)

    Andellini, Martina; Cannatà, Vittorio; Gazzellini, Simone; Bernardi, Bruno; Napolitano, Antonio

    2015-09-30

    The employment of graph theory to analyze spontaneous fluctuations in resting state BOLD fMRI data has become a dominant theme in brain imaging studies and neuroscience. Analysis of resting state functional brain networks based on graph theory has proven to be a powerful tool to quantitatively characterize functional architecture of the brain and it has provided a new platform to explore the overall structure of local and global functional connectivity in the brain. Due to its increased use and possible expansion to clinical use, it is essential that the reliability of such a technique is very strongly assessed. In this review, we explore the outcome of recent studies in network reliability which apply graph theory to analyze connectome resting state networks. Therefore, we investigate which preprocessing steps may affect reproducibility the most. In order to investigate network reliability, we compared the test-retest (TRT) reliability of functional data of published neuroimaging studies with different preprocessing steps. In particular we tested influence of global signal regression, correlation metric choice, binary versus weighted link definition, frequency band selection and length of time-series. Statistical analysis shows that only frequency band selection and length of time-series seem to affect TRT reliability. Our results highlight the importance of the choice of the preprocessing steps to achieve more reproducible measurements. PMID:26072249

  7. Anesthetics rapidly promote synaptogenesis during a critical period of brain development.

    Directory of Open Access Journals (Sweden)

    Mathias De Roo

    Full Text Available Experience-driven activity plays an essential role in the development of brain circuitry during critical periods of early postnatal life, a process that depends upon a dynamic balance between excitatory and inhibitory signals. Since general anesthetics are powerful pharmacological modulators of neuronal activity, an important question is whether and how these drugs can affect the development of synaptic networks. To address this issue, we examined here the impact of anesthetics on synapse growth and dynamics. We show that exposure of young rodents to anesthetics that either enhance GABAergic inhibition or block NMDA receptors rapidly induce a significant increase in dendritic spine density in the somatosensory cortex and hippocampus. This effect is developmentally regulated; it is transient but lasts for several days and is also reproduced by selective antagonists of excitatory receptors. Analyses of spine dynamics in hippocampal slice cultures reveals that this effect is mediated through an increased rate of protrusions formation, a better stabilization of newly formed spines, and leads to the formation of functional synapses. Altogether, these findings point to anesthesia as an important modulator of spine dynamics in the developing brain and suggest the existence of a homeostatic process regulating spine formation as a function of neural activity. Importantly, they also raise concern about the potential impact of these drugs on human practice, when applied during critical periods of development in infants.

  8. Music Composition from the Brain Signal: Representing the Mental State by Music

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2010-01-01

    Full Text Available This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics and structure were taken into consideration. With EEGs during various sleep stages as an example, the music generated from them had different patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may be a potential tool for EEG monitoring, biofeedback therapy, and so forth.

  9. [Functional connectivity analysis of the brain network using resting-state FMRI].

    Science.gov (United States)

    Hayashi, Toshihiro

    2011-12-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. PMID:22147450

  10. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  11. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    Directory of Open Access Journals (Sweden)

    Silvia Pagliardini

    Full Text Available Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS and activated patterns resembling rapid eye movement (REM sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like to activated (REM-like states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  12. State-dependent and environmental modulation of brain hyperthermic effects of psychoactive drugs of abuse

    Science.gov (United States)

    Kiyatkin, Eugene A.

    2014-01-01

    Hyperthermia is a known effect induced by psychomotor stimulants and pathological hyperthermia is a prominent symptom of acute intoxication with these drugs in humans. In this manuscript, I will review our recent work concerning the brain hyperthermic effects of several known and recently appeared psychostimulant drugs of abuse (cocaine, methamphetamine, MDMA, methylone, and MDPV). Specifically, I will consider the role of activity state and environmental conditions in modulating the brain temperature effects of these drugs and their acute toxicity. Although some of these drugs are structurally similar and interact with the same brain substrates, there are important differences in their temperature effects in quiet resting conditions and the type of modulation of these temperature effects under conditions that mimic basic aspects of human drug use (social interaction, moderately warm environments). These data could be important for understanding the potential dangers of each drug and ultimately preventing adverse health complications associated with acute drug-induced intoxication.

  13. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    Science.gov (United States)

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies. PMID:25448251

  14. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    Science.gov (United States)

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  15. The entropic brain:A theory of conscious states informed by neuroimaging research with psychedelic drugs

    Directory of Open Access Journals (Sweden)

    Robin Lester Carhart-Harris

    2014-02-01

    Full Text Available Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neural dynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of ‘primary states’ is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. It is noted that elevated entropy in this sense, is a characteristic of systems exhibiting ‘self-organised criticality’, i.e., a property of systems that gravitate towards a ‘critical’ point in a transition zone between order and disorder in which certain phenomena such as power-law scaling appear. This implies that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organised activity within the default-mode network (DMN and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled. These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as REM sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetised state.

  16. Distinct resting-state brain activity in patients with functional constipation.

    Science.gov (United States)

    Zhu, Qiang; Cai, Weiwei; Zheng, Jianyong; Li, Guanya; Meng, Qianqian; Liu, Qiaoyun; Zhao, Jizheng; von Deneen, Karen M; Wang, Yuanyuan; Cui, Guangbin; Duan, Shijun; Han, Yu; Wang, Huaning; Tian, Jie; Zhang, Yi; Nie, Yongzhan

    2016-10-01

    Functional constipation (FC) is a common functional gastrointestinal disorder (FGID) with a higher prevalence in clinical practice. The primary brain regions involved in emotional arousal regulation, somatic, sensory and motor control processing have been identified with neuroimaging in FGID. It remains unclear how these factors interact to influence the baseline brain activity of patients with FC. In the current study, we combined resting-state fMRI (RS-fMRI) with Granger causality analysis (GCA) to investigate the causal interactions of the brain areas in 14 patients with FC and in 26 healthy controls (HC). Our data showed significant differences in baseline brain activities in a number of major brain regions implicated in emotional process modulation (i.e. dorsal anterior cingulate cortex-dACC, anterior insula-aINS, orbitofrontal cortex-OFC, hippocampus-HIPP), somatic and sensory processing, and motor control (i.e., supplementary motor area-SMA, precentral gyrus-PreCen) (Ppropel limbic regions at the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the SMA and PreCen, which are regions involved with somatic, sensory and motor control, propel the aINS and HIPP, suggesting abnormalities of sensory and behavioral responses. Such information of basal level functional abnormalities expands our current understanding of neural mechanisms underlying functional constipation.

  17. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  18. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury.

    Science.gov (United States)

    Yoshioka, Nozomu; Hisanaga, Shin-Ichi; Kawano, Hitoshi

    2010-09-15

    The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.

  19. Brain regions involved in dispositional mindfulness during resting state and their relation with well-being.

    Science.gov (United States)

    Kong, Feng; Wang, Xu; Song, Yiying; Liu, Jia

    2016-08-01

    Mindfulness can be viewed as an important dispositional characteristic that reflects the tendency to be mindful in daily life, which is beneficial for improving individuals' both hedonic and eudaimonic well-being. However, no study to date has examined the brain regions involved in individual differences in dispositional mindfulness during the resting state and its relation with hedonic and eudaimonic well-being. To investigate this issue, the present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional homogeneity (ReHo) that measures the local synchronization of spontaneous brain activity in a large sample. We found that dispositional mindfulness was positively associated with the ReHo in the left orbitofrontal cortex (OFC), left parahippocampal gyrus (PHG), and right insula implicated in emotion processing, body awareness, and self-referential processing, and negatively associated with the ReHo in right inferior frontal gyrus (IFG) implicated in response inhibition and attentional control. Furthermore, we found different neural associations with hedonic (i.e., positive and negative affect) and eudaimonic well-being (i.e., the meaningful and purposeful life). Specifically, the ReHo in the IFG predicted eudaimonic well-being whereas the OFC predicted positive affect, both of which were mediated by dispositional mindfulness. Taken together, our study provides the first evidence for linking individual differences in dispositional mindfulness to spontaneous brain activity and demonstrates that dispositional mindfulness engages multiple brain mechanisms that differentially influence hedonic and eudaimonic well-being. PMID:26360907

  20. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.

    Science.gov (United States)

    Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè

    2015-02-01

    Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways. PMID:25027560

  1. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  2. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  3. Resting-State and Task-Based Functional Brain Connectivity in Developmental Dyslexia.

    Science.gov (United States)

    Schurz, Matthias; Wimmer, Heinz; Richlan, Fabio; Ludersdorfer, Philipp; Klackl, Johannes; Kronbichler, Martin

    2015-10-01

    Reading requires the interaction between multiple cognitive processes situated in distant brain areas. This makes the study of functional brain connectivity highly relevant for understanding developmental dyslexia. We used seed-voxel correlation mapping to analyse connectivity in a left-hemispheric network for task-based and resting-state fMRI data. Our main finding was reduced connectivity in dyslexic readers between left posterior temporal areas (fusiform, inferior temporal, middle temporal, superior temporal) and the left inferior frontal gyrus. Reduced connectivity in these networks was consistently present for 2 reading-related tasks and for the resting state, showing a permanent disruption which is also present in the absence of explicit task demands and potential group differences in performance. Furthermore, we found that connectivity between multiple reading-related areas and areas of the default mode network, in particular the precuneus, was stronger in dyslexic compared with nonimpaired readers.

  4. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  5. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    Science.gov (United States)

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  6. Music making as a tool for promoting brain plasticity across the life span.

    Science.gov (United States)

    Wan, Catherine Y; Schlaug, Gottfried

    2010-10-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) while receiving continuous multisensory feedback. This association learning can strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) while activating multimodal integration regions (e.g., around the intraparietal sulcus). We argue that training of this neural network may produce cross-modal effects on other behavioral or cognitive operations that draw on this network. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. These enhancements suggest the potential for music making as an interactive treatment or intervention for neurological and developmental disorders, as well as those associated with normal aging. PMID:20889966

  7. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain.

    Science.gov (United States)

    Gibson, Erin M; Purger, David; Mount, Christopher W; Goldstein, Andrea K; Lin, Grant L; Wood, Lauren S; Inema, Ingrid; Miller, Sarah E; Bieri, Gregor; Zuchero, J Bradley; Barres, Ben A; Woo, Pamelyn J; Vogel, Hannes; Monje, Michelle

    2014-05-01

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.

  8. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  9. Features of sales promotion in cigarette magazine advertisements, 1980-1993: an analysis of youth exposure in the United States

    OpenAIRE

    Pucci, L; Siegel, M

    1999-01-01

    OBJECTIVE—To examine the presence of features of sales promotion in cigarette advertising in United States magazines, and to describe trends in youth (ages 12-17) exposure to such advertising (termed "promotional advertising").
DESIGN—Analysis of 1980-1993 annual data on: (a) total pages and expenditures for "promotional advertising" (advertising that contains features of sales promotion) in 36 popular magazines (all magazines for which data were available), by cigarette brand; and (b) reader...

  10. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography

    OpenAIRE

    Crowe, David A.; Leuthold, Arthur C.; Georgopoulos, Apostolos P.

    2010-01-01

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermor...

  11. Information-geometric measures estimate neural interactions during oscillatory brain states

    OpenAIRE

    Jean-Marc Fellous; Masami Tatsuno

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits...

  12. Mapping Thalamocortical Networks in Rat Brain using Resting-State Functional Connectivity

    OpenAIRE

    Liang, Zhifeng; Li, Tao; King, Jean; Zhang, Nanyin

    2013-01-01

    Thalamocortical connectivity plays a vital role in brain function. The anatomy and function of thalamocortical networks have been extensively studied in animals by numerous invasive techniques. Non-invasively mapping thalamocortical networks in humans has also been demonstrated by utilizing resting-state functional magnetic resonance imaging (rsfMRI). However, success in simultaneously imaging multiple thalamocortical networks in animals is rather limited. This is largely due to the profound ...

  13. Resting state brain dynamics and its transients: a combined TMS-EEG study

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-01-01

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain’s relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks. PMID:27488504

  14. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Ali Bashashati

    2007-01-01

    the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement. It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1% in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1% in the context of a 2-state self-paced BCI.

  15. Extraversion and Neuroticism relate to topological properties of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Qing eGao

    2013-06-01

    Full Text Available With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e. betweenness centrality (BC, was positively associated with neuroticism scores in the right precentral gyrus, right caudate nucleus, right olfactory cortex and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus, indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  16. An overview of the EU Member States support schemes for the promotion of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2012-07-01

    In this work, an overview of the European Union (EU) Member States support schemes for the promotion of renewable energy sources (RES) is provided. In particular, the status of the electricity generation capacity as well as the RES mixture in the Member States is described. Moreover, the different support schemes such as, investment support, feed-in tariffs (FiTs), tradable green certificates, and fiscal and financial measures which the Member States have adopted for the promotion of RES technologies are discussed in detail. Some Member States are implementing a single support scheme for the promotion of RES for power generation (RES-E), e.g., seven Member States use FiTs, or implement a hybrid support scheme by combining all or some of the four categories of the RES-E supporting schemes. Although, these support schemes have increased the penetration of the RES-E technologies in the Member States, still there is a long way in order to achieve the 2020 target. The reason for this may be that the way these schemes have been used so far, i.e., either as single support schemes or in combination of FiTs or tradable green certificates with investment support and fiscal and financial measures, has been ineffective. A more effective combination could be a hybrid scheme consisting of FiTs with tradable green certificates measures, as in the case of Italy and United Kingdom, that will increase the RES-E penetration and eliminate the possible technical problems which will arise from this increased penetration and have an effect in the stability of the power system.

  17. A Novel Approach for Pass Word Authentication using Brain -State -In -A Box (BSB) Model

    CERN Document Server

    Chakravarthy, A S N; Avadhani, P S

    2011-01-01

    Authentication is the act of confirming the truth of an attribute of a datum or entity. This might involve confirming the identity of a person, tracing the origins of an artefact, ensuring that a product is what it's packaging and labelling claims to be, or assuring that a computer program is a trusted one. The authentication of information can pose special problems (especially man-in-the-middle attacks), and is often wrapped up with authenticating identity. Password authentication using Brain-State -In-A Box is presented in this paper. Here in this paper we discuss Brain-State -In-A Box Scheme for Textual and graphical passwords which will be converted in to probabilistic values Password. We observe how to get password authentication Probabilistic values for Text and Graphical image. This study proposes the use of a Brain-State -In-A Box technique for password authentication. In comparison to existing layered neural network techniques, the proposed method provides better accuracy and quicker response time to...

  18. The evolution of brain waves in altered states of consciousness (REM sleep and meditation

    Directory of Open Access Journals (Sweden)

    Irina E. Chiş

    2009-12-01

    Full Text Available Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years. The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to them. This was made to avoid errors that could compromise the wholestudy. Results: It was shown that an appropriate musical background has a positive effect on brainactivity and especially on alpha waves. There were no significant results regarding REM sleep, althougha slight increase in the frequency by which the periods of REM sleep occurred was noticed. On theother hand, in meditation, the appropriate musical background had a major influence on the period inwhich the subjects entered the alpha state. This period was considerably reduced. Conclusion: Anadequate type of music can help our brain entering in, and maintaining the alpha state.

  19. Robust brain parcellation using sparse representation on resting-state fMRI.

    Science.gov (United States)

    Zhang, Yu; Caspers, Svenja; Fan, Lingzhong; Fan, Yong; Song, Ming; Liu, Cirong; Mo, Yin; Roski, Christian; Eickhoff, Simon; Amunts, Katrin; Jiang, Tianzi

    2015-11-01

    Resting-state fMRI (rs-fMRI) has been widely used to segregate the brain into individual modules based on the presence of distinct connectivity patterns. Many parcellation methods have been proposed for brain parcellation using rs-fMRI, but their results have been somewhat inconsistent, potentially due to various types of noise. In this study, we provide a robust parcellation method for rs-fMRI-based brain parcellation, which constructs a sparse similarity graph based on the sparse representation coefficients of each seed voxel and then uses spectral clustering to identify distinct modules. Both the local time-varying BOLD signals and whole-brain connectivity patterns may be used as features and yield similar parcellation results. The robustness of our method was tested on both simulated and real rs-fMRI datasets. In particular, on simulated rs-fMRI data, sparse representation achieved good performance across different noise levels, including high accuracy of parcellation and high robustness to noise. On real rs-fMRI data, stable parcellation of the medial frontal cortex (MFC) and parietal operculum (OP) were achieved on three different datasets, with high reproducibility within each dataset and high consistency across these results. Besides, the parcellation of MFC was little influenced by the degrees of spatial smoothing. Furthermore, the consistent parcellation of OP was also well corresponding to cytoarchitectonic subdivisions and known somatotopic organizations. Our results demonstrate a new promising approach to robust brain parcellation using resting-state fMRI by sparse representation.

  20. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    Science.gov (United States)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the

  1. Interaction Between Childhood Adversity, Brain-Derived Neurotrophic Factor val/met and Serotonin Transporter Promoter Polymorphism on Depression : The TRAILS Study

    NARCIS (Netherlands)

    Nederhof, E; Bouma, Esther; Oldehinkel, A.J.; Ormel, J.

    2010-01-01

    Background: The three-way interaction between the functional polymorphism in the serotonin transporter gene linked promoter region, the val66met polymorphism in the brain-derived neurotrophic factor gene, and childhood adversity in the prediction of depression in children, reported by Kaufman and co

  2. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    Science.gov (United States)

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions. PMID:11738545

  3. MTR variations in normal adult brain structures using balanced steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Meritxell; Wetzel, Stephan G.; Radue, Ernst-Wilhelm [University of Basel Hospital, Department of Neuroradiology, Institute of Radiology, Basel (Switzerland); Gloor, Monika; Bieri, Oliver; Scheffler, Klaus [University of Basel Hospital, Division of Radiological Physics, Institute of Radiology, Basel (Switzerland)

    2011-03-15

    Magnetization transfer (MT) is sensitive to the macromolecular environment of water protons and thereby provides information not obtainable from conventional magnetic resonance imaging (MRI). Compared to standard methods, MT-sensitized balanced steady-state free precession (bSSFP) offers high-resolution images with significantly reduced acquisition times. In this study, high-resolution magnetization transfer ratio (MTR) images from normal appearing brain structures were acquired with bSSFP. Twelve subjects were studied on a 1.5 T scanner. MTR values were calculated from MT images acquired in 3D with 1.3 mm isotropic resolution. The complete MT data set was acquired within less than 3.5 min. Forty-one brain structures of the white matter (WM) and gray matter (GM) were identified for each subject. MTR values were higher for WM than GM. In general, MTR values of the WM and GM structures were in good accordance with the literature. However, MTR values showed more homogenous values within WM and GM structures than previous studies. MT-sensitized bSSFP provides isotropic high-resolution MTR images and hereby allows assessment of reliable MTR data in also very small brain structures in clinically feasible acquisition times and is thus a promising sequence for being widely used in the clinical routine. The present normative data can serve as a reference for the future characterization of brain pathologies. (orig.)

  4. Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks

    Science.gov (United States)

    Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga

    2015-09-01

    Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration

  5. Disrutpted resting-state functional architecture of the brain after 45-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-06-01

    Full Text Available Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI to study whether the functional architecture of the brain is altered after 45 days of -6° head-down tilt (HDT bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of -6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC, to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC analysis. We found decreased DC in two regions, the left anterior insula (aINS and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies, in the male volunteers after 45 days of -6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function and central neural activity.

  6. A role for community health promoters in tuberculosis control in the state of Chiapas, Mexico.

    Science.gov (United States)

    Herce, Michael E; Chapman, Jacob A; Castro, Arachu; García-Salyano, Gabriel; Khoshnood, Kaveh

    2010-04-01

    We conducted a qualitative study employing structured interviews with 38 community health workers, known as health promoters, from twelve rural municipalities of Chiapas, Mexico in order to characterize their work and identify aspects of their services that would be applicable to community-based tuberculosis (TB) control programs. Health promoters self-identify as being of Mayan Indian ethnicity. Most are bilingual, speaking Spanish and one of four indigenous Mayan languages native to Chiapas. They volunteer 11 h each week to conduct clinical and public health work in their communities. Over half (53%) work with a botiquín, a medicine cabinet stocked with essential medicines. Fifty-three percent identify TB as a major problem affecting the health of their communities, with one-fifth (21%) of promoters reporting experience caring for patients with known or suspected TB and 29% having attended to patients with hemoptysis. One-third of health promoters have access to antibiotics (32%) and one-half have experience with their administration; 55% complement their biomedical treatments with traditional Mayan medicinal plant therapies in caring for their patients. We describe how health promoters employ both traditional and allopathic medicine to treat the symptoms and diseases they encounter most frequently which include fever, diarrhea, and parasitic infections. We contend that given the complex sociopolitical climate in Chiapas and the state's unwavering TB epidemic and paucity of health care infrastructure in rural areas, efforts to implement comprehensive, community-based TB control would benefit from employing the services of health promoters. PMID:20033836

  7. 77 FR 29519 - To Implement the United States-Colombia Trade Promotion Agreement and for Other Purposes

    Science.gov (United States)

    2012-05-18

    ... States of America the two hundred and thirty-sixth. (Presidential Sig.) [FR Doc. 2012-12220 Filed 5-17-12... States-Colombia Trade Promotion Agreement and for Other Purposes By the President of the United States of America A Proclamation 1. On November 22, 2006, the United States entered into the United...

  8. Tobacco Advertising and Promotional Expenditures in Sports and Sporting Events - United States, 1992-2013.

    Science.gov (United States)

    Agaku, Israel T; Odani, Satomi; Sturgis, Stephanie; Harless, Charles; Glover-Kudon, Rebecca

    2016-01-01

    Smokeless tobacco has been actively promoted by tobacco companies using endorsements by major sport figures, and research indicates that tobacco advertising can lead to youth initiation of tobacco use (1,2). Television and radio advertisements for cigarettes and smokeless tobacco have been prohibited since 1969,* and the 1998 Master Settlement Agreement(†) further prohibited tobacco companies from targeting youths with tobacco product advertisements in specified areas. In 2010, the Food and Drug Administration (FDA), under authority of the 2009 Family Smoking Prevention and Tobacco Control Act (FSPTCA), prohibited tobacco-brand sponsorship (i.e., sponsorship of sports and entertainment events or other social or cultural events using the tobacco brand name or anything identifiable with any brand of cigarettes or smokeless tobacco).(§) However, corporate-name tobacco sponsorship (i.e., sponsorship using the name of the corporation that manufactures regulated tobacco products) is still permitted under certain conditions.(¶) To monitor tobacco advertising and promotional activities in sports in the United States, CDC analyzed trends in sports-related marketing expenditures for cigarettes and smokeless tobacco during 1992-2013 using data from the Federal Trade Commission (FTC). During 1992-2013, sports-related marketing expenditures, adjusted by the consumer price index to constant 2013 dollars, decreased significantly for both cigarettes (from $136 million in 1992 to $0 in 2013) and smokeless tobacco (from $34.8 million in 1992 to $2.1 million in 2013). During 2010-2013, after the prohibition of tobacco-brand sponsorship in sports under the FSPTCA, cigarette manufacturers reported no spending (i.e., $0) on sports-related advertising and promotional activities; in contrast, smokeless tobacco manufacturers reported expenditures of $16.3 million on advertising and promoting smokeless tobacco in sports during 2010-2013. These findings indicate that despite prohibitions

  9. EEG Resting-State Brain Topological Reorganization as a Function of Age

    Directory of Open Access Journals (Sweden)

    Manuela Petti

    2016-01-01

    Full Text Available Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI, EEG, and MEG and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20–63 years. Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults: significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80%.

  10. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jakob Madsen Pedersen

    Full Text Available To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.

  11. Resting-State Brain Functional Connectivity Is Altered in Type 2 Diabetes

    OpenAIRE

    Musen, Gail; Jacobson, Alan M.; Bolo, Nicolas R.; Simonson, Donald C.; Martha E. Shenton; McCartney, Richard L.; Flores, Veronica L.; Hoogenboom, Wouter S.

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer disease (AD). Populations at risk for AD show altered brain activity in the default mode network (DMN) before cognitive dysfunction. We evaluated this brain pattern in T2DM patients. We compared T2DM patients (n = 10, age = 56 ± 2.2 years, fasting plasma glucose [FPG] = 8.4 ± 1.3 mmol/L, HbA1c = 7.5 ± 0.54%) with nondiabetic age-matched control subjects (n = 11, age = 54 ± 1.8 years, FPG = 4.8 ± 0.2 mmol/L) using resting-state fun...

  12. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. PMID:25969399

  13. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development.

  14. Brain state-dependent closed-loop modulation of paired associative stimulation controlled by sensorimotor desynchronization

    Directory of Open Access Journals (Sweden)

    Vladislav eRoyter

    2016-05-01

    Full Text Available Background: Pairing peripheral electrical stimulation (ES and transcranial magnetic stimulation (TMS increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI-related oscillatory modulation amplifies both ES-related cortical effects -sensorimotor event-related desynchronization (ERD - and TMS-induced peripheral responses - motor-evoked potentials (MEP. However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear.Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES of the extensor digitorum communis (EDC muscle and subsequent single-pulse TMS (110% resting motor threshold of the contralateral primary motor cortex was controlled by beta-band (16-22Hz ERD during motor-imagery of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC of both MEP peak-to-peak amplitude and area under the curve (AUC before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain-state dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied.Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation in the context of neurorehabilitation.

  15. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An

    2013-01-01

    Background Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness.However,there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI.This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI.Methods We consecutively enrolled 17 patients with VS after HIBI,who experienced cardiopulmonary resuscitation.Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from t7 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis.Additionally,we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis.Results Compared with normal controls,the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus,bilateral posterior cingulate gyrus,bilateral middle frontal gyri,bilateral superior parietal gyri,bilateral middle occipital gyri,bilateral precentral gyri (PFEw correctecd <0.0001),and increased brain metabolism in bilateral insula,bilateral cerebella,and the brainstem (PFEw correctecd <0.0001).In covariance analysis,the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected <0.005).Conclusions Our study demonstrated that the precuneus,the posterior cingulate area and the frontoparietal cortex,which is a component of neural correlate for consciousness,may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI.In post-resuscitated HIBI,measurement of brain

  16. Children and young adults in a vegetative or minimally conscious state after brain injury. Diagnosis, rehabilitation and outcome.

    NARCIS (Netherlands)

    Eilander, H.J.

    2008-01-01

    Severe brain injury can result in long lasting loss of consciousness. After recovering from a comatose state, some patients move over into a vegetative state that remains for weeks, months or even years. The presence of patients in a prolonged unconscious state is demanding for families, as well as

  17. N-methyl-D-aspartate receptor subtype 3A promotes apoptosis in developing mouse brain exposed to hyperoxia

    Institute of Scientific and Technical Information of China (English)

    Jimei Li; Shanping Yu; Zhongyang Lu; Osama Mohamad; Ling Wei

    2012-01-01

    In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyl-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2'-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN+ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen.

  18. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.;

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...

  19. [Music-Acoustic Signals Controlled by Subject's Brain Potentials in the Correction of Unfavorable Functional States].

    Science.gov (United States)

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2016-01-01

    Literature review and the results of own studies on the development and experimental testing of musical EEG neurofeedback technology are presented. The technology is based on exposure of subjects to music or music-like signals that are organized in strict accordance with the current values of brain potentials of the patient. The main attention is paid to the analysis of the effectiveness of several versions of the technology, using specific and meaningful for the individual narrow-frequency EEG oscillators during the correction of unfavorable changes of the functional state. PMID:27149824

  20. Assessing Capacity to Promote Science-Based Programs: A Key Informant Study of State Teen Pregnancy Prevention Organizations

    Science.gov (United States)

    Saunders, Edward; Sabri, Bushra; Huberman, Barbara; Klaus, T. W.; Davis, Laura

    2011-01-01

    The purpose of this qualitative study was to identify significant external and internal challenges that state organization leaders face in promoting science-based teen pregnancy prevention programs within their states. The state organization administrators were chosen because their organizations were funded by the U.S. Centers for Disease Control…

  1. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available INTRODUCTION: Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom. METHODS: A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system. RESULTS: A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites. CONCLUSION: Chinese XLHED carriers often have a hypermethylated EDA promoter.

  2. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  3. 78 FR 29779 - Labor Affairs Council of the United States-Colombia Trade Promotion Agreement; Notice of Public...

    Science.gov (United States)

    2013-05-21

    ... of the Secretary Labor Affairs Council of the United States-Colombia Trade Promotion Agreement... Article 17.5 of the U.S.-Colombia Trade Promotion Agreement (TPA), the International Labor Affairs Bureau...) of the U.S.-Colombia TPA, including activities of the Labor Cooperation Mechanism established...

  4. Plasticity of brain wave network interactions and evolution across physiologic states

    OpenAIRE

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other a...

  5. Lessons of Risk Communication and Health Promotion - West Africa and United States.

    Science.gov (United States)

    Bedrosian, Sara R; Young, Cathy E; Smith, Laura A; Cox, Joanne D; Manning, Craig; Pechta, Laura; Telfer, Jana L; Gaines-McCollom, Molly; Harben, Kathy; Holmes, Wendy; Lubell, Keri M; McQuiston, Jennifer H; Nordlund, Kristen; O'Connor, John; Reynolds, Barbara S; Schindelar, Jessica A; Shelley, Gene; Daniel, Katherine Lyon

    2016-01-01

    During the response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC addressed the disease on two fronts: in the epidemic epicenter of West Africa and at home in the United States. Different needs drove the demand for information in these two regions. The severity of the epidemic was reflected not only in lives lost but also in the amount of fear, misinformation, and stigma that it generated worldwide. CDC helped increase awareness, promoted actions to stop the spread of Ebola, and coordinated CDC communication efforts with multiple international and domestic partners. CDC, with input from partners, vastly increased the number of Ebola communication materials for groups with different needs, levels of health literacy, and cultural preferences. CDC deployed health communicators to West Africa to support ministries of health in developing and disseminating clear, science-based messages and promoting science-based behavioral interventions. Partnerships in West Africa with local radio, television, and cell phone businesses made possible the dissemination of messages appropriate for maximum effect. CDC and its partners communicated evolving science and risk in a culturally appropriate way to motivate persons to adapt their behavior and prevent infection with and spread of Ebola virus. Acknowledging what is and is not known is key to effective risk communication, and CDC worked with partners to integrate health promotion and behavioral and cultural knowledge into the response to increase awareness of the actual risk for Ebola and to promote protective actions and specific steps to stop its spread. The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html). PMID:27386834

  6. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  7. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  8. Altered baseline brain activity in children with bipolar disorder during mania state: a resting-state study

    Directory of Open Access Journals (Sweden)

    Lu D

    2014-02-01

    Full Text Available Dali Lu,1 Qing Jiao,2 Yuan Zhong,3,4 Weijia Gao,1 Qian Xiao,1 Xiaoqun Liu,1 Xiaoling Lin,5 Wentao Cheng,6 Lanzhu Luo,6 Chuanjian Xu,3 Guangming Lu,2 Linyan Su1 1Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China; 2Department of Radiology, Taishan Medical University, Taian, People's Republic of China; 3Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China; 4School of Psychology, Nanjing Normal University, Nanjing, People's Republic of China; 5School of Nursing of Central South University, Changsha, People's Republic of China; 6Department of Pediatric and Geriatric Psychiatry, Fuzhou Neuropsychiatric Hospital, Fuzhou, People's Republic of China Background: Previous functional magnetic resonance imaging (fMRI studies have shown abnormal functional connectivity in regions involved in emotion processing and regulation in pediatric bipolar disorder (PBD. Recent studies indicate, however, that task-dependent neural changes only represent a small fraction of the brain's total activity. How the brain allocates the majority of its resources at resting state is still unknown. We used the amplitude of low-frequency fluctuation (ALFF method of fMRI to explore the spontaneous neuronal activity in resting state in PBD patients. Methods: Eighteen PBD patients during the mania phase and 18 sex-, age- and education-matched healthy subjects were enrolled in this study and all patients underwent fMRI scanning. The ALFF method was used to compare the resting-state spontaneous neuronal activity between groups. Correlation analysis was performed between the ALFF values and Young Mania Rating Scale scores. Results: Compared with healthy controls, PBD patients presented increased ALFF in bilateral caudate and left pallidum as well as decreased ALFF in left precuneus

  9. Induced arousal following zolpidem treatment in a vegetative state after brain injury in 7 cases Analysis using visual single photon emission computerized tomography and digitized cerebral state monitor

    Institute of Scientific and Technical Information of China (English)

    Bo Du; Aijun Shan; Di Yang; Wei Xiang

    2008-01-01

    BACKGROUND: Several studies have reported the use of zolpidem for induced arousal after permanent vegetative states. However, changes in brain function and EMG after zolpidem treatment requires further investigation. OBJECTIVE: To investigate the effect of zolpidem, an unconventional drug, on inducing arousal in patients in a permanent vegetative state after brain injury using visual single photon emission computerized tomography and digitized cerebral state monitor. DESIGN: A self-controlled observation. SETTING: Shenzhen People's Hospital.PARTICIPANTS: Seven patients in a permanent vegetative state were selected from the Department of Neurosurgery, Shenzhen People's Hospital from March 2005 to May 2007. The group included 5 males and 2 females, 24–55 years of age, with a mean age of 38.5 years. All seven patients had been in a permanent vegetative statement for at least six months. The patient group included three comatose patients, who had sustained injuries to the cerebral cortex, basal ganglia, or thalamus in motor vehicle accidents, and four patients, who had suffered primary/secondary brain stem injury. Informed consents were obtained from the patients’ relatives. METHODS: The patients brains were imaged by 99Tcm ECD single photon emission computerized tomography prior to treatment with zolpidem [Sanofi Winthrop Industrie, France, code number approved by the State Food & Drug Administration (SFDA) J20040033, specification 10 mg per tablet. At 8:00 p.m., 10 mg zolpidem was dissolved with distilled water and administered through a nasogastric tube at 1 hour before and after treatment and 1 week following treatment, respectively. Visual analysis of cerebral perfusion changes in the injured brain regions before and after treatment was performed. Simultaneously, three monitoring parameters were obtained though a cerebral state monitor, which included cerebral state index, electromyographic index, and burst suppression index. MAIN OUTCOME MEASURES: Comparison

  10. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Directory of Open Access Journals (Sweden)

    José del R. Millán

    2010-09-01

    Full Text Available In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT. In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication & Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  11. Brain-computer interfaces in the completely locked-in state and chronic stroke.

    Science.gov (United States)

    Chaudhary, U; Birbaumer, N; Ramos-Murguialday, A

    2016-01-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, facilitating paralyzed patients to interact with the environment. In this chapter, we discuss the historical perspective of development of BCIs and the current advances of noninvasive BCIs for communication in patients with amyotrophic lateral sclerosis and for restoration of motor impairment after severe stroke. Distinct techniques have been explored to control a BCI in patient population especially electroencephalography (EEG) and more recently near-infrared spectroscopy (NIRS) because of their noninvasive nature and low cost. Previous studies demonstrated successful communication of patients with locked-in state (LIS) using EEG- and invasive electrocorticography-BCI and intracortical recordings when patients still showed residual eye control, but not with patients with complete LIS (ie, complete paralysis). Recently, a NIRS-BCI and classical conditioning procedure was introduced, allowing communication in patients in the complete locked-in state (CLIS). In severe chronic stroke without residual hand function first results indicate a possible superior motor rehabilitation to available treatment using BCI training. Here we present an overview of the available studies and recent results, which open new doors for communication, in the completely paralyzed and rehabilitation in severely affected stroke patients. We also reflect on and describe possible neuronal and learning mechanisms responsible for BCI control and perspective for future BMI research for communication in CLIS and stroke motor recovery. PMID:27590968

  12. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  13. The effectiveness of different policy regimes for promoting wind power: Experiences from the states

    International Nuclear Information System (INIS)

    Governments at the state (and to a lesser extent, local) level in the United States have adopted an array of policies to promote wind and other types of 'green' energy, including solar, geothermal, low-impact hydropower, and certain forms of biomass. However, because of different regulatory environments, energy resource endowments, political interests, and other factors, there is considerable variation among the states in their green power policies. This paper analyzes the contribution to wind power development of several state-level policies (renewable portfolio standards (RPS), fuel generation disclosure rules, mandatory green power options, and public benefits funds), along with retail choice (RET) facilitated by electricity restructuring. The empirical results support existing anecdotal and case studies in finding a positive relationship between RPS and wind power development. We also found that requiring electricity suppliers to provide green power options to customers is positively related to development of wind energy, while there is a negative relationship between wind energy development and RET (i.e., allowing retail customers to choose their electricity source)

  14. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  15. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  16. Meal Replacement: Calming the Hot-State Brain Network of Appetite

    Directory of Open Access Journals (Sweden)

    Brielle ePaolini

    2014-03-01

    Full Text Available There is a growing awareness in the field of neuroscience that the self-regulation of eating behavior is driven by complex networks within the brain. These networks may be vulnerable to hot states which people can move into and out of dynamically throughout the course of a day as a function of changes in affect or visceral cues. The goal of the current study was to identify and determine differences in the Hot-state Brain Network of Appetite (HBN-A that exists after a brief period of food restraint followed either by the consumption of a meal replacement (MR or water. Fourteen overweight/obese adults came to our laboratory on two different occasions. Both times they consumed a controlled breakfast meal and then were restricted from eating for 2.5 hours prior to an MRI scan. On one visit, they consumed a meal replacement (MR liquid meal after this period of food restriction; on the other visit they consumed an equal amount of water. After these manipulations, the participants underwent a resting fMRI scan. Our first study aim employed an exploratory, data-driven approach to identify hubs relevant to the HBN-A. Using data from the water condition, five regions were found to be the hubs or nodes of the HBN-A: insula, anterior cingulated cortex, the superior temporal pole, the amygdala, and the hippocampus. We then demonstrated that the consumption of a liquid MR dampened interconnectivity between the nodes of the HBN-A as compared to water. Importantly and consistent with these network data, the consumption of a MR beverage also lowered state cravings and hunger.

  17. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  18. THE STATE OF THE WATER IN BRAIN TISSUE IN PRESENCE OF TS-100 NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    T. V.

    2015-12-01

    Full Text Available By the method of low-temperature 1Н NMR spectroscopy the structure of the hydrate layers of water associated with brain cells, the changes of these parameters during necrotic lesions (stroke and in the presence of trifluoroacetic acid, which allows differentiating intracellular water clusters according to their ability to dissolve the acid, were studied. Also the impact of silica TS-100 nanoparticles on the state of water in brain tissue, namely on the water binding parameters in the air and in the presence of a weakly polar solvent was considered. The distributions by the radii and change of Gibbs free energy for clusters of strongly bound interfacial water were obtained. It was shown that the hydration properties of the native brain tissue differ from the hydration properties of necrotic damaged tissue by the structure of weakly bound water clusters. In intact tissue all the water is associated and is a part of clusters and domains, most of which have a radii R = 2 and 20 nm. The media with chloroform stabilizes water polyassociates with the radius up to R = 100 nm and trifluoroacetic acid stabilizes water polyassociates with radii R = 7–20 nm. It was found that the partial dehydration of the investigated tissue samples is accompanied by decreasing of weakly bound water amount and some increasing of strongly bound water that indicates a change of molecular interactions between the components of cells-nanoparticles composite system. The ischemic necrosis area presence leads to a decrease of water binding due to the average size water polyassociates increasing. This effect is observed both in air and in a weakly polar organic solvent medium (deuterochloroform.

  19. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury. PMID:27240161

  20. Moral competence and brain connectivity: A resting-state fMRI study.

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control.

  1. Modular reorganization of brain resting state networks and its independent validation in Alzheimer's disease patients.

    Science.gov (United States)

    Chen, Guangyu; Zhang, Hong-Ying; Xie, Chunming; Chen, Gang; Zhang, Zhi-Jun; Teng, Gao-Jun; Li, Shi-Jiang

    2013-01-01

    Previous studies have demonstrated disruption in structural and functional connectivity occurring in the Alzheimer's Disease (AD). However, it is not known how these disruptions alter brain network reorganization. With the modular analysis method of graph theory, and datasets acquired by the resting-state functional connectivity MRI (R-fMRI) method, we investigated and compared the brain organization patterns between the AD group and the cognitively normal control (CN) group. Our main finding is that the largest homotopic module (defined as the insula module) in the CN group was broken down to the pieces in the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus, transverse temporal gyri, superior temporal gyrus, and superior temporal pole) of the insula module had lost symmetric functional connection properties, and the corresponding gray matter concentration (GMC) was significant lower in AD group. We further quantified the functional connectivity changes with an index (index A) and structural changes with the GMC index in the insula module to demonstrate their great potential as AD biomarkers. We further validated these results with six additional independent datasets (271 subjects in six groups). Our results demonstrated specific underlying structural and functional reorganization from young to old, and for diseased subjects. Further, it is suggested that by combining the structural GMC analysis and functional modular analysis in the insula module, a new biomarker can be developed at the single-subject level.

  2. Signalling through the type 1 insulin-like growth factor receptor (IGF1R interacts with canonical Wnt signalling to promote neural proliferation in developing brain

    Directory of Open Access Journals (Sweden)

    Qichen Hu

    2012-07-01

    Full Text Available Signalling through the IGF1R [type 1 IGF (insulin-like growth factor receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i the activity of a LacZ (β-galactosidase reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene and (ii the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i retarded brain growth, (ii reduced precursor proliferation and (iii decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.

  3. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  4. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    OpenAIRE

    Chuan-Chih Yang; Alfonso Barrós-Loscertales; Daniel Pinazo; Noelia Ventura-Campos; Viola Borchardt; Juan-Carlos Bustamante; Aina Rodríguez-Pujadas; Paola Fuentes-Claramonte; Raúl Balaguer; César Ávila; Martin Walter

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common res...

  5. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  6. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.;

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...

  7. Activated and deactivated functional brain areas in the Deqi state A functional MRI study

    Institute of Scientific and Technical Information of China (English)

    Yong Huang; Tongjun Zeng; Guifeng Zhang; Ganlong Li; Na Lu; Xinsheng Lai; Yangjia Lu; Jiarong Chen

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state,as reported by physicians and subjects during acupuncture.Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint.Real-time cerebral functional MRI showed that compared with non-sensation after sham needling,true needling activated Brodmann areas 3,6,8,9,10,11,13,20,21,37,39,40,43,and 47,the head of the caudate nucleus,the parahippocampal gyrus,thalamus and red nucleus.True needling also deactivated Brodmann areas 1,2,3,4,5,6,7,9,10,18,24,31,40 and 46.

  8. Performance of dry electrode with bristle in recording EEG rhythms across brain state changes.

    Science.gov (United States)

    Kitoko, Vangu; Nguyen, Tuan N; Nguyen, Jordan S; Tran, Yvonne; Nguyen, Hung T

    2011-01-01

    In this paper we evaluate the physiological performance of a silver-silver chloride dry electrode with bristle (B-Electrode) in recording EEG data. For this purpose, we compare the performance of the bristle electrode in recording EEG data with the standard wet gold-plated cup electrode (G-Electrode) using two different brain state change tasks including resting condition with eyes-closed and performing mathematical task with eyes-open. Using a 2 channel recording device, eyes-closed command data were collected from each of 6 participants for a period of 20 sec and the same procedure was applied for the mathematical calculation task. These data were used for statistical and classification analyse. Although, B-electrode has shown a slightly higher performance compared with G-electrode in both tasks, but analyse did not reveal any significant differences between both electrodes in all six subjects tested.

  9. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  10. An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    2007-07-01

    Full Text Available For a robust brain-computer interface (BCI system based on motor imagery (MI, it should be able to tell when the subject is not concentrating on MI tasks (the “idle state” so that real MI tasks could be extracted accurately. Moreover, because of the diversity of idle state, detecting idle state without training samples is as important as classifying MI tasks. In this paper, we propose an algorithm for solving this problem. A three-class classifier was constructed by combining two two-class classifiers, one specified for idle-state detection and the other for these two MI tasks. Common spatial subspace decomposition (CSSD was used to extract the features of event-related desynchronization (ERD in two motor imagery tasks. Then Fisher discriminant analysis (FDA was employed in the design of two two-class classifiers for completion of detecting each task, respectively. The algorithm successfully provided a way to solve the problem of “idle-state detection without training samples.” The algorithm was applied to the dataset IVc from BCI competition III. A final result with mean square error of 0.30 was obtained on the testing set. This is the winning algorithm in BCI competition III. In addition, the algorithm was also validated by applying to the EEG data of an MI experiment including “idle” task.

  11. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  12. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    Science.gov (United States)

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  13. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An; Sang Hee Im

    2010-01-01

    Background Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury.Methods We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scare. Statistical analysis was performed using statistical parametric mapping.Results Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (Pcorrected <0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (Pcorrected <0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (Puncorrected <0.005).Conclusion Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism

  14. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  15. Reduced brain resting-state network specificity in infants compared with adults

    Directory of Open Access Journals (Sweden)

    Wylie KP

    2014-07-01

    Full Text Available Korey P Wylie,1,* Donald C Rojas,1,* Randal G Ross,1 Sharon K Hunter,1 Keeran Maharajh,1 Marc-Andre Cornier,2 Jason R Tregellas1,3 1Department of Psychiatry, 2Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 3Denver Veterans Affairs Medical Center, Denver, CO, USA *These authors contributed equally to this work Purpose: Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults.Patients and methods: Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups.Results: Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults.Conclusion: We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience. Keywords: functional connectivity magnetic resonance imaging

  16. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    Science.gov (United States)

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438

  17. Evaluation of brain functional states based on projections of electroencephalographic spectral parameters on 2-dimensional canonical space.

    Science.gov (United States)

    Won, Seung-Hee; Jang, Hwan-Soo; Lee, Ho-Won; Jang, Il-Sung; Lee, Maan-Gee

    2012-10-15

    Electroencephalographic (EEG) activities reflect the functional state of the brain, but it is difficult to objectively describe functional brain states. Here, we describe two statistical divergence measures, Mahalanobis distance and Hellinger distance of projections to the reference spaces, to evaluate their state-discriminating ability. Last, divergence measures of 30-min segments after caffeine treatment were compared to evaluate the dose- and time-dependent arousal effects of caffeine to the best reference space. EEG was recorded from Sprague-Dawley rats during pre- and post-administration of caffeine. Several two-dimensional reference spaces were constructed from subsets of the normalized 7 relative band powers pooled from the pre-drug period of all recordings for each cortex: two reference spaces from data sets of the frontal and parietal cortex, and four reference spaces from data sets of active wake, slow-wave sleep, paradoxical sleep state, and all states. Sleep-wake states used as test states were plotted onto the reference spaces, and then, two divergence measures were derived to measure state-discriminating ability of each reference space. First, the reference space of the same cortex as test data was better for discriminating test states than another cortical reference space. Second, the one reference space constructed from data of all states was better for discriminating test states than the other reference spaces. Third, divergence measures were well correlated with sleep-wake durations after caffeine administration and showed the temporal trends of caffeine-induced arousal effect. These results suggest that two statistical measures can objectively describe brain functional states and drug-induced states.

  18. State of catecxolaminergine systems of the brain in forming of sydnocarb psychosis

    Directory of Open Access Journals (Sweden)

    Al Nasir Eiad

    2014-03-01

    Full Text Available Violations of mnestic reactions are one of substantial signs of disorders of nervous activity. On the basis of it, as a criterion of forming of experimental psychosis, in our supervisions, the state of processes of conditionally-reflex memory was studied in rats. To cover up mechanisms of derangements of conditionally reflex activity in the process of forming of psychotic symptomatic complex, maintenance of adrenalin, noradrenalinum and neurospecific albumen S - 100 in the brain structures, that take a direct part in the processes of memory was studied. Derangements of cognitive function, that are the result of neurotoxic action of sydnocarb, are related to reduction of maintenance of noradrenalinum in the frontal cortex, as well as adrenalin in the pons varolii. That is, sydnocarb psychosis is accompanied by reduction of activating role of the cortex and trunk structures, negatively affecting the state of mnestic reactions. In the hippocampus and striate body excitation causes violation of memory processes and on the contrary, concentration of noradrenalinum rose. Thus, the presented model of experimental psychosis, created by subacute introduction of sydnocarb, is an adequate and alternative methodology of psychotic disorders forming in animals resulted from direct participation of the catecholaminergetic systems of CNS.

  19. Steady state visually evoked potentials based Brain computer interface test outside the lab

    Directory of Open Access Journals (Sweden)

    Eduardo Francisco Caicedo Bravo

    2016-06-01

    Full Text Available Context: Steady State Visually Evoked Potentials (SSVEP are brain signals which are one of the most promising signals for Brain Computer Interfaces (BCIs implementation, however, SSVEP based BCI generally are proven in a controlled environment and there are a few tests in demanding conditions.Method: We present a SSVEP based BCI system that was used outside the lab in a noisy environment with distractions, and with the presence of public. For the tests, we showed a maze in a laptop where the user could move an avatar looking for a target that is represented by a house.  In order to move the avatar, the volunteer must stare at one of the four visual stimuli; the four visual stimuli represent the four directions: right, up, left, and down. The system is proven without any calibration procedure.Results: 32 volunteers utilized the system and 20 achieved the target with an accuracy above 60%, including 9 with an accuracy of 100%, 7 achieved the target with an accuracy below 60% and 5 left without achieving the goal. For the volunteers who reached accuracy above 60%, the results of the performance achieved an average of 6,4s for command detections, precision of 79% and information transfer rate (ITR of 8,78 bits/s.Conclusions: We showed a SSVEP based BCI system with low cost, it was proved in a public event, it did not have calibration procedures, it was easy to install, and it was used for people in a wide age range. The results show that it is possible to bring this kind of systems to environments outside the laboratory.

  20. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  1. Frequency specificity of regional homogeneity in the resting-state human brain.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Song

    Full Text Available Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01-0.04 Hz while long-distance connections within subcortical networks distribute over a wider frequency range (0.01-0.14 Hz. However, the frequency characteristics of regional homogeneity (ReHo in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD, was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02-0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz. The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04-0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.

  2. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    Science.gov (United States)

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  4. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  5. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    Science.gov (United States)

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Kandpal, Raj P.; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants, namely, GluR6B, GluR6C, GluR6D and GluR6E in fibroblast cell lines. The variants GluR6D and GluR6E have not been described before, and appear to be specific for non-neuronal cells. Genomic analysis and cloning of the sequence preceding the transcribed region led to the identification of two tissue specific promoters designated as neuronal promoter PN and non-neuronal promoter PNN. We have used RNA ligase mediated RACE and in silico analyses to locate two sets of transcription start sites, and confirmed specific transcripts initiated by PN and PNN in brain cells and fibroblasts, respectively. The domain structure of variants GluR6D and GluR6E revealed the absence of three transmembrane domains. The lack of these domains suggests that the mature receptors arising from these variant subunits may not function as active channels. Based on these structural features in GluR6D and GluR6E, and the observations that GluR6B, GluR6C, GluR6D and GluR6E are exclusively expressed in non-neuronal cells, it is likely that these receptor subunits function as non-channel signaling proteins. PMID:20230879

  6. The potential mechanism of recombinant human erythropoietin treatment in vivo promoting the cognitive function recovery after traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    LEI Ping

    2013-02-01

    Full Text Available Background Inflammation after traumatic brain injury (TBI could exacerbate secondary brain injury, resulting in neuronal apoptosis and neurological deficit. It is confirmed that recombinant human erythropoietin (rhEPO plays an important role in neuroprotection after brain injury. This article discusses the potential mechanism of rhEPO therapy that promotes the neurological function recovery after TBI by observing the changes of neutropils and neuronal apoptosis in the brain tissue of mice after fluid percussion injury (FPI. Methods Adult male C57BL/6 mice were randomly divided into 4 groups: Sham group, TBI group, rhEPO group and normal saline (NS group. On the first, third and seventh days after FPI, 3 mice were randomly taken from each group, the brain tissue of which was obtained. Then, immunohistochemistry was adopted to observe the expression of myeloperoxidase (MPO positive neutrophils and Caspase-3 positive neuronal cells in the hippocampal area. During seventh to eleventh day after FPI, 10 mice of each group were subjected to Morris Water Maze Test and escaping latencies were recorded. Results Compared to Sham group, the number of MPO positive neutrophils began increasing from the first day after FPI (P = 0.000, for all and reached the peak on the third day ( P = 0.000, for all in the TBI group, NS group and rhEPO group, but reduced on the seventh day (P = 0.000, for all; whereas Caspase-3 positive neurons increased significantly 1 d after FPI, peaking on the seventh day. However, the increase of MPO positive cells and Caspase-3 positive neurons in rhEPO group was not obvious. Compared to NS group, MPO positive neutrophils and Caspase-3 positive cells reduced significantly in rhEPO group (P = 0.000, for all 1 to 7 d after FPI in the observed time points. In the Morris Water Maze (MWM, the latency of mice in rhEPO group reduced as compared to the NS group from the third day after FPI (P = 0.013. The differences were statistically

  7. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment

    Institute of Scientific and Technical Information of China (English)

    Xianying Wang; Honghai Wu; Gai Xue; Yanning Hou

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.

  8. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    Science.gov (United States)

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.

  9. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  10. Using community volunteers to promote exclusive breastfeeding in Sokoto State, Nigeria

    Directory of Open Access Journals (Sweden)

    Asma Misbah Qureshi

    2011-09-01

    Full Text Available for 6 months, were older (P=0.00 multi-parous (P=0.05 and more educated (P=0.00 compared to those who did not practice EBF. Among them, significantly increased proportion of women agreed that EBF should be continued during the night (P=0.03, infant should be fed on demand (P=0.05, sick child could be given medication (P=0.02, EBF offered protection against childhood diarrhea (P=0.01, and helped mothers with birth spacing (P=0.00. CONCLUSION: This study shows that there is a need for reaching women with reliable information about infant nutrition in Sokoto State. The results show decreased EBF practice among working mothers, young women, mothers with poor education and fewer than five children. Counseling is a useful strategy for promoting the duration of EBF for six months and for developing support systems for nursing mothers. Working mothers may need additional resources in this setting to enable them to practice EBF.

  11. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  12. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self

    OpenAIRE

    D. Lehmann(Darmstadt, GSI); Faber, P L; Achermann, P.; Jeanmonod, D; Gianotti, L. R.; Pizzagalli, D.

    2001-01-01

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal popu...

  13. North-South Trade-related Technology Diffusion, Brain Drain and Productivity Growth: Are Small States Different?

    OpenAIRE

    Schiff, Maurice; Wang, Yanling

    2009-01-01

    The economies of small developing states tend to be more fragile than those of large ones. This paper examines this issue in a dynamic context by focusing on the impact of the brain drain on North-South trade-related technology diffusion and total factor productivity growth in small and large states in the South. There are three main findings. First, productivity growth increases with Nort...

  14. Arguments against promoting organ transplants from brain-dead donors, and views of contemporary Japanese on life and death.

    Science.gov (United States)

    Asai, Atsushi; Kadooka, Yasuhiro; Aizawa, Kuniko

    2012-05-01

    As of 2009, the number of donors in Japan is the lowest among developed countries. On July 13, 2009, Japan's Organ Transplant Law was revised for the first time in 12 years. The revised and old laws differ greatly on four primary points: the definition of death, age requirements for donors, requirements for brain-death determination and organ extraction, and the appropriateness of priority transplants for relatives. In the four months of deliberations in the National Diet before the new law was established, various arguments regarding brain death and organ transplantation were offered. An amazing variety of opinions continue to be offered, even after more than 40 years have elapsed since the first heart organ transplant in Japan. Some are of the opinion that with the passage of the revised law, Japan will finally become capable of performing transplants according to global standards. Contrarily, there are assertions that organ transplants from brain-dead donors are unacceptable because they result in organs being taken from living human beings. Considering the current conditions, we will organize and introduce the arguments for and against organ transplants from brain-dead donors in contemporary Japan. Subsequently, we will discuss the primary arguments against organ transplants from brain-dead donors from the perspective of contemporary Japanese views on life and death. After introducing the recent view that brain death should not be regarded as equivalent to the death of a human being, we would like to probe the deeply-rooted views on life and death upon which it is based.

  15. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    Science.gov (United States)

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  16. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    Science.gov (United States)

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes.

  17. Probing of brain states in real-time: Introducing the ConSole environment

    Directory of Open Access Journals (Sweden)

    Thomas eHartmann

    2011-03-01

    Full Text Available Recent years have seen huge advancements in the methods available and used in neuroscience employing EEG or MEG. However, the standard approach is to average a large number of trials for experimentally defined conditions in order to reduce intertrial-variability, i.e. treating it as a source of "noise". Yet it is now more and more accepted that trial-to-trial fluctuations bear functional significance, reflecting fluctuations of "brain states" that predispose perception and action. Such effects are often revealed in a pre-stimulus period, when comparing response variability to an invariant stimulus. However such offline analyses are disadvantageous as they are correlational by drawing conclusions in a posthoc-manner and stimulus presentation is random with respect to the feature of interest. A more direct test is to trigger stimulus presentation when the relevant feature is present. The current paper introduces ConSole (CONstance System for OnLine Eeg, a software package capable of analyzing ongoing EEG / MEG in real-time and presenting auditory and visual stimuli via internal routines. Stimulation via external devices (e.g. TMS or third-party software (e.g. Psyscope X is possible by sending TTL-triggers. With ConSole it is thus possible to target the stimulation at specific brain-states. In contrast to many available applications, ConSole is open-source. Its modular design enhances the power of the software as it can be easily adapted to new challenges and writing new experiments is an easy task. ConSole is already pre-equipped with modules performing standard signal processing steps. The software is also independent from the EEG / MEG system, as long as a driver can be written (currently 2 EEG systems are supported. Besides a general introduction, we present benchmark data regarding performance and validity of the calculations used, as well as three example applications of ConSole in different settings. ConSole can be downloaded at: http://console-kn.sf.net.

  18. The Effect of New Jersey Lottery Promotions on Consumer Demand and State Profits

    OpenAIRE

    Kathryn L. Combs; Jocelyn Elise Crowley; John A. Spry

    2014-01-01

    We estimate elasticities of demand for New Jersey’s Pick 3 and Pick 4 midday/evening numbers games by exploiting random price variation generated by episodic promotions for each game. These Pick 3 Green Ball and Pick 4 Red Ball promotions lower the price of a lottery ticket for an evening numbers game by increasing prize payments during the 28-day promotion periods. The own-price elasticities of demand for the evening Pick 3 and Pick 4 games are both approximately –0.5. During the promotions,...

  19. Researching the Practice, Practicing the Research, and Promoting Responsible Policy: Usable Knowledge in Mind, Brain, and Education

    Science.gov (United States)

    Christodoulou, Joanna A.; Daley, Samantha G.; Katzir, Tami

    2009-01-01

    The theme of Usable Knowledge in Mind, Brain, and Education will be a special section that will appear regularly in the journal. The section will focus on the synergistic connections between biology, cognitive science, and human development on the one hand and educational thought, policy, and practice on the other. Efforts to create usable…

  20. Effects of non-pharmacological or pharmacological interventions to promote cognition and brain plasticity in aging individuals

    Directory of Open Access Journals (Sweden)

    Valentina ePieramico

    2014-09-01

    Full Text Available Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline.A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia.

  1. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    Science.gov (United States)

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells

  2. 7 CFR 1150.153 - Qualified State or regional dairy product promotion, research or nutrition education programs.

    Science.gov (United States)

    2010-01-01

    ..., research or nutrition education programs. 1150.153 Section 1150.153 Agriculture Regulations of the... § 1150.153 Qualified State or regional dairy product promotion, research or nutrition education programs... nutrition education program may apply to the Secretary for certification of qualification so that...

  3. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately. PMID:27147955

  4. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  5. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  6. Advancing brain-machine interfaces: Moving beyond linear state space models

    Directory of Open Access Journals (Sweden)

    Adam G Rouse

    2015-07-01

    Full Text Available Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs. Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider i the dynamic range and precision of natural movements, ii differences between cortical activity and actual body movement, iii kinematic and muscular synergies, and iv the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance.

  7. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain

    Science.gov (United States)

    Li, HY; Wu, SY; Ma, Q; Shi, N

    2015-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) plays a critical role in the mammalian response to chemical and oxidative stress through induction of phase II detoxification enzymes and oxidative stress response proteins. We reported that Nrf2 expression was activated by deltamethrin (DM), a prototype of the widely used pyrithroid pesticides, in PC12 cells. However, no study has examined Nrf2 nuclear translocation and free radical production, two hallmarks of oxidative stress, in the mammalian brain in vivo. To this end, we examined translocation of Nrf2 and production of free radicals in rat brain exposed to DM. Indeed, DM initiated nuclear translocation of Nrf2 in a dose-dependent manner. Furthermore, Nrf2 translocation was accompanied by the expression of heme oxygenase-1 gene, an Nrf2-regulated gene linked to free radical production. Deltamethrin exposure promoted free radical formation in rat brain and reactive oxygen species generation in PC12 cells. Translocation of Nrf2 may be a response to DM-dependent induction of free radicals and DM may act as a mammalian neurotoxin by initiating oxidative stress. PMID:21398409

  8. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Science.gov (United States)

    Liao, Yang; Zhang, Jinsong; Huang, Zhiping; Xi, Yibin; Zhang, Qianru; Zhu, Tianli; Liu, Xufeng

    2012-01-01

    To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT). A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of Pmicrogravity environment. PMID:23285086

  9. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to

  10. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury. PMID:26661249

  11. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    Science.gov (United States)

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  12. Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study.

    Directory of Open Access Journals (Sweden)

    Qingbao Yu

    Full Text Available Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses has also been found in SZ by a previous resting state functional magnetic resonance imaging (fMRI study. However, no study has yet determined if topological properties of FNC are also altered in SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent components (ICs by group independent component analysis (ICA. FNC maps were constructed via a partial correlation analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS. These findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain networks.

  13. Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study

    Institute of Scientific and Technical Information of China (English)

    Yihong Zhu; Bin Gao; Jianming Hua; Weibo Liu; Yichao Deng; Lijie Zhang; Biao Jiang

    2013-01-01

    Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD).Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI),few studies have focused on spontaneous brain activity.In the current study,we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18normal adult males.A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication,and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo,order counterbalanced between participants).We demonstrated that:(1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPH-related regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo.Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults,even though there are no behavioral differences.This method can be applied to patients with mental illness who may be treated with MPH,and be used to compare the difference between patients taking MPH and normal participants,to help reveal the mechanism of how MPH works.

  14. Functional foods for health promotion: state-of-the-science on dietary flavonoids. Extended abstracts from the 12th Annual Conference on Functional Foods for Health Promotion, April 2009.

    Science.gov (United States)

    Williamson, Gary; Sies, Helmut; Heber, David; Keen, Carl L; Macdonald, Ian A; Actis-Goretta, Lucas; Actis-Gorreta, Lucas; Momma, Tony Y; Ottaviani, Javier I; Holt, Roberta R; Schroeter, Hagen; Heiss, Christian

    2009-12-01

    The extended abstracts in this report are based on presentations from the 12(th) Special Conference on Functional Foods for Health Promotion, cosponsored by the North American branch of the International Life Sciences Institute (ILSI North America) Project Committee on Flavonoids and the American Society for Nutrition at the Experimental Biology meeting in April 2009. The theme of this year's special conference was "State-of-the-Science on Dietary Flavonoids." The conference began with a general introduction and overview of flavonoids and their presence in the diet as well as the estimated intake levels in the US population. Subsequent presentations addressed issues pertaining to study design and interpretation, mechanisms of action, and the potential health impacts related to inflammation, the vasculature, and the brain. The present summary of the current science indicates that dietary flavonoids, particularly flavanols, show promising potential for reducing cardiovascular disease risk via reduction of inflammation and improvement in vascular function. However, the existing data must be interpreted cautiously, with consideration given to the compound tested (i.e., parent or metabolite), the use of controls, and the practicality of the concentrations used. While more data are needed on the long-term health impacts of dietary flavonoids in humans, including the efficacious dose, current data indicate it may soon be possible to develop public health messages about flavonoid-rich foods. PMID:19941619

  15. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti- Reward

    Directory of Open Access Journals (Sweden)

    Kenneth Blum

    2015-02-01

    Full Text Available Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana, Δ9-tetrahydrocannabinol (THC enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1 receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718 have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Longterm blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and nonsubstance (behavioral addictions.

  16. Putting the Mind in the Brain: Promoting an Appreciation of the Biological Basis to Understanding Human Behavior

    Science.gov (United States)

    Neumann, David L.

    2010-01-01

    A surprising number of students in psychology, behavioral science, and related social science classes fail to appreciate the importance of biological mechanisms to understanding behavior. To help teachers promote this understanding, this paper outlines six sources of evidence. These are (a) phylogenetic, (b) genetic/developmental, (c) clinical,…

  17. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    Directory of Open Access Journals (Sweden)

    Viola ePriesemann

    2014-06-01

    Full Text Available In self-organized critical (SOC systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore we analyzed highly parallel spike recordings from awake rats and monkeys, anaesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1 subsampling, (2 increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition, and (3 making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes, and for the dependence of all these measures on the temporal bin size.Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  18. Life Expectancy after Inpatient Rehabilitation for Traumatic Brain Injury in the United States.

    Science.gov (United States)

    Harrison-Felix, Cynthia; Pretz, Christopher; Hammond, Flora M; Cuthbert, Jeffrey P; Bell, Jeneita; Corrigan, John; Miller, A Cate; Haarbauer-Krupa, Juliet

    2015-12-01

    This study characterized life expectancy after traumatic brain injury (TBI). The TBI Model Systems (TBIMS) National Database (NDB) was weighted to represent those ≥16 years of age completing inpatient rehabilitation for TBI in the United States (US) between 2001 and 2010. Analyses included Standardized Mortality Ratios (SMRs), Cox regression, and life expectancy. The US mortality rates by age, sex, race, and cause of death for 2005 and 2010 were used for comparison purposes. Results indicated that a total of 1325 deaths occurred in the weighted cohort of 6913 individuals. Individuals with TBI were 2.23 times more likely to die than individuals of comparable age, sex, and race in the general population, with a reduced average life expectancy of 9 years. Independent risk factors for death were: older age, male gender, less-than-high school education, previously married at injury, not employed at injury, more recent year of injury, fall-related TBI, not discharged home after rehabilitation, less functional independence, and greater disability. Individuals with TBI were at greatest risk of death from seizures; accidental poisonings; sepsis; aspiration pneumonia; respiratory, mental/behavioral, or nervous system conditions; and other external causes of injury and poisoning, compared with individuals in the general population of similar age, gender, and race. This study confirms prior life expectancy study findings, and provides evidence that the TBIMS NDB is representative of the larger population of adults receiving inpatient rehabilitation for TBI in the US. There is an increased risk of death for individuals with TBI requiring inpatient rehabilitation.

  19. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    Directory of Open Access Journals (Sweden)

    Chuan-Chih Yang

    2016-01-01

    Full Text Available The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation and between time points (before versus after training were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.

  20. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    Science.gov (United States)

    Yang, Chuan-Chih; Barrós-Loscertales, Alfonso; Pinazo, Daniel; Ventura-Campos, Noelia; Borchardt, Viola; Bustamante, Juan-Carlos; Rodríguez-Pujadas, Aina; Fuentes-Claramonte, Paola; Balaguer, Raúl; Ávila, César; Walter, Martin

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression. PMID:26998365

  1. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect.

    Science.gov (United States)

    Yang, Chuan-Chih; Barrós-Loscertales, Alfonso; Pinazo, Daniel; Ventura-Campos, Noelia; Borchardt, Viola; Bustamante, Juan-Carlos; Rodríguez-Pujadas, Aina; Fuentes-Claramonte, Paola; Balaguer, Raúl; Ávila, César; Walter, Martin

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression. PMID:26998365

  2. [Music therapy and "brain music": state of the art, problems and perspectives].

    Science.gov (United States)

    2013-01-01

    Recent literature on the problem of interaction between music and the brain is reviewed and summarized. Mechanisms and effects of two most popular music therapy applications are picked out, including music listening and music making. Special attention is paid to relatively new line of investigations that is called "music of the brain" and deals with transformation of bioelectric processes of human organism into music. Unresolved questions of music therapy are identified and some promising lines of future investigations are delineated. PMID:25508092

  3. Ovarian steroids in rat and human brain : effects of different endocrine states

    OpenAIRE

    Bixo, Marie

    1987-01-01

    Ovarian steroid hormones are known to produce several different effects in the brain. In addition to their role in gonadotropin release, ovulation and sexual behaviour they also seem to affect mood and emotions, as shown in women with the premenstrual tension syndrome. Some steroids have the ability to affect brain excitability. Estradiol decreases the electroshock threshold while progesterone acts as an anti-convulsant and anaesthetic in both animals and humans. Several earlier studies have ...

  4. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  5. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  6. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    Directory of Open Access Journals (Sweden)

    Delong eZhang

    2015-02-01

    Full Text Available The present study examined directional connections in the brain among resting-state networks (RSNs when the participant had their eyes open (EO or had their eyes closed (EC. The resting-state fMRI data were collected from 20 healthy participants (11 males, 20.17 ± 2.74 years under the EO and EC states. Independent component analysis (ICA was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks, and the Gaussian Bayesian network (BN learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salient attention network to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the attention (salient and dorsal-related directional connections were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salient and dorsal attention networks were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the attention system (the salient and the dorsal attention network might have important roles in resting-state brain networks and the neural substrate underpinning of switching between the EO and EC states.

  7. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    OpenAIRE

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relat...

  8. Factors Affecting Producer Awareness of State Programs Promoting Locally Grown Foods: The Case of Fruit and Vegetable Growers in Tennessee

    OpenAIRE

    Velandia, Margarita M.; Davis, James A.; Lambert, Dayton M.; Christopher D. Clark; Wilcox, Michael D.; Wszelaki, Annette; Jensen, Kimberly L.

    2012-01-01

    Interest in locally grown foods has increased over the past few years. Tennessee currently has two state-funded programs promoting the consumption of Tennessee agricultural products by linking producers and consumers-Tennessee Farm Fresh and Pick Tennessee Products. Factors associated with fruit and vegetable producer awareness of each of these programs are analyzed using a bivariate probit model. Findings suggest that awareness was associated with education, percentage of income from farming...

  9. Melting during steady-state transcription of the rrnB P1 promoter in vivo and in vitro.

    OpenAIRE

    Ohlsen, K L; Gralla, J D

    1992-01-01

    The rRNA rrnB P1 promoter was probed with the single-strand-selective reagent potassium permanganate during steady-state transcription in vitro and in vivo. In both cases, a weak but significant level of permanganate sensitivity was observed, which was not changed by treatment with rifampin. In contrast, static studies showed that rifampin strongly affects the very high level signal associated with polymerases that have used ATP and CTP as initiating nucleotides. We infer that the permanganat...

  10. The Use of Social Media by State Tobacco Control Programs to Promote Smoking Cessation: A Cross-Sectional Study

    OpenAIRE

    Duke, Jennifer C; Hansen, Heather; Kim, Annice E; Curry, Laurel; Allen, Jane

    2014-01-01

    Background The promotion of evidence-based cessation services through social media sites may increase their utilization by smokers. Data on social media adoption and use within tobacco control programs (TCPs) have not been reported. Objective This study examines TCP use of and activity levels on social media, the reach of TCP sites, and the level of engagement with the content on sites. Methods A cross-sectional descriptive study of state TCP social media sites and their content was conducted...

  11. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  12. A Two-Stage State Recognition Method for Asynchronous SSVEP-Based Brain-Computer Interface System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zimu; DENG Zhidong

    2013-01-01

    A two-stage state recognition method is proposed for asynchronous SSVEP (steady-state visual evoked potential) based brain-computer interface (SBCI) system.The two-stage method is composed of the idle state (IS) detection and control state (CS) discrimination modules.Based on blind source separation and continuous wavelet transform techniques,the proposed method integrates functions of multi-electrode spatial filtering and feature extraction.In IS detection module,a method using the ensemble IS feature is proposed.In CS discrimination module,the ensemble CS feature is designed as feature vector for control intent classification.Further,performance comparisons are investigated among our IS detection module and other existing ones.Also the experimental results validate the satisfactory performance of our CS discrimination module.

  13. Pediatric sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Yue, John K; Winkler, Ethan A; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0-17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α pediatric sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03-0.07, p pediatric sports-related TBI, the severities of head and extracranial traumas are important

  14. Pediatric sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Yue, John K; Winkler, Ethan A; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0-17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03-0.07, p injury incurred during roller sports was independently associated with prolonged hospital LOS compared

  15. SOME ASPECTS REGARDING THE BRAIN DRAIN NOWADAYS

    OpenAIRE

    DIANA-MIHAELA POCIOVĂLIŞTEANU

    2012-01-01

    The economical and political changes that occurred in the former communist countries determined a continuous brain drain to the economically developed countries. This brain drain with no positive feedback for the origin country is not healthy for it, on a long term determining a comedown of the economical and social situation of the origin country. In order to prevent this migration flow, the state has to take measures by promoting appropriate economical, social and fiscal policies.

  16. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    Science.gov (United States)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  17. A supervised clustering approach for fMRI-based inference of brain states

    CERN Document Server

    Michel, Vincent; Varoquaux, Gaël; Eger, Evelyn; Keribin, Christine; Thirion, Bertrand; 10.1016/j.patcog.2011.04.006

    2011-01-01

    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus ac...

  18. Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Cui-Ping Xu

    2013-01-01

    Full Text Available Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.

  19. Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study.

    Science.gov (United States)

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Kuang, Hongmei; Zhao, Jing; Wang, Siyong; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2015-10-01

    Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting. PMID:26348589

  20. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT. A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm(3 (13 voxels, which corresponded with the corrected threshold of P<0.05 determined by AlphaSim. Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.

  1. Neocortical-hippocampal dynamics of working memory in healthy and diseased brain states based on functional connectivity

    Directory of Open Access Journals (Sweden)

    Pablo eCampo

    2012-03-01

    Full Text Available Working memory is the ability to transiently maintain and manipulate internal representations beyond its external availability to the senses. This process is thought to support high level cognitive abilities and been shown to be strongly predictive of individual intelligence and reasoning abilities. While early models of working memory have relied on a modular perspective of brain functioning, more recent evidence suggests that cognitive functions emerge from the interactions of multiple brain regions to generate large-scale networks. Here we will review the current research on functional connectivity of working memory processes to highlight the critical role played by neural interactions in healthy and pathological brain states. Recent findings demonstrate that working memory abilities are not determined solely by local brain activity, but also rely on the functional coupling of neocortical-hippocampal regions to support working memory processes. Although the hippocampus has long been held to be important for long-term declarative memory, recent evidence suggests that the hippocampus may also be necessary to coordinate disparate cortical regions supporting the periodic reactivation of internal representations in working memory. Furthermore, recent brain imaging studies using connectivity measures, have shown that changes in cortico-limbic interactions can be useful to characterize working memory impairments observed in different neuropathological conditions. Recent advances in electrophysiological and neuroimaging techniques to model network activity has led to important insights into how neocortical and hippocampal regions support working memory processes and how disruptions along this network can lead to the memory impairments commonly reported in many neuropathological populations.

  2. Disrupted brain network topology in pediatric posttraumatic stress disorder: A resting-state fMRI study.

    Science.gov (United States)

    Suo, Xueling; Lei, Du; Li, Kaiming; Chen, Fuqin; Li, Fei; Li, Lei; Huang, Xiaoqi; Lui, Su; Li, Lingjiang; Kemp, Graham J; Gong, Qiyong

    2015-09-01

    Children exposed to natural disasters are vulnerable to the development of posttraumatic stress disorder (PTSD). Recent studies of other neuropsychiatric disorders have used graph-based theoretical analysis to investigate the topological properties of the functional brain connectome. However, little is known about this connectome in pediatric PTSD. Twenty-eight pediatric PTSD patients and 26 trauma-exposed non-PTSD patients were recruited from 4,200 screened subjects after the 2008 Sichuan earthquake to undergo a resting-state functional magnetic resonance imaging scan. Functional connectivity between 90 brain regions from the automated anatomical labeling atlas was established using partial correlation coefficients, and the whole-brain functional connectome was constructed by applying a threshold to the resultant 90 * 90 partial correlation matrix. Graph theory analysis was then used to examine the group-specific topological properties of the two functional connectomes. Both the PTSD and non-PTSD control groups exhibited "small-world" brain network topology. However, the functional connectome of the PTSD group showed a significant increase in the clustering coefficient and a normalized characteristic path length and local efficiency, suggesting a shift toward regular networks. Furthermore, the PTSD connectomes showed both enhanced nodal centralities, mainly in the default mode- and salience-related regions, and reduced nodal centralities, mainly in the central-executive network regions. The clustering coefficient and nodal efficiency of the left superior frontal gyrus were positively correlated with the Clinician-Administered PTSD Scale. These disrupted topological properties of the functional connectome help to clarify the pathogenesis of pediatric PTSD and could be potential biomarkers of brain abnormalities. PMID:26096541

  3. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  4. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks

    Directory of Open Access Journals (Sweden)

    Mathias eVukelić

    2015-07-01

    Full Text Available The mechanisms of learning involved in brain self-regulation have still to be unveiled to exploit the full potential of this methodology for therapeutic interventions. This skill of volitionally changing brain activity presumably resembles motor skill learning which in turn is accompanied by plastic changes modulating resting state networks. Along these lines, we hypothesized that brain regulation and neurofeedback would similarly modify intrinsic networks at rest while presenting a distinct spatio-temporal pattern. High-resolution EEG preceded and followed a single neurofeedback training intervention of modulating circumscribed sensorimotor low β -activity by motor imagery in eleven healthy participants. They were kept in the deliberative phase of skill acquisition with high demands for learning self-regulation through stepwise increases of task difficulty. By applying the corrected imaginary part of the coherency function, we observed increased functional connectivity of both the primary motor and the primary somatosensory cortex with their respective contralateral homologous cortices in the low β-frequency band which was self-regulated during feedback. At the same time, the primary motor cortex - but none of the surrounding cortical areas - showed connectivity to contralateral supplementary motor and dorsal premotor areas in the high β-band. Simultaneously, the neurofeedback target displayed a specific increase of functional connectivity with an ipsilateral fronto-parietal network in the α-band while presenting a de-coupling with contralateral primary and secondary sensorimotor areas in the very same frequency band.Brain self-regulating modifies resting state connections spatially selective to the neurofeedback target of the dominant hemisphere. These are anatomically distinct with regard to the cortico-cortical connectivity pattern and are functionally specific with regard to the time domain of coherent activity consistent with a Hebbian

  5. EU Rural Development Policy in the New Member States: Promoting Multifunctionality?

    Science.gov (United States)

    Ramniceanu, Irina; Ackrill, Robert

    2007-01-01

    European Union (EU) enlargement has seen 10 new member states (NMS) adopt the full range of EU policies. Within this, the rural development arm of the Common Agricultural Policy offers particular points of interest. Member states chose from an extensive list of policy measures developed within the EU15 and intended, in particular, to…

  6. State Legislative Recommendations to Promote Fair and Effective School Discipline. NEPC Discipline Resource Sheet

    Science.gov (United States)

    Losen, Daniel J.

    2011-01-01

    This document presents a summary of the larger report "Discipline Policies, Successful Schools, and Racial Justice." State legislation is an important lever for improving the equity of student discipline policies. However, states vary tremendously, and only some provide accurate public reports on school discipline, support effective programs like…

  7. Promoting democracy in fragile states : insights from a field experiment in Liberia

    OpenAIRE

    Mvukiyehe, Eric; Samii, Cyrus

    2015-01-01

    A field experiment in rural Liberia is used to study democratic participation in fragile states. Fragile states are marked by political fragmentation, local patronage systems, and voter vulnerability. To understand the effects of such conditions on democratic expression through elections, the experiment introduced new forms of interaction between rural citizens and third-party actors: (i) ...

  8. Promoting Educational Reforms in Weak States: The Case of Radical Policy Discontinuity in Peru

    Science.gov (United States)

    Balarin, Maria

    2008-01-01

    The present article explores the making of education policies in weak states, particularly in the context of developing nations and in view of the increasing influence of international organisations, such as the World Bank, in definition of education reform agendas. The discussion seeks to contribute to the theory of weak states by highlighting…

  9. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    Directory of Open Access Journals (Sweden)

    David Seelig

    Full Text Available Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV, a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section. Psychophysiological interaction (PPI analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and

  10. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  11. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.

    Directory of Open Access Journals (Sweden)

    Yafeng Qiu

    Full Text Available C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase and mutant strain of H99 deficient in laccase (lac1Δ in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1 diminished pulmonary eosinophilia; 2 increased accumulation of CD4+ and CD8+ T cells; 3 increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4 lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.

  12. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis.

    Directory of Open Access Journals (Sweden)

    Ho Seong Seo

    Full Text Available The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC, the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS attachment to hBMEC via the direct interaction of its binding region (BR with human fibrinogen. When assessed by Far Western blotting, Srr1 was the only protein in GBS extracts that bound fibrinogen. Studies using recombinant Srr1-BR and purified fibrinogen in vitro confirmed a direct protein-protein interaction. Srr1-BR binding was localized to amino acids 283-410 of the fibrinogen Aα chain. Structural predictions indicated that the conformation of Srr1-BR is likely to resemble that of SdrG and other related staphylococcal proteins that bind to fibrinogen through a "dock, lock, and latch" mechanism (DLL. Deletion of the predicted latch domain of Srr1-BR abolished the interaction of the BR with fibrinogen. In addition, a mutant GBS strain lacking the latch domain exhibited reduced binding to hBMEC, and was significantly attenuated in an in vivo model of meningitis. These results indicate that Srr1 can bind fibrinogen directly likely through a DLL mechanism, which has not been described for other streptococcal adhesins. This interaction was important for the pathogenesis of GBS central nervous system invasion and subsequent disease progression.

  13. Agmatine promotes expression of brain-derived neurotrophic factor in brainstem facial nucleus in the rat facial nerve injury model

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Wenlong Luo

    2008-01-01

    BACKGROUND: Studies have shown that agmatine can reduce inhibition of neuronal regeneration by increasing cyclic adenosine monophosphate and brain-derived neurotrophic factor (BDNF) in the hippocampus of morphine-dependent rats. The hypothesis that agmatine exerts similar effects on facial nerve injury deserves further analysis.OBJECTIVE: To study the effects of peritoneal agmatine injection on BDNF levels in the rat brainstem after facial nerve injury.DESIGN, TIME AND SETTING: A controlled animal experiment was performed at the Department of Otolaryngology-Head and Neck Surgery at the Second Affiliated Hospital, Chongqing University of Medical Sciences (Chongqing, China), between October and December in 2007.MATERIALS: Twenty-four male Sprague-Dawley rats were randomly divided into a control, a lesion, and an agmatine treatment group, with eight rats in each group. Bilateral facial nerve anastomosis was induced in the lesion and agmatine treatment groups, while the control group remained untreated. A rat BDNF Enzyme-linked immunosorbent assay kit was used to measure BDNF levels in the brainstem facial nucleus.METHODS: Starting on the day of lesion, the agmatine group received a peritoneal injection of 100 mg/kg agmatine, once per day, for a week, whereas rats in the lesion group received saline injections.MAIN OUTCOME MEASURES: BDNF levels in the brainstem containing facial nucleus were measured by ELISA.RESULTS: Twenty-four rats were included in the final analysis without any loss. Two weeks after lesion, BDNF levels were significantly higher in the lesion group than in the control group (P<0.01). A significant increase was noted in the agmatine group compared to the lesion group (P<0.01).CONCLUSION: Agmatine can substantially increase BDNF levels in the rat brainstem after facial nerve injury.

  14. Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present work, through the path integral of Gaussian type correlation function, a new formalism based on Fermi-Golden Rule for calculating the rate constant of nonradiative decay process with Duschinsky rotation effect in polyatomic molecules is developed. The advantage of the present path-integral formalism is promoting-mode free. In order to get the rate constant, a "transition rate matrix" needs to be calculated. The rate constant calculated previously is only an approximation of diagonal elements of our "transition rate matrix " . The total rate should be the summation over all the matrix elements.

  15. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury.

    Science.gov (United States)

    Rigon, Arianna; Duff, Melissa C; McAuley, Edward; Kramer, Arthur F; Voss, Michelle W

    2016-06-01

    Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p  0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment. PMID:25719433

  16. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  17. An elevated level of circulating galanin promotes developmental expression of myelin basic protein in the mouse brain.

    Science.gov (United States)

    Lyubetska, H; Zhang, L; Kong, J; Vrontakis, M

    2015-01-22

    Myelinogenesis is a scheduled process that is regulated by the intrinsic properties of the cell and extracellular signals. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system. Chronic increase in circulating GAL levels protects the demyelination processes. Furthermore, GAL is synthesized in myelin-producing glial cells, such as oligodendrocytes and its expression level is at its highest between postnatal days 10 and 40. In the present study, we use our GAL transgenic mouse model to examine the effects of GAL on postnatal myelinogenesis in the CNS. Although we observed no difference in the proliferation of oligodendrocyte precursor cells, we found that GAL has a strong pro-myelinating effect. The transgenic mice at postnatal day 10 appeared to undergo myelinogenesis at an accelerated rate, as demonstrated by the increase in myelin basic protein (MBP) synthesis. The immunohistochemical results are consistent with our preliminary findings that suggest that GAL is a regulator of myelination and may be one of the myelination promoters. This finding is especially important for studies focusing on endogenous molecules for treating myelin-related diseases, such as multiple sclerosis and other leukodystrophies.

  18. Is lactate a Volume Transmitter of Metabolic States of the Brain?

    Directory of Open Access Journals (Sweden)

    Linda H. Bergersen

    2012-03-01

    Full Text Available We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD+ redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The roles of lactate as mediator of metabolic information rather than metabolic substrate answer a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function.

  19. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    Science.gov (United States)

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  20. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    Science.gov (United States)

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract. PMID:25272759

  1. Transitions between dynamical states of differing stability in the human brain

    OpenAIRE

    Meyer-Lindenberg, Andreas; Ziemann, Ulf; Hajak, Göran; Cohen, Leonardo; Berman, Karen Faith

    2002-01-01

    What mechanisms underlie the flexible formation, adaptation, synchronization, and dissolution of large-scale neural assemblies from the 1010 densely interconnected, continuously active neurons of the human brain? Nonlinear dynamics provides a unifying perspective on self-organization. It shows that the emergence of patterns in open, nonequilibrium systems is governed by their stability in response to small disturbances and predicts macroscopic transitions between patterns of differing stabili...

  2. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  3. Effects of age and underlying brain dysfunction on the postictal state

    OpenAIRE

    Theodore, William H

    2010-01-01

    There is relatively little information on the underlying parameters that affect clinical features of the postictal period. Age-related physiological changes, including alterations in cerebral blood flow and metabolism, neurotransmitter function, and responses of the brain to seizure activity may affect postictal clinical phenomena. Some conclusions can be drawn. Elderly adults and children, particularly in the presence of diffuse cerebral dysfunction, may have more prolonged postictal confusi...

  4. Promoting cross-sector partnerships in child welfare: qualitative results from a five-state strategic planning process.

    Science.gov (United States)

    Collins-Camargo, Crystal; Armstrong, Mary I; McBeath, Bowen; Chuang, Emmeline

    2013-01-01

    Little is known about effective strategic planning for public and private child welfare agencies working together to serve families. During a professionally facilitated, strategic planning event, public and private child welfare administrators from five states explored partnership challenges and strengths with a goal of improving collaborative interactions in order to improve outcomes for children and families. Summarizing thematic results of session notes from the planning event, this article describes effective strategies for facilitation of such processes as well as factors that challenge or promote group processes. Implications for conducting strategic planning in jurisdictions seeking to improve public/private partnerships are discussed.

  5. Affect and the brain's functional organization: a resting-state connectivity approach.

    Directory of Open Access Journals (Sweden)

    Christiane S Rohr

    Full Text Available The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a right-lateralized dominance in emotional processing, (b hemispheric dominance according to positive or negative valence, (c one network for all emotional processing and (d region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes.

  6. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States

    Science.gov (United States)

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-01-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions. PMID:27608359

  7. Use of Stereotactic Radiosurgery for Brain Metastases From Non-Small Cell Lung Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Lia M., E-mail: lhalasz@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Weeks, Jane C.; Neville, Bridget A.; Taback, Nathan [Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Punglia, Rinaa S. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2013-02-01

    Purpose: The indications for treatment of brain metastases from non-small cell lung cancer (NSCLC) with stereotactic radiosurgery (SRS) remain controversial. We studied patterns, predictors, and cost of SRS use in elderly patients with NSCLC. Methods and Materials: Using the Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we identified patients with NSCLC who were diagnosed with brain metastases between 2000 and 2007. Our cohort included patients treated with radiation therapy and not surgical resection as initial treatment for brain metastases. Results: We identified 7684 patients treated with radiation therapy within 2 months after brain metastases diagnosis, of whom 469 (6.1%) cases had billing codes for SRS. Annual SRS use increased from 3.0% in 2000 to 8.2% in 2005 and varied from 3.4% to 12.5% by specific SEER registry site. After controlling for clinical and sociodemographic characteristics, we found SRS use was significantly associated with increasing year of diagnosis, specific SEER registry, higher socioeconomic status, admission to a teaching hospital, no history of participation in low-income state buy-in programs (a proxy for Medicaid eligibility), no extracranial metastases, and longer intervals from NSCLC diagnosis. The average cost per patient associated with radiation therapy was 2.19 times greater for those who received SRS than for those who did not. Conclusions: The use of SRS in patients with metastatic NSCLC increased almost 3-fold from 2000 to 2005. In addition, we found significant variations in SRS use across SEER registries and socioeconomic quartiles. National practice patterns in this study suggested both a lack of consensus and an overall limited use of the approach among elderly patients before 2008.

  8. 中药活血化淤法改善脑出积压患者运动功能疗效观察%Observation of improvement of movement function by Chinese drugs through promoting circulation by removing blood stasis in patients with brain hemorrhage

    Institute of Scientific and Technical Information of China (English)

    尹德铭; 高聪; 沈岩松

    2002-01-01

    @@ Background:Disability rate following brain hemorrhage is high.Rcovery and improvement of movement function is closely related to management of brain hemorrhage during acute phage,absorption of hematoma.According to traditional medicine principle,Chinese drugs promote absorption and functional recovery through promoting blood circulation by removing blood stasis.The Chinese drugs are safe in clinic

  9. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks.

    Science.gov (United States)

    Karahanoğlu, Fikret Işik; Van De Ville, Dimitri

    2015-07-16

    Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new window onto the organizational principles of brain function. Using state-of-the-art signal processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from resting-state fMRI. The iCAPs' maps are spatially overlapping and their sustained-activity signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the rich spatiotemporal structure of functional components that dynamically assemble known resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to four iCAPs occur simultaneously in combinations that are consistent with their behaviour profiles. In contrast to conventional connectivity analysis, which suggests a negative correlation between fluctuations in the default-mode network (DMN) and task-positive networks, we instead find evidence for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact with the attention network. These findings demonstrate how the fMRI resting state can be functionally decomposed into spatially and temporally overlapping building blocks using iCAPs.

  10. The Influence of Sales Promotion on Customer Acquisition: A Study in Hospitality in Santa Catarina State – Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Savi Mondo

    2013-06-01

    Full Text Available The actions of marketing communication implemented by organizations serve different purposes including attracting and capturing customers. Sales promotion, a form of communication, stands out as an effective short-term action. Based on these considerations, the main purpose of this study is to analyze the influence of sales promotion on hotels in Santa Catarina State - Brazil. The study is characterized as exploratory and descriptive, and utilizes both a qualitative and a quantitative approach. The qualitative phase consisted of data from 13 hotels and the quantitative phase consisted of respondents from 52 hotels. All hotels surveyed are linked to the Hospitality Industry Association-SC (ABIH-SC. The survey was conducted from March to August 2010. The main results indicate that sales promotion is primarily used during the least busy season (low season, with the focus on increasing occupancy, corresponding to what the theory suggests - short-term solutions. Moreover, the action was considered very important for attracting customers because it provides the basis for the increase in occupancy during the low season.   DOI: 10.5585/remark.v12i2.2296

  11. 76 FR 44609 - United States-Peru Trade Promotion Agreement Notice of Determination Regarding Review of...

    Science.gov (United States)

    2011-07-26

    ... regulations, and practices thereunder, the effective recognition of the right to collective bargaining as stated in the International Labour Organization's Declaration on Fundamental Principles and Rights at... effectively recognizing the right to collective bargaining. The submission alleges that the Government of...

  12. Culling prey promotes predator recovery - Alternative states in a whole-lake experiment

    NARCIS (Netherlands)

    L. Persson; P.A. Amundsen; A.M. de Roos; A. Klemetsen; R. Knudsen; R. Primicerio

    2007-01-01

    Many top-predator fish stocks in both freshwater and marine systems have collapsed as a result of overharvesting. Consequently, some of these communities have shifted into seemingly irreversible new states. We showed, for predators feeding on prey that exhibit food-dependent growth, that culling of

  13. Learning by Dispossession: Democracy Promotion and Civic Engagement in Iraq and the United States

    Science.gov (United States)

    Mojab, Shahrzad; Carpenter, Sara

    2011-01-01

    This paper brings together two ongoing research projects on current citizenship learning programs in Iraq and the United States, both of which draw from the theoretical ground of Marxist-feminist perspective. A particular strength of this paper is its comparison between two American citizenship education programs in the context of neoliberalism,…

  14. USBF recognized President Ilves for promoting relations between the Baltic countries and the United States

    Index Scriptorium Estoniae

    2008-01-01

    President Toomas Hendrik Ilves pälvis Balti riikide ja Ameerika Ühendriikide suhete edendamise eest Ameerika-Balti Fondi (USBF - The United States-Baltic Foundation) autasu - Baltic Statesmanship Award'i. Vabariigi President töövisiidil Ameerika Ühendriikides 17.-23.04.2008

  15. The Role of the State and the Economy in the promotion of heat pumps on the market

    International Nuclear Information System (INIS)

    The laws defining the tasks of the Swiss Federal Office of Energy (SFOE) do not allow it to dictate measures, but to collaborate on the basis of voluntary actions. In the heat pump sector, the SwissEnergy action programme binds together 1 state, 26 cantons, 3000 communes, 50 manufacturers, 3500 installers, 1200 electricity companies and environmental agencies. In order to promote the use of renewable energies, the SFOE took the lead by creating the Swiss heat pump promotion group (GSP) in 1993. The idea was to bundle the market's forces to actively market and promote heat pumps for heating purposes. Under the umbrella of the Energy2000 (1990-2000) and the SwissEnergy (2001-2010) promotion programmes, the disparate heat pump sector was brought together and consolidated into being a key player on the heating market. The role of the SFOE and the GSP has changed with time. At the beginning, the SFOE decided what was to be done and the GSP did the job on a mandatory base. The SFOE was responsible for achieving the goals. The GSP gradually grew, so that since 2001 it has been able to determine the action plans itself. The SFOE sets the goals and the GSP is responsible for fulfilling them. The SFOE assures the coordination and the efficient use of resources. Its domain manager is responsible for the coordination of the whole chain from research and development to market, including quality management for all of the activities and the products as well. In this way, the government laid the foundations for the sector to become a success. This model can be applied to other domains or to other countries if some of the assessments and conditions described in the article are met. (author)

  16. The Role of the State and the Economy in the promotion of heat pumps on the market

    Energy Technology Data Exchange (ETDEWEB)

    Rognon, F.

    2008-07-01

    The laws defining the tasks of the Swiss Federal Office of Energy (SFOE) do not allow it to dictate measures, but to collaborate on the basis of voluntary actions. In the heat pump sector, the SwissEnergy action programme binds together 1 state, 26 cantons, 3000 communes, 50 manufacturers, 3500 installers, 1200 electricity companies and environmental agencies. In order to promote the use of renewable energies, the SFOE took the lead by creating the Swiss heat pump promotion group (GSP) in 1993. The idea was to bundle the market's forces to actively market and promote heat pumps for heating purposes. Under the umbrella of the Energy2000 (1990-2000) and the SwissEnergy (2001-2010) promotion programmes, the disparate heat pump sector was brought together and consolidated into being a key player on the heating market. The role of the SFOE and the GSP has changed with time. At the beginning, the SFOE decided what was to be done and the GSP did the job on a mandatory base. The SFOE was responsible for achieving the goals. The GSP gradually grew, so that since 2001 it has been able to determine the action plans itself. The SFOE sets the goals and the GSP is responsible for fulfilling them. The SFOE assures the coordination and the efficient use of resources. Its domain manager is responsible for the coordination of the whole chain from research and development to market, including quality management for all of the activities and the products as well. In this way, the government laid the foundations for the sector to become a success. This model can be applied to other domains or to other countries if some of the assessments and conditions described in the article are met. (author)

  17. [Memorandum on sustainable reinforcement of prevention and health promotion: challenges at the federal, state and local level].

    Science.gov (United States)

    Walter, U; Nöcker, G; Pawils, S; Robra, B-P; Trojan, A; Franz, M; Grossmann, B; Schmidt, T-A; Lehmann, H; Bauer, U; Göpel, E; Janz, A; Kuhn, J; Naegele, G; Müller-Kohlenberg, H; Plaumann, M; Stender, K-P; Stolzenberg, R; Süß, W; Trenker, M; Wanek, V; Wildner, M

    2015-05-01

    Research-based evidence and practice-based experience are core requirements for the effective implementation of preventive interventions. The knowledge gained in the Prevention Research Funding Initiative of the German Federal Ministry of Education and Research (2004-2013) was therefore amalgamated, reflected and consolidated in the Cooperation for Sustainable Prevention Research (KNP) meta-project. In annual strategy meetings, researchers and practitioners from the field and other experts developed 3 memoranda providing recommendations for the further development of research and practice in the field of prevention and health promotion. Memorandum III is primarily aimed at decision-makers in politics and administration at the federal, state and local level, in civil society and in the workplace. Its recommendations show that structuring efforts are urgently needed to achieve sustainable policy, particularly in the fields of health, education, employment and social affairs. Memorandum III brings together the knowledge extracted and problems identified in research projects. More so than its 2 predecessors, Memorandum III abstracts knowledge from the individual projects and attempts to derive guidance for action and decision-making, as shown by the 7 recommendations that appear to useful for consensus-building in practice and research. Value judgments are inevitable. Prevention and health promotion are an investment in the future: of social health, social capital and social peace. Improvement of the framework conditions is needed to achieve the harmonized awareness and the sustained effectiveness of these structure-building efforts in different policy areas, spheres of life, fields of action, and groups of actors. This includes the implementation of an overall national strategy as well as the expansion of sources of funding, extension of the legal framework, overarching coordination, and the establishment of a National Center of Excellence to develop and safeguard

  18. A hyper-dynamic nature of bivalent promoter states underlies coordinated developmental gene expression modules

    OpenAIRE

    Shah, Akshay; Oldenburg, Anja; Collas, Philippe

    2014-01-01

    Background Chromatin remodeling is crucial for proper programing of developmental gene expression. Recent work provides a dynamic view of post-translational histone modifications during differentiation; however there is little insight on the evolution of combinatorial genome-wide patterns of chromatin marks, excluding an essential aspect of developmental gene regulation. Results We report here a 15-chromatin state Hidden Markov Model which describes changes in chromatin signatures in relation...

  19. Social status and personality : stability in social state can promote consistency of behavioural responses

    OpenAIRE

    Favati, Anna; Leimar, Olof; Radesäter, Tommy; Løvlie, Hanne

    2014-01-01

    Stability of ‘state’ has been suggested as an underlying factor explaining behavioural stability and animal personality (i.e. variation among, and consistency within individuals in behavioural responses), but the possibility that stable social relationships represent such states remains unexplored. Here, we investigated the influence of social status on the expression and consistency of behaviours by experimentally changing social status between repeated personality assays. We used male domes...

  20. Syngman Rhee's efforts in the United States to promote Korean independence from 1904 to 1945

    OpenAIRE

    Kim, Jiwon

    1996-01-01

    This study examines Syngman Rhee's activities in the United States, from 1904 to 1945, as he tried to gain independence for Korea. Rhee was a prominent Korean nationalist, anti-communist, and first President of South Korea. Chapter One (1904-1918) examines how Rhee began his fight for Korean independence after consequential events in Korean history. Chapter Two (1919-1938) looks at Rhee's activities as a principal leader of Korean independence from 1919 to 1938. After the Ma...

  1. Promoting plumbing fixture and fitting replacement: Recommendations and review for state and local water resource authorities

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C.; Lutz, J.D.; Pickle, S.J.

    1995-06-01

    Lawrence Berkeley National Laboratory (LBNL) has prepared this report to facilitate compliance with the requirements of Section 123 of the Energy Policy Act of 1992 (EPACT). Section 123 requires the Department of Energy to issue recommendations for establishing state and local incentive programs to encourage acceleration of voluntary consumer replacement of existing water closets, urinals, showerheads and faucets with water-saving products meeting EPACT standards. The authors recommend that state and local authorities working together and also with utilities: (A) investigate the cost-effectiveness of voluntary replacement of plumbing fixtures and fittings as an effective component of a water efficiency incentive program; (B) allow utilities to distribute the costs of water saving products by billing at pre-installation rates until devices have been paid for; (C) encourage decreased water usage by establishing rate structures such as increasing block rates or seasonal pricing; (D) add additional incentive to rebate programs by making the rebates untaxable income. (E) require municipalities or utilities to exhaust every reasonable method of water conservation before applying for permits to construct water supply or water treatment systems; (F) require high-efficiency toilets, urinals, showerheads, and faucets in new construction and changing plumbing codes to incorporate different pipe sizing needs; and (G) and mandate installation of meters to correctly measure water consumption. Following the introduction, a general overview of these recommendations is presented. Each recommendation is discussed briefly. After determining the cost-effectiveness of a plumbing replacement program (or plumbing replacement aspect of a larger program) states can encourage replacement of toilets, urinals, showerheads, and faucets in a number of ways. This report lists both legislative and economic measures that can be implemented on the state level that impact local programs.

  2. Brain-computer interface research a state-of-the-art summary 3

    CERN Document Server

    Guger, Christoph; Allison, Brendan

    2014-01-01

    This book provides a cutting-edge overview of the latest developments in Brain-Computer-Interfaces (BCIs), reported by leading research groups. As the reader will discover, BCI research is moving ahead rapidly, with many new ideas, research initiatives, and improved technologies, e.g. BCIs that enable people to communicate just by thinking - without any movement at all. Several different groups are helping severely disabled users communicate using BCIs, and BCI technology is also being extended to facilitate recovery from stroke, epilepsy, and other conditions. Each year, hundreds of the top

  3. Brain-computer interface research a state-of-the-art summary

    CERN Document Server

    Allison, Brendan; Edlinger, Günter; Leuthardt, E C

    Brain-computer interfaces (BCIs) are rapidly developing into a mainstream, worldwide research endeavor. With so many new groups and projects, it can be difficult to identify the best ones. This book summarizes ten leading projects from around the world. About 60 submissions were received in 2011 for the highly competitive BCI Research Award, and an international jury selected the top ten. This Brief gives a concise but carefully illustrated and fully up-to-date description of each of these projects, together with an introduction and concluding chapter by the editors.

  4. Cognitive Rehabilitation in Patients with Gliomas and Other Brain Tumors: State of the Art

    Directory of Open Access Journals (Sweden)

    E. Bergo

    2016-01-01

    Full Text Available Disease prognosis is very poor in patients with brain tumors. Cognitive deficits due to disease or due to its treatment have an important weight on the quality of life of patients and caregivers. Studies often take into account quality of life as a fundamental element in the management of disease and interventions have been developed for cognitive rehabilitation of neuropsychological deficits with the aim of improving the quality of life and daily-life autonomy of patients. In this literature review, we will consider the published studies of cognitive rehabilitation over the past 20 years.

  5. Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Directory of Open Access Journals (Sweden)

    Martin eDinov

    2016-05-01

    Full Text Available Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches and the sum squared error (SSE from a multilayer perceptron (MLP prediction of the EEG timeseries, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach.

  6. Novel Modeling of Task vs. Rest Brain State Predictability Using a Dynamic Time Warping Spectrum: Comparisons and Contrasts with Other Standard Measures of Brain Dynamics

    Science.gov (United States)

    Dinov, Martin; Lorenz, Romy; Scott, Gregory; Sharp, David J.; Fagerholm, Erik D.; Leech, Robert

    2016-01-01

    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach. PMID:27242502

  7. Aging Triggers a Repressive Chromatin State at Bdnf Promoters in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Ernest Palomer

    2016-09-01

    Full Text Available Cognitive capacities decline with age, an event accompanied by the altered transcription of synaptic plasticity genes. Here, we show that the transcriptional induction of Bdnf by a mnemonic stimulus is impaired in aged hippocampal neurons. Mechanistically, this defect is due to reduced NMDA receptor (NMDAR-mediated activation of CaMKII. Decreased NMDAR signaling prevents changes associated with activation at specific Bdnf promoters, including displacement of histone deacetylase 4, recruitment of the histone acetyltransferase CBP, increased H3K27 acetylation, and reduced H3K27 trimethylation. The decrease in NMDA-CaMKII signaling arises from constitutive reduction of synaptic cholesterol that occurs with normal aging. Increasing the levels of neuronal cholesterol in aged neurons in vitro, ex vivo, and in vivo restored NMDA-induced Bdnf expression and chromatin remodeling. Furthermore, pharmacological prevention of age-associated cholesterol reduction rescued signaling and cognitive deficits of aged mice. Thus, reducing hippocampal cholesterol loss may represent a therapeutic approach to reverse cognitive decline during aging.

  8. Convergence of the Policies for Promoting Total Quality Management in the Public Administrations of Balkan States – European Union Member States

    Directory of Open Access Journals (Sweden)

    Ani MATEI

    2011-03-01

    Full Text Available In the past three decades, total quality management (TQM has been appreciated as “fundamental modality in view to improve the activity in the public and private sectors” (Boyne and Walker, 2002, p. 1. For the time being, in public administrations, we witness an extension of the policies for promoting TQM, although the experiences have not always been positive.The European Administrative Space (EAS incorporates TQM, in different manners at national level, taking into consideration its recognised impact on the efficiency of public administration, one of EAS fundamental principles (Zurga, 2008, pp. 39-49. In the context of analysing EAS evolution, the administrative convergence will also comprise the convergence of TQM policies. In fact, the field literature (Hackman, Wageman, 1995 reveals, in the context of national TQM policy-making, the concepts of ”Convergent validity” and ”Discriminant validity”, reflecting ”the degree to which the version of TQM promulgated by the founders and observed in organizational practice share a common set of assumptions and prescriptions” (Hackman, Wageman, 1995, pp. 318-319.By a comparative analysis on TQM policies in the national public administrations of Balkan states, EU Member States: Greece, Cyprus, Slovenia, Bulgaria and Romania, the current paper aims to reveal the level of their convergence as well as the theoretical consistency of the conceptual and practical framework for TQM assertion.The comparative analysis will be based on a comprehensive vision on TQM, provided by Dean and Bowen (1994, Boyne and Walker (2002, namely its approach should be characterised on own principles, practices and techniques, grouped on customer focus, continuous improvement and team work (Boyne and Walker, 2002, pp. 4-5.The tradition on promoting TQM in public administration in the above-mentioned states is relatively recent: since 1990s – Cyprus, since 1995 – Greece and Slovenia, since 2000 – Bulgaria and

  9. Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture

    OpenAIRE

    Chunxiao Wu; Shanshan Qu; Jiping Zhang; Junqi Chen; Shaoqun Zhang; Zhipeng Li; Jiarong Chen; Huailiang Ouyang; Yong Huang; Chunzhi Tang

    2014-01-01

    Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI ...

  10. POLICIES FOR PROMOTING THE KNOWLEDGE ECONOMY IN THE STATE OF SINALOA, MEXICO

    Directory of Open Access Journals (Sweden)

    Santos López-Leyva

    2015-01-01

    Full Text Available This paper offers a perspective for the formulation of public policy in science, technology and innovation (STI for the State of Sinaloa. Today, the productive processes of the regions are developed in what is called "knowledge economy". There are two main theoretical frameworks for the study of this subject. The neoclassical school explains the technological change using production functions and growth models; in second place is evolutionary thinking that builds national and regional categories of innovation systems, technological trajectories and paradigms in science and technology. For the construction of a regional policy in this field is more useful this second school of thought, which complemented an institutionalist vision adequately. A progressive verification method is used for checking each one of the components of the Regional Innovation System (RIS in the case of universities are taken each of the dimensions of quality set by Levin (2006 . The meaning and scope of a regional innovation system is shown and the categories of this construct are hard to visualize Sinaloa developing policy proposals for the development of the region. Stresses elements such as the need to strengthen the pillars of RIS; Sinaloa enroll in the knowledge economy; build the city of knowledge; improve visibility of the knowledge produced in the state, and strengthen the institutional base of the STI. The second element addresses are universities as knowledge producers. A theoretical framework is developed using the concepts of triple helix, two mode of knowledge production, innovative university, Pasteur's quadrant, and academic capitalism. In the qualification of higher education in the state twelve dimensions are used: excellence in research, academic freedom and proper intellectual atmosphere, capacity for self-government, to have adequate facilities and funding, to practice respect for diversity, to achieve internationalization activities, to exercise

  11. Do Natural Resources of Rentier States Promote Military Expenditures? Evidence from GCC Countries

    Directory of Open Access Journals (Sweden)

    Nasser Al-Mawali

    2015-06-01

    Full Text Available This study aims to explore the effect of natural resources of rentier states on military expenditure using the panel data from GCC countries. The principle findings suggest that types of natural resources matter and that the rent from oil only appeared to fuel the military expenditure of GCC, other natural resources such as gas and minerals are not. Further, the study found that Gulf War I and II as well as Arab Spring is statistically insignificant in explaining the military expenditure of GCC.

  12. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges

    NARCIS (Netherlands)

    Mühl, Christian; Allison, Brandan; Nijholt, Anton; Chanel, Guillaume

    2014-01-01

    Affective states, moods and emotions, are an integral part of the human nature: they shape our thoughts, govern the behavior of the individual, and influence our interpersonal relationships. The last decades have seen a growing interest in the automatic detection of such states from voice, facial ex

  13. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    Science.gov (United States)

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  14. Detection of Rabies Antigen in the Saliva and Brains of Apparently Healthy Dogs Slaughtered for Human Consumption and Its Public Health Implications in Abia State, Nigeria

    OpenAIRE

    Mshelbwala, P. P.; Ogunkoya, A. B.; B. V. Maikai

    2013-01-01

    The study was carried out in eight dogs slaughtering outlets within four Local Government Areas of the State for the determination of rabies antigen in the saliva and brain of apparently healthy dogs slaughtered for human consumption. A total of one hundred (100) samples each of saliva and brain were collected before and after slaughter, respectively, between April to June, 2013, in the selected areas. The saliva was subjected to rapid immune-chromatographic test (RICT) while direct fluoresce...

  15. Altered baseline brain activities before food intake in obese men: a resting state fMRI study.

    Science.gov (United States)

    Zhang, Bin; Tian, Derun; Yu, Chunshui; Zhang, Jing; Tian, Xiao; von Deneen, Karen M; Zang, Yufeng; Walter, Martin; Liu, Yijun

    2015-01-01

    Obesity as a chronic disease has become a global epidemic. However, why obese individuals eat more still remains unclear. Recent functional neuroimaging studies have found abnormal brain activations in obese people. In the present study, we used resting state functional MRI to observe spontaneous blood-oxygen-level dependent (BOLD) signal fluctuations during both hunger and satiety states in 20 lean and 20 obese men. Using a regional homogeneity (ReHo) analysis method, we measured temporal homogeneity of the regional BOLD signals. We found that, before food intake, obese men had significantly increased synchronicity of activity in the left putamen relative to lean men. Decreased synchronicity of activity was found in the orbitofrontal cortex (OFC) and medial prefrontal cortex(MPFC) in the obese subjects. And, the ratings of hunger of the obese subjects were higher than those of the lean subjects before food intake. After food intake, we did not find the significant differences between the obese men and the lean men. In all participations, synchronicity of activity increased from the fasted to the satiated state in the OFC. The results indicated that OFC plays an important role in feeding behavior, and OFC signaling may be disordered in obesity. Obese men show less inhibitory control during fasting state. This study has provided strong evidence supporting the hypothesis that there is a hypo-functioning reward circuitry in obese individuals, in which the frontal cortex may fail to inhibit the striatum, and consequently lead to overeating and obesity. PMID:25459293

  16. Toward a semi-self-paced EEG brain computer interface: decoding initiation state from non-initiation state in dedicated time slots.

    Directory of Open Access Journals (Sweden)

    Lingling Yang

    Full Text Available Brain computer interfaces (BCIs offer a broad class of neurologically impaired individuals an alternative means to interact with the environment. Many BCIs are "synchronous" systems, in which the system sets the timing of the interaction and tries to infer what control command the subject is issuing at each prompting. In contrast, in "asynchronous" BCIs subjects pace the interaction and the system must determine when the subject's control command occurs. In this paper we propose a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is able to determine when control commands are issued by decoding the subject's intention for initiating control in dedicated time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs.

  17. Assessment of brain activities during an emotional stress state using fMRI

    International Nuclear Information System (INIS)

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  18. Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity.

    Science.gov (United States)

    Sarkar, S; Jun, S; Rellick, S; Quintana, D D; Cavendish, J Z; Simpkins, J W

    2016-09-01

    Polygenetic risk factors and reduced expression of many genes in late-onset Alzheimer's disease (AD) impedes identification of a target(s) for disease-modifying therapies. We identified a single microRNA, miR-34a that is over expressed in specific brain regions of AD patients as well as in the 3xTg-AD mouse model. Specifically, increased miR-34a expression in the temporal cortex region compared to age matched healthy control correlates with severity of AD pathology. miR-34a over expression in patient's tissue and forced expression in primary neuronal culture correlates with concurrent repression of its target genes involved in synaptic plasticity, oxidative phosphorylation and glycolysis. The repression of oxidative phosphorylation and glycolysis related proteins correlates with reduced ATP production and glycolytic capacity, respectively. We also found that miR-34a overexpressed neurons secrete miR-34a containing exosomes that are taken up by neighboring neurons. Furthermore, miR-34a targets dozens of genes whose expressions are known to be correlated with synchronous activity in resting state functional networks. Our analysis of human genomic sequences from the tentative promoter of miR-34a gene shows the presence of NFκB, STAT1, c-Fos, CREB and p53 response elements. Together, our results raise the possibilities that pathophysiology-induced activation of specific transcription factor may lead to increased expression of miR-34a gene and miR-34a mediated concurrent repression of its target genes in neural networks may result in dysfunction of synaptic plasticity, energy metabolism, and resting state network activity. Thus, our results provide insights into polygenetic AD mechanisms and disclose miR-34a as a potential therapeutic target for AD. PMID:27235866

  19. A Cross-Sectional Study of Tobacco Advertising, Promotion, and Sponsorship in Airports across Europe and the United States

    Directory of Open Access Journals (Sweden)

    Andrea Soong

    2016-09-01

    Full Text Available Tobacco advertising, promotion, and sponsorship (TAPS bans are effective and are increasingly being implemented in a number of venues and countries, yet the state of TAPS in airports and their effect on airport smoking behavior is unknown. The objective of this study was to evaluate the presence of TAPS in airports across Europe and the US, and to begin to examine the relationship between TAPS and smoking behaviors in airports. We used a cross-sectional study design to observe 21 airports in Europe (11 and the US (10. Data collectors observed points of sale for tobacco products, types of products sold, advertisements and promotions, and branding or logos that appeared in the airport. Tobacco products were sold in 95% of all airports, with significantly more sales in Europe than the US. Advertisements appeared mostly in post-security areas; however, airports with advertisements in pre-security areas had significantly more smokers observed outdoors than airports without advertisements in pre-security areas. Tobacco branding appeared in designated smoking rooms as well as on non-tobacco products in duty free shops. TAPS are widespread in airports in Europe and the US and might be associated with outdoor smoking, though further research is needed to better understand any relationship between the two. This study adds to a growing body of research on tobacco control in air transit and related issues. As smoke-free policies advance, they should include comprehensive TAPS bans that extend to airport facilities.

  20. Modular Reorganization of Brain Resting State Networks and Its Independent Validation in Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Guangyu eChen

    2013-08-01

    Full Text Available Previous studies have demonstrated disruption in structural and functional connectivity occurring in the Alzheimer’s Disease (AD. However, it is not known how these disruptions alter brain network reorganization. With the modular analysis method of graph theory, and datasets acquired by the resting-state functional connectivity MRI (R-fMRI method, we investigated and compared the brain organization patterns between the AD group and the cognitively normal control (CN group. Our main finding is that the largest homotopic module (defined as the insula module in the CN group was broken down to the pieces in the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus, transverse temporal gyri, superior temporal gyrus, and superior temporal pole of the insula module had lost symmetric functional connection properties, and the corresponding gray matter concentration (GMC was significant lower in AD group. We further quantified the functional connectivity changes with an index (index A and structural changes with the GMC index in the insula module to demonstrate their great potential as AD biomarkers. We further validated these results with six additional independent datasets (271 subjects in six groups. Our results demonstrated specific underlying structural and functional reorganization from young to old, and for diseased subjects. Further, it is suggested that by combining the structural GMC analysis and functional modular analysis in the insula module, a new biomarker can be developed at the single-subject level.

  1. The brain on silent: mind wandering, mindful awareness, and states of mental tranquility.

    Science.gov (United States)

    Vago, David R; Zeidan, Fadel

    2016-06-01

    Mind wandering and mindfulness are often described as divergent mental states with opposing effects on cognitive performance and mental health. Spontaneous mind wandering is typically associated with self-reflective states that contribute to negative processing of the past, worrying/fantasizing about the future, and disruption of primary task performance. On the other hand, mindful awareness is frequently described as a focus on present sensory input without cognitive elaboration or emotional reactivity, and is associated with improved task performance and decreased stress-related symptomology. Unfortunately, such distinctions fail to acknowledge similarities and interactions between the two states. Instead of an inverse relationship between mindfulness and mind wandering, a more nuanced characterization of mindfulness may involve skillful toggling back and forth between conceptual and nonconceptual processes and networks supporting each state, to meet the contextually specified demands of the situation. In this article, we present a theoretical analysis and plausible neurocognitive framework of the restful mind, in which we attempt to clarify potentially adaptive contributions of both mind wandering and mindful awareness through the lens of the extant neurocognitive literature on intrinsic network activity, meditation, and emerging descriptions of stillness and nonduality. A neurophenomenological approach to probing modality-specific forms of concentration and nonconceptual awareness is presented that may improve our understanding of the resting state. Implications for future research are discussed.

  2. The brain on silent: mind wandering, mindful awareness, and states of mental tranquility.

    Science.gov (United States)

    Vago, David R; Zeidan, Fadel

    2016-06-01

    Mind wandering and mindfulness are often described as divergent mental states with opposing effects on cognitive performance and mental health. Spontaneous mind wandering is typically associated with self-reflective states that contribute to negative processing of the past, worrying/fantasizing about the future, and disruption of primary task performance. On the other hand, mindful awareness is frequently described as a focus on present sensory input without cognitive elaboration or emotional reactivity, and is associated with improved task performance and decreased stress-related symptomology. Unfortunately, such distinctions fail to acknowledge similarities and interactions between the two states. Instead of an inverse relationship between mindfulness and mind wandering, a more nuanced characterization of mindfulness may involve skillful toggling back and forth between conceptual and nonconceptual processes and networks supporting each state, to meet the contextually specified demands of the situation. In this article, we present a theoretical analysis and plausible neurocognitive framework of the restful mind, in which we attempt to clarify potentially adaptive contributions of both mind wandering and mindful awareness through the lens of the extant neurocognitive literature on intrinsic network activity, meditation, and emerging descriptions of stillness and nonduality. A neurophenomenological approach to probing modality-specific forms of concentration and nonconceptual awareness is presented that may improve our understanding of the resting state. Implications for future research are discussed. PMID:27398642

  3. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    Directory of Open Access Journals (Sweden)

    Burke R

    2005-01-01

    Full Text Available This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  4. Brain orexin promotes obesity resistance

    OpenAIRE

    Kotz, Catherine; Nixon, Joshua; Butterick, Tammy; Perez-Leighton, Claudio; Teske, Jennifer; Billington, Charles

    2012-01-01

    Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in...

  5. A state of nuclear power in Japan and world and bring up best brains

    International Nuclear Information System (INIS)

    History of nuclear power and the related policy in Japan is explained. Safety of nuclear power has not been cleared to people. The specialists have to show people information how to decide nuclear power policy. There are two lines such as 1) uranium and plutonium line and 2) thorium cycle line. With developing an accelerator driven system of plutonium, we should develop thorium cycle in order to be desirable for non-proliferation and residual activity. Today, the budget for energy development and nuclear power in Japan has to be reconsidered. The budget for development of natural energy in this country is the largest in the world, but the fruits are very small. Many universities stopped nuclear reactor for research and only five reactors for research are operating in Japan. We must find new way of a corporation combined JAERI (Japan Atomic Energy Research Institute) with JNC (Japan Nuclear Cycle Development Institute) and reconstruction to share the use of facilities. The progressive researches bring up best brains using small reactor. Other countries use many kinds of energies and begin to study new researches. (S.Y.)

  6. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  7. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  8. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin. PMID:26020632

  9. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Directory of Open Access Journals (Sweden)

    Naoe Kotomura

    Full Text Available The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  10. Global Integration of the Hot-State Brain Network of Appetite Predicts Short Term Weight Loss in Older Adult

    Directory of Open Access Journals (Sweden)

    Brielle M Paolini

    2015-05-01

    Full Text Available Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE. The present work is a sub-study (n = 56 of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC, superior temporal pole, amygdala and the parahippocampal gyrus were highly integrated as evidenced by the results of a principal component analysis. After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  11. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult.

    Science.gov (United States)

    Paolini, Brielle M; Laurienti, Paul J; Simpson, Sean L; Burdette, Jonathan H; Lyday, Robert G; Rejeski, W Jack

    2015-01-01

    Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI) scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus) were highly integrated as evidenced by the results of a principal component analysis (PCA). After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy) and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  12. Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia.

    Science.gov (United States)

    Ford, Judith M; Roach, Brian J; Palzes, Vanessa A; Mathalon, Daniel H

    2016-01-01

    Perceptional abnormalities in schizophrenia are associated with hallucinations and delusions, but also with negative symptoms and poor functional outcome. Perception can be studied using EEG-derived event related potentials (ERPs). Because of their excellent temporal resolution, ERPs have been used to ask when perception is affected by schizophrenia. Because of its excellent spatial resolution, functional magnetic resonance imaging (fMRI) has been used to ask where in the brain these effects are seen. We acquired EEG and fMRI data simultaneously to explore when and where auditory perception is affected by schizophrenia. Thirty schizophrenia (SZ) patients and 23 healthy comparison subjects (HC) listened to 1000 Hz tones occurring about every second. We used joint independent components analysis (jICA) to combine EEG-based event-related potential (ERP) and fMRI responses to tones. Five ERP-fMRI joint independent components (JIC) were extracted. The "N100" JIC had temporal weights during N100 (peaking at 100 ms post-tone onset) and fMRI spatial weights in superior and middle temporal gyri (STG/MTG); however, it did not differ between groups. The "P200" JIC had temporal weights during P200 and positive fMRI spatial weights in STG/MTG and frontal areas, and negative spatial weights in the nodes of the default mode network (DMN) and visual cortex. Groups differed on the "P200" JIC: SZ had smaller "P200" JIC, especially those with more severe avolition/apathy. This is consistent with negative symptoms being related to perceptual deficits, and suggests patients with avolition/apathy may allocate too few resources to processing external auditory events and too many to processing internal events. PMID:27622140

  13. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit;

    2015-01-01

    (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2...... groups. The study was approved by the Danish Animal Experiments Inspectorate. RESULTS AND CONCLUSION: Results showed significant difference in the ADC between TMP and PMP at 2 hours (pPMP (p... minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (pPMP compared to NP. Physiological parameters indicated correlation with the permeabilization states, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP...

  14. Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture.

    Science.gov (United States)

    Wu, Chunxiao; Qu, Shanshan; Zhang, Jiping; Chen, Junqi; Zhang, Shaoqun; Li, Zhipeng; Chen, Jiarong; Ouyang, Huailiang; Huang, Yong; Tang, Chunzhi

    2014-01-01

    Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function. PMID:24963329

  15. Causes and Countermeasures of Brain Drain in State-owned Chemical Enterprises%国有化工企业人才流失原因及对策

    Institute of Scientific and Technical Information of China (English)

    王健

    2013-01-01

    In the era of knowledge economy, talents are the most valuable resource and core competitiveness of enterprises. In the fierce market competition, with the entry of foreign-funded enterprises, brain drain of China's state-owned enterprises becomes more and more serious. Based on current situation and characteristics of brain drain in state-owned chemical enterprises, the paper analyzes in-depth the causes of brain drain of the enterprises. It proposes the countermeasures for brain drain in state-owned enterprises from the as-pects of talents strategy, personnel security, human environment, pre-control of brain drain and turnover management.%在知识经济时代,人才资源是企业最宝贵的资源,是企业的核心竞争力。随着外资企业的进入,我国国有企业人才流失现象越来越严重。基于国有化工企业人才流失的特点,可以深入剖析企业人才流失的原因,从人才战略、人才保障、人文环境、人才流失预控与离职管理等方面提出国有企业人才流失的解决方案。

  16. Predictable Internal Brain Dynamics in EEG and Its Relation to Conscious States

    Directory of Open Access Journals (Sweden)

    Jaewook eYoo

    2014-06-01

    Full Text Available Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory, protention (anticipation, and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG data. Our results show that EEG signals from awake or rapid eye movement (REM sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS. Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics.

  17. Cross-frequency coupling of brain oscillations: an impact of state anxiety.

    Science.gov (United States)

    Knyazev, Gennady G

    2011-06-01

    In recent studies, statistical relations among activities in different frequency EEG bands have been reported. Most of these studies investigate within-subject cross-frequency relations, such as amplitude-amplitude, phase-amplitude and phase-phase coupling between different frequencies. All these cross-frequency interactions are considered to be transient correlates of information processing. However, some authors suggested that a particular pattern of amplitude-amplitude relations among different frequencies may be associated with relatively stable states or even traits. Particularly delta-beta amplitude-amplitude correlation measured in the between-subject domain was shown to lawfully increase in some presumably anxiogenic conditions and in some pathological groups. The main purpose of this paper was to further explore the phenomenon of between-subject delta-beta correlation in terms of its spatial localization, relatedness to state anxiety, and similarity to within-subject amplitude-to-amplitude and phase-to-amplitude coupling. Independent component analysis was used to identify temporally correlated spatial patterns that most reliably show the phenomenon of between-subject delta-beta correlation. Results of this analysis show that in an anxiogenic situation, delta-beta correlation increases in a network of cortical areas which includes the orbitofrontal and the anterior cingulate cortices as its main node. This increase of correlation is accompanied by an increase of delta power and connectivity in the same cortical regions. Analysis of the within-subject delta-beta amplitude-to-amplitude and phase-to-amplitude coupling showed that in an anxiogenic situation, in subjects with higher scores on state anxiety they also tend to increase in the same set of cortical areas. PMID:21458502

  18. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders;

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these...... indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these...

  19. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    Directory of Open Access Journals (Sweden)

    Kostelich Eric J

    2011-12-01

    Full Text Available Abstract Background Data assimilation refers to methods for updating the state vector (initial condition of a complex spatiotemporal model (such as a numerical weather model by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter, previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck.

  20. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges

    Directory of Open Access Journals (Sweden)

    Carmelo Mario Vicario

    2013-11-01

    Full Text Available In the last decades interest in application of non-invasive brain stimulation for enhancing neural functions is growing continuously. However, the use of such techniques in pediatric populations remains rather limited and mainly confined to the treatment of severe neurological and psychiatric diseases. In this article we provide a complete review of non-invasive brain stimulation studies conducted in pediatric populations. We also provide a brief discussion about the current limitations and future directions in a field of research still very young and full of issues to be explored.

  1. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study

    Directory of Open Access Journals (Sweden)

    Dave Sanjay

    2005-07-01

    Full Text Available Abstract Background It is unknown if medications used to treat bipolar disorder have effects on brain activation, and whether or not any such changes are mood-independent. Methods Patients with bipolar disorder who were depressed (n = 5 or euthymic (n = 5 were examined using fMRI before, and 14 days after, being started on lithium (as monotherapy in 6 of these patients. Patients were examined using a word generation task and verbal memory task, both of which have been shown to be sensitive to change in previous fMRI studies. Differences in blood oxygenated level dependent (BOLD magnitude between the pre- and post-lithium results were determined in previously defined regions of interest. Severity of mood was determined by the Hamilton Depression Scale for Depression (HAM-D and the Young mania rating scale (YMRS. Results The mean HAM-D score at baseline in the depressed group was 15.4 ± 0.7, and after 2 weeks of lithium it was 11.0 ± 2.6. In the euthymic group it was 7.6 ± 1.4 and 3.2 ± 1.3 respectively. At baseline mean BOLD signal magnitude in the regions of interest for the euthymic and depressed patients were similar in both the word generation task (1.56 ± 0.10 and 1.49 ± 0.10 respectively and working memory task (1.02 ± 0.04 and 1.12 ± 0.06 respectively. However, after lithium the mean BOLD signal decreased significantly in the euthymic group in the word generation task only (1.56 ± 0.10 to 1.00 ± 0.07, p Conclusion This is the first study to examine the effects of lithium on brain activation in bipolar patients. The results suggest that lithium has an effect on euthymic patients very similar to that seen in healthy volunteers. The same effects are not seen in depressed bipolar patients, although it is uncertain if this lack of change is linked to the lack of major improvements in mood in this group of patients. In conclusion, this study suggests that lithium may have effects on brain activation that are task- and state

  2. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state.

    Science.gov (United States)

    Briones, T L; Darwish, H

    2014-03-14

    In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.

  3. Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression

    DEFF Research Database (Denmark)

    Paidi, Maya Devi; Schjoldager, Janne Gram; Lykkesfeldt, Jens;

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily...... achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated...... significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes...

  4. Relationship between episodic memory and resting-state brain functional connectivity network in patients with Alzheimer’s disease and mild cognition impairment

    Institute of Scientific and Technical Information of China (English)

    吴钦娟

    2013-01-01

    Objective To explore the relationship between the scores of episodic memory (EM) encoding and retrieving and the resting-state changes of brain functional connectivity (FC) network of Alzheimer’s disease (AD) and mild cognition impairment (MCI) patients.Methods All

  5. Serum levels of brain-derived neurotrophic factor in major depressive disorder : state-trait issues, clinical features and pharmacological treatment

    NARCIS (Netherlands)

    Molendijk, M. L.; Bus, B. A. A.; Spinhoven, Ph; Penninx, B. W. J. H.; Kenis, G.; Prickaerts, J.; Voshaar, R. C. Oude; Elzinga, B. M.

    2011-01-01

    Recent evidence supports 'the neurotrophin hypothesis of depression' in its prediction that brain-derived neurotrophic factor (BDNF) is involved in depression. However, some key questions remain unanswered, including whether abnormalities in BDNF persist beyond the clinical state of depression, whet

  6. Diagnostic criteria of the state of the distributed brain stem regulatory structures in cerebrovascular diseases

    Directory of Open Access Journals (Sweden)

    Pogorelov A.V.

    2014-11-01

    Full Text Available The clinical-neurophysiological study of 62 patients with history of subtentorial ischemic stroke was carried out in order to determine the criteria of dysfunction of morphologically distributed stem regulatory structures. It was revealed that these disorders are sustainable with the possibility of recourse and influence on the course of stroke. It was marked the influence of this disorders on the levels of consciousness, severity of state, recovery rate, asthenia level, sleep function. Manifestations of cerebral cardiac syndrome, impaired attention, orientation reaction, speed of sensomotoric acts are also marked. Patients with these disorders have low rates of recovery of functions. Neurophysiological criteria of these disorders are the lack of expressive reactions in electroencephalography, reduction of their overall level, instability of rhythm - generating structures and others.

  7. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    Science.gov (United States)

    Freeman, Frederick G.

    1993-01-01

    presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.

  8. A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults

    OpenAIRE

    Rajab, Ahmad S.; Crane, David E.; Middleton, Laura E; Robertson, Andrew D.; Hampson, Michelle; Bradley J MacIntosh

    2014-01-01

    Habitual long term physical activity is known to have beneficial cognitive, structural, and neuro-protective brain effects, but to date there is limited knowledge on whether a single session of exercise can alter the brain’s functional connectivity, as assessed by resting-state functional magnetic resonance imaging (rs-fMRI). The primary objective of this study was to characterize potential session effects in resting-state networks (RSNs). We examined the acute effects of exercise on the func...

  9. A multi-methodological MR resting state network analysis to assess the changes in brain physiology of children with ADHD.

    Directory of Open Access Journals (Sweden)

    Benito de Celis Alonso

    Full Text Available The purpose of this work was to highlight the neurological differences between the MR resting state networks of a group of children with ADHD (pre-treatment and an age-matched healthy group. Results were obtained using different image analysis techniques. A sample of n = 46 children with ages between 6 and 12 years were included in this study (23 per cohort. Resting state image analysis was performed using ReHo, ALFF and ICA techniques. ReHo and ICA represent connectivity analyses calculated with different mathematical approaches. ALFF represents an indirect measurement of brain activity. The ReHo and ICA analyses suggested differences between the two groups, while the ALFF analysis did not. The ReHo and ALFF analyses presented differences with respect to the results previously reported in the literature. ICA analysis showed that the same resting state networks that appear in healthy volunteers of adult age were obtained for both groups. In contrast, these networks were not identical when comparing the healthy and ADHD groups. These differences affected areas for all the networks except the Right Memory Function network. All techniques employed in this study were used to monitor different cerebral regions which participate in the phenomenological characterization of ADHD patients when compared to healthy controls. Results from our three analyses indicated that the cerebellum and mid-frontal lobe bilaterally for ReHo, the executive function regions in ICA, and the precuneus, cuneus and the clacarine fissure for ALFF, were the "hubs" in which the main inter-group differences were found. These results do not just help to explain the physiology underlying the disorder but open the door to future uses of these methodologies to monitor and evaluate patients with ADHD.

  10. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.

    2016-04-23

    Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  11. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress

    Science.gov (United States)

    Dai, Yafei; Wang, Lujuan; Tang, Jingqun; Cao, Pengfei; Luo, Zhaohui; Sun, Jun; Kiflu, Abraha; Sai, Buqing; Zhang, Meili; Wang, Fan; Li, Guiyuan; Xiang, Juanjuan

    2016-01-01

    Cancer dormancy is a stage in tumor progression in which residual disease remains occult and asymptomatic for a prolonged period. Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy. However, cancer dormancy is poorly characterized and the mechanisms of how cancer cells develop dormancy and relapse remain elusive. In this study, 5- fluorouracil (5-FU) was used to induce cancer cell dormancy. We found that cancer cells escape the cytotoxicity of 5-FU by becoming “dormant”. After exposure to 5-FU, residual non-small cell lung cancer (NSCLC) cells underwent epithelial-mesenchymal transition (EMT), followed by mesenchymal-epithelial transition (MET). These EMT-transformed NSCLC cells were in the state of cell quiescence where cells were not dividing and were arrested in the cell cycle in G0-G1. The dormant cells underwent an EMT showed characteristics of cancer stem cells. P53 is strongly accumulated in response to 5-FU-induced dormant cells through the activation of ubiquitin ligase anaphase-promoting complex (APC/C) and TGF-β/Smad signaling. In contrast to the EMT-transformed cells, MET-transformed cells showed an increased ability to proliferate, suggesting that dormant EMT cells were reactivated in the MET process. During the EMT-MET process, DNA repair including nonhomologous end joining (NHEJ) and homologous recombination (HR) is critical to dormant cell reactivation. Our findings provide a mechanism to unravel cancer cell dormancy and reactivation of the cancer cell population. PMID:27009858

  12. 静息态人脑功能网络的小世界特性%Small-World Properties of Resting State Human Brain Functional Networks

    Institute of Scientific and Technical Information of China (English)

    黄文涛; 冯又层

    2011-01-01

    研究了静息态下健康人脑的功能连接模式有助于理解人脑在正常或疾病状态下的功能活动规律.利用小波变换从健康志愿者静息态的功能磁共振成像中提取时间序列,计算90个脑区的相关性,设定阈值建立脑功能网络的无向简单图,然后计算特征路径长度和聚类系数,并对度分布进行拟合.结果显示:脑功能网络具有规则网络的大聚集系数又具有随机网络的小特征路径长度,度的拟合显示具有指数截断幂律分布,即脑功能网络具有小世界特性.%It is important to study the resting state functional pattern of healthy human brain because it will aid us to understand the law of functional activities of human brain in normal or disease states.Using wavelet transformation,time series of 90 brain regions were extracted from functional magnetic resonance imagines of resting state healthy volunteers.Functional correlations between brain regions were calculated,and the threshold was set to establish the simple undirected graph,then characteristic path length and clustering coefficient were computed,finally the degree distribution was fitted.The results demonstrated that the brain functional networks had both big clustering coefficients like regular networks and small characteristic path lengths similar as random networks,degree distribution met exponentially truncated power-law distribution.Taken together,the human brain functional networks have small world properties.

  13. LEVELS OF BRAIN-SPECIFIC S-100B PROTEIN, SPECIFIC ANTIBODIES AND CYTOKINE PROFILE IN THE PATIENTS WITH ALCOHOL-INDUCED DELIRIUM STATES

    Directory of Open Access Journals (Sweden)

    N. N. Tsybikov

    2008-01-01

    Full Text Available Abstract. Present article deals with our results concerning brain-specific S-100B protein levels, anti-S-100B autoantibodies of IgM and IgG classes, like as cytokine profiles of blood serum and cerebrospinal fluid in the patients with alcohol-induced delirium state. The results obtained provide an evidence of association between alcoholic psychosis and destruction of brain tissue, development of autoimmune reactions and altered cytokine status, thus, probably, resulting into disintegration of immune and neuroendocrine systems.

  14. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  15. Towards an optimization of stimulus parameters for brain-computer interfaces based on steady state visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Anna Duszyk

    Full Text Available Efforts to construct an effective brain-computer interface (BCI system based on Steady State Visual Evoked Potentials (SSVEP commonly focus on sophisticated mathematical methods for data analysis. The role of different stimulus features in evoking strong SSVEP is less often considered and the knowledge on the optimal stimulus properties is still fragmentary. The goal of this study was to provide insight into the influence of stimulus characteristics on the magnitude of SSVEP response. Five stimuli parameters were tested: size, distance, colour, shape, and presence of a fixation point in the middle of each flickering field. The stimuli were presented on four squares on LCD screen, with each square highlighted by LEDs flickering with different frequencies. Brighter colours and larger dimensions of flickering fields resulted in a significantly stronger SSVEP response. The distance between stimulation fields and the presence or absence of the fixation point had no significant effect on the response. Contrary to a popular belief, these results suggest that absence of the fixation point does not reduce the magnitude of SSVEP response. However, some parameters of the stimuli such as colour and the size of the flickering field play an important role in evoking SSVEP response, which indicates that stimuli rendering is an important factor in building effective SSVEP based BCI systems.

  16. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    Science.gov (United States)

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique.

  17. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  18. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    Science.gov (United States)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  19. Role of E-Payment System in Promoting Accountability in Government Ministries as Perceived by Accounting Education Graduates and Accountants in Ministry of Finance of Ebonyi State

    Science.gov (United States)

    Azih, Nonye; Nwagwu, Lazarus

    2015-01-01

    This paper identified the role of electronic payment system in promoting accountability in government ministries as well as the challenges facing the implementation of e-payment in government ministries in Ebonyi State. The study was guided by two research questions and two hypotheses. The population of the study comprised of 112 accountants as…

  20. Combined EXAFS and STEM-EELS study of the electronic state and location of Mn as promoter in Co-based Fischer-Tropsch catalysts

    NARCIS (Netherlands)

    Morales, F; Grandjean, D; de Groot, FMF; Stephan, O; Weckhuysen, BM

    2005-01-01

    STEM-EELS and EXAFS have been used to investigate the location and electronic state of Mn as promoter in TiO2- supported cobalt Fischer Tropsch catalysts prepared by two different procedures. It was found that the extent of interaction between Mn and the active Co phase as well as the level of Mn di

  1. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  2. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  3. White matter damage and brain network alterations in concussed patients: a review of recent diffusion tensor imaging and resting-state functional connectivity data.

    Science.gov (United States)

    Chong, Catherine D; Schwedt, Todd J

    2015-05-01

    Over 2 million people are diagnosed with concussion each year in the USA, resulting in substantial individual and societal burdens. Although 'routine' clinical neuroimaging is useful for the diagnosis of more severe forms of traumatic brain injury, it is insensitive for detecting pathology associated with concussion. Diffusion tensor imaging (DTI) and blood-oxygenation-level-dependent (BOLD) resting-state functional connectivity magnetic resonance imaging (rs-fMRI) are techniques that allow for investigation of brain structural and functional connectivity patterns. DTI and rs-fMRI may be more sensitive than routine neuroimaging for detecting brain sequelae of concussion. This review summarizes recent DTI and rs-fMRI findings of altered structural and functional connectivity patterns in concussed patients.

  4. [Promotion plan for the promotion of cancer: coping measures at Matsuyama Red Cross Hospital in Ehime prefecture - the current state of affairs at the hospital's cancer treatment promotion office].

    Science.gov (United States)

    Fujii, Motohiro

    2013-05-01

    Recent cancer control strategies in Japan have been aimed at lowering morbidity and mortality rates, based on the Thirdterm Comprehensive 10-year Strategy for Cancer Control initiated by the Japanese government. In April 2007, the Cancer Control Basic Law was promulgated to necessitate promotion of cancer control by national and local authorities. In June 2007, the Japanese Health Ministry released a plan for the promotion of measures to cope with cancer. The cancer control measures adopted by the Matsuyama Red Cross Hospital(MRCH)in Ehime Prefecture were as follows: ·Progress in the promotion of measures to cope with cancer in Ehime, including a review of 2012, problems with new treatment methods for childhood cancer, employment of cancer patients, and promotion of home care. ·Cancer treatment measures adopted by MRCH as a hub medical institution for the past 5 years. ·The distinctive efforts of the intensive professionals team at the Cancer Treatment Promotion Office for cancer treatment at MRCH, and its work on cancer care from the 4 perspectives of the balanced scorecard in accordance with the basic policy of MRCH. PMID:23863580

  5. Brain Function State on Patients with Depression%抑郁症患者的脑状态功能分析

    Institute of Scientific and Technical Information of China (English)

    石海虹; 庄玉梅; 周锡芳; 王丽莉

    2014-01-01

    Objective To study brain function state on patients with depression .Methods Randomly selected 52 outpatients in a sanatorium from 1 July in 2012 to 31 Oct in 2013 as study group ,and 52 healthy persons as the control group .Brain state of energy effi-ciency and brain nerve function were investigated by the brain activity assessment system in ZKEAP Developing Consultancy CO .Results①Brain state of energy efficiency of depression for each test item value was:Input level 22.92,pay attention to wake up 23.96,resist-ance to interference 31,degree of relax 21.57,no intention of memory 1.15,brain stability 49.92,eliminate distractions 45.54 and left and right brains advantage 64.26;Brain state of energy efficiency of healthy persons for each test item value was :Input level 16.46,pay attention to wake up 14.53,resistance to interference 29.73,degree of relax 32.54,no intention of memory 5,brain stability 47.65,elimi-nate distractions 37.42 and left and right brains advantage 110.46;② Brain nerve function state of depression for each test item value was:Workload 57.76,brain activity 49.35,quality of sleep 25.69,tension anxious 23.88 and degree of fatigue 46.92;Brain function state of healthy persons for each test item value was:Workload 46.48,brain activity 33.01,quality of sleep 23.69,tension anxious 14.58 and degree of fatigue 19.96.③Compared with healthy people ,depressed patients were significantly different in no intention of memory , left and right brains advantage,brain activity and degree of fatigue(P<0.01)and different in pay attention to wake up,degree of relax and tension anxious(P<0.05).Conclusion There are different degrees of anomalies of brain function state on patients with depres-sion.Understanding these anomalies can help depressed patients correctly understand and control the brain and guide the treatment and rehabilitation of depression .%目的:探讨抑郁症患者的脑功能状态。方法随机抽取2012年7月1日-2013年10月31日某疗

  6. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  7. Differences in brain functional connectivity at resting-state in neonates born to healthy obese or normal-weight mothers

    Science.gov (United States)

    Recent studies have shown associations between maternal obesity at pre- or early pregnancy and long-term neurodevelopment in children, suggesting in utero effects of maternal obesity on offspring brain development. In this study, we examined whether brain functional connectivity to the prefrontal lo...

  8. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations. PMID:23983120

  9. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels

    Science.gov (United States)

    Zanchi, Davide; Meyer-Gerspach, Anne Christin; Suenderhauf, Claudia; Janach, Katharina; le Roux, Carel W.; Haller, Sven; Drewe, Jürgen; Beglinger, Christoph; Wölnerhanssen, Bettina K.; Borgwardt, Stefan

    2016-01-01

    Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation. PMID:27760995

  10. Rs6295 promoter variants of the serotonin type 1A receptor are differentially activated by c-Jun in vitro and correlate to transcript levels in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; van Loo, Karen M J; von Lehe, Marec; Priebe, Lutz; Cichon, Sven; Herms, Stefan; Hoffmann, Per; Helmstaedter, Christoph; Sander, Thomas; Schoch, Susanne; Becker, Albert J

    2013-03-01

    Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e., rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'. PMID:23333373

  11. 1/f-like spectra in cortical and subcortical brain structures: A possible marker of behavioral state-dependent self-organization

    Science.gov (United States)

    Anderson, C. M.; Holroyd, T.; Bressler, S. L.; Selz, K. A.; Mandell, A. J.; Nakamura, R.

    1993-08-01

    Recently, power-law scaling of power spectra with scaling exponents close to -1 (1/f-like spectra) have been observed in cortical and subcortical brain structures in association with specific behavioral states. Further, 1/f processes at different levels of organization have been reported in the nervous systems of vertebrates and invertebrates. This study describes the 1/f-like appearance of cross-spectra between cortical sites in a monkey performing a GO/NO-GO behavioral task. We found broadband 1/f-like coherence spectra (average slope =-0.84) during the ``behaviorally flexible'' state of tonic arousal shortly after the monkey had initiated the trial, suggesting that this brain state is characterized by long-range cortical correlations. One of the implications of these findings is that the 1/f-like cortical coherence spectra may provide a signature of brain self-organization during specific behavioral states. A more general implication is that broadband 1/f-like processes across many levels of organization in the nervous system may provide a versatile and parsimonious mechanism for binding cortical and subcortical nonlinear oscillators rapidly and specifically to environmental information.

  12. Down-Regulation of Neurocan Expression in Reactive Astrocytes Promotes Axonal Regeneration and Facilitates the Neurorestorative Effects of Bone Marrow Stromal Cells in the Ischemic Rat Brain

    Institute of Scientific and Technical Information of China (English)

    LI HONG SHEN; YI LI; QI GAO; SMITA SAVANT-BHONSALE; MICHAEL CHOPP

    2008-01-01

    cerebral artery occlusion followed by an injection of 3×106 rat BMSCs (n=16) or phosphate-buffered saline (n=15) into the tail vein 24 h later. Animals were sacrificed at 8 days after stroke. Immunostaining analysis showed that reactive astrocytes were the primary source of neurocan, and BMSC-treated animals had significantly lower neurocan and higher growth associated protein 43 expression in the penumbral region compared with control rats, which was confirmed by Western blot analysis of the brain tissue. To further investigate the effects of BMSCs on astrocyte neurocan expression, single reactive astrocytes were collected from the ischemic boundary zone using laser capture microdissection. Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n=4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n=3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes.c 2008 Wiley-Liss,Inc.

  13. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: Methods for spectral estimation in the presence of stimulation after-effects

    Directory of Open Access Journals (Sweden)

    Armin eWalter

    2012-11-01

    Full Text Available Brain-state-dependent stimulation combines brain-computer interfaces (BCI and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of brain-state-dependent stimulation because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI.In this work, we compared 4 methods for spectral estimation with autoregressive (AR models in the presence of pulsed cortical stimulation. Using combined EEG-TMS as well as combined ECoG and epidural electrical stimulation, 3 patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1 no stimulation, (2 single stimulation pulses applied independently (open-loop or (3 coupled to the BCI output (closed-loop such that stimulation was given only while an intention to move was detected using neural data.We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized.

  14. Oligodendrocyte transcription factor 1 overexpression promotes oligodendrocyte transcription factor 2 expression in the brains of neonatal rats exposed to hypoxia****☆

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Aijun Yang; Wenxing Jiang

    2011-01-01

    To examine the expression profiles of oligodendrocyte transcription factors 1 and 2 (Olig1 and Olig2) and the interaction between these two proteins, Olig1 was transfected into the lateral ventricles of neonatal rats subjected to hypoxia. Immunohistochemistry demonstrated that Olig2 was expressed throughout the nuclei in the brain, and expression increased at 3 days following hypoxia and was higher than levels at 7 days following Ad5-Olig1 transfection. Western blot revealed that Olig1 and Olig2 expression increased in Olig1-transfected brain cells 3 days after hypoxia, but Olig1 and Olig2 expression decreased at 7 days. These results indicate that Olig1 overexpression enhances Olig2 expression in brain tissues of hypoxia rats.

  15. Quantum Brain States

    OpenAIRE

    Mould, Richard A

    2003-01-01

    If conscious observers are to be included in the quantum mechanical universe, we need to find the rules that engage observers with quantum mechanical systems. The author has proposed five rules that are discovered by insisting on empirical completeness; that is, by requiring the rules to draw empirical information from Schrodinger's solutions that is more complete than is currently possible with the (Born) probability interpretation. I discard Born's interpretation, introducing probability so...

  16. Anti-nuclear antibodies positive serum from systemic lupus erythematosus patients promotes cardiovascular manifestations and the presence of human antibody in the brain

    Directory of Open Access Journals (Sweden)

    Marie Kelly-Worden

    2014-01-01

    Full Text Available Background: Systemic lupus erythematosus (SLE is characterized by the presence of anti-nuclear antibodies (ANAs in the serum of patients. These antibodies may cross over into the brain resulting in the development of neuropsychiatric symptoms and result in abnormal pathology in other organs such as the heart and kidneys. Objective: The objective of this study was to determine if SLE pathology could be detected in the hearts and brains of rats injected with positive human ANA serum. Materials and Methods: Lewis rats (n = 31 were selected for this study due to documented research already performed with this strain in the investigation of serum sickness, encephalitis and autoimmune related carditis. Rats were injected once a week with either ANA positive or negative control serum or saline. Hearts were examined for initial signs of heart disease including the presence of lipid deposits, vegetation, increased ventricular thickness and a change in heart weight. Brains were examined for the presence of human antibody and necrotic lesions. Animals were observed for outward signs of neuropathy as well. Blood samples were taken in order to determine final circulating concentrations of IgG and monitor histamine levels. Results: Animals injected with ANA were significantly higher for lipid deposits in the heart and an increased ventricular thickness was noted. One animal even displayed Libman-Sacks endocarditis. Brains were positive for the presence of human IgG and diffuse internal lesions occurred in 80% of the ANA positive serum injected animals examined. Blood histamine levels were not significantly different, but actually lower than controls by the end of the experiment. Conclusion: Since human antibodies were detected in the brain, further studies will have to identify which antibody cross reactions are occurring within the brain, examine cell infiltration as well as characterize the antibodies associated with more destructive consequences such as

  17. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    OpenAIRE

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Raj P Kandpal; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants...

  18. Near-Infrared Spectroscopy – Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation–Inhibition Balance Hypothesis

    Science.gov (United States)

    Dagar, Snigdha; Chowdhury, Shubhajit Roy; Bapi, Raju Surampudi; Dutta, Anirban; Roy, Dipanjan

    2016-01-01

    Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation–inhibition (E–I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS–EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual “forward models” to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E–I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E–I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of

  19. Near-Infrared Spectroscopy - Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation-Inhibition Balance Hypothesis.

    Science.gov (United States)

    Dagar, Snigdha; Chowdhury, Shubhajit Roy; Bapi, Raju Surampudi; Dutta, Anirban; Roy, Dipanjan

    2016-01-01

    Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation-inhibition (E-I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS-EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E-I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual "forward models" to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E-I-based brain models. Furthermore, E-I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E-I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E-I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of neurostimulation with

  20. Emergency Department Visits for Traumatic Brain Injury in Older Adults in the United States: 2006-08

    Directory of Open Access Journals (Sweden)

    William S. Pearson

    2012-08-01

    Full Text Available Introduction: Traumatic brain injury (TBI can be complicated among older adults due to age-related frailty, a greater prevalence of chronic conditions and the use of anticoagulants. We conducted this study using the latest available, nationally-representative emergency department (ED data to characterize visits for TBI among older adults.Methods: We used the 2006-2008 National Hospital Ambulatory Medical Care – Emergency Department (NHAMCS-ED data to examine ED visits for TBI among older adults. Population-level estimates of triage immediacy, receipt of a head computed tomography (CT and/or head magnetic resonance imaging (MRI, and hospital admission by type were used to characterize 1,561 sample visits, stratified by age <65 and ≥65 years of age.Results: Of ED visits made by persons ≥65 years of age, 29.1% required attention from a physician within 15 minutes of arrival; 82.1% required a head CT, and 20.9% required hospitalization. Persons≥65 years of age were 3 times more likely to receive a head CT or MRI compared to younger patients presenting with TBI (adjusted odds ratio [aOR] 3.2; 95% confidence interval [CI], 1.8-5.8, and were 4 times more likely to be admitted to an intensive care unit, step-down unit, or surgery (aOR 4.1; 95% CI 2.1-8.0 compared to younger patients presenting with TBI, while controlling for sex and race.Conclusion: Results demonstrate increased emergent service delivery for older persons presenting with TBI. As the United States population ages and continues to grow, TBI will become an even more important public health issue that will place a greater demand on the healthcare system. [West J Emerg Med. 2012;13(3:289-293.

  1. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  2. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait......-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified...

  3. Large-Scale Brain Networks in Board Game Experts: Insights from a Domain-Related Task and Task-Free Resting State

    OpenAIRE

    Duan, Xujun; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Gao, Qing; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

    2012-01-01

    Cognitive performance relies on the coordination of large-scale networks of brain regions that are not only temporally correlated during different tasks, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual differences in cognitive performance. Therefore, we aimed to examine the influence of cognitive expertise on four networks associated with cognitive task performance...

  4. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state

    OpenAIRE

    Briones, Teresita L; Darwish, Hala

    2014-01-01

    In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase-2A (PP2A) activity, and modulating the redox state. Male F344 rats age 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received su...

  5. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  6. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  8. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    OpenAIRE

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.; Boyd, Lara A

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategie...

  9. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP promote low oxygen-induced accelerated brain invasion by gliomas.

    Directory of Open Access Journals (Sweden)

    Zhuo Tang

    Full Text Available Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP, Focal adhesion Kinase (FAK, [Formula: see text]-Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.

  10. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas.

    Science.gov (United States)

    Tang, Zhuo; Araysi, Lita M; Fathallah-Shaykh, Hassan M

    2013-01-01

    Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP), Focal adhesion Kinase (FAK), [Formula: see text]-Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.

  11. Adolescent Brain Development and Underage Drinking in the United States: Identifying Risks of Alcohol Use in College Populations

    OpenAIRE

    Silveri, Marisa M

    2012-01-01

    Alcohol use typically is initiated during adolescence, an age period that overlaps with critical structural and functional maturation of the brain. Brain maturation and associated improvements in decision-making continue into the second decade of life, reaching plateaus within the period referred to as “emerging adulthood” (18–24 years). Emerging adulthood is the typical age span of the traditionally aged college student, which includes the age (21 years) when alcohol consumption becomes lega...

  12. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    OpenAIRE

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stim...

  13. NASA Robot Brain Surgeon

    Science.gov (United States)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  14. Brain-actuated interaction

    OpenAIRE

    Millán, José del R.; Renkens, F.; Mourino, J.; Gerstner, W.

    2004-01-01

    Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results have been obtained with either invasive approaches (requiring surgical implantation of electrodes) or synchronous protocols (where brain signals are time-locked to external cues). In this paper we describe a portable noninvasive brain-computer...

  15. Bone Marrow Stromal Cells Promote Neuronal Restoration in Rats with Traumatic Brain Injury: Involvement of GDNF Regulating BAD and BAX Signaling

    Directory of Open Access Journals (Sweden)

    Qin Shen

    2016-02-01

    Full Text Available Background/Aims: To investigate the effects of bone marrow stromal cells (BMSCs and underlying mechanisms in traumatic brain injury (TBI. Methods: Cultured BMSCs from green fluorescent protein-transgenic mice were isolated and confirmed. Cultured BMSCs were immediately transplanted into the regions surrounding the injured-brain site to test their function in rat models of TBI. Neurological function was evaluated by a modified neurological severity score on the day before, and on days 7 and 14 after transplantation. After 2 weeks of BMSC transplantation, the brain tissue was harvested and analyzed by microarray assay. And the coronal brain sections were determined by immunohistochemistry with mouse anti-growth-associated protein-43 kDa (anti-GAP-43 and anti-synaptophysin to test the effects of transplanted cells on the axonal regeneration in the host brain. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay and Western blot were used to detect the apoptosis and expression of BAX and BAD. Results: Microarray analysis showed that BMSCs expressed growth factors such as glial cell-line derived neurotrophic factor (GDNF. The cells migrated around the injury sites in rats with TBI. BMSC grafts resulted in an increased number of GAP-43-immunopositive fibers and synaptophysin-positive varicosity, with suppressed apoptosis. Furthermore, BMSC transplantation significantly downregulated the expression of BAX and BAD signaling. Moreover, cultured BMSC transplantation significantly improved rat neurological function and survival. Conclusion: Transplanted BMSCs could survive and improve neuronal behavior in rats with TBI. Mechanisms of neuroprotection and regeneration were involved, which could be associated with the GDNF regulating the apoptosis signals through BAX and BAD.

  16. Assessment of blood brain barrier penetration of drugs using a rat steady-state brain distribution model%大鼠稳态脑分布模型评价药物的血脑屏障通透性

    Institute of Scientific and Technical Information of China (English)

    原梅; 阳海鹰; 钟玉环; 庄笑梅; 李桦

    2015-01-01

    目的 建立大鼠稳态脑分布模型用于评价安替比林、阿替洛尔和ZZB 系列新药候选化合物的稳态脑分布和血脑屏障通透性.方法 大鼠静脉推注负荷剂量的药物后恒量输注使血药浓度达到稳态,取血和脑组织样品,LC-MS/MS 定量测定血浆和脑组织药物浓度,计算稳态脑血比值(Kp值).在Caco-2 单层细胞体外模型上评价受试药物的双向跨膜通透性,计算表观通透系数(Papp).结果 安替比林和阿替洛尔分别为已知的血脑屏障易通透和难通透药物.安替比林的平均稳态脑分布浓度为(2561±125)ng/g,Kp值为0.93±0.04.阿替洛尔则分别为(20.1±0.8)ng/g 和0.015±0.002.安替比林的Kp值约为阿替洛尔的60 倍.ZZB 系列化合物的结构相似,但Kp值的差异较大,从0.044 到6.41,并与Caco-2 细胞模型的Papp值不相关.结论 建立的大鼠稳态脑分布模型可快速形成稳态血浆浓度,适用于药物血脑屏障通透程度的评价,方法简单、可靠且经济.%Objective To develop a steady-state brain distribution model in rats and to assess the blood brain barrier(BBB) penetration of antipyrine, atenolol and a group of ZZB candidate compounds. Methods Antipyrine, atenolol and ZZB compounds were administered to rats by an initial iv bolus dose (loading dose) followed by iv infusion at a constant rate for 30-40 min to reach steady-state plasma kinetics. The blood and brain tissue samples were then collected. The steady-state concentrations of the samples were measured by LC-MS/MS. The steady-state ratio of brain to plasma concentration (Kp) was calculated. The drugs and candidate compounds were also tested with Caco-2 cell model and the apparent bidirectional transport permeability coefficient (Papp) was obtained. Results Antipyrine and atenolol were known as drugs with high and low BBB penetration properties respectively. The mean brain concentrations of antipyrine and atenolol at steady-state were(2561 ± 125) and(20.1

  17. Balancing of Histone H3K4 Methylation States by the Kdm5c/SMCX Histone Demethylase Modulates Promoter and Enhancer Function

    Directory of Open Access Journals (Sweden)

    Nikolay S. Outchkourov

    2013-04-01

    Full Text Available The functional organization of eukaryotic genomes correlates with specific patterns of histone methylations. Regulatory regions in genomes such as enhancers and promoters differ in their extent of methylation of histone H3 at lysine-4 (H3K4, but it is largely unknown how the different methylation states are specified and controlled. Here, we show that the Kdm5c/Jarid1c/SMCX member of the Kdm5 family of H3K4 demethylases can be recruited to both enhancer and promoter elements in mouse embryonic stem cells and in neuronal progenitor cells. Knockdown of Kdm5c deregulates transcription via local increases in H3K4me3. Our data indicate that by restricting H3K4me3 modification at core promoters, Kdm5c dampens transcription, but at enhancers Kdm5c stimulates their activity. Remarkably, an impaired enhancer function activates the intrinsic promoter activity of Kdm5c-bound distal elements. Our results demonstrate that the Kdm5c demethylase plays a crucial and dynamic role in the functional discrimination between enhancers and core promoters.

  18. A single session of exercise increases connectivity in sensorimotor-related brain networks: A resting-state fMRI study in young healthy adults

    OpenAIRE

    Ahmad Saeed Rajab; Crane, David E.; Middleton, Laura E; Andrew eRobertson; Michelle eHampson; Bradley J MacIntosh

    2014-01-01

    Habitual long term physical activity is known to have beneficial cognitive, structural and neuro-protective brain effects, but to date there is limited knowledge on whether a single session of exercise can alter the brain’s functional connectivity, as assessed by resting-state fMRI (rs-fMRI). The primary objective of this study was to characterize potential session effects in resting state networks (RSNs). We examined the acute effects of exercise on the functional connectivity of young healt...

  19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    Science.gov (United States)

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all patlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task

  20. A concept of welfare based on reward evaluating mechanisms in the brain: anticipatory behaviour as an indicator for the state of reward systems.

    Science.gov (United States)

    Spruijt, B M.; van den Bos, R; Pijlman, F T.A.

    2001-04-26

    In this review we attempt to link the efficiency by which animals behave (economy of animal behaviour) to a neuronal substrate and subjective states to arrive at a definition of animal welfare which broadens the scope of its study. Welfare is defined as the balance between positive (reward, satisfaction) and negative (stress) experiences or affective states. The state of this balance may range from positive (good welfare) to negative (poor welfare). These affective states are momentary or transient states which occur against the background of and are integrated with the state of this balancing system. As will be argued the efficiency in behaviour requires that, for instance, satisfaction is like a moving target: reward provides the necessary feedback to guide behaviour; it is a not steady-state which can be maintained for long. This balancing system is reflected in the brain by the concerted action of opioid and mesolimbic dopaminergic systems. The state of this system reflects the coping capacity of the animal and is determined by previous events. In other words, this integrative approach of behavioural biology and neurobiology aims at understanding how the coping capacity of animals may be affected and measured. We argue that this balancing system underlies the economy of behaviour. Furthermore we argue that among other techniques anticipation in Pavlovian conditioning is an easy and useful tool to assess the state of this balancing system: for estimating the state of an animal in terms of welfare we focus on the conditions when an animal is facing a challenge.

  1. Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study

    Science.gov (United States)

    Liu, Daihong; Duan, Shanshan; Zhang, Jiuquan; Zhou, Chaoyang; Liang, Minglong; Yin, Xuntao; Wei, Ping; Wang, Jian

    2016-01-01

    Type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo) and functional connectivity (FC) analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging (rs-fMRI) data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus (ACG) and lower ReHo in the right fusiform gyrus (FFG), right precentral gyrus (PreCG) and right medial orbit of the superior frontal gyrus (SFG). Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test (DST) forward scores revealed significant correlations with the ReHo values of the right PreCG (ρ = 0.527, p = 0.014) and FC between the right FFG and middle temporal gyrus (MTG; ρ = −0.437, p = 0.048). Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM

  2. Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory.

    Science.gov (United States)

    Hadley, Jennifer Ann; Kraguljac, Nina Vanessa; White, David Matthew; Ver Hoef, Lawrence; Tabora, Janell; Lahti, Adrienne Carol

    2016-01-01

    A number of neuroimaging studies have provided evidence in support of the hypothesis that faulty interactions between spatially disparate brain regions underlie the pathophysiology of schizophrenia, but it remains unclear to what degree antipsychotic medications affect these. We hypothesized that the balance between functional integration and segregation of brain networks is impaired in unmedicated patients with schizophrenia, but that it can be partially restored by antipsychotic medications. We included 32 unmedicated patients with schizophrenia (SZ) and 32 matched healthy controls (HC) in this study. We obtained resting-state scans while unmedicated, and again after 6 weeks of treatment with risperidone to assess functional integration and functional segregation of brain networks using graph theoretical measures. Compared with HC, unmedicated SZ showed reduced global efficiency and increased clustering coefficients. This pattern of aberrant functional network integration and segregation was modulated with antipsychotic medications, but only in those who responded to treatment. Our work lends support to the concept of schizophrenia as a dysconnectivity syndrome, and suggests that faulty brain network topology in schizophrenia is modulated by antipsychotic medication as a function of treatment response. PMID:27336056

  3. Three Large-Scale Functional Brain Networks from Resting-State Functional MRI in Subjects with Different Levels of Cognitive Impairment.

    Science.gov (United States)

    Joo, Soo Hyun; Lim, Hyun Kook; Lee, Chang Uk

    2016-01-01

    Normal aging and to a greater degree degenerative brain diseases such as Alzheimer's disease (AD), cause changes in the brain's structure and function. Degenerative changes in brain structure and decline in its function are associated with declines in cognitive ability. Early detection of AD is a key priority in dementia services and research. However, depending on the disease progression, neurodegenerative manifestations, such as cerebral atrophy, are detected late in course of AD. Functional changes in the brain may be an indirect indicator of trans-synaptic activity and they usually appear prior to structural changes in AD. Resting-state functional magnetic resonance imaging (RS-fMRI) has recently been highlighted as a new technique for interrogating intrinsic functional connectivity networks. Among the majority of RS-fMRI studies, the default mode network (DMN), salience network (SN), and central executive network (CEN) gained particular focus because alterations to their functional connectivity were observed in subjects who had AD, who had mild cognitive impairment (MCI), or who were at high risk for AD. Herein, we present a review of the current research on changes in functional connectivity, as measured by RS-fMRI. We focus on the DMN, SN, and CEN to describe RS-fMRI results from three groups: normal healthy aging, MCI and AD. PMID:26766941

  4. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat.

    Science.gov (United States)

    Greenwood, M P; Greenwood, M; Gillard, B T; Loh, S Y; Paton, J F R; Murphy, D

    2016-04-01

    The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp

  5. Special Education Teachers' Knowledge and Use of Brain-Based Teaching, Common Core State Standards, Formative Feedback Practices and Instructional Efficacy for the Diverse Learning Needs of Students in High and Low Proficiency Groups

    Science.gov (United States)

    Walker-Thompson, Malasia

    2014-01-01

    This study examined special education teachers' knowledge and use of: brain-based teaching strategies, Common Core State Standards, formative feedback, and instructional efficacy for diverse students. The study identified the differences amongst special education teachers' responses on the dimensions of brain-based teaching strategies, Common Core…

  6. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  7. Building Health Promotion Capacity in Developing Countries: Strategies from 60 Years of Experience in the United States

    Science.gov (United States)

    Howze, Elizabeth H.; Auld, M. Elaine; Woodhouse, Lynn D.; Gershick, Jessica; Livingood, William C.

    2009-01-01

    The Galway Consensus Conference articulated key definitions, principles, values, and core domains of practice as the foundation for the diffusion of health promotion across the globe. The conference occurred in the context of an urgent need for large numbers of trained health workers in developing countries, which face multiple severe threats to…

  8. Ectopic Expression of Col2.3 and Col3.6 Promoters in the Brain and Association with Leptin Signaling

    OpenAIRE

    Scheller, Erica L.; Leinninger, Gina M.; Hankenson, Kurt D.; Myers, Martin G.; Paul H Krebsbach

    2011-01-01

    The collagen 2.3 and 3.6 promoters have been used to drive Cre expression for generation of conditional transgenic mutant mice. Within the bone, Col3.6 is expressed by mesenchymal precursor cells and their downstream progeny, while Col2.3 is more osteoblast specific. Our generation of transgenic mice with Col2.3-Cre- and Col3.6-Cre-driven deletion of the long-form leptin receptor (ObRb) necessitated a thorough analysis of the nonspecific expression of these promoters in the central nervous sy...

  9. Exploring the brains of Baduk (Go) experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis.

    Science.gov (United States)

    Jung, Wi Hoon; Kim, Sung Nyun; Lee, Tae Young; Jang, Joon Hwan; Choi, Chi-Hoon; Kang, Do-Hyung; Kwon, Jun Soo

    2013-01-01

    One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC) in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts (BEs) compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry (VBM) and FC analyses in BEs to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis (GTA) to explore the topological organization of whole-brain functional networks. Compared to novices, BEs exhibited decreased and increased gray matter volume (GMV) in the amygdala and nucleus accumbens (NA), respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex (mOFC) and decreased FC between the NA and medial prefrontal cortex (mPFC). Further GTA revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in BEs. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing. PMID:24106471

  10. Exploring the brains of Baduk (Go experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis

    Directory of Open Access Journals (Sweden)

    Wi Hoon eJung

    2013-10-01

    Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.

  11. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  12. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter.

    Directory of Open Access Journals (Sweden)

    Martha V Koerner

    Full Text Available A CpG island (CGI lies at the 5' end of the Airn macro non-protein-coding (nc RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.

  13. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  14. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  15. Regulation of endogenous neural stem/progenitor cells for neural repair - factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    Directory of Open Access Journals (Sweden)

    Kimberly eChristie

    2013-01-01

    Full Text Available Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ of the lateral ventricles and the subgranular zone (SGZ of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioural outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem /precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.

  16. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  17. Convergence of the Policies for Promoting Total Quality Management in the Public Administrations of Balkan States – European Union Member States

    OpenAIRE

    Ani MATEI; Carmen SĂVULESCU

    2011-01-01

    In the past three decades, total quality management (TQM) has been appreciated as “fundamental modality in view to improve the activity in the public and private sectors” (Boyne and Walker, 2002, p. 1). For the time being, in public administrations, we witness an extension of the policies for promoting TQM, although the experiences have not always been positive. The European Administrative Space (EAS) incorporates TQM, in different manners at national level, taking into c...

  18. Promoting equality of opportunity and improving access to social services. Notes for a course of action from the Peruvian state.

    OpenAIRE

    Cortázar V., Juan

    2014-01-01

    This article proposes a strategy of government action to promote an equal access to basic social services and lo social insertion opportunities.   In the case of social services, it proposes the need to point out the responsibility of the government in relation to the financing and provision of such services. Although the poverty of the country implies that the government should finance directly the greater part of social services, this does not mean that the provision should be exclusively i...

  19. Neuropathophysiology of Brain Injury.

    Science.gov (United States)

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  20. The International Criminal Court at the mercy of powerful states: How the Rome Statute promotes legal neo-colonialism

    NARCIS (Netherlands)

    R.J. Schuerch

    2016-01-01

    The International Criminal Court (ICC), since putting focus on African situations and cases and in particular following the Al-Bashir indictment, became the target of criticism by the political establishments of many African states which repeatedly labelled the Court an agent of powerful states whic