WorldWideScience

Sample records for brain spect imaging

  1. Brain SPECT imaging in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Krausz, Y.; Yaffe, S.; Atlan, H. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Medical Biophysics and Nuclear Medicine); Cohen, D. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Radiology); Konstantini, S. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Neurosurgery); Meiner, Z. (Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Neurology)

    1991-06-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using {sup 99m}Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.).

  2. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  3. 3D quantitative analysis of brain SPECT images

    Science.gov (United States)

    Loncaric, Sven; Ceskovic, Ivan; Petrovic, Ratimir; Loncaric, Srecko

    2001-07-01

    The main purpose of this work is to develop a computer-based technique for quantitative analysis of 3-D brain images obtained by single photon emission computed tomography (SPECT). In particular, the volume and location of ischemic lesion and penumbra is important for early diagnosis and treatment of infracted regions of the brain. SPECT imaging is typically used as diagnostic tool to assess the size and location of the ischemic lesion. The segmentation method presented in this paper utilizes a 3-D deformable model in order to determine size and location of the regions of interest. The evolution of the model is computed using a level-set implementation of the algorithm. In addition to 3-D deformable model the method utilizes edge detection and region growing for realization of a pre-processing. Initial experimental results have shown that the method is useful for SPECT image analysis.

  4. The clinical utility of brain SPECT imaging in process addictions.

    Science.gov (United States)

    Amen, Daniel G; Willeumier, Kristen; Johnson, Robert

    2012-01-01

    Brain SPECT imaging is a nuclear medicine study that uses isotopes bound to neurospecific pharmaceuticals to evaluate regional cerebral blood flow (rCBF) and indirectly metabolic activity. With current available technology and knowledge SPECT has the potential to add important clinical information to benefit patient care in many different areas of a substance abuse practice, including in the area of process addictions. This article explores the ways brain SPECT has the potential to be useful to clinicians in helping to understand and direct treatment for complex cases of obesity and sexual addictions. Areas where SPECT can add value include helping clinicians ask betterquestions, helping them in making more complete diagnoses, evaluating underlying brain systems pathology, decreasing stigma and increasing compliance, and visualizing effectiveness via follow-up evaluations. In particular, SPECT can help in identifying and assessing the issue of brain trauma and toxicity in process addictions, which may be significant contributing factors in treatment failure. Three illustrative case histories will be given.

  5. SPECT brain imaging in epilepsy: a meta-analysis.

    Science.gov (United States)

    Devous, M D; Thisted, R A; Morgan, G F; Leroy, R F; Rowe, C C

    1998-02-01

    A meta-analysis of SPECT brain imaging in epilepsy was performed to derive the sensitivity and specificity of interictal, postictal or ictal rCBF patterns to identify a seizure focus in medically refractory patients. Papers were obtained by pooling all published articles identified by two independent literature searches: (a) Dialnet (EMBASE) or Radline by CD-ROM and (b) Current Contents searched manually. Literature inclusion criteria were: (a) patients had a localization-related epileptic syndrome; (b) more than six patients were reported; and (c) patients had at least an interictal EEG-documented epileptiform abnormality. Of 46 papers meeting these criteria, 30 contained extractable data. SPECT results were compared to localization by standard diagnostic evaluation and surgical outcome. Meta-analytic sensitivities for SPECT localization in patients with temporal lobe seizures relative to diagnostic evaluation were 0.44 (interictal), 0.75 (postictal) and 0.97 (ictal). Similar results were obtained relative to surgical outcome. False-positive rates were low relative to diagnostic evaluation (7.4% for interictal and 1.5% for postictal studies) and surgical outcome (4.4% for interictal and 0.0% for postictal studies). The results were not dependent on tracer used (or dose), the presence of CT-identified structural abnormalities, blinding of image interpretation or camera quality (although data were more variable with low-resolution cameras). There were insufficient data for conclusions regarding extratemporal-seizure or pediatric epilepsy populations. Insights gained from reviewing this literature yielded recommendations for minimal information that should be provided in future reports. Additional recommendations regarding the nature and focus of future studies also are provided. The most important of these is that institutions using SPECT imaging in epilepsy should perform ictal, preferably, or postictal scanning in combination with interictal scanning.

  6. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi

    2007-02-01

    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  7. Use of automated image registration to generate mean brain SPECT image of Alzheimer`s patients

    Energy Technology Data Exchange (ETDEWEB)

    Imran, M.B.; Kawashima, Ryuta [Tohoku Univ., Sendai (Japan). Inst. of Development, Aging and Cancer; Awata, Shuichi [and others

    1998-06-01

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer`s type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer`s disease (age 71.6{+-}5.0 yr) and ten age matched normal subjects (age 71.0{+-}6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853{+-}0.042 and 0.933{+-}0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  8. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  9. Brain PET and technetium-99m-ECD SPECT imaging in Lhermitte-Duclos disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, K.; Yasuda, S.; Beppu, T.; Kobayashi, M.; Doi, M.; Kuroda, K.; Ogawa, A. [Dept. of Neurosurgery, Iwate Medical Univ., Morioka (Japan)

    2001-11-01

    Two patients with Lhermitte-Duclos disease were evaluated by brain positron emission tomography (PET) and technetium-99m-ethyl cysteinate dimer ({sup 99m}Tc-ECD) single-photon emission computed tomography (SPECT). In the lesions in both patients, hyperperfusion was detected on cerebral blood flow images obtained by PET, and hyperactivity by standard {sup 99m}Tc-ECD SPECT. Dynamic {sup 99m}Tc-ECD SPECT images demonstrated a plateau of activity in each lesion. These findings suggest that lesions in Lhermitte-Duclos disease have a retention mechanism for {sup 99m}Tc-ECD equivalent to that of normal neural tissue. (orig.)

  10. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...... for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists...... to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging....

  11. Semi-automatic Epileptic Hot Spot Detection in ECD brain SPECT images

    Science.gov (United States)

    Papp, Laszlo; Zuhayra, Maaz; Henze, Eberhard

    A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.

  12. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    Science.gov (United States)

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  13. Brain SPECT imaging with blood flow markers in epilepsy and balloon occlusion; Hirn-SPECT mit Durchblutungsmarkern in der Epilepsiediagnostik und bei der Ballon-Okklusion

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, F. [Bonn Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    1996-02-01

    Brain SPECT imaging is used as a routine technique in presurgical evaluation. In three fields (focus detection, prognosis, stimulation) the value of brain SPECT imaging in cost effective patient management is presented in this paper. Interictal and ictal brain SPECT imaging are used to detect the epileptic focus and are a powerful tool during implantation of subdural or depth electrodes, being able to replace an `invasive` evaluation in some cases. Brain SPECT can be used to estimate the patients` postoperative outcome (memory, seizure frequency). Using activation imaging, the functional activity of brain regions can be estimated prior to resection of larger areas. In balloon occlusion, the blood flow pattern during the occlusion and the risk of ischemia after resection or permanent occlusion of the careotid artery can be estimated by means of brain SPECT. (orig.) [Deutsch] Die Hirn-SPECT-Untersuchung hat inzwischen einen festen Platz in der praechirurgischen Epilepsiediagnostik. Anhand von drei Einsatzgebieten innerhalb dieser Thematik (Fokussuche, Prognose, Stimulationsuntersuchung) wird gezeigt, dass die Indikation zur Hirn-SPECT auch unter Kosten-Nutzen-Aspekten gestellt werden kann. Iktale und interiktale Untersuchungen werden im Rahmen der Fokussuche eingesetzt und koennen bei der Implantation von Subdural- oder Tiefen-Elektroden hilfreich sein und in einzelnen Faellen eine invasive Abklaerung ersetzen. Der Hirn-SPECT-Befund kann zur Abschaetzung des postoperativen `outcome` (Gedaechtnis, Anfallsfrequenz) beitragen. Mittels Aktivierungsuntersuchungen kann vor groesseren resektiven Eingriffen die funktionelle Aktivitaet von Hirnarealen beurteilt werden. Bei der Ballon-Okklusion ist es mit Hilfe der Hirn-SPECT-Untersuchung praeoperativ moeglich, die Durchblutungsverhaeltnisse waehrend der Okklusion und damit das Risiko einer Ischaemie nach Resektion oder permanenter Okklusion zu beurteilen. (orig.)

  14. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  15. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    Directory of Open Access Journals (Sweden)

    Saeid Mahmoudian

    2012-01-01

    Full Text Available Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%. Most patients had bilateral abnormal perfusion (N = 65, 53.3%, and most subjects had abnormality in middle-temporal gyrus (N = 83, 68% and temporoparietal cortex (N = 46, 37.7%. Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality (P value = 0.045. Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal and associative cortex (temporoparietal cortex. Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients.

  16. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  17. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  18. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  19. 99mTc-bicisate (neurolite) SPECT brain imaging and cognitive impairment in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Walovitch, R C; Andersen, A R

    1994-01-01

    A blinded read of images obtained with 99mTc-bicisate and single photon emission computed tomography (SPECT) was conducted to determine if a relationship exists between the severity of abnormalities on SPECT brain images and the severity of cognitive impairment in patients with dementia...... of the Alzheimer type (DAT) and to examine the interreader agreement for visual reading of images in a multicenter SPECT study. Images for a total of 86 subjects were available for the blinded read. The images for 28 subjects were rated as noninterpretable due to technical inadequacies. Images for 58 subjects (45...... severity of abnormality was noted for two of the three readers. A significant correlation (p images as normal...

  20. Design and analysis of physical phantom experiments for serial SPECT brain tumor imaging

    Science.gov (United States)

    Lange, Nicholas; O'Tuama, L. A.; Treves, S. T.

    1992-12-01

    The purpose of this paper is to identify several important issues in the statistical analysis of serial images of active brain tumors and to offer some approaches and methods to help resolve them. Current serial brain tumor imaging is very strong on data acquisition and display yet appears weak on data analysis and inference. To help bridge the gap between certain theoretical mathematical methods for medical imaging developed over the past several decades and actual clinical practice, we describe a new physical phantom that we have designed and built for our research. We also offer some extensions of several relevant tools and principles from statistical science to the analysis of our serial medical images. Among the tools we discuss are the physical phantom itself, a simple experimental design, methods that help to separate image registration and object deformation effects, and some simple paired t-test ideas for comparison of differences in spatial point processes generated from pixelwise events in serial images. We identify several sources of extraneous variation between paired images and propose a few simple methods to control or eliminate them. Replicated experiments with our physical phantom can be used to study the properties of these methods under controlled and known conditions. Several actual patient and simulated serial SPECT images help to motivate and illustrate our techniques.

  1. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas

    1999-07-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  2. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  3. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    Science.gov (United States)

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  4. SPECT imaging of myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Shulkin, B.L.; Wahl, R.L.

    1987-11-01

    Gallium-67 citrate has been useful in providing scintigraphic evidence for pericarditis and myocarditis. However, the differentiation between pericardial and myocardial localization is difficult with planar images alone. SPECT can be valuable in making these distinctions, and a case of myocarditis is presented in which uptake of Gallium is shown to lie within the heart, correlating with the histologic proof.

  5. Quantification of GABAA receptors in the rat brain with [(123)I]Iomazenil SPECT from factor analysis-denoised images.

    Science.gov (United States)

    Tsartsalis, Stergios; Moulin-Sallanon, Marcelle; Dumas, Noé; Tournier, Benjamin B; Ghezzi, Catherine; Charnay, Yves; Ginovart, Nathalie; Millet, Philippe

    2014-02-01

    In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [(123)I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Five male Sprague-Dawley rats were used for [(123)I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TCc), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. BPND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BPF values obtained with 2TCc (r=0.954 and 0.945 respectively, panalysis can provide equally reliable BPND values from rat brain [(123)I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50min after tracer injection or with FA-denoising of images. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A.; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  7. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio E-mail: fnobili@smartino.ge.it; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

    2001-08-01

    Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with {sup 99m}Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2{+-}6.5) with mild (Mini-Mental Status Examination score {>=}15, mean 20.3{+-}3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0

  8. Brain SPECT imaging and whole-body biodistribution with [{sup 123}I]ADAM - a serotonin transporter radiotracer in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-J. [Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Liu, C.-Y. [Neuroscience Research Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Psychiatry, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Wey, S.-P. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Hsiao, I.-T. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jay [Health Physics Divisions, Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Fu, Y.-K. [Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Yen, T.-C. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China) and Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China)]. E-mail: yen1110@adm.cgmh.org.tw

    2006-02-15

    Introduction: [{sup 123}I]-2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ([{sup 123}I]ADAM), a novel radiotracer, has promising application in the imaging of the serotonin transporter (SERT) in the human brain. In this study, the optimal scanning time for acquiring brain single photon emission computed tomography (SPECT) images was determined by performing dynamic SPECT studies at intervals from 0 to 6 h postinjection of [{sup 123}I]ADAM. Additionally, radiation-absorbed doses were determined for three healthy human subjects using attenuation-corrected images. Methods: Twelve subjects were randomized into one of three study groups as follows: whole-body distribution imaging (n=3), dynamic SPECT imaging (n=3) and brain SPECT imaging (n=6). The radiation-absorbed dose was calculated using MIRDOSE 3.0 software with attenuation-corrected data. The specific binding (SB) ratio of the brain stem was measured from dynamic SPECT images to determine the optimal scanning time. Results: Dynamic SPECT images showed that the SB of the brain stem gradually increased to a maximum 4 h postinjection. Single photon emission computed tomography images at 4 h postinjection showed a high uptake of the radiotracer (SB) in the hypothalamus (1.40{+-}0.12), brain stem (1.44{+-}0.16), pons (1.13{+-}0.14) and medial temporal lobe (0.59{+-}0.10). The mean adult male value of effective dose was 3.37x10{sup -2} mSv/MBq with a 4.8-h urine-voiding interval. Initial high uptake in SERT-rich sites was demonstrated in the lung and brain. A prominent washout of the radiotracer from the lung further increased brain radioactivity that reached a peak value of 5.03% of injected dose 40 min postinjection. Conclusions: [{sup 123}I]ADAM is a promising radiotracer for SPECT imaging of SERT in humans with acceptable dosimetry and high uptake in SERT-rich regions. Brain SPECT images taken within 4 h following injection show optimal levels of radiotracer uptake in known SERT sites. However, dynamic

  9. An investigation of head movement with a view to minimising motion artefact during SPECT and PET imaging of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, H.; Clarke, G.H.; Guy, R. [RMIT, Melbourne, VIC (Australia). Department of Medical Radiations Science; McKay, W.J. [Austin and Repatriation Medical Centre, Heidelberg, VIC (Australia). Department of Nuclear Medicine and Centre for Positron Emission Tomography

    1998-06-01

    Full text: Motion artefact has long been recognised as a major cause of image degradation. Single Photon Emission Computerised Tomography (SPECT) and Positron Emission Tomography (PET) of the brain are playing an important role in the diagnosis and management of several neurological disorders. If these imaging modalities are to contribute fully to medical imaging it is essential that the improved spatial resolution of these systems is not compromised by patient movement. Thirty volunteer subjects have been examined using a simple video technique and the video images were used to classify and measure head movements which may occur during brain imaging. All subjects demonstrated angular movement within the transverse plane or rotation of the head. Angular movement within the sagittal plane or flexion/extension of the neck occurred in 69% of subjects and 72% of subjects exhibited translational movement of the sagittal plane. There was no movement of the coronal plane; nor was there any translational movement of the sagittal plane. These results suggest that when positioning the patient`s head for brain imaging a system of head restraint which minimises rotation of the head should be used if image quality is to be maintained

  10. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-07-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.

  11. [Brain SPECT in Lewy body dementia].

    Science.gov (United States)

    Farid, Karim; Volpe-Gillot, Lisette; Caillat-Vigneron, Nadine

    2011-06-01

    Dementia of Lewy bodies (DLB) is the second cause of degenerative dementia. There is many clinical presentation of the disease. Brain single photon computed tomography (SPECT) is a simple way to investigate routinely the cerebral blood flow. On cerebral perfusion SPECT, DLB is accompanied by diffuse cortical hypoperfusion predominantly at the posterior cortex and may affect the associative and primary visual areas in relation to neuronal loss or dysfunction. DLB patients have striatal hypofixation on cerebral neurotranmission SPECT-DaTSCAN(®), related with dopaminergic loss. Brain SPECT is useful in the differential diagnosis between DLB and other dementia. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. SPECT imaging with the serotonin transporter radiotracer [{sup 123}I]p ZIENT in nonhuman primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Kelly P., E-mail: kelly.cosgrove@yale.ed [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Staley, Julie K.; Baldwin, Ronald M.; Bois, Frederic [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Plisson, Christophe [Emory University School of Medicine, Atlanta, GA 30322 (United States); Al-Tikriti, Mohammed S. [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States); Goodman, Mark M. [Emory University School of Medicine, Atlanta, GA 30322 (United States); Tamagnan, Gilles D. [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States)

    2010-07-15

    Introduction: Serotonin dysfunction has been linked to a variety of psychiatric diseases; however, an adequate SPECT radioligand to probe the serotonin transporter system has not been successfully developed. The purpose of this study was to characterize and determine the in vivo selectivity of iodine-123-labeled 2{beta}-carbomethoxy-3{beta}-(4'-((Z)-2-iodoethenyl)phenyl)nortropane, [{sup 123}I]p ZIENT, in nonhuman primate brain. Methods: Two ovariohysterectomized female baboons participated in nine studies (one bolus and eight bolus to constant infusion at a ratio of 9.0 h) to evaluate [{sup 123}I]p ZIENT. To evaluate the selectivity of [{sup 123}I]p ZIENT, the serotonin transporter blockers fenfluramine (1.5, 2.5 mg/kg) and citalopram (5 mg/kg), the dopamine transporter blocker methylphenidate (0.5 mg/kg) and the norepinephrine transporter blocker nisoxetine (1 mg/kg) were given at 8 h post-radiotracer injection. Results: In the bolus to constant infusion studies, equilibrium was established by 4-8 h. [{sup 123}I]p ZIENT was 93% and 90% protein bound in the two baboons and there was no detection of lipophilic radiolabeled metabolites entering the brain. In the high-density serotonin transporter regions (diencephalon and brainstem), fenfluramine and citalopram resulted in 35-71% and 129-151% displacement, respectively, whereas methylphenidate and nisoxetine did not produce significant changes (<10%). Conclusion: These findings suggest that [{sup 123}I]p ZIENT is a favorable compound for in vivo SPECT imaging of serotonin transporters with negligible binding to norepinephrine and dopamine transporters.

  13. Evaluation of epileptogenic focus in temporal lobe: correlation between ictal brain SPECT, magnetic resonance imaging and magnetic resonance spectroscopy; Avaliacao de foco epileptogenico do lobo temporal: correlacao entre SPECT ictal, ressonancia magnetica e ressonancia magnetica com espectroscopia de protons

    Energy Technology Data Exchange (ETDEWEB)

    Diegues, Maria Elena Martins [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil). Servico de Medicina Nuclear]. E-mail: emartyns@terra.com.br; Pellini, Marcos Pinto; Alves-Leon, Soniza Vieira [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina; Domingues, Romeu Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)

    2004-02-01

    The purpose of this study was to determine the degree of concordance between radiological and radioisotopic methods and, if positive, to evaluate the usefulness of ictal SPECT in the localization of the epileptogenic focus. Ictal brain SPECT, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were performed on six patients with refractory temporal lobe epilepsy. Ictal SPECT was performed after withdrawal of the anti-epileptogenic drugs during video-EEG monitoring, using {sup 99m}Tc-ECD, administered to patients at the time of the ictus. MRI was performed in T1, T2 and FLAIR sequences and MRS was obtained using the PRESS technique, with a single voxel positioned in both hippocampi. The statistical analysis included the determination of the values of Kappa (k), standard error (se) and significance level (p) for the lateralization of the ictal focus. The analysis of all findings was based on EEG localization of the ictal discharge, seizure duration (109-280 s; 152 s average) and time of radiotracer injection (30-262 s; 96 s average). We obtained correlated data in four patients (67 per cent) and values of k = 0.67, se = 0.38, and p 0.041. We concluded that there is a concordance between ictal SPECT, MRI and MRS data and the usefulness of the radioisotopic procedure is related to a non diagnostic EEG and when there is a discordant or misleading diagnosis after a comparative analysis of EEG and MRS. (author)

  14. 123I-FP-CIT brain SPECT (DaTSCAN imaging in the diagnosis of patients with movement disorders: First results

    Directory of Open Access Journals (Sweden)

    Jauković Ljiljana

    2012-01-01

    Full Text Available Background/Aim. 123I-FP-CIT brain single-photon emission computed tomography (SPECT, DaTSCAN imaging, offers a possibility to study structural and biochemical integrity of presinaptic dopaminergic neurotransmitter system. The aim of this study was to evaluate the usefulness of 123I-FP-CIT brain SPECT scintigraphy in patients with extrapyramidal diseases. Methods. Fifteen patients (8 males and 7 females, aged 26-81 years, presenting with extrapyramidal symptoms entered the study. Out of them, 7 patients were diagnosed with definite clinical form of idiopathic Parkinson’s disease (PD or clinical probable for PD clinical stage 2-4 using the Hoehn&Yahr scale (H&Y; 6 patients were with atypical parkinsonism (AP, 1 patient with essential, and 1 with psychogenic tremor. SPECT was performed 180 min after injection of 185 MBq 123IFP- CIT using a dual head Gamma camera. Sixty four one minutes’ frames were acquired using a noncircular rotation mode into a 128 × 128 image matrix. Transverse slices were reconstructed using a 0.6 order Butterworth filter. Visual interpretation was based on striatal uptake, left to right asymmetry and substructures most affected. The ratio of binding for the entire striatum, caudate and putamen to nonspecific binding in occipital cortex was calculated. SPECT findings were categorized as normal and abnormal (incipient, moderate and severe presinaptic deficit. Results. 123I-FP-CIT uptake was reduced in the striatum of 6/7 patients with PD and 5/6 patients with AP. Two patients with PD and AP showed a negative finding. The remaining 2 negative results were obtained in the patients diagnosed with essential tremor and psychogenic tremor. The mean striato-occipital ratio (SDR of the most affected side was lower in the patients with PD. Conclusion. Our first results confirm the usefulness of 123I-FPCIT brain SPECT in differential diagnosis of extrapyramidal diseases.

  15. Crossed cerebellar hyperperfusion in brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Jinnouchi, Seishi; Nagamachi, Shigeki; Nishii, Ryuuichi; Futami, Shigemi; Tamura, Shozo [Miyazaki Medical Coll., Kiyotake (Japan); Kawai, Keiichi

    2000-10-01

    Crossed cerebellar diaschisis is a well-known brain SPECT finding in stroke patients. Few reports, however, have described supratentorial and contralateral cerebellar hyperperfusion (crossed cerebellar hyperperfusion, CCH). We assessed the incidence of CCH in 33 patients with cerebral hyperperfusion. Brain SPECT showed CCH in five patients out of 20 epilepsy and three of 13 patients with acute encephalitis. These eight patients with CCH had recent epileptic attack. CCH was found in ECD SPECT as well as HM-PAO. The contralateral cerebellar activity correlated with the cerebral activity in patients with CCH. CCH would have a relation with supratentrial hyperfunction in epilepsy and acute encephalitis. (author)

  16. sup 123 I-iodoamphetamine SPECT brain imaging in alternating hemiplegia

    Energy Technology Data Exchange (ETDEWEB)

    Zupanc, M.L.; Dobkin, J.A.; Perlman, S.B. (Univ. of Wisconsin Hospitals, Madison (USA))

    1991-01-01

    Alternating hemiplegia of childhood is an unusual disorder characterized by early onset (occurring before 18 months of age); repeated attacks of hemiplegia involving both sides of the body; other paroxysmal phenomena, such as tonic stiffening, dystonic posturing, choreoathetoid movements, ocular motor abnormalities, and autonomic disturbances, in association with bouts of hemiplegia or occurring independently; and evidence of mental or neurologic deficits. A girl was examined because of left hemiplegia at the age of 16 months. The patient had begun exhibiting episodes of alternating hemiplegia at approximately 4 months of age. They consisted of tonic stiffening and dystonia of the right or left extremities, lasting from 30 min to several hours and followed by residual hemiparesis. They were invariably accompanied by ocular motor abnormalities. Magnetic resonance imaging, computed tomography, and angiography all were normal. Single proton emission computed tomography brain images during an acute episode of right hemiplegia demonstrated hypoperfusion of the left cerebral hemisphere. Following improvement of the hemiplegia, the patient was re-evaluated. The uptake of the radiotracer in the left hemisphere was increased. The scan did not demonstrate significant asymmetry in cerebral perfusion.

  17. PET and SPECT imaging in veterinary medicine.

    Science.gov (United States)

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Brain SPECT findings in long-term inhalant abuse.

    Science.gov (United States)

    Küçük, N O; Kiliç, E O; Ibis, E; Aysev, A; Gençoglu, E A; Aras, G; Soylu, A; Erbay, G

    2000-08-01

    This study evaluates brain perfusion in long-term inhalant abusers of toluene, acetone, benzene and derivatives. Ten patients in the age range 16-18 years (mean, 17.3+/-0.67 years), who had been inhalant dependent for a mean period of 48.3+/-6.2 months, but who had stopped using inhalants for 1-11 months (mean, 5.4+/-2.1 months), and ten controls (mean age, 17.3+/-0.67 years) were included in the study. Psychiatric tests, biochemical tests and Tc-99m-hexamethylpropyleneamine oxime (Tc-99m-HMPAO) brain single photon emission computed tomography (SPECT) were performed on all patients. Brain SPECT images were evaluated qualitatively and quantitatively. The mean IQ level was found to be 84 (by psychological tests). Brain SPECT showed non-homogeneous Tc-99m-HMPAO uptake and hypoperfusion areas in all patients (five left temporal, one right temporal, two left temporal plus bilateral parietooccipital, one biparietal and one left temporoparietal). Seven patients had hyperperfused foci (unifocal in five patients and multifocal in two patients). Six hyperperfused foci were in a parietal and one in a temporoparietal location. This study suggests that inhalant dependents exhibit serious abnormalities in brain SPECT images, including hypo-hyperperfusion foci and non-homogeneous uptake of the radiopharmaceutical. A further study with a larger number of patients and long-term follow-up may help to reach a more specific conclusion.

  19. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  20. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  1. Receptor binding characterization of the benzodiazepine radioligand sup 125 I-Ro16-0154: Potential probe for SPECT (Single Photon Emission Computed Tomography) brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.W.; Woods, S.W.; Zoghbi, S.; Baldwin, R.M.; Innis, R.B. (Yale Univ., West Haven, CT (USA)); McBride, B.J. (Medi-Physics, Inc., Emeryville, CA (USA))

    1990-01-01

    The binding of an iodinated benzodiazepine (BZ) radioligand has been characterized, particularly in regard to its potential use as a neuroreceptor brain imaging agent with SPECT (Single Photon Emission Computed Tomography). Ro16-0154 is an iodine-containing BZ antagonist and a close analog of Ro15-1788. In tissue homogenates prepared from human and monkey brain, the binding of {sup 125}I-labeled Ro16-0154 was saturable, of high affinity, and had high ratios of specific to non-specific binding. Physiological concentrations of NaCl enhanced specific binding approximately 15% compared to buffer without this salt. Kinetic studies of association and dissociation demonstrated a temperature dependent decrease in affinity with increasing temperature. Drug displacement studies confirmed that {sup 125}I-Ro16-0154 binds to the central type BZ receptor: binding is virtually identical to that of {sup 3}H-Ro15-1788 except that {sup 125}I-Ro16-0154 shows an almost 10 fold higher affinity at 37{degree}C. These in vitro results suggest that {sup 123}I-labeled Ro16-0154 shows promise as a selective, high affinity SPECT probe of the brain's BZ receptor.

  2. Brain FDG-PET Scan and Brain Perfusion SPECT in the Diagnosis of Neuroacanthocytosis Syndromes

    Directory of Open Access Journals (Sweden)

    Eylem Değirmenci

    2015-06-01

    Full Text Available Neuroacanthocytosis syndromes (NA include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. Fluor 18 -2-fluoro-2-deoxyglucose (18F-FDG-PET positron emission tomography (PET and technetium 99m -d, l-hexamethyl-propylene amine oxime (99mTc-HMPAO brain single photon emission computed tomography (SPECT have been increasingly used for the detection of neurologic disorders, such as dementia, epilepsy, and movement disorders. In this case report, we report two patients with neuroacanthocytosis syndromes with the imaging features of brain metabolism by PET and brain perfusion by SPECT. Brain PET and brain SPECT findings of patients with neuroacanthocytosis syndromes were also reviewed.

  3. Collimator design for a multipinhole brain SPECT insert for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan [Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium)

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  4. Preclinical imaging characteristics and quantification of Platinum-195m SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Aalbersberg, E.A.; Wit-van der Veen, B.J. de; Vegt, E.; Vogel, Wouter V. [The Netherlands Cancer Institute (NKI-AVL), Department of Nuclear Medicine, Amsterdam (Netherlands); Zwaagstra, O.; Codee-van der Schilden, K. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ({sup 195m}Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of {sup 195m}Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) {sup 194}Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl {sup 195m}Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT{sup +}/CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq {sup 195m}Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq {sup 195m}Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify {sup 195m}Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT{sup +}. The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0

  5. Brain abscess uptake at TI-201 brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Han, Eun Ji; Yoo, Ie Ryung; Chung, Yong An; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Choi, Yeong Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-08-15

    A 22-year-old woman with a history of acute lymphoblastic leukemia was hospitalized for headache and vomiting CT scan showed a well-defined, ring like enhancing mass in the left frontal lobe with surrounding edema and midline shift. Magnetic resonance imaging demonstrated a round homogeneous mass with a ring of enhancement in the left frontal lobe. TI-201 brain SPECT showed increased focal uptake coinciding with the CT and MRI abnormality. Aspiration of the lesion performed through a burr hole yielded many neutrophils, a few lymphocytes and histiocytes with some strands of filamentous microorganism-like material. Modified AFB stained negative for norcardia. Gram stain showed a few white blood cells and no microorganism. Antibiotics were started and produced a good clinical response. After one month, CT scan showed markedly reduction in size and extent was observed.

  6. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  7. Ictal {sup 99m}Tc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo [Asan Medical Center, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study was to evaluate the usefulness of ictal {sup 99m}Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal {sup 99m}Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5{+-}17.3 sec (mean seizure duration : 90.5{+-}35.9 sec). Ictal {sup 99m}Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal {sup 99m}Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal {sup 99m}Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure.

  8. Robin Hood caught in Wonderland: brain SPECT findings.

    Science.gov (United States)

    Morland, David; Wolff, Valérie; Dietemann, Jean-Louis; Marescaux, Christian; Namer, Izzie Jacques

    2013-12-01

    We present the case of a 53-year-old woman presenting several episodes of body image distortions, ground deformation illusions, and problems assessing distance in the orthostatic position corresponding to the Alice in Wonderland syndrome. No symptoms were reported when sitting or lying down. She had uncontrolled hypertension, hyperglycemia, hypercholesterolemia, and a history of head trauma. Her condition had been diagnosed with left internal carotid artery dissection 2 years earlier. Brain SPECT with 99mTc-ECD performed after i.v. injection of the radiotracer in supine and in standing positions showed hypoperfusion in the healthy contralateral frontoparietal operculum (Robin Hood syndrome), deteriorating when standing up.

  9. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  10. A quantitative reconstruction software suite for SPECT imaging

    Science.gov (United States)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  11. HMPAO-SPECT during epileptic seizures: Early and late images. Fruehe und spaete HMPAO-SPECT waehrend eines epileptischen Anfalls

    Energy Technology Data Exchange (ETDEWEB)

    Overbeck, B.; Gruenwald, F.; Bockisch, A.; Biersack, H.J. (Bonn Univ. (Germany, F.R.). Klinik fuer Nuklearmedizin); Reinke, U. (Bonn Univ. (Germany, F.R.). Nervenklinik/Epileptologie); Gratz, K.F. (Medizinische Hochschule Hannover (Germany, F.R.). Abt. Nuklearmedizin und Spezielle Biophysik)

    1990-11-01

    For presurgical evaluation of epilepsy a 44-year old patient with complex-partial seizures underwent HMPAO-SPECT. The morphology of the seizures, the MRI-scan, psychometry and ictal as well as interictal EEGs showed a left temporal origin of the seizures. Early images were obtained 20 min and late images 24 h following injection. On both scans a marked hyperperfusion was observed in the left temporal area. A crossed cerebellar diaschisis was also seen on both SPECTs. It could be shown that during ictal examinations there is no bloodflow-dependent wash-out from brain tissue. (orig.).

  12. SPECT Imaging Agents for Detecting Cerebral β-Amyloid Plaques

    Directory of Open Access Journals (Sweden)

    Masahiro Ono

    2011-01-01

    Full Text Available The development of radiotracers for use in vivo to image β-amyloid (Aβ plaques in cases of Alzheimer's disease (AD is an important, active area of research. The presence of Aβ aggregates in the brain is generally accepted as a hallmark of AD. Since the only definitive diagnosis of AD is by postmortem staining of affected brain tissue, the development of techniques which enable one to image Aβ plaques in vivo has been strongly desired. Furthermore, the quantitative evaluation of Aβ plaques in the brain could facilitate evaluation of the efficacy of antiamyloid therapies currently under development. This paper reviews the current situation in the development of agents for SPECT-based imaging of Aβ plaques in Alzheimer's brains.

  13. ENVISION, developing SPECT imaging for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Single Photon Emission Computed Tomography (SPECT) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  14. SPECT and PET Imaging of Meningiomas

    Directory of Open Access Journals (Sweden)

    Varvara Valotassiou

    2012-01-01

    Full Text Available Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical and grade III (anaplastic meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT and Magnetic Resonance Imaging (MRI are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT and Positron Emission Tomography (PET could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  15. Neuropsychological Correlates of Brain Perfusion SPECT in Patients with Macrophagic Myofasciitis.

    Directory of Open Access Journals (Sweden)

    Axel Van Der Gucht

    Full Text Available Patients with aluminum hydroxide adjuvant-induced macrophagic myofasciitis (MMF complain of arthromyalgias, chronic fatigue and cognitive deficits. This study aimed to characterize brain perfusion in these patients.Brain perfusion SPECT was performed in 76 consecutive patients (aged 49±10 y followed in the Garches-Necker-Mondor-Hendaye reference center for rare neuromuscular diseases. Images were acquired 30 min after intravenous injection of 925 MBq 99mTc-ethylcysteinate dimer (ECD at rest. All patients also underwent a comprehensive battery of neuropsychological tests, within 1.3±5.5 mo from SPECT. Statistical parametric maps (SPM12 were obtained for each test using linear regressions between each performance score and brain perfusion, with adjustment for age, sex, socio-cultural level and time delay between brain SPECT and neuropsychological testing.SPM analysis revealed positive correlation between neuropsychological scores (mostly exploring executive functions and brain perfusion in the posterior associative cortex, including cuneus/precuneus/occipital lingual areas, the periventricular white matter/corpus callosum, and the cerebellum, while negative correlation was found with amygdalo-hippocampal/entorhinal complexes. A positive correlation was also observed between brain perfusion and the posterior associative cortex when the time elapsed since last vaccine injection was investigated.Brain perfusion SPECT showed a pattern of cortical and subcortical changes in accordance with the MMF-associated cognitive disorder previously described. These results provide a neurobiological substrate for brain dysfunction in aluminum hydroxide adjuvant-induced MMF patients.

  16. Clinical Significance of Brain SPECT in Zipeprol Abusers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dai Ok; Kim, Jae Phil; Kim, Deog Yoon; Yang, Hyung In; Koh, Eun Mi; Kim, Kwang Won; Choi, Young Kil [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Drug abuse is widespread in worldwide and has been associated with neurologic complication. Zipeprol is one of drugs which been abused for psychological satisfaction in some adolescents. This agent is non-opioid antitussive agent, which is not legally considered as being capable of creating dependence or abuse liability at therapeutic serum levels. But it has been reported that acute or chronic overdose create neurologic complication such as convulsion as well as dependence. Recently we experienced six zipeprol abusers who admitted due to convulsion and variable neurologic symptoms. The aim of our study was to determine the role of Tc-99m- HMPAO brain SPECT in those patients. EEG and brain CT showed no abnormal finding, but brain SPECT showed focal or multiple perfusion abnormalities in frontal, parietal, occipital cortex, basal ganglia, thalamus and especially at temporal cortex. These results suggest that brain SPECT may be a useful diagnostic tool to evaluate the cerebral dysfunction induced by zipeprol abuse.

  17. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Eusebio, Alexandre; Azulay, Jean-Philippe [APHM, Hopital de la Timone, Service de Neurologie et Pathologie du Mouvement, Marseille (France); CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); Ceccaldi, Mathieu [APHM, Hopital de la Timone, Service de Neurologie et de Neuropsychologie, Marseille (France); Aix-Marseille Univ, UMR Inserm 1106, Institut de Neurosciences des Systemes, Marseille (France); Girard, Nadine [APHM, Hopital de la Timone, Service de Neuroradiologie diagnostique et interventionnelle, Marseille (France); Mundler, Olivier [APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France); Guedj, Eric [CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France)

    2012-11-15

    Several studies have shown age- and gender-related differences in striatal dopamine transporter (DaT) binding. These studies were based on a striatal region on interest approach that may have underestimated these effects and could not evaluate extrastriatal regions. Our aim was to determine the effects at the voxel level of age and gender on whole-brain DaT distribution using [{sup 123}I]FP-CIT SPECT in healthy subjects. We performed a whole-brain [{sup 123}I]FP-CIT SPECT voxel-based analysis using SPM8 and a standardized normalization template (p < 0.05, corrected using the false discovery rate method) in 51 healthy subjects aged from 21 to 79 years. We found an age-related DaT binding decrease in the striatum, anterior cingulate/medial frontal cortices and insulo-opercular cortices. Also DaT binding ratios were higher in women than men in the striatum and opercular cortices. This study showed both striatal and extrastriatal age-related and gender-related differences in DaT binding in healthy subjects using a whole-brain voxel-based non-a priori approach. These differences highlight the need for careful age and gender matching in DaT analyses of neuropsychiatric disorders. (orig.)

  18. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  19. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction.

    Science.gov (United States)

    Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara

    2016-12-01

    A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single

  20. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  1. In vivo quantification by SPECT of [{sup 123}I] ADAM bound to serotonin transporters in the brains of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hsieh, J.-F. [Department of Nuclear Medicine, Chi-Mei Foundation Medical Center, Yungkang City 710, Taiwan (China); Chen, J.-C. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jcchen@ym.edu.tw; Chou, Y.-T. [Institute of Physiology, National Yang-Ming University, Taipei 112, Taiwan (China); Tu, K.-Y. [Department of Nuclear Medicine, Mackey Memorial Hospital, Taipei, Taiwan 104 (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan 333 (China); Ting Gann [Institute of Nuclear Energy Research, Tao- Yuan 335, Taiwan (China)

    2004-11-01

    Background: A novel radioiodine ligand [{sup 123}I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [{sup 123}I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [{sup 123}I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [{sup 123}I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89{+-}0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [{sup 123}I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with

  2. SPECT/CT imaging in children with papillary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States)

    2011-08-15

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  3. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    Directory of Open Access Journals (Sweden)

    S. Benameur

    2009-01-01

    Full Text Available Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI. This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter.

  4. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine

    2000-02-01

    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)

  5. Evaluation of Tl-201 SPECT imaging findings in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sinem Ozyurt

    2015-07-01

    Full Text Available Objectives: To compare with histopathological findings the findings of prostate cancer imaging by SPECT method using Tl-201 as a tumor seeking agent. Methods: The study comprised 59 patients (age range 51-79 years, mean age 65.3 ± 6.8 years who were planned to have transrectal ultrasonography (TRUS-guided biopsies due to suspicion of prostate cancer between April 2011 and September 2011. Early planar, late planar and SPECT images were obtained for all patients. Scintigraphic evaluation was made in relation to uptake presence and patterns in the visual assessment and to Tumor/Background (T/Bg ratios for both planar and SPECT images in the quantitative assessment. Histopathological findings were compatible with benign etiology in 36 (61% patients and malign etiology in 23 (39% patients. Additionally, comparisons were made to evaluate the relationships between uptake patterns,total PSA values and Gleason scores. Results: A statistically significant difference was found between the benign and malignant groups in terms of uptake in planar and SPECT images and T/Bg ratios and PSA values. No statistically significant difference was found between uptake patterns of planar and SPECT images and Gleason scores in the malignant group. Conclusions: SPECT images were superior to planar images in the comparative assessment. Tl-201 SPECT imaging can provide an additional contribution to clinical practice in the diagnosis of prostate cancer and it can be used in selected patients.

  6. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L. [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  7. Dopamine D2-receptor imaging with [sup 123]I-iodobenzamide SPECT in migraine patients abusing ergotamine: does ergotamine cross the blood brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeff, N.P.; Visser, W.H.; Ferrari, M.D.; Saxena, P.R.; Royen, E.A. van (Erasmus Univ., Rotterdam (Netherlands))

    1993-10-01

    Two migraine patients were studied by in vivo SPECT using the dopamine D2-receptor specific radioligand [sup 123]I-3-iodo-6-methoxybenzamide ([sup 123]I-IBZM) during ergotamine abuse and after withdrawal. Results were compared with 15 healthy controls. Striatum/cerebellum and striatum/occipital cortex ratios of count rate density were calculated as a semiquantitative measurement for striatal dopamine D2-receptor binding potential. No differences were found in striatal uptake of [sup 123]I-IBZM between healthy controls and the patients when on or off ergotamine. Preliminary evidence suggests that ergotamine may not occupy striatal dopamine D2-receptors to a large extent and thus may not cross the blood brain barrier in large quantities. 23 refs., 3 figs.

  8. {sup 99m}Tc-ECD brain perfusion SPECT in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Mundler, Olivier [Assistance Publique des Hopitaux de Marseille, Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 05 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-01-15

    Neuro-imaging studies with {sup 99m}Tc-HMPAO SPECT in fibromyalgia (FM) patients have reported only limited subcortical hypoperfusion. {sup 99m}Tc-ECD SPECT is known to provide better evaluation of areas of high cerebral blood flow and regional metabolic rate. We evaluated a homogeneous group of hyperalgesic patients with FM using {sup 99m}Tc-ECD SPECT. The aim of this study was to investigate brain processing associated with spontaneous pain in FM patients. Eighteen hyperalgesic FM women (mean age 49 years, range 25-63 years; American College of Rheumatology criteria) and ten healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). Visual Analogue Scale score for pain was 82{+-}4 at the time of the SPECT study. Compared with control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis, with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. In the present study, performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in the sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective-attentional dimension. As current pharmacological and non-pharmacological therapies act differently on the two components of pain, we hypothesise that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain processing recovery under treatment. (orig.)

  9. Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO

    DEFF Research Database (Denmark)

    Holm, S; Andersen, A R; Vorstrup, S

    1985-01-01

    The lipophilic 99mTc-labeled oxime propylene amine oxime (PnAO) should, according to recent reports behave like 133Xe in the human brain. This study compares SPECT images of the two tracers in six subjects: four stroke cases, one transitory ischemic attack case and one normal subject. Technetium-......AO has a high yet incomplete brain extraction yielding a flow dominated initial distribution with limitations mentioned.......The lipophilic 99mTc-labeled oxime propylene amine oxime (PnAO) should, according to recent reports behave like 133Xe in the human brain. This study compares SPECT images of the two tracers in six subjects: four stroke cases, one transitory ischemic attack case and one normal subject. Technetium-99......m PnAO was injected i.v. as a bolus of 15 to 25 mCi. The distribution was followed over 10-sec intervals using a highly sensitive, rapidly rotating SPECT (Tomomatic 64) and compared to 133Xe flow maps. Upon arrival of the PnAO bolus to the brain, a high uptake was found in brain tissue with high...

  10. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Jeon, Jeong Dong [College of Medicine, Inje Univ., Pusan (Korea, Republic of)

    1999-07-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  11. Tc-99m HMPAO brain SPECT scanning in Munchausen syndrome.

    Science.gov (United States)

    Mountz, J M; Parker, P E; Liu, H G; Bentley, T W; Lill, D W; Deutsch, G

    1996-01-01

    Regional cerebral blood flow was studied in a patient with Munchausen syndrome using high resolution Tc-99m HMPAO SPECT. The scan demonstrated marked hyperperfusion of the right hemithalamus. The cranial CT scan was normal. The abnormal right hemithalamic blood flow is discussed in relation to the hypothesized neuropathy of this disorder. Images Figure 1 Figure 2 Figure 3 PMID:8580117

  12. Avaliação de foco epileptogênico do lobo temporal: correlação entre SPECT ictal, ressonância magnética e ressonância magnética com espectroscopia de prótons Evaluation of epileptogenic focus in temporal lobe: correlation between ictal brain SPECT, magnetic resonance imaging and magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Elena Martins Diegues

    2004-02-01

    Full Text Available O objetivo deste trabalho foi determinar a existência de concordância entre os métodos radioisotópico e radiológico e, em caso positivo, avaliar a utilidade do SPECT ictal na determinação do foco epileptogênico. Foram realizados SPECT ictal, ressonância magnética (RM e ressonância magnética com espectroscopia de prótons (RME em seis pacientes com epilepsia de lobo temporal refratária. O SPECT ictal foi realizado após a retirada das drogas antiepilépticas durante monitoramento por vídeo-EEG, utilizando-se o 99mTc-ECD, administrado aos pacientes no início da crise. As imagens de RM foram obtidas em T1, T2 e FLAIR, com cortes de 3 e 5 mm de espessura, e a RME foi realizada com técnica PRESS, com voxel único posicionado no hipocampo, bilateralmente. A análise estatística incluiu os valores de Kappa (k, erro-padrão (ep e o nível de significância (p para a lateralização do foco. Os achados foram analisados com base na localização por EEG da descarga ictal, no tempo de duração da crise (109-280 s; média: 152 s e no tempo de administração do traçador (30-262 s; média: 96 s. Obtivemos dados correlatos em quatro pacientes (67%, com valores de k = 0,67, ep = 0,38 e p = 0,041. Concluímos que existe concordância entre SPECT ictal, RM e RME, e a utilidade do procedimento radioisotópico está relacionada aos casos em que o EEG não é diagnóstico e quando há discordância ou indefinição diagnóstica na análise comparativa entre EEG, RM e RME.The purpose of this study was to determine the degree of concordance between radiological and radioisotopic methods and, if positive, to evaluate the usefulness of ictal SPECT in the localization of the epileptogenic focus. Ictal brain SPECT, magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS were performed on six patients with refractory temporal lobe epilepsy. Ictal SPECT was performed after withdrawal of the anti-epileptogenic drugs during video

  13. Radiotracers for SPECT imaging. Current scenario and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S. [GE Healthcare Medical Diagnostics, John F. Welch Technology Center, Bangalore (India).; Bhalla, R.; Pickett, R.; Luthra, S.K. [GE Healthcare Medical Diagnostics, The Grove Centre, Amersham (United Kingdom)

    2012-07-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [{sup 123}I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [{sup 123}I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also

  14. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    Science.gov (United States)

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, S. Y.; Lee, I. Y.; Kim, O. H.; Bai, M. S.; Kim, S. J.; Yoon, S. N.; Cho, C. W. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84{+-}17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78{+-}10.36), mild defect (<50MQ : n=9, MQ=66.11{+-}13.87). The degree of rCBF decrease between the two groups was evaluated by {chi}{sup 2} test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients.

  16. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  17. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Kim, Sang Jin [Pusan Paik Hospital, Pusan (Korea, Republic of)

    2007-07-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI.

  18. Determination of left ventricular mass through SPECT imaging

    Science.gov (United States)

    Zárate-Morales, A.; Rodríguez-Villafuerte, M.; Martínez-Rodríguez, F.; Arévila-Ceballos, N.

    1998-08-01

    An edge detection algorithm has been applied to estimate left ventricular (LV) mass from single photon emission computed tomography (SPECT) thallium-201 images. The algorithm was validated using SPECT images of a phantom. The algorithm was applied to 20 patient studies from the Hospital de Cardiologia, Centro Médico Nacional Siglo XXI. Left ventricular masses derived from the stress and redistribution studies were highly correlated (r=0.96). The average LV masses obtained were 162±37 g and 169±34 g in the redistribution and stress studies, respectively.

  19. Detection of abnormal diffuse perfusion in SPECT using a normal brain atlas

    Science.gov (United States)

    Laliberte, Jean-Francois; Meunier, Jean; Mignotte, Max; Soucy, Jean-Paul

    2003-05-01

    Despite the advent of sophisticated image analysis algorithms, most SPECT (Single Photon Emission Computerized Tomography)cerebral perfusion studies are assessed visually, leading to unavoidable and significant inter and intra-observer variability. Here, we present an automatic method for evaluating SPECT studies based on a computerized atlas of normal regional cerebral bloodflow(rCBF). To generate the atlas, normal(screened volunteers)brain SPECT studies are registered with an affine transformation to one of them arbitrarily selected as reference to remove any size and orientation variations that are assumed irrelevant for our analysis. Then a smooth non-linear registration is performed to reveal the local activity pattern displacement among the normal subjects. By computing and applying the mean displacement to the reference SPECT image, one obtain the atlas that is the normal mean distribution of the rCBF(up to an affine transformation difference). To complete the atlas we add the intensity variance with the displacement mean and variance of the activity pattern. To investigate a patient's condition, we proceed similarly to the atlas construction phase. We first register the patient's SPECT volume to the atlas with an affine transformation. Then the algorithm computes the non-linear 3D displacement of each voxel needed for an almost perfect shape (but not intensity)fit with the atlas. For each brain voxel, if the intensity difference between the atlas and the registered patient is higher than normal differences then this voxel is counted as "abnormal" and similarly if the 3D motion necessary to move the voxel to its registered position is not within the normal displacements. Our hypothesis is that this number of abnormal voxels discriminates between normal and abnormal studies. A Markovian segmentation algorithm that we have presented elsewhere is also used to identify the white and gray matters for regional analysis. We validated this approachusing 23 SPECT

  20. (99m)Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities.

    Science.gov (United States)

    Polyák, András; Hajdu, István; Bodnár, Magdolna; Trencsényi, György; Pöstényi, Zita; Haász, Veronika; Jánoki, Gergely; Jánoki, Győző A; Balogh, Lajos; Borbély, János

    2013-06-05

    We report the synthesis, in vitro and in vivo investigation of folate-targeted, biocompatible, biodegradable self-assembled nanoparticles radiolabelled with (99m)Tc, as potential new SPECT or SPECT/CT imaging agent. Nanoparticles with hydrodynamic size in the range of 75-200 nm were prepared by self-assembly of chitosan and folated poly-γ-glutamic acid, and then radiolabelled with (99m)Tc. The nanoparticles target tumour cells overexpressing folate receptors and internalize specifically into them to realize early tumour diagnosis detected by SPECT and SPECT/CT modalities. Rat hepatocellular carcinoma cells were used as model system. Cell specificity and tumour targeting efficacy of these nanosystems were investigated in vitro, and in vivo using SPECT and fusion nanoSPECT/CT imaging. In vitro results showed that the radiolabeled nanosystem was efficiently internalized by tumour cells. Whole-body biodistribution of the new radiolabelled, folate-targeted nanoparticles revealed higher uptake in the tumorous kidney compared to the non-tumorous contralateral side. Uptake by the lungs and thyroids was negligible, which confirmed the stability of the nanoparticles in vivo. In vivo SPECT and SPECT/CT imaging visually reinforced the uptake results and were in accordance with the biodistribution data: the new nanoparticles as a targeted contrast agent improve tumour targeting and are able to detect folate-receptor-overexpressing tumours in animal models with enhanced contrast. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Evaluation of the effects of methylprednisolone pulse therapy in patients with systemic lupus erythematosus with brain involvement by Tc-99m HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.S.; Kao, C.H. [Department of Nuclear Medicine, China Medical University Hospital, Taichung (Taiwan); Huang, W.S. [Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei (Taiwan); Chen, J.J.H. [Section of Rheumatology, Department of Internal Medicine, China Medicine University Hospital, Taichung (Taiwan); Chang, C.P. [Division of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua (Taiwan); Wang, J.J. [Department of Medical Research, Chi-Mei Medical Center, Tainan (Taiwan)

    2004-07-01

    Methylprednisolone pulse therapy (MPT) was introduced to avoid life-threatening complications in patients with systemic lupus erythematosus (SLE) with brain manifestations; however, the efficacy of MPT in SLE patients with brain involvement is still uncertain and needs to be objectively evaluated. We enrolled 15 female SLE patients with neuropsychiatric manifestations in this study. All patients had normal brain MRI and abnormal brain HMPAO-SPECT findings. Follow-up HMPAO-SPECT studies were conducted 2 weeks after MPT. Serum levels of anticardiolipin antibodies (ACA) and anti-ribosomal P antibodies (anti-P) were measured before and after MPT. Before MPT, 7 patients were positive for ACA and 7 patients were positive for anti-P. After MPT, none of the 15 patients demonstrated positive serologic findings or neuropsychiatric manifestations. Based on the follow up brain HMPAO-SPECT images following MPT, 13 patients showed disappearance of the perfusion defects and 2 patients showed partial recovery of rCBF. Brain HMPAO-SPECT imaging is a logical and objective tool for measuring the effects of MPT in SLE patients with brain involvement by determining of changes in rCBF. (orig.)

  2. Assessment of SPM in perfusion brain SPECT studies. A numerical simulation study using bootstrap resampling methods.

    Science.gov (United States)

    Pareto, Deborah; Aguiar, Pablo; Pavía, Javier; Gispert, Juan Domingo; Cot, Albert; Falcón, Carles; Benabarre, Antoni; Lomeña, Francisco; Vieta, Eduard; Ros, Domènec

    2008-07-01

    Statistical parametric mapping (SPM) has become the technique of choice to statistically evaluate positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and single photon emission computed tomography (SPECT) functional brain studies. Nevertheless, only a few methodological studies have been carried out to assess the performance of SPM in SPECT. The aim of this paper was to study the performance of SPM in detecting changes in regional cerebral blood flow (rCBF) in hypo- and hyperperfused areas in brain SPECT studies. The paper seeks to determine the relationship between the group size and the rCBF changes, and the influence of the correction for degradations. The assessment was carried out using simulated brain SPECT studies. Projections were obtained with Monte Carlo techniques, and a fan-beam collimator was considered in the simulation process. Reconstruction was performed by using the ordered subsets expectation maximization (OSEM) algorithm with and without compensation for attenuation, scattering, and spatial variant collimator response. Significance probability maps were obtained with SPM2 by using a one-tailed two-sample t-test. A bootstrap resampling approach was used to determine the sample size for SPM to detect the between-group differences. Our findings show that the correction for degradations results in a diminution of the sample size, which is more significant for small regions and low-activation factors. Differences in sample size were found between hypo- and hyperperfusion. These differences were larger for small regions and low-activation factors, and when no corrections were included in the reconstruction algorithm.

  3. The Variability of Translocator Protein Signal in Brain and Blood of Genotyped Healthy Humans Using In Vivo (123)I-CLINDE SPECT Imaging

    DEFF Research Database (Denmark)

    Feng, Ling; Jensen, Per; Thomsen, Gerda

    2017-01-01

    (123)I-CLINDE is a radiotracer developed for SPECT and targets the 18-kDa translocator protein (TSPO). TSPO is upregulated in glial cells and used as a measure of neuroinflammation in a variety of central nervous system diseases. The aim of this study was to examine the test-retest variability of...

  4. SPECT Molecular Imaging in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2012-01-01

    Full Text Available Parkinson's disease (PD is a common disorder, and the diagnosis of Parkinson's disease is clinical and relies on the presence of characteristic motor symptoms. The accuracy of the clinical diagnosis of PD is still limited. Functional neuroimaging using SPECT technique is helpful in patients with first signs of parkinsonism. The changes detected may reflect the disease process itself and/or compensatory responses to the disease, or they may arise in association with disease- and/or treatment-related complications. This paper addresses the value of SPECT in early differential diagnosis of PD and its potential as a sensitive tool to assess the pathophysiology and progression, as well as the therapeutic efficacy of PD.

  5. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Lyu, Kwang Yeul [Dept. of Radiological Technology, Shingu University, Seoul (Korea, Republic of); Kim, Tae Hyung [Dept. of Radiological Science, Kangwon National University, Samcheok (Korea, Republic of); Shin, Ji Yun [Dept. of Biomedical Engineering, Cheongju National University, Cheongju (Korea, Republic of)

    2012-03-15

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3{+-}12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  6. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  7. Diamox-enhanced brain SPECT in cerebrovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Young [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2007-04-15

    Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrhage were reviewed in this paper.

  8. Quantitative Erythrocyte Omega-3 EPA Plus DHA Levels are Related to Higher Regional Cerebral Blood Flow on Brain SPECT.

    Science.gov (United States)

    Amen, Daniel G; Harris, William S; Kidd, Parris M; Meysami, Somayeh; Raji, Cyrus A

    2017-01-01

    The interrelationships between omega-3 fatty acids status, brain perfusion, and cognition are not well understood. To evaluate if SPECT brain imaging of cerebral perfusion and cognition varies as a function of omega-3 fatty acid levels. A random sample of 166 study participants was drawn from a psychiatric referral clinical for which erythrocyte quantification of omega-3 eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) (the Omega-3 Index) was available. Quantitative brain SPECT was done on 128 regions based on a standard anatomical Atlas. Persons with erythrocyte EPA+DHA concentrations were dichotomized based on membership in top 50th percentile versus bottom 50th percentile categories. Two-sample t-tests were done to identify statistically significant differences in perfusion between the percentile groups. Partial correlations were modeled between EPA+DHA concentration and SPECT regions. Neurocognitive status was assessed using computerized testing (WebNeuro) and was separately correlated to cerebral perfusion on brain SPECT imaging and omega-3 EPA+DHA levels. Partial correlation analyses showed statistically significant relationships between higher omega-3 levels and cerebral perfusion were in the right parahippocampal gyrus (r = 0.20, p = 0.03), right precuneus (r = 0.20, p = 0.03), and vermis subregion 6 (p = 0.21, p = 0.03). Omega-3 Index levels separately correlated to the feeling subsection of the WebNeuro (r = 0.25, p = 0.01). Quantitative omega-3 EPA+DHA erythrocyte concentrations are independently correlated with brain perfusion on SPECT imaging and neurocognitive tests. These results have implications for the role of omega-3 fatty acids toward contributing to cognitive reserve.

  9. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease.

    Science.gov (United States)

    Engbers, Elsemiek M; Timmer, Jorik R; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L; Ottervanger, Jan Paul

    2017-01-01

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, pbundle branch block patients have abnormal stress-first SPECT. • Coronary CT excluded obstructive CAD in many LBBB patients with abnormal SPECT. • Stress-first SPECT imaging is not the optimal imaging protocol in LBBB patients. • In LBBB patients imaging with initial coronary CT may be more appropriate.

  10. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  11. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  12. Clinical Utility of '9{sup 9m}Tc-HMPAO Brain SPECT Findings in Chronic Head Injury

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-03-15

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using {sup 99m}Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with {sup 99m}Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using {sup 99m}Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  13. A new method for brain functional study using Tc-99m HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Iio, Masahiro (Tokyo Univ. (Japan). Faculty of Medicine)

    1989-04-01

    The distribution of {sup 99m}Tc-HMPAO in brain is in proportion to regional cerebral blood flow (rCBF) and can be interpreted as functional mapping. To evaluate local changes in CBF during neuropsychological testing, we developed a new subtraction method using HMPAO and SPECT. With patients resting, 15 mCi of HMPAO was injected and the first acquisition was performed, lasting a total of 10 minutes. Soon after the end of the first scan, patients were requested to undergo Buschke's memory test or to repeat words or numbers (repetition test). During the task, an additional 15 mCi of HMPAO was injected using the same position as in the first scan, and a second acquisition was started. A functional image was made by subtracting the image in the first scan from that in the second. In two patients with transient global amnesia and two normal controls, Buschke's memory test was performed in combination with SPECT. A relative increase in activity was seen in the thalamus, subthalamic area, hippocampus, and some cortial areas, apparently reflecting local functional change induced by the memory task. In two patients with moderate Alzheimer's disease with severe memory loss, no increase was detected in these areas. In one patient with aphasia, the repetition test with SPECT was correlated with the WADA test and dichotic listening test, and good agreement was obtained. In conclusion, our new SPECT technique is useful in detecting alterations in rCBF during mental activity and can be applied to neurophysiological studies. (author).

  14. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  15. A Combined Intensity and Gradient-Based Similarity Criterion for Interindividual SPECT Brain Scan Registration

    Directory of Open Access Journals (Sweden)

    Bengtsson Ewert

    2003-01-01

    Full Text Available An evaluation of a new similarity criterion for interindividual image registration is presented. The proposed criterion combines intensity and gradient information from the images to achieve a more robust and accurate registration. It builds on a combination of the normalised mutual information (NMI cost function and a gradient-weighting function, calculated from gradient magnitude and relative gradient angle values from the images. An investigation was made to determine the best settings for the number of bins in the NMI joint histograms, subsampling, and smoothing of the images prior to the registration. The new method was compared with the NMI and correlation-coefficient (CC criterions for interindividual SPECT image registration. Two different validation tests were performed, based on the displacement of voxels inside the brain relative to their estimated true positions after registration. The results show that the registration quality was improved when compared with the NMI and CC measures. The actual improvements, in one of the tests, were in the order of 30-40% for the mean voxel displacement error measured within 20 different SPECT images. A conclusion from the studies is that the new similarity measure significantly improves the registration quality, compared with the NMI and CC similarity measures.

  16. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT.

    Science.gov (United States)

    Kogure, D; Matsuda, H; Ohnishi, T; Asada, T; Uno, M; Kunihiro, T; Nakano, S; Takasaki, M

    2000-07-01

    The aim of this SPECT study was to determine the initial abnormality and longitudinal changes in regional cerebral blood flow (rCBF) in early Alzheimer's disease (AD) using statistical parametric mapping (SPM). rCBF was noninvasively measured using (99m)Tc-ethyl cysteinate dimer SPECT in 32 patients complaining of mild cognitive impairment, with a Mini-Mental State Examination score more than 24 at the initial study, and 45 age-matched healthy volunteers. All patients satisfied the diagnostic criteria of AD during the follow-up period of at least 2 y. Follow-up SPECT studies were performed on the patients at a mean interval of 15 mo. We used the raw data (absolute rCBF parametric maps) and the adjusted rCBF images of relative flow distribution (normalization of global cerebral blood flow [CBF] for each subject to 50 mL/100 g/min with proportional scaling) to compare these groups with SPM. In the baseline study, the adjusted rCBF was significantly and bilaterally decreased in the posterior cingulate gyri and precunei of patients compared with healthy volunteers. In the follow-up study, selected reduction of the adjusted rCBF was observed in the left hippocampus and parahippocampal gyrus. These areas showed the most prominent reduction in absolute rCBF on each occasion. Moreover, further decline of the absolute rCBF was longitudinally observed in extensive areas of the cerebral association cortex. SPM analysis showed the characteristic early-AD rCBF pattern of selective decrease and longitudinal decline, which may be overlooked by a conventional region-of-interest technique with observer a priori choice and hypothesis. This alteration in rCBF may closely relate to the pathophysiologic process of this disease.

  17. Compact CT/SPECT Small-Animal Imaging System

    Science.gov (United States)

    Kastis, George A.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.; Barber, H. Bradford; Barrett, Harrison H.

    2015-01-01

    We have developed a dual-modality CT/SPECT imaging system for small-animal imaging applications. The X-ray system comprises a commercially available micro-focus X-ray tube and a CCD-based X-ray camera. X-ray transmission measurements are performed based on cone-beam geometry. Individual projections are acquired by rotating the animal about a vertical axis in front of the CCD detector. A high-resolution CT image is obtained after reconstruction using an ordered subsets-expectation maximization (OS-EM) reconstruction algorithm. The SPECT system utilizes a compact semiconductor camera module previously developed in our group. The module is mounted perpendicular to the X-ray tube/CCD combination. It consists of a 64×64 pixellated CdZnTe detector and a parallel-hole tungsten collimator. The field of view is 1 square inch. Planar projections for SPECT reconstruction are obtained by rotating the animal in front of the detector. Gamma-ray and X-ray images are presented of phantoms and mice. Procedures for merging the anatomical and functional images are discussed. PMID:26538684

  18. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  19. Parametric mapping of cerebral blood flow deficits in Alzheimer's disease: a SPECT study using HMPAO and image standardization technique.

    Science.gov (United States)

    Imran, M B; Kawashima, R; Awata, S; Sato, K; Kinomura, S; Ono, S; Yoshioka, S; Sato, M; Fukuda, H

    1999-02-01

    This study assessed the accuracy and reliability of Automated Image Registration (AIR) for standardization of brain SPECT images of patients with Alzheimer's disease (AD). Standardized cerebral blood flow (CBF) images of patients with AD and control subjects were then used for group comparison and covariance analyses. Thirteen patients with AD at an early stage (age 69.8+/-7.1 y, Clinical Dementia Rating Score 0.5-1.0, Mini-Mental State Examination score 19-23) and 20 age-matched normal subjects (age 69.5+/-8.3 y) participated in this study. 99mTc-hexamethyl propylenamine oxime (HMPAO) brain SPECT and CT scans were acquired for each subject. SPECT images were transformed to a standard size and shape with the help of AIR. Accuracy of AIR for spatial normalization was evaluated by an index calculated on SPECT images. Anatomical variability of standardized target images was evaluated by measurements on corresponding CT scans, spatially normalized using transformations established by the SPECT images. Realigned brain SPECT images of patients and controls were used for group comparison with the help of statistical parameter mapping. Significant differences were displayed on the respective voxel to generate three-dimensional Z maps. CT scans of individual subjects were evaluated by a computer program for brain atrophy. Voxel-based covariance analysis was performed on standardized images with ages and atrophy indices as independent variables. Inaccuracy assessed by functional data was 2.3%. The maximum anatomical variability was 4.9 mm after standardization. Z maps showed significantly decreased regional CBF (rCBF) in the frontal, parietal and temporal regions in the patient group (P < 0.001). Covariance analysis revealed that the effects of aging on rCBF were more pronounced compared with atrophy, especially in intact cortical areas at an early stage of AD. Decrease in rCBF was partly due to senility and atrophy, however these two factors cannot explain all the deficits

  20. Clinical utility and reliability of sup(81m)Kr SPECT images applied to posterior circulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Takashi; Kikuchi, Haruhiko; Karasawa, Jun (National Cardiovascular Center, Suita, Osaka (Japan))

    1984-08-01

    The instrument used in this study has a sensitivity of 28,000 counts/mCi/cm/sup 3/ for sup(99m)Tc and a spatial resolution of approximately 20mm full width at a half-maximum. The tomographic images were obtained by the continuous infusion of sup(81m)Kr at the base of the ascending aorta. Material was subsequently studied in 49 cases that met the conditions of: 1) obstructive vertebrobasilar system lesions (8 cases), 2) no ischemic cerebrovascular diseases (10), or 3) ischemic cerebrovascular disorders in anterior circulation (31). The reproducibility, as studied in 20 cases, was satisfactory. 6 cases were compared with a stable Xe CT CBF map that had regional depressions similar to those of the sup(81m)Kr SPECT images. In the 2nd group, 8 of the 10 cases showed a mild laterality on cerebellar perfusion images obtained by SPECT, as did 29 of the 31 in the 3rd group; among them, 2 cases with a recently completed stroke revealed a marked depression in the ipsilateral cerebellar hemisphere to the side of the hemiplegia. Cases of the lst group showed generally depressed perfusion images of the brain stem or cerebellum, and the low-density areas of X-ray CT were comparable to the lower perfusional regions on SPECT. The authors concluded that posterior perfusion images obtained by sup(81m)Kr SPECT were affected by occlusive vertebrobasilar-system lesions as well as by carotid-system lesions and cerebellar functions, and that this method for evaluating hemodynamics will be of much more clinical use in repeated studies to demonstrate the changes in posterior ciculation in course or by some loadings with subclinical characteristics, for this paper includes the first report on cerebellar functional images, though it is restricted by the low-spatial resolution from defining the architecture of the posterior fossa in detail.

  1. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  2. Evaluation of the quality of picture in studies of sect brain acquired with various collimators; Evaluacion de la calidad de imagen en estudios de spect cerebral adquiridos con distintos colimadores

    Energy Technology Data Exchange (ETDEWEB)

    Moran Velasco, V.; Prieto Azcarete, E.; Barbes Fernandez, B.; Sancho rodriguez, L.; Ribelles Segura, M. J.; Richter echevarria, J. A.; Arbizu Lostao, J.; Marti-Climent, J. M.

    2015-07-01

    On the practice clinic , the performance of the systems SPECT depends on in large measurement of the quality of image. The goal of East study was evaluate how affect the parameters of reconstruction of studies SPECT of perfusion brain acquired with a collimator of holes parallel (LEHR) and other of holes in fan (Fan-Beam). (Author)

  3. Brain SPECT in subtypes of mild cognitive impairment Findings from the DESCRIPA multicenter study

    NARCIS (Netherlands)

    Nobili, F.; Frisoni, G. B.; Portet, F.; Verhey, F.; Rodriguez, G.; Caroli, A.; Touchon, J.; Calvini, P.; Morbelli, S.; De Carli, F.; Guerra, U.P.; van de Pol, L.A.; Visser, P.J.

    2008-01-01

    The Development of Screening Guidelines and Clinical Criteria of Predementia Alzheimer's Disease (DESCRIPA) multicenter study enrolled patients with MCI or subjective cognitive complaints (SUBJ), a part of whom underwent optional brain perfusion SPECT. These patients were classified as SUBJ (n =

  4. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Caobelli, Federico; Thackeray, James T.; Bengel, Frank M. [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hannover (Germany); Soffientini, Alberto; Pizzocaro, Claudio; Guerra, Ugo Paolo [Fondazione Poliambulanza, Department of Nuclear Medicine, Brescia (Italy)

    2015-11-15

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest {sup 99m}Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0.9 % after stress, p = 0.27). Image quality and

  5. Advances in CNS Imaging Agents: Focus on PET and SPECT Tracers in Experimental and Clinical Use.

    Science.gov (United States)

    George, Noble; Gean, Emily G; Nandi, Ayon; Frolov, Boris; Zaidi, Eram; Lee, Ho; Brašić, James R; Wong, Dean F

    2015-04-01

    The physiological functioning of the brain is not well-known in current day medicine and the pathologies of many neuropsychiatric disorders are still not yet fully understood. With our aging population and better life expectancies, it has become imperative to find better biomarkers for disease progression as well as receptor target engagements. In the last decade, these major advances in the field of molecular CNS imaging have been made available with tools such as functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), and neuroreceptor-targeted positron emission tomography (PET). These tools have given researchers, pharmaceutical companies, and clinical physicians a better method of understanding CNS dysfunctions, and the ability to employ improved therapeutic agents. This review is intended to provide an update on brain imaging agents that are currently used in clinical and translational research toward treatment of CNS disorders. The review begins with amyloid and tau imaging, the former of which has at least three [(18)F] agents that have been recently approved and will soon be available for clinical use for specific indications in the USA and elsewhere. Other prevalent PET and SPECT neurotransmitter system agents, including those newly US FDA-approved imaging agents related to the dopaminergic system, are included. A review of both mature and potentially growing PET imaging agents, including those targeting serotonin and opiate receptor systems, is also provided.

  6. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  7. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  8. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...... for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm...

  9. Myocardial Perfusion Spect Imaging in Dextrocardia: A Case Report

    Directory of Open Access Journals (Sweden)

    Semra Özdemir

    2013-08-01

    Full Text Available The myocardial perfusion scintigraphy acquisition and analysis present some technical differences in the rare dextrocardia cases. Here we report a case of a 38 year-old woman with dextrocardia who had been applied myocardial perfusion scintigraphy. Presented case showed that the thoracic and abdominal organs had a mirror image with situs inversus totalis type dextrocardia. The incidence of coronary heart disease and life span of people with situs inversus totalis are the same as the normal population. So we may apply myocardial perfusion scintigraphy to this patient group. The current case is presented in order to remind the special applications of myocardial perfusion SPECT imaging in patients with dextrocardia.

  10. The current status of SPECT or SPECT/CT in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  11. CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans.

    Science.gov (United States)

    Kida, Satoshi; Bal, Matthieu; Kabus, Sven; Negahdar, Mohammadreza; Shan, Xin; Loo, Billy W; Keall, Paul J; Yamamoto, Tokihiro

    2016-03-01

    To investigate the hypothesis that CT ventilation functional image-based IMRT plans designed to avoid irradiating highly-functional lung regions are comparable to single-photon emission CT (SPECT) ventilation functional image-based plans. Three IMRT plans were created for eight thoracic cancer patients using: (1) CT ventilation functional images, (2) SPECT ventilation functional images, and (3) anatomic images (no functional images). CT ventilation images were created by deformable image registration of 4D-CT image data sets and quantitative analysis. The resulting plans were analyzed for the relationship between the deviations of CT-functional plan metrics from anatomic plan metrics (ΔCT-anatomic) and those of SPECT-functional plans (ΔSPECT-anatomic), and moreover for agreements of various metrics between the CT-functional and SPECT-functional plans. The relationship between ΔCT-anatomic and ΔSPECT-anatomic was strong (e.g., R=0.94; linear regression slope 0.71). The average differences and 95% limits of agreement between the CT-functional and SPECT-functional plan metrics (except for monitor units) for various structures were mostly less than 1% and 2%, respectively. This study demonstrated a reasonable agreement between the CT ventilation functional image-based IMRT plans and SPECT-functional plans, suggesting the potential for CT ventilation imaging to serve as a surrogate for SPECT ventilation in functional image-guided radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  13. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  14. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  15. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bang-Hung [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Tsai, Sung-Yi [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Imaging Medical, St.Martin De Porres Hospital, Chia-Yi, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Su, Tung-Ping; Chou, Yuan-Hwa [Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taiwan (China); Chen, Jyh-Cheng, E-mail: jcchen@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China)

    2011-08-21

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images. Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of {sup 123}I-ADAM. The image matrix size was 128x128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans. The average of specific uptake ratio (SUR: target/cerebellum-1) of {sup 123}I-ADAM binding to SERT in midbrain was 1.78{+-}0.27, pons was 1.21{+-}0.53, and striatum was 0.79{+-}0.13. The cronbach's {alpha} of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2

  16. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT.

    Science.gov (United States)

    Caobelli, Federico; Thackeray, James T; Soffientini, Alberto; Bengel, Frank M; Pizzocaro, Claudio; Guerra, Ugo Paolo

    2015-11-01

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest (99m)Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0

  17. Diagnosis of Alzheimer's disease using brain SPECT with three-dimensional stereotactic surface projections

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Abe, Shine; Iwamoto, Toshihiko; Takasaki, Masaru [Tokyo Medical Coll. (Japan)

    2001-09-01

    We compared the diagnostic usefulness of three-dimensional stereotactic surface projection (3D-SSP) with that of standard transaxial images in brain SPECT in patients with Alzheimer's disease (AD). The subjects consisted of 69 patients with AD and 60 patients with non-AD, including vascular dementia, Parkinson's disease with dementia, frontotemporal dementia, other dementing diseases and neuropsychiatric diseases. Standard transaxial section and 3D-SSP SPECT images with N-isopropyl-p-[{sup 123}I] iodoamphetamine were blindly interpreted by three examiners and were classified into the following three patterns: typical AD, atypical AD, and not indicative AD patterns. The 3D-SSP images demonstrated reductions of cerebral blood flow in the parieto-temporal association cortex and posterior cingulate gyrus more clearly and easily than the standard transaxial images. The diagnostic sensitivity and specificity were 93% and 85% with 3D-SSP and 83% and 82% with standard transaxial section respectively. 3D-SSP was especially useful for early or atypical AD which showed no characteristic perfusion abnormalities on standard transaxial images. These results suggest that SPECT with 3D-SSP provides an sensitive as well as accurate tool for the diagnosis of AD. (author)

  18. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  19. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    Energy Technology Data Exchange (ETDEWEB)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de [University of Amsterdam, Department of Nuclear Medicine, F2-238, Academic Medical Center, Amsterdam (Netherlands); Acampa, Wanda [National Council of Research, Institute of Biostructures and Bioimaging, Naples (Italy); Anagnostopoulos, Constantinos [Academy of Athens, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Athens (Greece); Ballinger, Jim [Guy' s Hospital - Guy' s and St Thomas' Trust Foundation, Department of Nuclear Medicine, London (United Kingdom); Bengel, Frank [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Bondt, Pieter De [OLV Hospital, Department of Nuclear Medicine, Aalst (Belgium); Buechel, Ronny R.; Kaufmann, Philip A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Flotats, Albert [Universitat Autonoma de Barcelona, Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Hindorf, Cecilia [Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Lindner, Oliver [University Hospital of the Ruhr-University Bochum, Heart and Diabetes Center North Rhine-Westphalia, Institute for Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen (Germany); Ljungberg, Michael [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Lonsdale, Markus [Bispebjerg Hospital, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Manrique, Alain [Caen University Hospital, Department of Nuclear Medicine, Service Commun Investigations chez l' Homme, GIP Cyceron, Caen (France); Minarik, David [Skaane University Hospital, Radiation Physics, Malmoe (Sweden); Scholte, Arthur J.H.A. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Traegaardh, Elin [Skaane University Hospital and Lund University, Clinical Physiology and Nuclear Medicine, Malmoe (Sweden); Hesse, Birger [University Hospital of Copenhagen, Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark)

    2015-11-15

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015{sub 0}7{sub E}ANM{sub F}INAL myocardial{sub p}erfusion{sub g}uideline.pdf. (orig.)

  20. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    Science.gov (United States)

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p images (p reading time compared to 2D SPECT/CT fusion.

  1. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    Directory of Open Access Journals (Sweden)

    Dustin R. Osborne

    2015-01-01

    Full Text Available Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with Tc99m phantoms in a series of simultaneous SPECT-CT scans.

  2. Radiolabeled Sugars Used for PET and SPECT Imaging.

    Science.gov (United States)

    Barrios-Lopez, Brianda; Bergstrom, Kim

    2016-01-01

    There are new efforts to develop "sugar" probes for molecular imaging focusing on human clinical studies. Radiolabeled carbohydrates are used as substrate probes for studying specific processes in tissues and organisms. The best application case is 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG), which is incorporated by cancer cells. The introduction of ltF-FDG has advanced enormously human Positron Emission Tomography (PET). This review focuses on the importance of 18FFDG and other sugars as imaging probes in PET and Single Photon Emission Computed Tomography (SPECT) imaging. In conclusion, new radiolabeled molecules that can be used as radiopharmaceuticals also would possibly help in the treatment of cancer cells in human patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Pre-evaluation study in SPECT images using a phantom; Avaliacao do pre processamento das projecoes em SPECT com phantom fisico

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Marina de Sa; Furuie, Sergio Shiguemi [Sao Paulo Univ., SP (Brazil). Instituto do Coracao. Div. de Informatica; Abe, Rubens [Sao Paulo Univ., SP (Brazil). Instituto do Coracao. Servico de Radioisotopos; Moura, Lincoln [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    1996-12-31

    An alternative solution for the reconstruction of SPECT images using a Poisson Noise Model is presented. The proposed algorithm was applied on a real phantom and compared to the standard clinical procedures. Results have shown that the proposed method improves the quality of the SPECT images 3 refs.

  4. Transient hyperperfusion after extracranial-intracranial bypass surgery on brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Oh, Chang Wan; Cho, Sang Soo; Lee, Eun Ju; Eo, Jae Seon; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We designed this study to investigate the transient relative hyperperfusion and its clinical implication after STA (superficial temporal artery) to MCA (middle cerebral artery) bypass surgery in patients with ischemic cerebral stroke. In 25 patients, comprising of 11 moyamoya disease (MMD) and 14 atherosclerotic disease (ASD), STA-MCA anastomosis was performed to distal cortical branches of middle cerebral artery for revascularization. 99mTc-ECD brain perfusion SPECT was performed before, 3 days and then 10 days after bypass surgery. Each image was spatially normalized into the standard space and changes of brain perfusion in the entire internal carotid artery (ICA) territory were evaluated using standardized ROIs. In the overall analysis including all patients, the surgery effectively increased ICA territory perfusion on the 3rd and 10th day after bypass surgery in comparison with the preoperative one (p<0.01 and p=0.03). The 3rd day perfusion was significantly higher than the 10th day one (p<0.01), demonstrating transient relative hyperperfusion on the 3rd day compared with the 10th day. In MMD group, such transient increase of perfusion was most severe in the vicinity of the anastomosis site, and more definite than the ASD group. Three patients, 2 ASD and one MMD, showed temporary neurological deterioration (dysphasia or dysarthria) beginning within 3 days after surgery and resolving completely within 2 weeks after onset, without hemorrhage, infarction or other serious defects on CT scan. Their neurological changes correlated well with the focal perfusion changes confirmed by SPECT images on the 3rd and 10th postoperative day. Transient relative hyperperfusion was observed on postoperative 3rd day compared with the 10th day following STA-MCA bypass surgery. In some patients, such transient increase of focal perfusion seems to provoke temporary neurological deterioration.

  5. A New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images

    Directory of Open Access Journals (Sweden)

    Shabnam Oloomi

    2013-11-01

    In conclusion, by applying the proposed formula we were able to correct attenuation and scatter via MLEM and improve the image quality, which is a necessary step for both qualitative and quantitative SPECT images.

  6. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy; SPECT cerebral interictal em pacientes com epilepsia do lobo temporal de dificil controle

    Energy Technology Data Exchange (ETDEWEB)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  7. Myocardial Perfusion Spect Imaging in Dextrocardia: A Case Report

    Science.gov (United States)

    Özdemir, Semra; Gazi, Emine

    2013-01-01

    The myocardial perfusion scintigraphy acquisition and analysis present some technical differences in the rare dextrocardia cases. Here we report a case of a 38 year-old woman with dextrocardia who had been applied myocardial perfusion scintigraphy. Presented case showed that the thoracic and abdominal organs had a mirror image with situs inversus totalis type dextrocardia. The incidence of coronary heart disease and life span of people with situs inversus totalis are the same as the normal population. So we may apply myocardial perfusion scintigraphy to this patient group. The current case is presented in order to remind the special applications of myocardial perfusion SPECT imaging in patients with dextrocardia. Conflict of interest:None declared. PMID:24003402

  8. Regional Cerebral Blood-Flow with 99mTc-ECD Brain Perfusion SPECT in Landau-Kleffner Syndrome: Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Reza Nemati

    2014-01-01

    Full Text Available Landau-Kleffner syndrome (LKS is a rare childhood disorder characterized by acquired aphasia and epilepsy. 99mTc-ECD SPECT imaging was performed in two right-handed children with LKS. A relative decrease in perfusion was found in the left frontal-temporal cortices of both patients as well as in the left and right parietal cortices of one patient with aphasia, without clinical epilepsy. The degree of regional cerebral perfusion impairment did not correlate with the severity of the clinical and EEG abnormalities, but the area of hypoperfusion was compatible with the speech area of the brain. Overall, although asymmetrical temporoparietal perfusion appears as a common finding in LKS, SPECT findings in LKS alone cannot elucidate the pathogenic features of the disorder in the brain. Here, we present two cases of LKS in which we investigated SPECT perfusion scans.

  9. Combination of intra-operative freehand SPECT imaging with MR images for guidance and navigation.

    Science.gov (United States)

    Matthies, Philipp; Okur, Asli; Wendler, Thomas; Navab, Nassir; Friebe, Michael

    2013-01-01

    Nowadays for clinical applications such as sentinel lymph node biopsy in breast or prostate cancer, only pre-operative image data is used for navigation, i.e. CT, SPECT/CT or PET/CT. Freehand SPECT and freehand PET provide intra-operative functional imaging techniques that can be complemented with pre- and intra-operative MR imaging to allow for better planning, navigation and guidance. In this paper we propose a method to enable navigation based on pre- or intra-operatively acquired MR images. A fully MR compatible phantom and a dedicated MR compatible optical tracking target with MR markers is built for this study. PET/MR, SPECT/CT and freehand SPECT scans of the phantom are performed. Registration is done using point based registration of the known marker and target geometries and a ground truth is obtained from a SPECT/CT and an MR image that are directly registered. The RMS errors was 0.31 mm for the ground truth and 3.29 mm when using segmentation of the MR markers and their spatial relationship with the optical tracking spheres of the dedicated target. Thus, the freehand SPECT can be registered easily by this approach without the need of any additional CT scans and therefore without any additional radiation dose for the patient. This enables intra-operative fusion of the pre- or intra-operatively acquired MR data, which could provide valuable additional information for intra-operative applications such as guidance based on accurate anatomy or verifying exact tumor location in combination with detailed morphological patient data.

  10. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors.

    Science.gov (United States)

    Pauleit, Dirk; Floeth, Frank; Tellmann, Lutz; Hamacher, Kurt; Hautzel, Hubertus; Müller, Hans-W; Coenen, Heinz H; Langen, Karl-J

    2004-03-01

    The aim of this study was to compare PET with O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) and SPECT with 3-(123)I-iodo-alpha-methyl- L-tyrosine ((123)I-IMT) in patients with brain tumors. Twenty patients with a suspected brain tumor were investigated by (18)F-FET PET, (123)I-IMT SPECT, and MRI within 3 wk. Region-of-interest analyses were performed on coregistered PET/SPECT/MRI images and the tumor-to-brain ratio (TBR), muscle-to-brain ratio (MBR), cerebellum-to-brain ratio (CerBR), and sinus-to-brain ratio (SBR) were calculated. In addition, the presence of tumor and the discrimination of anatomic structures on (18)F-FET PET and (123)I-IMT SPECT images were visually determined by 3 observers who were unaware of clinical data. The TBR of (18)F-FET and (123)I-IMT uptake in cerebral tumors showed a highly significant correlation (r = 0.96; P < 0.001). In the visual analysis for the presence or absence of tumors, no differences for (123)I-IMT SPECT and (18)F-FET PET were found in 19 of 20 patients; in one patient a low-grade glioma was only identified on (18)F-FET PET images but not on (123)I-IMT SPECT images. The contrast between tumor and normal brain was significantly higher in (18)F-FET PET (TBR, 2.0 +/- 0.9) than in (123)I-IMT SPECT (TBR, 1.5 +/- 0.5). The discrimination of anatomic structures yielded a significantly better score on (18)F-FET PET images (rating score, 2.6 +/- 0.9) compared with (123)I-IMT SPECT images (rating score, 1.7 +/- 0.9). The uptake of (18)F-FET in the muscles was significantly higher compared with (123)I-IMT (MBR (18)F-FET, 1.4 +/- 0.3; MBR (123)I-IMT, 0.6 +/- 0.2; P < 0.001) and (18)F-FET demonstrated a significantly higher blood-pool radioactivity than (123)I-IMT (SBR (18)F-FET, 1.3 +/- 0.2; SBR (123)I-IMT, 0.8 +/- 0.2; P < 0.001). The significant correlation of the TBRs of (18)F-FET and (123)I-IMT indicates that clinical experiences of brain tumor diagnostics with (123)I-IMT SPECT might be valid for (18)F-FET PET although

  11. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    Science.gov (United States)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  12. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal {sup 99m}Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  13. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  14. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  15. Parametric Cerebrovascular Reserve Images Using Acetazolamide (99m)Tc-HMPAO SPECT: A Feasibility Study of Quantitative Assessment.

    Science.gov (United States)

    Choi, Hongyoon; Yoo, Min Young; Cheon, Gi Jeong; Kang, Keon Wook; Chung, June-Key; Lee, Dong Soo

    2013-09-01

    Basal/acetazolamide stress (99m)Tc-HMPAO single-photon emission computed tomography (SPECT) has been widely used for evaluation of hemodynamics; however, qualitative and subjective visual assessment of cerebrovascular reserve (CVR) has been performed in clinical settings. The aim of this study was to generate parametric CVR images and evaluate its feasibility of quantification. Basal/acetazolamide stress (99m)Tc-HMPAO SPECT data from 17 patients who underwent bypass surgery or percutaneous transluminal angioplasty were used. Spatial normalization was performed and parametric CVR images were generated using relative CVR (rCVR) of each voxel proportional to CVR of the whole brain. Binary parametric maps to show area of relatively reduced CVR were generated also using threshold of rCVR parametric CVR images and probabilistic maps for ICA territory. Pre- and postprocedural parametric CVR images were obtained and quantitative rCVRs were compared. The rCVRs were evaluated according to visual grades for regional decreased CVR. Postprocedural rCVR obtained from parametric CVR images increased significantly from preprocedural rCVR. The rCVR was significantly correlated with visual grades of reduced CVR for each side of ICA territories. We generated parametric CVR images for basal/acetazolamide stress (99m)Tc-HMPAO SPECT. As a quantitative measurement, rCVR obtained from the parametric image was feasibly assessed hemodynamic abnormalities with preserved anatomical information.

  16. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  17. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99mTc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  18. Impact of image fusion and attenuation correction by SPECT-CT on the scintigraphic detection of parathyroid adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, J.; Denecke, T.; Stelter, L.; Felix, R.; Amthauer, H. [Campus Virchow-Klinikum, Charite-Universitaetsmedizin, Berlin (Germany). Klinik fuer Strahlenheilkunde; Seehofer, D.; Rayes, N. [Campus Virchow-Klinikum, Charite-Universitaetsmedizin, Berlin (Germany). Klinik fuer Allgemein-, Viszeral- und Transplantationschirurgie

    2007-07-01

    Aim: In addition to planar parathyroid scintigraphy, SPECT and image fusion with CT/MR improve adenoma detection in primary hyperparathyroidism (pHPT). This study evaluated the use of a hybrid SPECT-CT device concerning image fusion and attenuation correction (AC). Patients, methods: The data of 26 patients with pHPT, preoperatively examined by {sup 99m}Tc-sestamibi dual-phase scintigraphy plus SPECT-CT (low-dose CT), was retrospectively evaluated by two observers in a consensus reading. The images of planar scintigraphy, non-attenuation corrected SPECT (SPECT{sub NAC}), attenuation corrected SPECT (SPECT{sub AC}) and SPECT{sub AC}-CT were interpreted and compared to the results of surgery. The effect of AC on focus intensity was semiquantified by determination of the tumor-to-background (TB) ratio for SPECT{sub AC} and SPECT{sub NAC}. Finally, the TB{sub AC}/TB{sub NAC}-ratio was calculated for each focus and correlated to the distance of a focus from the body surface. Results: 20/26 (77%) patients were positive in planar scintigraphy. One focus was detected by SPECT only. AC of SPECT-data increased image contrast but had no impact on the detection rate. Additional SPECT{sub AC}-CT image fusion facilitated the localization of three mediastinal foci. In the semiquantitative analysis an increase in TB after AC was observed, although there was no strong correlation between depth of the focus (16-60 mm) and the TB{sub AC}/TB{sub NAC}-ratio (r = 0.213, p = 0.353). Conclusion: The detection rate of planar scintigraphy is only slightly improved by SPECT imaging. Due to the low spatial resolution of the CT component, the benefit of image fusion is limited to mediastinal foci. However, as TB and image contrast is measurably improved after AC there is a potential to improve the sensitivity of parathyroid SPECT. (orig.)

  19. Applications of cerebral SPECT

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  20. Tc-99m HMPAO SPECT of the brain in a patient with striopallidodentate calcifications.

    Science.gov (United States)

    Dierckx, R; Jorens, P G; Appel, B; Hilte, F; Vandevivere, J; De Deyn, P P; Parizel, G A

    1991-06-01

    CT scan in a 52-year-old woman, admitted because of grand mal seizure, showed striopallidodentate calcifications due to postoperative hypoparathyroidism. This patient report stresses the possibility of cortical metabolic involvement in this disorder, as shown on Tc-99m HMPAO brain SPECT, despite the absence of cognitive defects.

  1. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  2. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    2011-01-01

    than [123I]FP-CIT. Because of its fast kinetic properties, quantification of [123I]PE2I binding to DAT is possible using kinetic or graphical analysis following bolus injection of tracer or as a combination of bolus and constant infusion. Based on preliminary bolus trials we have been able to calculate...... a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding...... the more laborious B/I design it is currently to be considered the best radioligand for imaging the DAT in the human brain with SPECT....

  3. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    than [123I]FP-CIT. Because of its fast kinetic properties, quantification of [123I]PE2I binding to DAT is possible using kinetic or graphical analysis following bolus injection of tracer or as a combination of bolus and constant infusion. Based on preliminary bolus trials we have been able to calculate...... a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding...... the more laborious B/I design it is currently to be considered the best radioligand for imaging the DAT in the human brain with SPECT....

  4. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  5. Development of new peripheral benzodiazepine receptor ligands for SPECT and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Fookes, C.; Pham, T.; Holmes, T.; Mattner, F.; Berghoffer, P.; Gregoire, M.C.; Loc' h, C.; Greguric, I. [Radiopharmaceuticas Research Institute, ANSTO, Menai, N.S.W. Sydney (Australia); Thominiaux, C.; Boutin, H.; Chauveau, F.; Gregoire, M.C.; Hantraye, Ph.; Tavitain, B.; Dolle, F. [Service Hospitalier Frederic Joliot, CEA/DSV, 91 - Orsay (France); Arlicot, N.; Chalon, S.; Guilloteau, D. [Universite Francois Rabelais, Inserm U619, 37 - Tours (France)

    2008-02-15

    This study aims to demonstrate that a number of radiolabelled ({sup 123}I,{sup 11}C, {sup 18}F) imidazo pyridines, imidazo pyridazines and indolglyoxylamides can be developed as potential tracers for SPECT and PET imaging. (N.C.)

  6. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  7. Synthesis of (R,R) sup 123 I-QNB, a SPECT (single photon emission computed tomography) imaging agent for cerebral muscarinic acetylcholine receptors in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J.; McCulloch, J. (Glasgow Univ. (United Kingdom)); Murray, T. (Glasgow Western Infirmary (United Kingdom)); Wyper, D. (Southern General Hospital, Glasgow (United Kingdom). Inst. of Neurological Sciences)

    1992-01-01

    The high-affinity muscarinic receptor antagonist (R,R) I-QNB ((R)-(-)-1-Azabicyclo(2.2.2)oct-3-yl-(R)-(+)-{alpha}-hydroxy-{alpha}-(4-( {sup 127}I)iodophenyl)-{alpha}-phenyl Acetate) has been labeled with iodine-123 to give a suitable ligand for SPECT (Single photon emission computed tomography) imaging of the human brain. (author).

  8. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)]. E-mail: eric.guedj@ap-hm.fr; Taieb, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Cammilleri, Serge [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Lussato, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Laforte, Catherine de [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Niboyet, Jean [Unite d' Etude et de Traitement de la Douleur, Clinique La Phoceanne, Marseille (France); Mundler, Olivier [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  9. Dependency of energy and spatial distributions of photons on edge of object in brain SPECT

    CERN Document Server

    Deloar, H M; Kudomi, N; Kim, K M; Aoi, T; Iida, H

    2003-01-01

    Accurate mu maps are important for quantitative image reconstruction in SPECT. The Compton scatter energy window (CSW) technique has been proposed to define the outline of objects. In this technique, a lower energy window image is acquired in addition to the main photo-peak energy window. The image of the lower energy window is used to estimate the edge of the scanned object to produce a constant attenuation map. The aim of this study was to investigate the dependency of CSW on the spatial and energy distribution of radioisotope to predict the edges of objects. Two particular cases of brain study were considered, namely uniform distribution and non-uniform distribution using Monte Carlo simulation and experiments with uniform cylindrical phantom and hotspot phantom. The phantoms were filled with water and a radioactive solution of sup 9 sup 9 sup m Tc. For each phantom, 20%, 30%, 40% and 50% thresholds of the mean profile were applied to estimate E sub w sub t , the energy window for minimum difference betwee...

  10. Brain spect in the pre-surgical evaluation of epileptic patients preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos A. Buchpiguel

    1992-03-01

    Full Text Available Pre-surgical evaluation of epileptic patients consists of neurological examination, intensive electroencephalographic (EEG monitoring and anatomical studies (CT and MRI. Functional methods such as PET and SPECT imaging are now used more frequently. We have studied pre-operatively 15 adult epileptic patients (8 female, 7 male using a rotational scintillation camera interfaced to a dedicated computer. The tomographic images were obtained 15 minutes after intravenous injection of 99mTc_HMPAO. All had MRI scanning and intensive EEG monitoring which generally included seizure recording. Five patients had progressive lesions (3 meningiomas, 2 astrocytomas. In 10 patients, neuroradiological studies did not show the presence of progressive lesions (2 normal scans and 8 cases with inactive lesions. Two patients with meningioma showed hypoperfusion at the lesion site while the third patient had a marked hyperperfusion which might correlate with the clinical diagnosis of epilepsia partialis continua. In the astrocytoma patients SPECT scans showed hypoperfusion at the lesion site. Data obtained from the 10 patients without progressive CNS lesions showed: (a in 4, SPECT findings correlated well with the anatomical findings; (b in 5 instances, SPECT was able to disclose additional functional deficits; (c in one case, there was no SPECT correlate of a discrete anatomical lesion. In 5 of these cases with no progressive lesions (n=10 SPECT findings were useful as a complementary tool in determining the clinical or surgical management of these patients. Despite the small number and hete-rogenicity of the present sample, SPECT seems to be an useful tool as part of the clinical workup of epileptic patients who are candidates for epilepsy surgery.

  11. SPECT imaging evaluation in movement disorders: far beyond visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Badiavas, Kosmas [General Hospital, Medical Physics Department, Thessaloniki (Greece); Molyvda, Elisavet; Psarrakos, Kyriakos [Medical Physics Dept., General Hospital, Thessaloniki (Greece); Iakovou, Ioannis; Karatzas, Nikolaos [Medical Physical Dept., Aristotle Univ., Thessaloniki (Greece); Tsolaki, Magdalini [3. Neurology Clinic, Aristotle Univ., Thessaloniki (Greece)

    2011-04-15

    Single photon emission computed tomography (SPECT) imaging with {sup 123}I-FP-CIT is of great value in differentiating patients suffering from Parkinson's disease (PD) from those suffering from essential tremor (ET). Moreover, SPECT with {sup 123}I-IBZM can differentiate PD from Parkinson's ''plus'' syndromes. Diagnosis is still mainly based on experienced observers' visual assessment of the resulting images while many quantitative methods have been developed in order to assist diagnosis since the early days of neuroimaging. The aim of this work is to attempt to categorize, briefly present and comment on a number of semi-quantification methods used in nuclear medicine neuroimaging. Various arithmetic indices have been introduced with region of interest (ROI) manual drawing methods giving their place to automated procedures, while advancing computer technology has allowed automated image registration, fusion and segmentation to bring quantification closer to the final diagnosis based on the whole of the patient's examinations results, clinical condition and response to therapy. The search for absolute quantification has passed through neuroreceptor quantification models, which are invasive methods that involve tracer kinetic modelling and arterial blood sampling, a practice that is not commonly used in a clinical environment. On the other hand, semi-quantification methods relying on computers and dedicated software try to elicit numerical information out of SPECT images. The application of semi-quantification methods aims at separating the different patient categories solving the main problem of finding the uptake in the structures of interest. The semi-quantification methods which were studied fall roughly into three categories, which are described as classic methods, advanced automated methods and pixel-based statistical analysis methods. All these methods can be further divided into various subcategories. The plethora of

  12. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  13. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  14. Tc-99m-bicisate (ECD)-brain-SPECT in rapidly progressive dementia; Hirn-SPECT mit Tc-99m-Bicisat (ECD) bei rasch progredientem dementiellen Syndrom

    Energy Technology Data Exchange (ETDEWEB)

    Marienhagen, J.; Eilles, C. [Regensburg Univ. (Germany). Abt. fuer Nuklearmedizin; Weingaertner, U.; Blaha, L. [Bezirkskrankenhaus Mainkofen (Germany). Psychiatrische Klinik; Zerr, I.; Poser, S. [Goettingen Univ. (Germany). Klinik und Poliklinik fuer Neurologie

    1999-07-01

    We present a 61-year-old male patient with progressive dementia. A brain SPECT with Tc-99m-bicisate was performed for confirmation of clinically suspected Alzheimer-dementia. At the time of the SPECT-investigation marked apraxia and aphasia besides severe dementia were present. Electrophysiological as well as anatomical neuroimaging findings showed non-diagnostic alterations. SPECT revealed distinct perfusion defects, which made Alzheimer Dementia unlikely. The further course of the patient was determined by rapidly progressive deterioration with development of akinetic mutism. Thereafter, increased levels of neuron-specific enolase as well as 14-3-3 proteins were found in the cerebro-spinal fluid (CSF). The patient finally died with signs of cerebral decortication. Due to the clinical course and the CSF-findings the patient's final diagnosis was Creutzfeld-Jakob-disease, nevertheless no autopsy was performed. The presented case report underscores the clinical utility of perfusion brain SPECT in the differential diagnosis of dementias. (orig.) [German] Wir berichten ueber einen 61jaehrigen Patienten mit progredientem dementiellen Syndrom, der unter der Verdachtsdiagnose einer Demenz vom Alzheimer-Typ (DAT) zur Hirn-SPECT-Untersuchung mit TC-99m-Bicisat (ECD) vorgestellt wurde. Zum Untersuchungszeitpunkt bestanden neben dem Vollbild einer Demenz eine ausgepraegte Apraxie und Aphasie bei unspezifischen Veraenderungen im EEG sowie der neuroradiologischen Bildgebung. In der Hirn-SPECT-Untersuchung fanden sich fuer eine DAT untypische ausgedehnte, vorwiegend rechtshemisphaerische Perfusionsstoerungen. Im weiteren Verlauf rasche Progredienz des Krankheitsbildes mit Entwicklung eines akinetischen Mutismus sowie Nachweis erhoehter Werte der neuronspezifischen Enolase und des 14-3-3-Proteins im Liquor. Der Patient verstarb schliesslich unter dem Bild einer Decortication. Aufgrund des klinischen Verlaufs sowie der Liquorbefunde wurde, da eine autoptische Befundsicherung

  15. Correlation with neuropsychological assessment and SPM analysis of brain perfusion SPECT in patients with progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Progressive supranuclear palsy (PSP) is a degenerative condition of unknown aetiology that produces an akinetic-rigid form of parkinsonism characterised by early falls, dementia and abnormalities of extraocular movements. The patterns of decreased regional cerebral blood flow and cognitive impairment in PSP compared with normal control have been insufficiently investigated and a limited number of studies have been performed. We evaluated clinical symptoms, functional neuroimaging study using Tc-99m HMPAO SPECT and neuropsychological profiles in patients with PSP. Eleven patients with PSP diagnosed by the clinical criteria of National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP) (mean age: 70.5{+-}5.6 years, educational period: 4.5{+-}4.7 years) and age-matched 10 healthy control subjects (mean age: 68.1{+-}4.5 years, educational period: 6.5{+-}4.1 years) participated in this study were participated. All patients were given a neurologic examination, brain MRI and cerebral perfusion SPECT using Tc-99m HMPAO. We concomittently evaluated several cognitive profiles using the Seoul Neuropsychological Screening Battery. SPM analysis of the SPECT image showed significant perfusion deficits in the left inferior frontal gyrus, left caudate nucleus, left middle frontal gyrus and cingulate gyrus in the patients with PSP compared with age-matched healthy control (uncorrected p<0.01). On neuropsychological assessment, cognitive deficits on verbal and visual memory, word fluency and frontal executive functions were prominent in most patients with PSP compared with healthy control subjects. Our findings suggest that measurement of regional cerebral blood flow by perfusion SPECT and voxel-based SPM analysis with neuropsychological assessment are useful to understanding the correlation between perfusion deficits and abnormal cognitive profiles in patients with PSP.

  16. Evaluation of x-ray detectors for dual-modality CT-SPECT animal imaging

    Science.gov (United States)

    MacDonald, Lawrence R.; Iwata, Koji; Patt, Bradley E.; Iwanczyk, Jan S.; Hwang, Andrew B.; Wu, Max C.; Hasegawa, Bruce H.

    2002-11-01

    We are developing a bench-top animal scanner that will acquire both functional SPECT images and anatomical CT images with sub-millimeter spatial resolution for both imaging modalities. This paper presents preliminary results from the evaluation of two x-ray detectors for the CT application, and dual SPECT-CT images using one of these detectors. Two phosphor-CMOS x-ray detectors, one with 48 m pixels and 5 cm x 5 cm area and the other with 50 μm pixels and 12 cm x 12 cm area, were evaluated for linearity and dynamic range. Each detector showed linearity over ~ 3 orders of magnitude, which is sufficient for mouse CT imaging. The smaller detector was mounted to an A-SPECT system, along with a custom 50 W x-ray source with focal spot size of ~ 150 μm. Phantoms and mice were scanned sequentially, SPECT followed by CT, and the resulting reconstructed images fused into a single SPECT-CT image. These preliminary results show that the two detectors evaluated for this application can successfully achieve high contrast CT images of mice and similar sized objects.

  17. Real-time respiratory triggered SPECT myocardial perfusion imaging using CZT technology: impact of respiratory phase matching between SPECT and low-dose CT for attenuation correction.

    Science.gov (United States)

    Clerc, Olivier F; Fuchs, Tobias A; Possner, Mathias; Vontobel, Jan; Mikulicic, Fran; Stehli, Julia; Liga, Riccardo; Benz, Dominik C; Gräni, Christoph; Pazhenkottil, Aju P; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A

    2017-01-01

    To assess the impact of respiratory phase matching between single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI) and low-dose computed tomography (CT) for attenuation correction (AC). Forty patients underwent 1-day 99mTc-tetrofosmin pharmacological stress/rest SPECT-MPI using a cadmium-zinc-telluride gamma camera. Low-dose CT for AC was performed at deep-inspiration breath-hold. SPECT-MPI was acquired once with free-breathing (FB) and repeated at deep-inspiration breath-hold (BH) to match the respiratory phase of AC. From these acquisitions we reconstructed four data sets: free-breathing SPECT-MPI without AC (non-corrected; FB-NC), breath-hold SPECT-MPI without AC (non-corrected; BH-NC), free-breathing SPECT-MPI with AC (FB-AC), and breath-hold SPECT-MPI with AC (BH-AC), the latter representing respiratory-phase-matched AC SPECT-MPI. We compared semi-quantitative segmental tracer uptake, visual diagnosis, inter-observer agreement, and image quality. Compared with FB-NC, deep-inspiration BH-NC increases inferior and lateral uptake, but decreases septal uptake. Addition of AC to FB increases inferior and septal uptake, but decreases anterolateral uptake. Combining breath-hold MPI with breath-hold CT AC (BH-AC) increases inferior, inferolateral, and septal uptake, but reduces apical uptake, without affecting anterolateral uptake, with significant differences to all other protocols. Frequency of normal scans increases across protocols: 10% with FB-NC, 21% with BH-NC, 38% with FB-AC, and 51% with BH-AC. Image quality and inter-observer agreement were highest for BH-AC among all protocols. Compared with non-corrected breath-hold SPECT-MPI and with free-breathing AC SPECT-MPI, respiratory-phase-matched AC SPECT-MPI significantly affects segmental semi-quantitative uptake, increases the frequency of normal scans, yields the best inter-observer agreement, and significantly improves image quality. These findings suggest a potential role of

  18. [Verbal auditory agnosia: SPECT study of the brain].

    Science.gov (United States)

    Carmona, C; Casado, I; Fernández-Rojas, J; Garín, J; Rayo, J I

    1995-01-01

    Verbal auditory agnosia are rare in clinical practice. Clinically, it characterized by impairment of comprehension and repetition of speech but reading, writing, and spontaneous speech are preserved. So it is distinguished from generalized auditory agnosia by the preserved ability to recognize non verbal sounds. We present the clinical picture of a forty-years-old, right handed woman who developed verbal auditory agnosic after an bilateral temporal ischemic infarcts due to atrial fibrillation by dilated cardiomyopathie. Neurophysiological studies by pure tone threshold audiometry: brainstem auditory evoked potentials and cortical auditory evoked potentials showed sparing of peripheral hearing and intact auditory pathway in brainstem but impaired cortical responses. Cranial CT-SCAN revealed two large hypodenses area involving both cortico-subcortical temporal lobes. Cerebral SPECT using 99mTc-HMPAO as radiotracer showed hypoperfusion just posterior in both frontal lobes nect to Roland's fissure and at level of bitemporal lobes just anterior to Sylvian's fissure.

  19. Brain perfusion SPECT and EEG findings in Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, R. [Children`s Castle Hospital, Dept. of Child Neurology, Helsinki (Finland); Liewendahl, K.; Nikkinen, P. [Univ. Central Hospital, Division of Nuclear Medicine, Laboratory Dept., Helsinki (Finland); Sainio, K.; Riikonen, R.S. [Univ. Central Hospital, Child Neurology, Helsinki (Finland)

    1997-01-01

    Thirteen patients (mean age 8.4 + 5.3 years) with Rett syndrome (RS) were studied with EEG and {sup 99m}Tc-HMPAO SPECT. Eleven patients had background abnormalities and 10 patients paroxysmal activity in EEG. Hypoperfusion of varying severity was detected in 11 patients, 7 patients having multiple lesions. Bifrontal hypoperfusion, observed in 6 patients, was the most distinctive finding. Hypoperfusion was observed also in other cortical regions, except for the occipital lobes. There was no correlation between severity of the background abnormality or presence of paroxysmal activity in EEG and grade of hypoperfusion. There was, however, an association between the severity of hypoperfusion and early manifestation of symptoms in patients with RS. Whether this early-onset group of patients represents a different disease entity or only reflects disease variability the basic pathology being the same, is a possibility that deserves further clarification. (au) 37 refs.

  20. Infected cyst localization with gallium SPECT imaging in polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Amesur, P.; Castronuovo, J.J.; Chandramouly, B.

    1988-01-01

    This case report describes a 43-year-old woman with polycystic renal disease and cyst infection. Infected cysts of the left kidney were successfully localized with Ga-67 citrate SPECT imaging and CT. Other imaging, including planar gallium imaging, was helpful diagnostically, but could not determine the exact location of infection within the kidney.

  1. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)

    1999-07-01

    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  2. Feasibility of Stereo-Infrared Tracking to Monitor Patient Motion During Cardiac SPECT Imaging.

    Science.gov (United States)

    Beach, Richard D; Pretorius, P Hendrik; Boening, Guido; Bruyant, Philippe P; Feng, Bing; Fulton, Roger R; Gennert, Michael A; Nadella, Suman; King, Michael A

    2004-10-01

    Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We investigated the feasibility of monitoring patient motion using the Polaris motion-tracking system. This system uses passive infrared reflection from small spheres to provide real-time position data with vendor stated 0.35 mm accuracy and 0.2 mm repeatability. In our configuration, the Polaris system views through the SPECT gantry toward the patient's head. List-mode event data was temporally synchronized with motion-tracking data utilizing a modified LabVIEW virtual instrument that we have employed in previous optical motion-tracking investigations. Calibration of SPECT to Polaris coordinates was achieved by determining the transformation matrix necessary to align the position of four reflecting spheres as seen by Polaris, with the location of Tc-99m activity placed inside the sphere mounts as determined in SPECT reconstructions. We have successfully tracked targets placed on volunteers in simulated imaging positions on the table of our SPECT system. We obtained excellent correlation (R(2) > 0.998) between the change in location of the targets as measured by our SPECT system and the Polaris. We have also obtained excellent agreement between the recordings of the respiratory motion of four targets attached to an elastic band wrapped around the abdomen of volunteers and from a pneumatic bellows. We used the axial motion of point sources as determined by the Polaris to correct the motion in SPECT image acquisitions yielding virtually identical point source FWHM and FWTM values, and profiled maximum heart wall counts of cardiac phantom images, compared to the reconstructions with no motion.

  3. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT.

    Science.gov (United States)

    van Dijk, J D; Mouden, M; Ottervanger, J P; van Dalen, J A; Knollema, S; Slump, C H; Jager, P L

    2017-04-01

    Attenuation correction (AC) improves the diagnostic outcome of stress-only myocardial perfusion imaging (MPI) using conventional SPECT. Our aim was to determine the value of AC using a cadmium zinc telluride-based (CZT)-SPECT camera. We retrospectively included 107 consecutive patients who underwent stress-optional rest MPI CZT-SPECT/CT. Next, we created three types of images for each patient; (1) only displaying reconstructed data without the CT-based AC (NC), (2) only displaying AC, and (3) with both NC and AC (NC + AC). Next, two experienced physicians visually interpreted these 321 randomized images as normal, equivocal, or abnormal. Image outcome was compared with all hard events over a mean follow-up time of 47.7 ± 9.8 months. The percentage of images interpreted as normal increased from 45% using the NC images to 72% using AC and to 67% using NC + AC images (P < .001). Hard event hazard ratios for images interpreted as normal were not different between using NC and AC (1.01, P = .99), or NC and NC + AC images (0.97, P = .97). AC lowers the need for additional rest imaging in stress-first MPI using CZT-SPECT, while long-term patient outcome remained identical. Use of AC reduces the need for additional rest imaging, decreasing the mean effective dose by up to 1.2 mSv.

  4. Automatic and manual image fusion of 111 In-pentetreotide SPECT and diagnostic CT in neuroendocrine tumor imaging - An evaluation

    Directory of Open Access Journals (Sweden)

    Hedlund Elisabeth

    2010-01-01

    Full Text Available In the clinical diagnosis of neuroendocrine tumors (NET, the results of examinations, such as high-resolution computed tomography (CT and single photon computerized tomography (SPECT, have conventionally been interpreted separately. The aim of the present study was to evaluate Hermes Multimodality™ 5.0 H Image Fusion software-based automatic and manual image fusion of SPECT and CT for the localization of NET lesions. Out of 34 NET patients who were examined by means of somatostatin receptor scintigraphy (SRS with 111In- pentetreotide along with SPECT, 22 patients had a CT examination of the abdomen, which was used in the fusion analysis. SPECT and CT data were fused using software with a registration algorithm based on normalized mutual information. The criteria for acceptable fusion were established at a maximum cranial or caudal dislocation of 25 mm between the images and at a reasonable consensus (in order of less than 1 cm between outline of the reference organs. The automatic fusion was acceptable in 13 of the 22 examinations, whereas 9 fusions were not. However all the 22 examinations were acceptable at the manual fusion. The result of automatic fusion was better when the slice thickness of 5 mm was applied at CT examination, when the number of slices was below 100 in CT data and when both examinations included uptakes of pathological lesions. Retrospective manual image fusion of SPECT and CT is a relatively inexpensive but reliable method to be used in NET imaging. Automatic image fusion with specified software of SPECT and CT acts better when the number of CT slices is reduced to the SPECT volume and when corresponding pathological lesions appear at both SPECT and CT examinations.

  5. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    . MATERIALS AND METHODS: This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise...... or pharmacologic stress SPECT before and within 60 days of coronary angiography. Images from CT perfusion imaging, SPECT, and coronary angiography were interpreted at blinded, independent core laboratories. The primary diagnostic parameter was the area under the receiver operating characteristic curve (Az...

  6. Effects of partial volume correction on discrimination between very early Alzheimer's dementia and controls using brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kanetaka, Hidekazu [Department of Radiology, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, 187-8551, Kodaira, Tokyo (Japan); Department of Geriatric Medicine, Tokyo Medical University, Shinjuku, Tokyo (Japan); Matsuda, Hiroshi; Ohnishi, Takashi; Imabayashi, Etsuko; Tanaka, Fumiko [Department of Radiology, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, 187-8551, Kodaira, Tokyo (Japan); Asada, Takashi; Yamashita, Fumio [Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki (Japan); Nakano, Seigo [Department of Geriatric Medicine, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Kodaira, Tokyo (Japan); Takasaki, Masaru [Department of Geriatric Medicine, Tokyo Medical University, Shinjuku, Tokyo (Japan)

    2004-07-01

    We assessed the accuracy of brain perfusion single-photon emission computed tomography (SPECT) in discriminating between patients with probable Alzheimer's disease (AD) at the very early stage and age-matched controls before and after partial volume correction (PVC). Three-dimensional MRI was used for PVC. We randomly divided the subjects into two groups. The first group, comprising 30 patients and 30 healthy volunteers, was used to identify the brain area with the most significant decrease in regional cerebral blood flow (rCBF) in patients compared with normal controls based on the voxel-based analysis of a group comparison. The second group, comprising 31 patients and 31 healthy volunteers, was used to study the improvement in diagnostic accuracy provided by PVC. A Z score map for a SPECT image of a subject was obtained by comparison with mean and standard deviation SPECT images of the healthy volunteers for each voxel after anatomical standardization and voxel normalization to global mean or cerebellar values using the following equation: Z score = ([control mean]-[individual value])/(control SD). Analysis of receiver operating characteristics curves for a Z score discriminating AD and controls in the posterior cingulate gyrus, where a significant decrease in rCBF was identified in the first group, showed that the PVC significantly enhanced the accuracy of the SPECT diagnosis of very early AD from 73.9% to 83.7% with global mean normalization. The PVC mildly enhanced the accuracy from 73.1% to 76.3% with cerebellar normalization. This result suggests that early diagnosis of AD requires PVC in a SPECT study. (orig.)

  7. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  8. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems.

    Science.gov (United States)

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-11-01

    To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom(TM)), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging

  9. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    Science.gov (United States)

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  10. Computer-assisted detection of epileptiform focuses on SPECT images

    Science.gov (United States)

    Grzegorczyk, Dawid; Dunin-Wąsowicz, Dorota; Mulawka, Jan J.

    2010-09-01

    Epilepsy is a common nervous system disease often related to consciousness disturbances and muscular spasm which affects about 1% of the human population. Despite major technological advances done in medicine in the last years there was no sufficient progress towards overcoming it. Application of advanced statistical methods and computer image analysis offers the hope for accurate detection and later removal of an epileptiform focuses which are the cause of some types of epilepsy. The aim of this work was to create a computer system that would help to find and diagnose disorders of blood circulation in the brain This may be helpful for the diagnosis of the epileptic seizures onset in the brain.

  11. Increased cerebral blood flow in MELAS shown by Tc-99m HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Peng, N.J.; Tsay, D.G. [Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung (Taiwan); Liu, R.S. [Department of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei (Taiwan); Li, J.Y.; Kong, K.W. [Division of Neurology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung (Taiwan); Kwok, C.G.; Strauss, H.W. [Division of Nuclear Medicine, Department of Radiology, Stanford University Medical Center, CA (United States)

    2000-01-01

    We report cerebral SPECT studies on two siblings with the syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Tc-99m HMPAO brain SPECT was performed 8, 19 and 30 days after a stroke-like episode in one case and 10 days after a stroke-like episode, 6 h after a partial seizure and as a follow-up study in the other. Increased blood flow was seen in both these patients with stroke-like episodes due to MELAS. The cause of the increased blood flow is uncertain, but it may be related to the decreased pH created by local increase in lactic acid. (orig.)

  12. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements.

  13. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  14. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    Science.gov (United States)

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  15. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi [Policlinico Universitario, University of Cagliari, Nuclear Medicine, Department of Medical Science, Monserrato, Cagliari (Italy); Murru, Alessandra; Demelia, Luigi [Policlinico Universitario, University of Cagliari, Gastroenterology, Department of Medical Science, Monserrato, Cagliari (Italy); Sias, Alessandro [Policlinico Universitario, University of Cagliari, Radiology, Department of Medical Science, Monserrato, Cagliari (Italy); Marrosu, Francesco [Policlinico Universitario, University of Cagliari, Neurology, Department of Medical Science, Monserrato, Cagliari (Italy)

    2008-04-15

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and {sup 99m}Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in {sup 99m}Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating

  16. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    DEFF Research Database (Denmark)

    de Sá Rebelo, Marina; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise

    2010-01-01

    . Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave......A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images...

  17. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder.

    Science.gov (United States)

    Jha, Shailesh; Chadda, Rakesh K; Kumar, Nand; Bal, C S

    2016-06-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential treatment in treatment resistant major depressive disorder (MDD). However, there is no consensus about the exact site of stimulation for rTMS. Single-photon emission computed tomography (SPECT) offers a potential technique in deciding the site of stimulation. The present study was conducted to assess the difference in outcome of brain SPECT assisted rTMS versus standard protocol of twenty sessions of high frequency rTMS as add on treatment in 20 patients with treatment resistant MDD, given over a period of 4 weeks. Thirteen subjects (group I) received high frequency rTMS over an area of hypoperfusion in the prefrontal cortex, as identified on SPECT, whereas 7 subjects (group II) were administered rTMS in the left dorsoslateral prefrontal cortex (DLPFC) area. Improvement was monitored using standardized instruments. Patients in the group I showed a significantly better response compared to those in the group II. In group I, 46% of the subjects were responders on MADRS, 38% on BDI and 77% on CGI. The parallel figures of responders in Group II were 0% on MADRS, 14% on BDI and 43% on CGI. There were no remitters in the study. No significant untoward side effects were noticed. The study had limitations of a small sample size and non-controlled design, and all the subjects were also receiving the standard antidepressant therapy. Administration of rTMS over brain SPECT specified area of hypoperfusion may have a better clinical outcome compared to the standard protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of 7 {alpha}-O-IADPN as a new potential SPECT opioid receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.F.; Mao, S.Y. [Fujian Medical College, Fuzhou (China). Dept. of Nuclear Medicine; Tafani, J.A.M.; Coulais, Y.; Guiraud, R. [Hospital Purpan, Toulouse (France). Service Central de medicine Nucleaire; Zajac, J.M. [LPTF-CNRS, Toulouse (France)

    1998-03-01

    Full text: A new iodinated diprenorphine antagonist analogue, [{sup 123}I]7 {alpha}.-O-IADPN, [E] - 17-(cyclopropylmethyl) -4,5 (x-epoxy- 18,19-dihydro-3-hydroxy-6-methoxy-7 {alpha}-[1-(3-iodoallyl)oxy-1-methylethyl]-6,14-endo-ethenomorphinan for in vivo and in vitro studies as a potential central nervous system (CNS) opioid receptor imaging agent was developed. In vivo biodistribution and metabolism of 7 {alpha}-O-lADPN in rat demonstrated that 0.16% of the iodinated compound was presented in mouse brain with a degradation-resistant at the first 60 min, and that 36% of the total cerebral radioactivity and 63% of its specific binding to opioid receptors were observed 20 min after i.v. injection. The cerebral radioactivity in mouse brain concentrated in the basal ganglion and cortex, and displayed a remarkably high target-to-non-target ratio (cortex/cerebellum = 60 min post-injection). The in vitro binding studies showed that [{sup 123}I]7 {alpha}-O-IADPN binds non selectively to multiple opioid receptors {mu} = 8 K) with a very high affinity (Ki = 0.4 + 0.2 nM). Ex vivo autoradiography results in mouse further confirmed the high uptake and retention of this agent in basal ganglion region and cortex. The planar imaging of monkey brains after i.v. injection of [{sup 123}I]7 {alpha}-O-IADPN clearly displayed that multiple opioid receptors can be visualized. With the excellent in vitro affinity and in vivo stability to deiodination and high target-to-nontarget ratio, [{sup 123}I]7 {alpha}- O-IADPN appears to be useful as a CNS opioid receptor imaging probe for SPECT in primate and non-primate.

  19. Voxel-based analysis of Tc-99 m ECD brain perfusion SPECT in patients with normal pressure hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Bora [Department of Neurology, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Yang, Dong-Won [Department of Neurology, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of)], E-mail: neuroman@catholic.ac.kr; Shim, Yong-Soo; Chung, Sung-Woo [Department of Neurology, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Ahn, Kook-Jin; O, Joo-Hyun; Kim, Sung-Hoon; Sohn, Hyung-Sun; Chung, Soo-Kyo [Department of Radiology, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Chung, Yong-An [Department of Radiology, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); East-West Research Institute of Translational Medicine (EWTM), Incheon St. Mary' s Hospital, Incheon 403-720 (Korea, Republic of)], E-mail: nm@catholic.ac.kr

    2009-07-15

    Idiopathic normal pressure hydrocephalus (iNPH) is a reversible dementia characterized by gait disturbance, incontinence and dementia. This study investigates the neuropsychological characteristics and changes of regional cerebral blood flow (rCBF) in patients with iNPH. Ten patients who met the criteria of probable iNPH and 13 normal control subjects were evaluated. The general cognitive function and detailed neuropsychological functions were measured by K-MMSE and comprehensive neuropsychological battery. Tc-99m-ethyl cysteinate dimmer (Tc-99m-ECD) single photon emission computed tomography (SPECT) was performed to measure the rCBF and statistical parametric mapping (SPM) and statistical probabilistic brain anatomic map (SPAM) was applied to the objective analysis of SPECT data. On the neuropsychological examination, all the patients showed abnormality in memory, psychomotor speed and frontal executive function. SPM analysis of SPECT images revealed that rCBF in bilateral thalami, right prefrontal area, bilateral anterior and posterior cingulate gyri, right caudate nucleus, and left parahippocampal gyrus was significantly decreased in patients with iNPH compared to normal controls (uncorrected P<0.005). In SPAM analysis, rCBF reduction was observed in bilateral prefrontal area, anterior, posterior cingulate gyri and caudate nuclei. We have found that rCBF changes occurred predominantly in prefrontal and subcortical areas, the changes were associated with frontal subcortical circuit, and the affected frontal subcortical circuit may contribute to the cognitive decline seen in the iNPH patients. The reduction of rCBF and clinical cognitive impairment are closely connected in patients with iNPH.

  20. Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations

    Directory of Open Access Journals (Sweden)

    Jacobsson Hans

    2009-09-01

    Full Text Available Abstract Background Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD and mood disorders is common. Alterations of the cerebellum and frontal regions have been reported in neuro-imaging studies of ADHD and major depression. Methods Thirty chronically depressed adult females of whom 16 had scores below, and 14 scores above, cut-offs on the 25-items Wender Utah Retrospective Scale (WURS-25 and the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS were divided into subgroups designated "Depression" and "Depression + ADHD", respectively. Twenty-one of the patients had some audiological symptom, tinnitus and/or hearing impairment. The patients were investigated with other rating scales and 99mTc-HMPAO SPECT. Controls for 99mTc-HMPAO SPECT were 16 healthy females. SPECT was analyzed by both statistical parametric mapping (SPM2 and the computerized brain atlas (CBA. Discriminant analysis was performed on the volumes of interest generated by the CBA, and on the scores from rating scales with the highest group differences. Results The mean score of a depression rating scale (MADRS-S was significantly lower in the "Depression" subgroup compared to in the "Depression + ADHD" subgroup. There was significantly decreased tracer uptake within the bilateral cerebellum at both SPM and CBA in the "Depression + ADHD" subgroup compared to in the controls. No decrease of cerebellar tracer uptake was observed in "Depression". Significantly increased tracer uptake was found at SPM within some bilateral frontal regions (Brodmann areas 8, 9, 10, 32 in the "Depression + ADHD" subgroup compared to in "Depression". An accuracy of 100% was obtained for the discrimination between the patient groups when thalamic uptake was used in the analysis along with scores from Socialization and Impulsivity scales. Conclusion The findings confirm the previous observation of a cerebellar involvement in ADHD. Higher bilateral frontal 99mTc-HMPAO uptake in

  1. Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations.

    Science.gov (United States)

    Gardner, Ann; Salmaso, Dario; Varrone, Andrea; Sanchez-Crespo, Alejandro; Bejerot, Susanne; Jacobsson, Hans; Larsson, Stig A; Pagani, Marco

    2009-09-01

    Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and mood disorders is common. Alterations of the cerebellum and frontal regions have been reported in neuro-imaging studies of ADHD and major depression. Thirty chronically depressed adult females of whom 16 had scores below, and 14 scores above, cut-offs on the 25-items Wender Utah Retrospective Scale (WURS-25) and the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS) were divided into subgroups designated "Depression" and "Depression + ADHD", respectively. Twenty-one of the patients had some audiological symptom, tinnitus and/or hearing impairment. The patients were investigated with other rating scales and 99mTc-HMPAO SPECT. Controls for 99mTc-HMPAO SPECT were 16 healthy females. SPECT was analyzed by both statistical parametric mapping (SPM2) and the computerized brain atlas (CBA). Discriminant analysis was performed on the volumes of interest generated by the CBA, and on the scores from rating scales with the highest group differences. The mean score of a depression rating scale (MADRS-S) was significantly lower in the "Depression" subgroup compared to in the "Depression + ADHD" subgroup. There was significantly decreased tracer uptake within the bilateral cerebellum at both SPM and CBA in the "Depression + ADHD" subgroup compared to in the controls. No decrease of cerebellar tracer uptake was observed in "Depression". Significantly increased tracer uptake was found at SPM within some bilateral frontal regions (Brodmann areas 8, 9, 10, 32) in the "Depression + ADHD" subgroup compared to in "Depression". An accuracy of 100% was obtained for the discrimination between the patient groups when thalamic uptake was used in the analysis along with scores from Socialization and Impulsivity scales. The findings confirm the previous observation of a cerebellar involvement in ADHD. Higher bilateral frontal 99mTc-HMPAO uptake in "Depression + ADHD" compared to in "Depression" indicate a

  2. Serial {sup 99m}Tc-HMPAO Brain SPECT for Assessing Perfusion Improvement after DEAS in Moyamoya Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Han; Lee, Sang Hyung; Yeo, Jeong Seok; Kwark, Chul Eun; Chung, June Key; Lee, Myoung Chul; Cho, Byoung Kyu; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1994-03-15

    Encephalo-duro-arterio-synangiosis (EDAS) is a relatively new surgical procedure for treatment of childhood moyamoya disease. We assessed regional cerebral perfusion in moyamoya patients before (1.3 mo) and after (6.8 mo) EDAS with {sup 99m}Tc-HMPAO brain SPECT. A total of 21 EDAS operations in 17 moyamoya patients was included. Preoperative CT or MRI showed cerebral infarction in 14 patients and carotid angiography showed Suzuki grade 1 to V stenosis in 6%, 9%, 62%, 12% and 12% of the hemispheres respectively. Preoperative SPECT showed regional hypoperfusion in all patients, bilateral frontal and temporal loves being the most frequently involved site. 4 X 4 pixel sized ROIs were applied on the frontotemmporal cortex in 3 slice averaged transverse tomographic images. An index of regional perfusion was measured as; PI (%)=average FT activity/average cerebellar activity X 100 Pre-EDAS ipsilateral PI ranged from 23.7 to 98.4% (mean:74.3 +- 17%) and increased significantly after operation (81.4 +- 17%, p<0.001). Individual post-EDAS PI improved in 15/21 cases, showed no significant change in 5 and was slightly aggravated in 1. The amount of clinical improvement XCI) was graded with a scale of 0 to 4 based on frequency and severity of TIA attacks. When patients were grouped according to pre-EDAS PI, group II (PI 70approx89) showed a significantly higher CI (3.3) compared to group I (PI<70, 1.57) of group III (PI>90, 0.5) (p<0.001). The amount of perfusion improvement (PI) showed significant correlation with CI (r-0.42, p=0.04). PI did not, however, correlate with the amount of neovascularization assessed angiographically in 8 patients. Serial HMPAO SPECT is an useful noninvasive study for assessing perfusion improvement after EDAS in childhood moyamoya patients.

  3. Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours.

    Science.gov (United States)

    Castaldi, P; Rufini, V; Treglia, G; Bruno, I; Perotti, G; Stifano, G; Barbaro, B; Giordano, A

    2008-10-01

    Somatostatin receptor scintigraphy with [(111)In]-diethylene triamine pentaacetate acid (DTPA)-octreotide is an accurate method for detecting neuroendocrine tumours (NETs) but often does not provide clear anatomical localisation of lesions. The aim of this study was to assess the clinical usefulness of anatomical-functional image fusion. Fifty-four patients with known or suspected NET were included in the study. Planar and single-photon-emission computed tomography (SPECT) imaging was performed using a dual-head gamma camera equipped with an integrated X-ray transmission system, and the images were first interpreted alone by two nuclear medicine physicians and then compared with SPECT/CT fusion images together with a radiologist. The improvement provided by SPECT/CT in the interpretation of SPECT data alone and any modification in patient management were recorded. Fusion images improved SPECT interpretation in 23 cases, providing precise anatomical localisation of increased tracer uptake in 20 cases and disease exclusion in sites of physiological uptake in 5. In 10 patients, SPECT/CT allowed definition of the functional significance of lesions detected by diagnostic CT. SPECT/CT data modified clinical management in 14 cases by changing the diagnostic approach in 8 and the therapeutic modality in 6. Our study demonstrates that image fusion is clearly superior to SPECT alone, allowing precise localisation of lesions and reducing false-positive results.

  4. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  5. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  6. Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Habert, Marie-Odile [UMR-S 678, Universite Pierre et Marie Curie-Paris 6, INSERM, Paris (France); CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France); Hopital Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Souza, Leonardo Cruz de; Dubois, Bruno; Sarazin, Marie [CHU Pitie-Salpetriere, AP-HP, Research and Resource Memory Centre and INSERM U610, Paris (France); Lamari, Foudil; Jardel, Claude [CHU Pitie-Salpetriere, AP-HP, Department of Metabolic Biochemistry, Paris (France); Daragon, Nelle; Desarnaud, Serge [CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France)

    2010-03-15

    Our aim was to study the correlations between cerebrospinal fluid (CSF) biomarker levels such as {beta}-amyloid 42 (A{beta}{sub 42}), total and phosphorylated tau protein (T-tau and P-tau) and brain perfusion SPECT in Alzheimer's disease (AD) using a voxel-based methodology. Patients (n = 31) with clinical features of AD (n = 25) or amnestic mild cognitive impairment (aMCI) (n = 6) were retrospectively included. All subjects underwent the same clinical, neuropsychological and neuroimaging tests. They had a lumbar puncture and a brain perfusion ({sup 99m}Tc-ECD) SPECT within a time interval of 10 ({+-}26) days. Correlations between CSF biomarker concentrations and perfusion were studied using SPM2 software. Individual normalised regional activity values were extracted from the eligible clusters for calculation of correlation coefficients. No significant correlation was found between A{beta}{sub 42} concentrations and brain perfusion. A significant correlation (p < 0.01, corrected) was found between T-tau or P-tau concentrations and perfusion in the left parietal cortex. Our results suggest a strong correlation between T-tau and P-tau levels and decreased brain perfusion in regions typically affected by neuropathological changes in AD. (orig.)

  7. A voxel-based analysis of cerebral perfusion with {sup 99m}Tc-ECD brain SPECT in obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Chang, Jin Woo; Kim, Chan Hyung; Lee, Hong Shick; Min, Sung Kil; Chung, Sang Sup [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2000-07-01

    Many neuroimaging studies, especially metabolic imaging with PET, showed a specific frontal-subcortical brain circuit connecting the orbitofrontal cortex (OFC), anterior cingulate gyrus, elements of basal ganglia and thalamus is involved in obsessive-compulsive disorder (OCD). Despite consistent metabolic alteration on PET, blood flow studies with SPECT were inconsistent and various cortical and subcortical structures showed abnormal perfusion patterns. In this study, brain SPECT images of seven patients with OCD were evaluated with a sophisticated method of statistical parametric mapping (SPM). Seven patients with severe, primary OCD (6 males and 1 female) with mean age of 25.4 4.7 yrs (20-32 yrs) were studied. The SPECT data of the patients were compared with those of healthy subjects and patients with drug nave schizophrenia using SPM. The SPM parameters were p value of 0.001 with Z value of 3.09 (higher threshold ) or p value of 0.005 with Z value 2.58 (lower threshold). On a higher threshold (p<0.01),five of the seven patients showed hyperperfusion within the anterior cingulate cortex, however, hyperperfusion within OFC or caudate nucleus was seen in only one patient. On a lower threshold (p<0.005), hyperperfusion within the anterior cingulate cortex was seen in all patients, and followed by thalamus (n=5), lentiform nucleus (n=4), caudate nucleus (n=3), and OFC (n=3). Perfusion within the anterior cingulate cortex was also increased in OCD compared with drug nave schizophrenia. Anterior cingulate cortex appears to be an important anatomical structure in the pathogenesis of OCD symptoms. Brain SPECT using a sophisticated analysis method of SPM is useful for the diagnosis of OCD and differentiation from schizophrenia.

  8. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  9. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  10. AIRS: The Medical Imaging Software for Segmentation and Registration in SPECT/CT

    Science.gov (United States)

    Widita, R.; Kurniadi, R.; Haryanto, F.; Darma, Y.; Perkasa, Y. S.; Zasneda, S. S.

    2010-06-01

    We have been successfully developed a new software, Automated Image Registration and Segmentation (AIRS), to fuse the CT and SPECT images. It is designed to solve different registration and segmentation problems that arises in tomographic data sets. AIRS is addressed to obtain anatomic information to be applied to NanoSpect system which is imaging for nano-tissues or small animals. It will be demonstrated that the information obtained by SPECT/CT is more accurate in evaluating patients/objects than that obtained from either SPECT or CT alone. The registration methods developed here are for both two-dimensional and three-dimensional registration. We used normalized mutual information (NMI) which is amenable for images produced by different modalities and having unclear boundaries between tissues. The segmentation components used in this software is region growing algorithms which have proven to be an effective approach for image segmentation. The implementations of region growing developed here are connected threshold and neighborhood connected. Our method is designed to perform with clinically acceptable speed, using accelerated techniques (multiresolution).

  11. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  12. Brain SPECT and transcranial Doppler (TCD) evaluation of the effects of intra-arterial papaverine for cerebral vasospasm

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.H.; Newell, D.W.; Eskridge, J.M. [Univ. of Washington School of Medicine, Seattle, WA (United States)] [and others

    1994-05-01

    Cerebral vasospasm (cv) is a common and serious consequence of subarachnoid hemorrhage. Interventional neuroradiologic techniques for treating cv refractory to medical and hemodynamic measures have included transluminal microballoon angioplasty and intra-arterial papaverine infusion (pap). Eight patients (pts) who had symptomatic cv but were not candidates for microballoon angioplasty received pap via arterial catheter. All 8 pts had brain SPECT with Tc-99m HMPAO and 7 had TCD readings before and after treatment. One pt had 2 separate treatments. Total treatments = 9. Results: Of the total of 9 treatments: 5 demonstrated marked improvement in regional cerebral blood flow on SPECT in the vascular territories that were ischemic, 3 showed mild to moderate improvement of blood flow, and 1 was unchanged. The pt that did not improve on SPECT died due to cardiorespiratory problems but remained comatose without neurologic improvement after the treatment. The other 8 had either prompt clinical improvement or modestly delayed improvement due to concomitant hydrocephalus. infection, recurrent vasospasm or other intervening medical problems. TCD readings in the treated vessels showed improved (lower) velocities that agreed with SPECT improvement after 4 intra-arterial pap treatments. There were 4 discrepancies of SPECT and TCD: 1 with rising TCD velocity in the mild cv range in the treated vessel that demonstrated SPECT improvement; 1 with unchanged velocity in the moderate cv range that showed SPECT improvement; 1 that showed lower velocity in the moderate cv range while the SPECT was unchanged; and 1 that had normal TCD velocities before and after treatment but high pulsatility indices on Doppler (which are characteristic of either elevated intra-cranial pressure or distal vessel disease) who had mild to moderate improvement of blood flow on SPECT after treatment.

  13. SPECT imaging of pulmonary emboli with radiolabeled thrombus-specific imaging agents.

    Science.gov (United States)

    Morris, Timothy A

    2010-11-01

    The safe and accurate diagnosis of acute pulmonary embolism (PE) remains challenging, and many PE-related deaths still occur before the detection of PE. Current techniques detect PE as "negative images," ie, the absence of contrast or downstream perfusion. There would be advantages to obtaining "positive images" of PE, by targeting imaging agents to components that are present primarily on thromboemboli. In addition to providing alternative means of diagnosing acute PE, they would also enable acute PE to be distinguished from other types of pulmonary arterial obstruction, such as unresolved intravascular defects attributable to previous PE. Positive images of PE require imaging agents to bind onto target antigens that are present predominantly on thromboemboli. The "D dimer" regions of polymerized fibrin are present in high concentrations on thromboemboli and are sufficiently accessible to binding. (99m)Tc-lableled anti-D-dimer deimmunized monoclonal antibody Fab' fragments (DI-DD-3B6/22-80B3) bind specifically to thromboemboli, with a thrombus: blood labeling ratio that allows scintigraphic detection. Another thrombus-specific imaging agent is (99m)Tc-labeled apcitide, a synthetic peptide that binds with a high affinity and specificity to the glycoprotein IIb/IIIa receptor on the membrane of activated platelets. Both of these agents have enabled the detection of lower extremity deep vein thrombi by planar scintigraphy. However, even highly radiolabeled PEs are difficult to distinguish by planar scintigraphy from the large blood pool in the heart and lungs. The spatial and contrast resolution inherent to single-photon emission computed tomography (SPECT) scanning allow the in situ imaging of pulmonary emboli that have been bound by radiolabeled thrombus-specific imaging agents. Preliminary trials in humans with acute PE have shown that the emboli can be detected after intravenous administration of (99m)Tc-lableled anti-D dimer, followed by SPECT scanning. Although

  14. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    Science.gov (United States)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the surgery procedures.

  15. SPECT imaging of D{sub 2} dopamine receptors and endogenous dopamine release in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Cynthia [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); Bruin, Kora de; Booij, Jan [University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Beekman, Freek [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); University Medical Center Utrecht, Department of Neuroscience and Pharmacology, Utrecht (Netherlands); Technical University Delft, Department R3, Section Radiation, Detection and Matter, Delft (Netherlands)

    2008-09-15

    The dopamine D{sub 2} receptor (D2R) is important in the mediation of addiction. [{sup 123}I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [{sup 123}I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [{sup 123}I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [{sup 123}I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [{sup 123}I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [{sup 123}I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [{sup 123}I]IBZM were compared. Specific binding of [{sup 123}I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [{sup 123}I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [{sup 123}I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [{sup 123}I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [{sup 123}I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [{sup 123}I]IBZM single pinhole SPECT. Using commercially produced [{sup 123}I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  16. Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT.

    Science.gov (United States)

    Fuchigami, Takeshi; Yamashita, Yuki; Haratake, Mamoru; Ono, Masahiro; Yoshida, Sakura; Nakayama, Morio

    2014-05-01

    We report radioiodinated chalcone derivatives as new SPECT imaging probes for amyloid β (Aβ) plaques. The monoethyleneoxy derivative 2 and allyloxy derivative 8 showed a high affinity for Aβ(1-42) aggregates with Ki values of 24 and 4.5 nM, respectively. Fluorescent imaging demonstrated that 2 and 8 clearly stained thioflavin-S positive Aβ plaques in the brain sections of Tg2576 transgenic mice. In vitro autoradiography revealed that [(125)I]2 displayed no clear accumulation toward Aβ plaques in the brain sections of Tg2576 mice, whereas the accumulation pattern of [(125)I]8 matched with the presence of Aβ plaques both in the brain sections of Tg2576 mice and an AD patient. In biodistribution studies using normal mice, [(125)I]2 showed preferable in vivo pharmacokinetics (4.82%ID/g at 2 min and 0.45%ID/g at 60 min), while [(125)I]8 showed only a modest brain uptake (1.62%ID/g at 2 min) with slow clearance (0.56%ID/g at 60 min). [(125)I]8 showed prospective binding properties for Aβ plaques, although further structural modifications are needed to improve the blood brain barrier permeability and washout from brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impact of image processing in the detection of ischaemia using CZT-SPECT/CT.

    Science.gov (United States)

    Koopman, Daniëlle; van Dalen, Jorn A; Slump, Cornelis H; Lots, Dimitri; Timmer, Jorik R; Jager, Pieter L

    2015-01-01

    The new multipinhole cardiac single photon emission computed tomography/computed tomography (SPECT/CT) cameras with cadmium-zinc-telluride (CZT) detectors are highly sensitive and produce images of high quality but rely on complex dedicated reconstruction algorithms. The aim of this study was to determine the impact of various processing steps on image formation and in the detection of ischaemia in CZT-SPECT/CT both with and without attenuation correction (AC). Data on 20 consecutive patients who underwent a 1-day protocol stress-rest SPECT/CT using 99mTc-tetrofosmin were processed twice by three experienced operators, yielding 120 AC and 120 noncorrected (NC) data sets. Processing steps included selection and determination of myocardial axes, manual SPECT/CT coregistration for AC and myocardial masking. Using the 17-segment cardiac model, differences between stress and rest segmental uptake (%) were calculated for NC and AC image sets. Both interoperator and intraoperator variations were considered significant for the diagnosis of ischaemia when greater than 5%. The mean interoperator variations were 2.4±1.4% (NC) and 3.8±1.9% (AC) (Pprocessed cases, operator variation was larger than 5% and therefore potentially clinically interfering with the diagnosis of ischaemia. Differences between interoperator and intraoperator variations were nonsignificant. Operator variations in the processing of myocardial perfusion image data using CZT-SPECT/CT are significant and may influence the diagnosis of ischaemia, especially when AC is applied. Clearer guidelines for image processing are necessary to improve the reproducibility of the studies and to obtain a more reliable diagnosis of ischaemia.

  18. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  19. Hypoglycaemic hemiplegia: a repeat SPECT study.

    Science.gov (United States)

    Shintani, S; Tsuruoka, S; Shiigai, T

    1993-01-01

    During a hypoglycaemic right hemiplegia induced by a deliberate overdose of oral hypoglycaemics, brain CT and angiography revealed no abnormalities. SPECTs made one day and six days later showed relative hypoperfusion in the left hemisphere. Repeat SPECT study suggested that the left hemisphere was more vulnerable than the right in the cerebral blood perfusion. This vulnerability might provoke the right hemiplegia in a critical condition, such as severe hypoglycaemia. Images PMID:8509788

  20. Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments

    Directory of Open Access Journals (Sweden)

    Arman Rahmim

    2016-01-01

    Full Text Available Dopamine transporter (DAT SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD, with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI database, including 85 PD and 56 healthy controls (HC (baseline scans with accompanying 3 T MRI images. We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i the UPDRS (part III - motor score, disease duration as measured from (ii time of diagnosis (DD-diag. and (iii time of appearance of symptoms (DD-sympt., as well as (iv the Montreal Cognitive Assessment (MoCA score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = −0.74, p-value < 0.001. However, this was not significant when applied to PD subjects only (r = −0.19, p-value = 0.084, and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations

  1. Dopamine transporter imaging with [{sup 123}I]FP-CIT SPECT: potential effects of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Kemp, Paul [Southampton University Hospitals Trust, Department of Nuclear Medicine, Southampton (United Kingdom)

    2008-02-15

    [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-{l_brace}4-iodophenyl{r_brace}nortropane ([{sup 123}I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [{sup 123}I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  2. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study

    Energy Technology Data Exchange (ETDEWEB)

    Zaknun, John J. [University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Vienna (Austria); IAEA, Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, P.O. Box 100, Wien (Austria); Bal, Chandrasekhar [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Maes, Alex [Katholieke Universiteit Leuven, Leuven (Belgium); AZ Groeninge, Department of Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn [Chulalongkorn University, Nuclear Medicine Division, Department of Radiology, Bangkok (Thailand); Vazquez, Silvia [Instituto de Investigaciones Neurologicas, FLENI, Department of Radiology, Buenos Aires (Argentina); Dupont, Patrick [Katholieke Universiteit Leuven, Leuven (Belgium); Dondi, Maurizio [Ospedale Maggiore, Department of Nuclear Medicine, Bologna (Italy); International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Vienna (Austria)

    2008-01-15

    MR imaging, ictal single-photon emission CT (SPECT) and ictal EEG play important roles in the presurgical localization of epileptic foci. This multi-center study was established to investigate whether the complementary role of perfusion SPECT, MRI and EEG for presurgical localization of temporal lobe epilepsy could be confirmed in a prospective setting involving centers from India, Thailand, Italy and Argentina. We studied 74 patients who underwent interictal and ictal EEG, interictal and ictal SPECT and MRI before surgery of the temporal lobe. In all but three patients, histology was reported. The clinical outcome was assessed using Engel's classification. Sensitivity values of all imaging modalities were calculated, and the add-on value of SPECT was assessed. Outcome (Engel's classification) in 74 patients was class I, 89%; class II, 7%; class III, 3%; and IV, 1%. Regarding the localization of seizure origin, sensitivity was 84% for ictal SPECT, 70% for ictal EEG, 86% for MRI, 55% for interictal SPECT and 40% for interictal EEG. Add-on value of ictal SPECT was shown by its ability to correctly localize 17/22 (77%) of the seizure foci missed by ictal EEG and 8/10 (80%) of the seizure foci not detected by MRI. This prospective multi-center trial, involving centers from different parts of the world, confirms that ictal perfusion SPECT is an effective diagnostic modality for correctly identifying seizure origin in temporal lobe epilepsy, providing complementary information to ictal EEG and MRI. (orig.)

  3. System calibration and image reconstruction for a new small-animal SPECT system

    Science.gov (United States)

    Chen, Yi-Chun

    A novel small-animal SPECT imager, FastSPECT II, was recently developed at the Center for Gamma-Ray Imaging. FastSPECT II consists of two rings of eight modular scintillation cameras and list-mode data-acquisition electronics that enable stationary and dynamic imaging studies. The instrument is equipped with exchangeable aperture assemblies and adjustable camera positions for selections of magnifications, pinhole sizes, and fields of view (FOVs). The purpose of SPECT imaging is to recover the radiotracer distribution in the object from the measured image data. Accurate knowledge of the imaging system matrix (referred to as H) is essential for image reconstruction. To assure that all of the system physics is contained in the matrix, experimental calibration methods for the individual cameras and the whole imaging system were developed and carefully performed. The average spatial resolution over the FOV of FastSPECT II in its low-magnification (2.4X) configuration is around 2.4 mm, computed from the Fourier crosstalk matrix. The system sensitivity measured with a 99mTc point source at the center of the FOV is about 267 cps/MBq. The system detectability was evaluated by computing the ideal-observer performance on SKE/BKE (signal-known-exactly/background-known-exactly) detection tasks. To reduce the system-calibration time and achieve finer reconstruction grids, two schemes for interpolating H were implemented and compared: these are centroid interpolation with Gaussian fitting and Fourier interpolation. Reconstructed phantom and mouse-cardiac images demonstrated the effectiveness of the H-matrix interpolation. Tomographic reconstruction can be formulated as a linear inverse problem and solved using statistical-estimation techniques. Several iterative reconstruction algorithms were introduced, including maximum-likelihood expectation-maximization (ML-EM) and its ordered-subsets (OS) version, and some least-squares (LS) and weighted-least-squares (WLS) algorithms such

  4. Indium-Labeling of siRNA for Small Animal SPECT Imaging.

    Science.gov (United States)

    Jones, Steven; Merkel, Olivia

    2016-01-01

    Ever since the discovery of RNA interference (RNAi), therapeutic delivery of siRNA has attracted a lot of interest. However, due to the nature and structure of siRNA, a carrier is needed for any mode of systemic treatment. Furthermore, specific imaging techniques are required to trace where the deposition of the siRNA occurs throughout the body after treatment. Tracking in vivo siRNA biodistribution allows understanding and interpreting therapeutics effects and side effects. A great advantage of noninvasive imaging techniques such as SPECT imaging is that several time points can be assessed in the same subject. Thus, the time course of biodistribution or metabolic processes can be followed. Therefore, we have described an approach to modify siRNA with a DTPA (Diethylene Triamine Pentaacetic Acid) chelator in order to utilize an indium labeled siRNA for SPECT imaging. Here, we explain the details of the labeling and purification procedures.

  5. Use of a compact pixellated gamma camera for small animal pinhole SPECT imaging.

    Science.gov (United States)

    Zeniya, Tsutomu; Watabe, Hiroshi; Aoi, Toshiyuki; Kim, Kyeong Min; Teramoto, Noboru; Takeno, Takeshi; Ohta, Yoichiro; Hayashi, Takuya; Mashino, Hiroyuki; Ota, Toshihiro; Yamamoto, Seiichi; Iida, Hidehiro

    2006-07-01

    Pinhole SPECT which permits in vivo high resolution 3D imaging of physiological functions in small animals facilitates objective assessment of pharmaceutical development and regenerative therapy in pre-clinical trials. For handiness and mobility, the miniature size of the SPECT system is useful. We developed a small animal SPECT system based on a compact high-resolution gamma camera fitted to a pinhole collimator and an object-rotating unit. This study was aimed at evaluating the basic performance of the detection system and the feasibility of small animal SPECT imaging. The gamma camera consists of a 22 x 22 pixellated scintillator array of 1.8 mm x 1.8 mm x 5 mm NaI(Tl crystals with 0.2-mm gap between the crystals coupled to a 2" flat panel position-sensitive photomultiplier tube (Hamamatsu H8500) with 64 channels. The active imaging region of the camera was 43.8 mm x 43.8 mm. Data acquisition is controlled by a personal computer (Microsoft Windows) through the camera controller. Projection data over 360 degrees for SPECT images are obtained by synchronizing with the rotating unit. The knife-edge pinhole collimators made of tungsten are attached on the camera and have 0.5-mm and 1.0-mm apertures. The basic performance of the detection system was evaluated with 99mTc and 201Tl solutions. Energy resolution, system spatial resolution and linearity of count rate were measured. Rat myocardial perfusion SPECT scans were sequentially performed following intravenous injection of 201TlCl. Projection data were reconstructed using a previously validated pinhole 3D-OSEM method. The energy resolution at 140 keV was 14.8% using a point source. The system spatial resolutions were 2.8-mm FWHM and 2.5-mm FWHM for 99mTc and 201Tl line sources, respectively, at 30-mm source distance (magnification factor of 1.3) using a 1.0-mm pinhole. The linearity between the activity and count rate was good up to 10 kcps. In a rat study, the left ventricular walls were clearly visible in all

  6. Technological Development and Advances in SPECT/CT

    Science.gov (United States)

    Seo, Youngho; Aparici, Carina Mari; Hasegawa, Bruce H

    2010-01-01

    SPECT/CT has emerged over the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT sub-system. Newer SPECT/CT systems are available with high-power CT sub-systems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications. PMID:18396178

  7. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  8. Proposal for the standardisation of multi-centre trials in nuclear medicine imaging: prerequisites for a European 123I-FP-CIT SPECT database.

    Science.gov (United States)

    Dickson, John Caddell; Tossici-Bolt, Livia; Sera, Terez; de Nijs, Robin; Booij, Jan; Bagnara, Maria Claudia; Seese, Anita; Koulibaly, Pierre Malick; Akdemir, Umit Ozgur; Jonsson, Cathrine; Koole, Michel; Raith, Maria; Lonsdale, Markus Nowak; George, Jean; Zito, Felicia; Tatsch, Klaus

    2012-01-01

    Multi-centre trials are an important part of proving the efficacy of procedures, drugs and interventions. Imaging components in such trials are becoming increasingly common; however, without sufficient control measures the usefulness of these data can be compromised. This paper describes a framework for performing high-quality multi-centre trials with single photon emission computed tomography (SPECT), using a pan-European initiative to acquire a normal control dopamine transporter brain scan database as an example. A framework to produce high-quality and consistent SPECT imaging data was based on three key areas: quality assurance, the imaging protocol and system characterisation. Quality assurance was important to ensure that the quality of the equipment and local techniques was good and consistently high; system characterisation helped understand and where possible match the performance of the systems involved, whereas the imaging protocol was designed to allow a degree of flexibility to best match the characteristics of each imaging device. A total of 24 cameras on 15 sites from 8 different manufacturers were evaluated for inclusion in our multi-centre initiative. All results matched the required level of specification and each had their performance characterised. Differences in performance were found between different system types and cameras of the same type. Imaging protocols for each site were modified to match their individual characteristics to produce comparable high-quality SPECT images. A framework has been designed to produce high-quality data for multi-centre SPECT studies. This framework has been successfully applied to a pan-European initiative to acquire a healthy control dopamine transporter image database.

  9. Development and evaluation of QSPECT open-source software for the iterative reconstruction of SPECT images.

    Science.gov (United States)

    Loudos, George K; Papadimitroulas, Panagiotis; Zotos, Panteleimon; Tsougos, Ioannis; Georgoulias, Panagiotis

    2010-06-01

    In this study open-source software (QSPECT) suitable for the iterative reconstruction of single-photon emission computed tomography (SPECT) data is presented. QSPECT implements maximum likelihood expectation maximization and ordered subsets expectation maximization algorithms in a user-friendly graphical interface. The software functionality is described and validation results are presented. Maximum likelihood expectation maximization and ordered subsets expectation maximization algorithms are implemented in C++. The Qt toolkit, a standard C++ framework for developing high-performance cross-platform applications, has been used for the graphical user interface development. QSPECT is tested using original projection data from two clinical SPECT systems: (i) APEX SPX-6/6HR and (ii) Millennium MG. Phantom experiments were carried out to evaluate the quality of reconstructed images in terms of (i) spatial resolution, (ii) sensitivity to activity variations, and (iii) the presence of scatter media. A cardiac phantom was used to simulate a normal and abnormal scenario. Finally, clinical cardiac SPECT images were reconstructed. In all cases, QSPECT results were compared with the clinical systems reconstruction software that uses the standard filtered backprojection algorithm. The reconstructed images show that QSPECT, when compared with standard clinical reconstruction, provides images with higher contrast, reduced background, and better separation of small sources located in small distances. In addition, reconstruction with QSPECT provides more quantitative images, and reduces the background created by scatter media. Finally, the phantom and clinical cardiac images are reconstructed with similar quality. QSPECT is a freely distributed, open-source standalone application that provides real-time, high-quality SPECT images. The software can be further modified to improve reconstruction algorithms, and include more correction techniques, such as, scatter and attenuation

  10. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California (United States); Kabus, Sven; Lorenz, Cristian [Department of Digital Imaging, Philips Research Europe, Hamburg (Germany); Mittra, Erik [Departments of Radiology, Stanford University School of Medicine, Stanford, California (United States); Hong, Julian C.; Chung, Melody; Eclov, Neville; To, Jacqueline; Diehn, Maximilian; Loo, Billy W. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia)

    2014-10-01

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V

  11. TSPO Imaging in Glioblastoma Multiforme: A Direct Comparison Between 123I-CLINDE SPECT, 18F-FET PET, and Gadolinium-Enhanced MR Imaging.

    Science.gov (United States)

    Jensen, Per; Feng, Ling; Law, Ian; Svarer, Claus; Knudsen, Gitte M; Mikkelsen, Jens D; de Nijs, Robin; Larsen, Vibeke A; Dyssegaard, Agnete; Thomsen, Gerda; Fischer, Walter; Guilloteau, Denis; Pinborg, Lars H

    2015-09-01

    Here we compare translocator protein (TSPO) imaging using 6-chloro-2-(4'-(123)I-iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide SPECT ((123)I-CLINDE) and amino acid transport imaging using O-(2-(18)F-fluoroethyl)-l-tyrosine PET ((18)F-FET) and investigate whether (123)I-CLINDE is superior to (18)F-FET in predicting progression of glioblastoma multiforme (GBM) at follow-up. Three patients with World Health Organization grade IV GBM were scanned with (123)I-CLINDE SPECT, (18)F-FET PET, and gadolinium-enhanced MR imaging. Molecular imaging data were compared with follow-up gadolinium-enhanced MR images or contrast-enhanced CT scans. The percentage overlap between volumes of interest (VOIs) of increased (18)F-FET uptake and (123)I-CLINDE binding was variable (12%-42%). The percentage overlap of MR imaging baseline VOIs was greater for (18)F-FET (79%-93%) than (123)I-CLINDE (15%-30%). In contrast, VOIs of increased contrast enhancement at follow-up compared with baseline overlapped to a greater extent with baseline (123)I-CLINDE VOIs than (18)F-FET VOIs (21% vs. 8% and 72% vs. 55%). Our preliminary results suggest that TSPO brain imaging in GBM may be a useful tool for predicting tumor progression at follow-up and may be less susceptible to changes in blood-brain barrier permeability than (18)F-FET. Larger studies are warranted to test the clinical potential of TSPO imaging in GBM, including presurgical planning and radiotherapy. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Predictive value of dopamine transporter SPECT imaging with [(123)I]PE2I in patients with subtle parkinsonian symptoms

    DEFF Research Database (Denmark)

    Ziebell, Morten; Andersen, Birgitte B; Thomsen, Gerda

    2012-01-01

    To examine the diagnostic sensitivity and specificity of dopamine transporter SPECT imaging with a highly dopamine transporter selective radioligand. The study included consecutively enrolled, drug-naive patients with an average short history of parkinsonian motor symptoms, referred for diagnostic...

  13. Incremental Value of Diagnostic 131I SPECT/CT Fusion Imaging in the Evaluation of Differentiated Thyroid Carcinoma

    National Research Council Canada - National Science Library

    Wong, Ka Kit; Zarzhevsky, Natalia; Cahill, John M; Frey, Kirk A; Avram, Anca M

    2008-01-01

    ...., Ann Arbor, MI 48109-0028. OBJECTIVE. The purpose of this study was to determine the incremental value of 131 I SPECT/CT over traditional planar imaging of patients with differentiated thyroid carcinoma...

  14. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H. [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported.

  15. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT

    DEFF Research Database (Denmark)

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated ...

  16. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    NARCIS (Netherlands)

    Verberne, Hein J.; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; de Bondt, Pieter; Buechel, Ronny R.; Cuocolo, Alberto; van Eck-Smit, Berthe L. F.; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A.; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J. H. A.; Slart, Riemer H. J. A.; Trägårdh, Elin; de Wit, Tim C.; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated

  17. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT : 2015 revision

    NARCIS (Netherlands)

    Verberne, Hein J.; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R.; Cuocolo, Alberto; van Eck-Smit, Berthe L. F.; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A.; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J. H. A.; Slart, Riemer H. J. A.; Tragardh, Elin; de Wit, Tim C.; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated

  18. SPECT image analysis using statistical parametric mapping in patients with Parkinson's disease.

    Science.gov (United States)

    Imon, Y; Matsuda, H; Ogawa, M; Kogure, D; Sunohara, N

    1999-10-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with Parkinson's disease using statistical parametric mapping (SPM). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 28 patients with Parkinson's disease and 48 age-matched healthy volunteers. The Parkinson's disease patients were divided into two groups, 16 patients with Hoehn and Yahr stage I or II and 12 patients with Hoehn and Yahr stage III or IV. We used the raw data (absolute rCBF parametric maps) and the adjusted rCBF images in relative flow distribution (normalization of global CBF for each subject to 50 mL/100 g/min with proportional scaling) to compare these groups with SPM. In patients with stage I or II Parkinson's disease, we found a diffuse decrease in absolute rCBF in the whole brain with sparing of the central gray matter, hippocampus and right lower temporal lobe compared with healthy volunteers. Adjusted rCBF increased in both putamina and the right hippocampus. In patients with stage III or IV disease, rCBF decreased throughout the whole brain. Adjusted rCBF increased bilaterally in the putamina, globi pallidi, hippocampi and cerebellar hemispheres (dentate nuclei) and in the left ventrolateral thalamus, right insula and right inferior temporal gyrus. SPM analysis showed that significant rCBF changes in Parkinson's disease accompanied disease progression and related to disease pathophysiology in the functional architecture of thalamocortex-basal ganglia circuits and related systems.

  19. Synthesis, radiolabeling and baboon SPECT imaging of 2{beta}-carbomethoxy-3{beta}-(3'-[{sup 123}I]iodophenyl)tropane ([{sup 123}I]YP256) as a serotonin transporter radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Bois, Frederic; Baldwin, Ronald M.; Amici, Louis; Al-Tikriti, Mohammed S. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Kula, Nora; Baldessarini, Ross [Department of Psychiatry and Neuroscience Program, Harvard Medical School, Mailman Research Center McLean Division of Massachusetts General Hospital, Belmont, MA 02478 (United States); Innis, Robert B.; Staley, Julie K. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Tamagnan, Gilles D. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States)], E-mail: gtamagnan@indd.org

    2008-01-15

    To develop a potential SPECT probe to evaluate the integrity of the serotoninergic system (5-HTT) whose dysfunction is linked to several disease conditions such as Parkinson's disease, Alzheimer's disease and depression, we report the synthesis, radiolabeling and in vivo baboon imaging of 2{beta}-carbomethoxy-3{beta}-(3'-[{sup 123}I]iodophenyl) tropane (YP256, ). The radiolabeling was performed by iododestannylation using sodium [{sup 123}I]iodide and peracetic acid. Although the ligand displayed high selectivity for 5-HTT over dopamine transporter in vitro, SPECT imaging in baboons did not reveal selective 5-HTT accumulation in brain in vivo.

  20. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification. An IAEA phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Brian E. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grosev, Darko [Univ. Hospital Centre Zagreb (Croatia); Buvat, Irene [Service Hospitalier Frederic Joliot, Paris (France); and others

    2017-08-01

    Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing {sup 133}Ba, which was chosen as a surrogate for {sup 131}I. The sources, with nominal volumes of 2, 4, 6 and 23 mL, were calibrated for {sup 133}Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to

  1. Brain Vascular Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Bàrbara Laviña

    2016-12-01

    Full Text Available Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.

  2. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.

  3. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  4. Assessment of left ventricular performance by ECG-gated SPECT. Comparison with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tadamura, Eiji; Inubushi, Masayuki; Kubo, Shigeto; Matsumoto, Keiichi; Yokoyama, Hiroshi; Fujita, Toru; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1999-10-01

    In the measurement of a left ventricular volume, MIBI-QGS was compared with MRI. Because it became clear by the experiment using phantom that a volume calculated with QGS was smaller than the actual volume, data of clinical study were corrected. Subjects were 20 patients with coronary artery disease. Fourteen patients had anamnesis of myocardial infarct. ECG-gated SPECT was performed one hour after intravenous injection of MIBI (600 MBq) in rest. End diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) were calculated using QGS. Cine-MR image was obtained by using MR system of 1.5 Tesla within 1 week after SPECT. A condition was as follows; segmented k-space gradient echo with view sharing, TR=11 ms, TE=1.4 ms, flip angle 20 degree, field of view 32 cm, matrix 256 x 196, 8 lines per segment. LVEF, ESV and EF were analysed by Bland-Altman method, and the difference between MIBI-gated-SPECT and MRI was no problem. Horizontal dislocation image and vertical major axis dislocation image were provided. Minor axis crossing images of 10-12 slice were also filmed in order to cover all left ventricles. As a result, availability of MIBI-QGS became clear. Some factors which produces the measurement error are examined. (K.H.)

  5. CdZnTe strip detector SPECT imaging with a slit collimator.

    Science.gov (United States)

    Zheng, Gengsheng L; Gagnon, Daniel

    2004-06-07

    In this paper, we propose a CdZnTe rotating and spinning gamma camera attached with a slit collimator. This imaging system acquires convergent planar integrals of a radioactive distribution. Two analytical image reconstruction algorithms are proposed. Preliminary phantom studies show that our small CdZnTe camera with a slit collimator outperforms a larger NaI(Tl) camera with a pinhole collimator in terms of spatial resolution in the reconstructed images. The main application of this system is small animal SPECT imaging.

  6. Image Analysis with the Brain Easy Analysis Tool (BEAT) Method in Cases of Encephalomalacia Following Shaken Baby Syndrome

    OpenAIRE

    George, Imataka; Yoshiyuki, Watabe; Keiko, Tsukada; Shigeko, Kuwashima; Teisuke, Hashimoto; Osamu, Arisaka; Department of Radiology, Dokkyo Medical University School of Medicine; Department of Pediatrics, Dokkyo Medical University School of Medicine

    2010-01-01

    Brain easy analysis tool( BEAT) is newly released software to calculate composite images both MRI andSPECT on computer graphics. At first, we herein report two cases with shaken baby syndrome associatedwith multicystic encephalomalasia diagnosed based on MRI. Next, we created fusion MRI-SPECT imagesusing BEAT. The result of composited images was not only well recognized in anatomical visually but alsoeasy to explain data to patients. This report is the second case report with this software ca...

  7. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    Directory of Open Access Journals (Sweden)

    Marco Antonio Gutierrez

    2010-01-01

    Full Text Available A method to compute three-dimension (3D left ventricle (LV motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT. The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.

  8. Performance evaluation of a new gamma imager for small animal SPECT applications

    OpenAIRE

    Lage, Eduardo; Vaquero, Juan José; Villena, José L.; Carlos, Álvaro de; Tapias, Gustavo; Sisniega, Alejandro; Desco, Manuel

    2007-01-01

    Proceeding of: 2007 IEEE Nuclear Science Symposium Conference Record (NSS '07), Honolulu, Hawaii, USA, Oct. 27 - Nov. 3, 2007 Abstract–In this work we characterized a recently developed gamma imager for small animal SPECT applications. The Hamamatsu C9177 is a mini-gamma camera that integrates the detector and all the electronics, including the acquisition system, in a compact and portable housing. The detector is based on a high resolution parallel hole collimator, a CsI(NaI) crystal a...

  9. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study.

    Science.gov (United States)

    Kalantari, Faraz; Rajabi, Hossein; Saghari, Mohsen

    2012-03-01

    Detector blurring and non-ideal collimation decrease the spatial resolution of the single-photon emission computed tomography (SPECT) images. Iterative reconstruction algorithms such as ordered subsets expectation maximization (OSEM) can incorporate degrading factors during reconstruction. We investigated the quantitative errors associated with poor SPECT resolution and evaluated the importance of two-dimensional (2D) and three-dimensional (3D) resolution recovery by modelling system response during iterative image reconstruction. Different phantoms consisted of the NURBS-based cardiac-torso (NCAT) liver phantom with small tumors, the Zubal brain phantom and the NCAT heart phantom were used in this study. Monte Carlo simulation was used to create SPECT projections. Gaussian functions were used to model collimator detector response (CDR). Modeled CDRs were applied during OSEM. Both noise-free and noisy projections were created. Even with noise-free projections, conventional OSEM algorithm provided limited quantitative accuracy compared to both 2D and 3D resolution recovery. The 3D implementation of resolution recovery, however, yielded superior results compared to its 2D implementation. For the liver phantom, the ability to distinguish small tumors in both transverse and axial planes was improved. For the brain phantom, gray to white matter activity ratio was increased from 3.14 ± 0.04 in simple OSEM to 3.84 ± 0.06 in 3D OSEM. For the NCAT heart phantom, 3D resolution recovery, results in images with thinner wall and higher contrast for different noise levels. There are considerable quantitative errors associated with CDR, especially when the size of the target is comparable with the spatial resolution of the system. Between different reconstruction algorithms, 3D OSEM that consider the 3D nature of CDR, improve both the visual quality and the quantitative accuracy of any SPECT studies.

  10. Volumes of chronic traumatic frontal brain lesions measured by MR imaging and CBF tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, P.; Wirsen, A.; Bajc, M.; Schalen, W.; Sjoeholm, H.; Skeidsvoll, H.; Cronqvist, S.; Ingvar, D.H. (University Hospital, Lund (Sweden). Dept. of Neuroradiology University Hospital, Lund (Sweden). Dept. of Clinical Neurophysiology University Hospital, Lund (Sweden). Dept. of Neurosurgery)

    1991-07-01

    The volumes (ml) of chronic traumatic frontal brain lesions were compared measured 'morphologically' with MR imaging (T1 and T2 weighted images) and 'functionally' with a tomographic rCBF technique (SPECT with {sup 133}Xe i.v.). The T1 volumes varied between 11 and 220 ml. The correlation between T1 and T2 volumes was 0.95, the T2 volumes being 33% larger than T1 volumes (p<0.001). The functional SPECT volumes were considerably larger (range 16-324 ml) than the MR volumes. The mean volume difference was 81% between T1 and SPECT images (p<0.001), and 35% between T2 and SPECT images (p<0.001). Correlations between the MR and SPECT volumes were also higher for T2 than T1 volumes. The volume difference is most likely explained by a functional decrease in regions around the lesion in which no morphologic change visible on MR images had taken place. MR and SPECT volume measurements were positively related to persistent lack of energy and personality changes, but only moderately related to duration of impaired consciousness and neuropsychologie outcome. (orig.).

  11. Development of a combined microSPECT/CT system for small animal imaging

    Science.gov (United States)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  12. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  13. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    Science.gov (United States)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  14. Prognostic value of normal stress-only myocardial perfusion imaging: a comparison between conventional and CZT-based SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shu; Ottervanger, Jan Paul; Timmer, Jorik R. [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Mouden, Mohamed; Engbers, Elsemiek [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands)

    2016-02-15

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has proven to have prognostic importance in patients with suspected stable coronary artery disease (CAD). The recently introduced ultrafast cadmium zinc telluride (CZT)-based gamma cameras have been associated with less equivocal findings and more normal interpretations, allowing stress-only imaging to be performed more often. However, it is yet unclear whether normal stress-only CZT SPECT has comparable prognostic value as normally interpreted stress-only conventional SPECT. The study population consisted of 1,650 consecutive patients without known CAD with normal stress-only myocardial perfusion results with either conventional (n = 362) or CZT SPECT (n = 1,288). The incidence of major adverse cardiac events (MACE, all-cause death, non-fatal myocardial infarction and/or coronary revascularization) was compared between the conventional SPECT and CZT SPECT groups. Multivariable analyses using the Cox model were used to adjust for differences in baseline variables. Patients scanned with CZT were less often male (33 vs 39 %), had less often hypercholesterolaemia (41 vs 50 %) and had more often a family history of CAD (57 vs 49 %). At a median follow-up time of 37 months (interquartile range 28-45 months) MACE occurred in 68 patients. The incidence of MACE was 1.5 %/year in the CZT group, compared to 2.0 %/year in the conventional group (p = 0.08). After multivariate analyses, there was a trend to a lower incidence of MACE in the CZT SPECT group (hazard ratio 0.61, 95 % confidence interval 0.35-1.04, p = 0.07). The prognostic value of normal stress-only CZT SPECT is at least comparable and may be even better than that of normal conventional stress SPECT. (orig.)

  15. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  16. Evaluating the accuracy of 4D-CT ventilation imaging: First comparison with Technegas SPECT ventilation.

    Science.gov (United States)

    Hegi-Johnson, Fiona; Keall, Paul; Barber, Jeff; Bui, Chuong; Kipritidis, John

    2017-08-01

    Computed tomography ventilation imaging (CTVI) is a highly accessible functional lung imaging modality that can unlock the potential for functional avoidance in lung cancer radiation therapy. Previous attempts to validate CTVI against clinical ventilation single-photon emission computed tomography (V-SPECT) have been hindered by radioaerosol clumping artifacts. This work builds on those studies by performing the first comparison of CTVI with 99m Tc-carbon ('Technegas'), a clinical V-SPECT modality featuring smaller radioaerosol particles with less clumping. Eleven lung cancer radiotherapy patients with early stage (T1/T2N0) disease received treatment planning four-dimensional CT (4DCT) scans paired with Technegas V/Q-SPECT/CT. For each patient, we applied three different CTVI methods. Two of these used deformable image registration (DIR) to quantify breathing-induced lung density changes (CTVIDIR-HU ), or breathing-induced lung volume changes (CTVIDIR-Jac ) between the 4DCT exhale/inhale phases. A third method calculated the regional product of air-tissue densities (CTVIHU ) and did not involve DIR. Corresponding CTVI and V-SPECT scans were compared using the Dice similarity coefficient (DSC) for functional defect and nondefect regions, as well as the Spearman's correlation r computed over the whole lung. The DIR target registration error (TRE) was quantified using both manual and computer-selected anatomic landmarks. Interestingly, the overall best performing method (CTVIHU ) did not involve DIR. For nondefect regions, the CTVIHU , CTVIDIR-HU , and CTVIDIR-Jac methods achieved mean DSC values of 0.69, 0.68, and 0.54, respectively. For defect regions, the respective DSC values were moderate: 0.39, 0.33, and 0.44. The Spearman r-values were generally weak: 0.26 for CTVIHU , 0.18 for CTVIDIR-HU , and -0.02 for CTVIDIR-Jac . The spatial accuracy of CTVI was not significantly correlated with TRE, however the DIR accuracy itself was poor with TRE > 3.6 mm on average

  17. Semiquantitative evaluation of {sup 99}mTctrodat1 binding potential by two methods of SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Melissa Furlaneto Lellis; Reis, Marilia Alves dos; Oliveira, Cassio Miri; Castiglioni, Mario Luiz Vieira; Bressan, Rodrigo Affonseca, E-mail: mefurlaneto@hotmail.com, E-mail: rodrigoabressan@gmail.com, E-mail: mario.castiglioni@uol.com.br [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2017-11-01

    TRODAT-1 is a radiopharmaceutical derived from tropane and linked to Technetium-99m ([{sup 99m}Tc] TRODAT-1) has been used in studies of dopamine transporter (DAT) in central nervous system. Associated with the SPECT technique of acquisition, is able to detect changes in neurological disorders like Parkinson´s disease, evaluating the binding potential (BP) of DAT. The aim of this study was to evaluate the influence of the image reconstruction methods, Filtered Back Projection (FBP) and iterative reconstruction (OSEM), in BP values at the striatal region in 30 healthy volunteers. Images were analyzed by visual inspection and semi-quantitative analysis. Regions of interest (ROI) were made over striatal areas on both sides. Nonparametric Wilcoxon statistical analysis was performed between the BP values from the FBP and OSEM methods. Our results showed that the reconstruction methods have a statistical significant BP values difference in the total striatum (Z = -2,2787 p = 0.005), right striatum (Z = -2,602 p = 0.009) and left striatum (Z= 2,746 p = 0.006). The effect size was calculated to see if there influence in this test: the 'large effect size' for all measurements was observed (total striatum r= -0.51; right striatum r= -0.48; left striatum r= -0.50). FBP is the usual method of reconstruction for brain SPECT images, and our results showed influence of the OSEM method in BP. It is concluded that the method of image reconstruction adopted should be standardized to avoid incorrect evaluations of BP values using [{sup 99m}Tc]TRODAT-1. (author)

  18. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  19. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  20. Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.

    Science.gov (United States)

    Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki

    2018-01-01

    Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

  1. [Outlines of interdisciplinary addiction research given by the example of medical imaging with PET, SPECT and fMRI regarding effects of psychotropic substances].

    Science.gov (United States)

    Giacomuzzi, Salvatore M; Golaszewski, Stefan; Ertl, Markus; Riemer, Yvonne; Brandauer, Elisabeth; Ennemoser, Oswald; Rössler, Haimo; Hinterhuber, Hartmann

    2010-01-01

    The addiction phenomenon provides a fertile ground for the application of the tools of medical imaging which contribute to the development of scientific conceptualization of the effect of psychotropic substances. Medical imaging as for instance PET (Positron Emission Tomography), SPECT (Single Photon Emission Tomography) or functional Magnetic Resonance Imaging (fMRI) are well established for the examination of functional activity in the living brain. Medical imaging permits the development of functional activation maps during perceptual, cognitive or emotional efforts with a high temporal and spatial resolution. Medical imaging devices have therefore also been used to help our understanding of many aspects of the pharmacokinetics and pharmacodynamics of abused drugs. Because Delta-9-Tetrahydrocannabinol and cocaine continue to be the most commonly used illicit drugs, their effects on the brain function are of major interest. The cannabinoid CB(1) receptor agonist Delta(9)-THC as for instance has also been suggested for treatment of Tourette syndrome (TS). This article provides an overview of present applications of medical imaging with PET, SPECT, and fMRI and its results regarding addiction-related research on Delta-9-Tetrahydrocannabinol and cocaine.

  2. Recent advances in the development of PET/SPECT probes for atherosclerosis imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoich; Kuge, Yuji [Hokkaido University, Sapporo (Japan)

    2016-12-15

    The rupture of vulnerable atherosclerotic plaques and subsequent thrombus formation are the major causes of myocardial and cerebral infarction. Accordingly, the detection of vulnerable plaques is important for risk stratification and to provide appropriate treatment. Inflammation imaging using 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) has been most extensively studied for detecting vulnerable atherosclerotic plaques. It is of great importance to develop PET/SPECT probes capable of specifically visualizing the biological molecules involved in atherosclerotic plaque formation and/or progression. In this article, we review recent advances in the development of PET/SPECT probes for visualizing atherosclerotic plaques and their application to therapy monitoring, mainly focusing on experimental studies.

  3. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan

    2010-01-01

    The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2...... receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1...

  4. Compartment analysis of {sup 123}I-iomazenil brain SPECT in patients with moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, Tomohiro; Yamazaki, Tetsuro; Takahashi, Shoki; Yamada, Shogo [Tohoku Univ., Sendai (Japan). School of Medicine; Maruoka, Shin; Abe, Yoetsu

    1999-12-01

    We investigated 11 patients with moyamoya disease about {sup 123}I-Iomazenil kinetics in the brain using three-compartment, two-parameter model. The transition rate constant (K1) from the blood to the brain and the binding potential (BP) of the benzodiazepine to the receptors were calculated for every ROI (right and left side of cerebellum, frontal lobe, parietal lobe, occipital lobe and temporal lobe; 10 ROIs a case). The K1 value correlated with BP value significantly, but not so closely (r=0.639). And there is no significant difference in BP valued among low-K1 group (mean (of K1)-S.D.{<=}K1{<=}mean) and high-K1 group (meanSPECT presents an important information about the viability of the hypoperfused area in moyamoya disease patients' brain. (author)

  5. First imaging result with an ultrahigh resolution stationary MR compatible SPECT system.

    Science.gov (United States)

    Cai, L; Shen, Z M; Zhang, J C; Chen, C T; Meng, L J

    2012-01-01

    In this paper, we will present the design and preliminary performance of an ultrahigh resolution stationary MR compatible SPECT (MRC-SPECT) system that is developed in our lab. The MRC-SPECT system is based on the second-generation energy-resolved photon-counting (ERPC) CdTe detectors and there are several key features associated with this system. Firstly, up to a total of twenty ERPC detectors will be assembled as a very compact ring, which provides an adequate angular sampling capability and a relatively high detection efficiency. The detectors are supported on a gantry made of high strength polyamide structure constructed using 3-D printing. This compact system can be directly operated inside an MR scanner. The detector module used in this system offers an intrinsic resolution of 350μm and an excellent energy resolution of around 3~4kev. Each ERPC detector module consists of four pixelated CdTe detectors with a total dimension of 4.5cm×2.25cm. Secondly, a die-cast platinum pinhole inserts and cast lead apertures are developed for this stationary SPECT system. Four 300/500μm diameter pinholes are used for each detector and all pinholes are mounted around a casted cylinder lead aperture tube. The inner diameter of the lead aperture tube is 6cm and the lead tube thickness is 16mm. The opposite detectors are placed 15.6cm apart and the magnification factor of this SPECT system is about 1.2. Thirdly, a comprehensive charge collection model inside strong magnetic field has been developed to account for the magnetic field induced distortion in the SPECT image. This model can accurately predict the detector's energy and spatial response to gamma ray incident events and then help to compensate for the event position recording error due to the strong magnetic field. In this development, we have made an effort to minimize the amount of magnetic materials in the system to alleviate potential interference to magnetic field inhomogeneity.

  6. SU-F-J-08: Quantitative SPECT Imaging of Ra-223 in a Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yue, J; Hobbs, R; Sgouros, G; Frey, E [Johns Hopkins University Baltimore, MD (United States)

    2016-06-15

    Purpose: Ra-223 therapy of prostate cancer bone metastases is being used to treat patients routinely. However, the absorbed dose distribution at the macroscopic and microscopic scales remains elusive, due to the inability to image the small activities injected. Accurate activity quantification through imaging is essential to calculate the absorbed dose in organs and sub-units in radiopharmaceutical therapy, enabling personalized absorbed dose-based treatment planning methodologies and more effective and optimal treatments. Methods: A 22 cm diameter by 20 cm long cylindrical phantom, containing a 3.52 cm diameter sphere, was used. A total of 2.01 MBq of Ra-223 was placed in the phantom with 177.6 kBq in the sphere. Images were acquired on a dual-head Siemens Symbia T16 gamma camera using three 20% full-width energy windows and centered at 84, 154, and 269 keV (120 projections, 360° rotation, 45 s per view). We have implemented reconstruction of Ra-223 SPECT projections using OS-EM (up to 20 iterations of 10 subsets) with compensation for attenuation using CT-based attenuation maps, collimator-detector response (CDR) (including septal penetration, scatter and Pb x-ray modeling), and scatter in the patient using the effective source scatter estimation (ESSE) method. The CDR functions and scatter kernels required for ESSE were computed using the SIMIND MC simulation code. All Ra-223 photon emissions as well as gamma rays from the daughters Rn-219 and Bi-211 were modeled. Results: The sensitivity of the camera in the three combined windows was 107.3 cps/MBq. The visual quality of the SPECT images was reasonably good and the activity in the sphere was 27% smaller than the true activity. This underestimation is likely due to partial volume effect. Conclusion: Absolute quantitative Ra-223 SPECT imaging is achievable with careful attention to compensate for image degrading factors and system calibration.

  7. Development and validation of a patient-tailored dose regime in myocardial perfusion imaging using czt-spect

    NARCIS (Netherlands)

    van Dijk, Joris David; van Dijk, J.D.; Iskandrian, A.; de Jager, P.L.; Mouden, M.; Slump, Cornelis H.; Ottervanger, J.P.; Boer, J.; Oostdijk, A.H.J.; van Dalen, J.A.

    2014-01-01

    Background: Guidelines for SPECT myocardial perfusion imaging (MPI) traditionally recommend a fixed tracer dose. Yet, clinical practice shows degraded image quality in heavier patients. The aim was to optimize and validate the tracer dose and scan time to obtain a constant image quality less

  8. Visual and SPM Analysis of Brain Perfusion SPECT in Patients of Dementia with Lewy Bodies with Clinical Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [College of Medicine, Univ. of Donga, Busan (Korea, Republic of)

    2003-07-01

    Dementia with Lewy bodies (DLB) is widely recognized as the second commonest form of degenerative dementia. Its core clinical features include persistent visual hallucinosis, fluctuating cognitive impairment and parkinsonism. We evaluated the brain perfusion of dementia with Lewy bodies by SPM analysis and correlated the findings with clinical symptom. Twelve DLB patients (mean age ; 68.88.3 yrs, K-MMSE ; 17.36) and 30 control subjects (mean age ; 60.17.7 yrs) were included. Control subjects were selected by 28 items of exclusion criteria and checked by brain CT or MRI except 3 subjects. Tc-99m HMPAO brain perfusion SPECT was performed and the image data were analyzed by visual interpretation and SPM99 as routine protocol. In visual analysis, 7 patients showed hypoperfusion in both frontal, temporal, parietal and occipital lobe, 2 patients in both frontal, temporal and parietal lobe, 2 patients in both temporal, parietal and occipital lobe, 1 patients in left temporal, parietal and occipital lobe. In SPM analysis (uncorrected p<0.01), significant hypoperfusion was shown in Lt inf. frontal gyrus (B no.47), both inf. parietal lobule (Rt B no.40), Rt parietal lobe (precuneus), both sup. temporal gyrus (Rt B no.42), Rt mid temporal gyrus, Lt transverse temporal gyrus (B no.41), both para hippocampal gyrus, Rt thalamus (pulvinar), both cingulate gyrus (Lt B no.24, Lt B no.25, Rt B no.23, Rt B no.24, Rt B no.33), Rt caudate body, both occipital lobe (cuneus, Lt B no.17, Rt B no.18). All patients had fluctuating cognition and parkinsonism, and 9 patients had visual hallucination. The result of SPM analysis was well correlated with visual interpretation and may be helpful to specify location to correlate with clinical symptom. Significant perfusion deficits in occipital region including visual cortex and visual association area are characteristic findings in DLB. Abnormalities in these areas may be important in understanding symptoms of visual hallucination and

  9. Automated MicroSPECT/MicroCT Image Analysis of the Mouse Thyroid Gland.

    Science.gov (United States)

    Cheng, Peng; Hollingsworth, Brynn; Scarberry, Daniel; Shen, Daniel H; Powell, Kimerly; Smart, Sean C; Beech, John; Sheng, Xiaochao; Kirschner, Lawrence S; Menq, Chia-Hsiang; Jhiang, Sissy M

    2017-11-01

    The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131 I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123 I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAF V600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123 I gamma photon intensity in MATLAB. The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123 I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123 I gamma photon intensity. MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention

  10. Fasting and nonfasting iodine-123-idophenylpentadecanoic acid myocardial SPECT imaging in coronary artery disease.

    Science.gov (United States)

    Heller, G V; Iskandrian, A E; Orlandi, C; Ahlberg, A W; Heo, J; Mann, A; White, M P; Gagnon, A; Taillefer, R

    1998-12-01

    Iodine-123-labeled idophenylpentadecanoic acid (IPPA) metabolic imaging has been shown to be clinically useful for the identification of myocardial viability in patients with coronary artery disease and left ventricular dysfunction. Imaging is usually performed under fasting conditions since nonfasting conditions may affect myocardial uptake of 123I-IPPA. The purpose of this study was to examine the impact of dietary condition on 123I-IPPA metabolic imaging. Forty patients with stable coronary artery disease underwent, in randomized order and on separate days, 123I-IPPA SPECT myocardial imaging under fasting and nonfasting conditions. Patients were injected with 123I-IPPA (4-5 mCi) at rest with imaging performed at 4 (initial) and 30 (delay) min. For each image (initial and delay images), 10 segments were analyzed by three experienced observers without knowledge of patient identity or dietary condition using a 5-point grading system (O = no uptake to 4 = normal uptake). A summed global score was obtained for each image by adding the scores for all 10 segments. Image quality was assessed using a 3-point grading system. Visual agreement for normal and abnormal segments between fasting and nonfasting conditions was 82% (kappa = 0.63). There were no significant differences in the summed global scores for both conditions. Image quality was equivalent for both conditions in 65% of cases and superior under the nonfasting condition in 25% of cases. Image quality as well as the presence, location and severity of defects are similar under fasting and nonfasting conditions with 123I-IPPA. Therefore, fasting is not necessary before 123I-IPPA SPECT imaging for the assessment of myocardial viability.

  11. Quantitative cardiac SPECT reconstruction with reduced image degradation due to patient anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, B.M.W.; Zhao, X.D.; Gregoriou, G.K.; Lalush, D.S.; Frey, E.C.; Johnston, R.E.; McCartney, W.H. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1994-12-01

    Patient anatomy has complicated effects on cardiac SPECT images. The authors investigated reconstruction methods which substantially reduced these effects for improved image quality. A 3D mathematical cardiac-torso (MCAT) phantom which models the anatomical structures in the thorax region were used in the study. The phantom was modified to simulate variations in patient anatomy including regions of natural thinning along the myocardium, body size, diaphragmatic shape, gender, and size and shape of breasts for female patients. Distributions of attenuation coefficients and Tl-201 uptake in different organs in a normal patient were also simulated. Emission projection data were generated from the phantoms including effects of attenuation and detector response. The authors have observed the attenuation-induced artifacts caused by patient anatomy in the conventional FBP reconstructed images. Accurate attenuation compensation using iterative reconstruction algorithms and attenuation maps substantially reduced the image artifacts and improved quantitative accuracy. They conclude that reconstruction methods which accurately compensate for non-uniform attenuation can substantially reduce image degradation caused by variations in patient anatomy in cardiac SPECT.

  12. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada); Wei, Lihui [Nordion, Inc., Ottawa, Ontario K2K 1X8 (Canada)

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  13. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  14. Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae; Moore, Stephen C.; McQuaid, Sarah J.; Kijewski, Marie Foley [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Mueller, Stefan P. [Abteilung Nuklearmedizin, Universitaetsklinikum Essen, 45147 Essen (Germany)

    2013-04-15

    Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD. Methods: Cramer-Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can

  15. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: LXL730724@hotmail.com; Liu Ying; He Yong; Wu Tao; Zhang Binqing; Gao Zairong; An Rui [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: zhyx1229@163.com

    2010-04-15

    Aim: To demonstrate the feasibility and optimal conditions of imaging herpes simplex virus 1-thymidine kinase (HSV1-tk) gene transferred into hearts with {sup 131}I-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil ({sup 131}I-FIAU) using autoradiography (ARG) and single photon emission computed tomography (SPECT) in animal models. Methods: HSV1-tk inserted into adenovirus vector (Ad5-tk) and adenovirus (Ad5-null) was prepared. Rats or rabbits were divided into a study group receiving intramyocardial injection of Ad5-tk, and a control group receiving Ad-null injection. In the study group of rats, two sets of experiments, time-course study and dose-dependence study, were performed. In time-course experiments, rats were injected with {sup 131}I-FIAU on Days 1, 2, 3, 5 and 7, after transfection of 1x10{sup 8} pfu Ad5-tk, to study the feasibility and suitable time course for reporter gene imaging. In dose-dependence study, various titers of Ad5-tk (5x10{sup 8}, 1x10{sup 8}, 5x10{sup 7} and 1x10{sup 7} pfu) were used to determine the threshold and optimal viral titer needed for detection of gene expression. The gamma counts of hearts were measured. The rat myocardium was analyzed by ARG and reverse transcriptase-polymerase chain reaction (RT-PCR). SPECT whole-body planar imaging and cardiac tomographic imaging were performed in the rabbit models. Results: From the ARG images, rats injected with Ad5-tk showed significant {sup 131}I-FIAU activity in the anterolateral wall compared with background signals seen in the control Ad5-null rats. In time-course study, the highest radioactivity in the focal myocardium could be seen on Day 1, and then progressively declined with time. In dose-dependence study, the level of {sup 131}I-FIAU accumulation in the transfected myocardium declined with the decrease of Ad viral titers. From the ARG analysis and gamma counting, the threshold viral titer was 5x10{sup 7} pfu, and the optimal Ad titer was 1x10{sup 8} pfu

  16. Follow-up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Laforte, Catherine de; Mundler, Olivier [Assistance Publique des Hopitaux de Marseille, Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille, Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-12-15

    The aim of this study was to determine whether the follow-up of pain processing recovery in hyperalgesic fibromyalgia (FM) could be objectively evaluated with brain perfusion ethyl cysteinate dimer single photon computerized tomography (ECD-SPECT) after administration of ketamine. We enrolled 17 hyperalgesic FM women patients (48.5 {+-} 11 years, range 25-63). After treatment with subcutaneous ketamine, 11 patients were considered as 'good responders', with a decrease in pain intensity, evaluated by visual analog scale (VAS), greater than 50%. On the other hand, six patients were considered as 'poor responders'. A voxel-based analysis of regional cerebral blood flow (rCBF) was conducted (p{sub voxel} < 0.001uc), in the two subgroups of patients, before and after treatment, in comparison to a group of ten healthy subjects, matched for age and gender. In comparison to baseline brain SPECT, midbrain rCBF showed a greater increase after ketamine in the responder group than in the nonresponder group (p{sub cluster} = 0.016c). In agreement with the clinical response, the change in midbrain rCBF after ketamine was highly correlated with the reduction of VAS pain score (r = 0.7182; p = 0.0041). This prospective study suggests that blockade of facilitatory descending modulation of pain with ketamine can be evaluated in the periaqueductal grey with brain perfusion SPECT. (orig.)

  17. Relationship between brain perfusion SPECT and MMSE score in dementia of Alzheimer's type: a statistical parametric mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Kang, Eun Joo; Lee, Jae Sung [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2002-04-01

    The aim of this study was to identify the brain areas in which reductions of regional cerebral blood flow (rCBF) were correlated with decline of general mental function, measured by Mini-Mental State Examination (MMSE). Tc-99m HMPAO brain SPECT was performed in 9 probable AD patients at the initial and follow-up periods of 1.8 years (average) after the first study. MMSE scores were also measured in both occasions. The mean MMSE score of the initial study 16.4 (range: 5-24) and the mean MMSE score of the follow-up was 8.1 (range: 0-17). Each SPECT image was normalized to the cerebellar activity and a correlation analysis was performed between the level of rCBF in AD patients and the MMSE scores by voxel-based analysis using SPM99 software. Significant correlation was found between the blood-flow decrease in left inferior prefrontal region(BA 47) and left middle temporal region (BA 21) and the MMSE score changes. Additional areas such as anterior and posterior cingulate cortices, precuneus, and bilateral superior and middle prefrontal regions showed and similar trends. A relationship was found between reduction of regional cerebral blood flow in left prefrontal and temporal areas and decline of cognitive function in Alzheimer's diseases (AD) patients. This voxel-based analysis is useful in evaluating the progress of cognitive function in Alzheimer's disease.

  18. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  19. Evaluation of {sup 111}In labeled antibodies for SPECT imaging of mesothelin expressing tumors

    Energy Technology Data Exchange (ETDEWEB)

    Misri, Ripen; Saatchi, Katayoun [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Ng, Sylvia S.W. [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Advanced Therapeutics, British Columbia Cancer Agency, Vancouver BC V5Z 1G1 (Canada); Kumar, Ujendra [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Haefeli, Urs O., E-mail: uhafeli@interchange.ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)

    2011-08-15

    Introduction: Mesothelin is expressed in many cancers, especially in mesothelioma and lung, pancreatic and ovarian cancers. In the present study, we evaluate {sup 111}In labeled antimesothelin antibodies as an imaging bioprobe for the SPECT imaging of mesothelin-expressing tumors. Methods: We radiolabeled the antimesothelin antibodies mAbMB and mAbK1 with {sup 111}In using the p-SCN-bn-DTPA chelator. The immunoreactivity, affinity (K{sub d}) and internalization properties of the resulting two {sup 111}In labeled antibodies were evaluated in vitro using mesothelin-expressing A431K5 cells. The biodistribution and microSPECT/CT imaging studies with {sup 111}In labeled antibodies were performed in mice bearing both mesothelin positive (A431K5) and mesothelin negative (A431) tumors. Results: In vitro studies demonstrated that {sup 111}In-mAbMB bound with a higher affinity (K{sub d}=3.6{+-}1.7 nM) to the mesothelin-expressing A431K5 cells than did the {sup 111}In-mAbK1 (K{sub d}=29.3{+-}2.3 nM). {sup 111}In-mAbMB was also internalized at a greater rate and extent into the A431K5 cells than was the {sup 111}In-mAbK1. Biodistribution studies showed that {sup 111}In-mAbMB was preferentially localized in A431K5 tumors when compared to A431 tumors. At the low dose, the peak A431K5 tumor uptake of 9.65{+-}2.65% ID/g (injected dose per gram) occurred at 48 h, while at high dose tumor uptake peaked with 14.29{+-}6.18% ID/g at 72 h. Non-specific localization of {sup 111}In-mAbMB was mainly observed in spleen.{sup 111}In-mAbK1 also showed superior localization in A431K5 tumors than in A431 tumors, but the peak uptake was only 3.04{+-}0.68% ID/g at 24 h. MicroSPECT/CT studies confirmed better visualization of A431K5 tumors with {sup 111}In-mAbMB, than with {sup 111}In-mAbK1. Conclusion: SPECT imaging of mesothelin expressing tumors was demonstrated successfully. Our findings indicate that the antimesothelin antibody mAbMB has the potential to be developed into a diagnostic agent

  20. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    Science.gov (United States)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  1. Nanoparticles for SPECT and PET imaging: towards personalized medicine and theranostics.

    Science.gov (United States)

    Polyak, Andras; Ross, Tobias L

    2017-08-29

    PET and SPECT imaging methods can be of excellent assistance for the development of new nanoparticle drug delivery systems, and at the same time, these investigations also offer the opportunity to produce exceptional new diagnostic and therapeutic radiopharmaceuticals, as well. With a multifunctional, nano-scaled drug delivery system, the diagnostic (imaging) methods and the therapy (delivering drugs or beta-emitter radionuclides) can be carried out using the same biological and pharmacological mechanisms. By combining therapy and diagnostics in one method or in one specifically targeted nanoparticle system, we can product theranostic pharmaceuticals, and its applications are important elements of personalized medicine. This review takes a short historical look back to the radiocolloids, the great ancestors of (radiolabeled) nanoparticles and then describes the general features of current types of PET and SPECT imaging associated nanoparticle-based products and key radiolabeling methods; entering into details of potential prospective challenges related to radiotheranostic approaches and imaging guided therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand.

    Science.gov (United States)

    Bhojani, Mahaveer S; Ranga, Rajesh; Luker, Gary D; Rehemtulla, Alnawaz; Ross, Brian D; Van Dort, Marcian E

    2011-01-01

    A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[(125)I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [(125)I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C(5) maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C(2) maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [(125)I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [(125)I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [(125)I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques.

  3. Pre-clinical Evaluation of a Cyanine-Based SPECT Probe for Multimodal Tumor Necrosis Imaging.

    Science.gov (United States)

    Stammes, Marieke A; Knol-Blankevoort, Vicky T; Cruz, Luis J; Feitsma, Hans R I J; Mezzanotte, Laura; Cordfunke, Robert A; Sinisi, Riccardo; Dubikovskaya, Elena A; Maeda, Azusa; DaCosta, Ralph S; Bierau, Katja; Chan, Alan; Kaijzel, Eric L; Snoeks, Thomas J A; van Beek, Ermond R; Löwik, Clemens W G M

    2016-12-01

    Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA). The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo. Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis. The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy.

  4. SPECT and PET in Eating Disorders

    NARCIS (Netherlands)

    van Waarde, Aren; Audenaert, Kurt; Busatto, Geraldo F.; Buchpiguel, Carlos; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; den Boer, Johan A

    2014-01-01

    Medical imaging techniques like PET and SPECT have been applied for investigation of brain function in anorexia and bulimia nervosa. Regional abnormalities have been detected in cerebral blood flow, glucose metabolism, the availability of several neurotransmitter receptors (serotonin 1A and 2A,

  5. Functional imaging studies of cognition using {sup 99m}Tc-HMPAO SPECT: empirical validation using the n-back working memory paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Catherine; Ribaupierre, Anik de [University of Geneva, Center for Interdisciplinary Gerontology, Geneva (Switzerland); Chicherio, Christian [Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin (Germany); Terraneo, Luc [Geneva University Hospitals, Service of Nuclear Medicine, Geneva (Switzerland); Magistretti, Pierre [EPFL, Brain Mind Institute, Lausanne (Switzerland); Slosman, Daniel [Clinique Generale-Beaulieu, Nuclear Medicine Institute, Geneva (Switzerland)

    2008-04-15

    Functional activation protocols are widely applied for the study of brain-cognition relations. Only few take advantage of the intrinsic characteristics of SPECT, particularly those allowing cognitive assessment outside of the camera, in settings close to the standard clinical or laboratory ones. The purpose of the study was to assess the feasibility of a split-dose activation protocol with {sup 99m}Tc-HMPAO using low irradiation dose. A two-scans protocol was applied to 12 healthy young volunteers using 270 MBq of {sup 99m}Tc-HMPAO per scan, with each image associated to a particular experimental condition of the verbal n-back working memory task (0-back, 2-back). Subtraction method was used to identify regional brain activity related to the task. Voxel-wise statistical analysis showed left lateralized activity associated with the 2-back task, compared to the 0-back task. Activated regions, mainly prefrontal and parietal, were similar to those observed in previous fMRI and {sup 15}O-PET studies. The results support the use of {sup 99m}Tc-HMPAO SPECT for the investigation of brain-cognition relations and demonstrate the feasibility of optimal quality images despite low radiopharmaceutical doses. The findings also acknowledge the use of HMPAO as a radioligand to capture neuro-energetic modulations linked to cognitive activity. They encourage extending the application of the described activation protocol to clinical populations. (orig.)

  6. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  7. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  8. Minimizing patient-specific tracer dose in myocardial perfusion imaging using CZT SPECT.

    Science.gov (United States)

    van Dijk, Joris D; Jager, Pieter L; Ottervanger, Jan Paul; Slump, Cornelis H; de Boer, Jaep; Oostdijk, Adrianus H J; van Dalen, Jorn A

    2015-03-01

    Myocardial perfusion imaging (MPI) with SPECT is widely adopted in clinical practice but is associated with a relatively high radiation dose. The aim of this study was to determine the minimum product of tracer dose and scan time that will maintain diagnostic value for cadmium zinc telluride (CZT) SPECT MPI. Twenty-four patients underwent clinically indicated stress MPI using CZT SPECT and a body weight-dependent (3 MBq/kg) (99m)Tc-tetrofosmin tracer dose. Data were acquired for 8 min in list mode. Next, images were reconstructed using 2-, 4-, 6-, and 8-min time frames. Differences between the 8-min reference scan and the shorter scans were determined in segmental uptake values (using the 17-segment cardiac model), ejection fraction, and end-diastolic volume. A 5% difference in segmental uptake was considered to significantly influence the diagnostic value. Next, the quality of the 4-, 6-, and 8-min scans was scored on a 4-point scale by consensus by 3 experienced nuclear medicine physicians. The physicians did not know the scan time or patient information. Differences in segmental uptake values, ejection fraction, and end-diastolic volume were greater for shorter scans than for the 8-min reference scan. On average, the diagnostic value was influenced in 7.7 segments per patient using the 2-min scans, in comparison to 2.0 and 0.8 segments per patient using the 4- and 6-min scans, respectively. In addition, the 4-min scans led to a significantly reduced image quality compared with the 8-min scans (P < 0.05). This was not the case for the 6-min scan. Six minutes was the shortest acquisition time in stress MPI using CZT SPECT that did not affect the diagnostic value for a tracer dose of 3 MBq/kg. Hence, the patient-specific product of tracer dose and scan time can be reduced to a minimum of 18 MBq·min/kg, which may lower the effective radiation dose for patients to values below 1 mSv. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Pseudodefects in SPET myocardium imaging after placement of a defibrillator patch electrode; Pseudodefekte bei der Myokard-SPECT durch implantierte Defibrillator-Patches: Phantommessungen mit SPECT und PET

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, R. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. fuer Nuklearmedizin der Radiologischen Klinik; Rickers, C. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Kardiologie der Klinik fuer Innere Medizin; Fuchs, C. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. fuer Nuklearmedizin der Radiologischen Klinik; Nienaber, C.A. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Kardiologie der Klinik fuer Innere Medizin; Luebeck, M. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. fuer Nuklearmedizin der Radiologischen Klinik

    1996-12-01

    Aim and Methods: In order to estimate the effect of an epicardial or subcutan defibrillator patch electrode on the imaging of myocardium with SPET and PET we performed measurements with a body phantom and two different patch electrodes. Results: We found that in {sup 201}Tl-SPET with epicardial placing one electrode causes significant pseudodefects, which might lead to the impression of an infarction (`pseudoinfarction`), particularly in the case of reduced myocardial wall thickness. Measurements with {sup 99m}Tc show the same pseudodefects. In case of subcutaneous placing the electrodes are much less likely to cause relevant absorption effects. With PET even epicardially placed both patch electrodes do not produce pseudodefects. Therefore the risk of false-positive findings is very small with PET. Conclusion: In order to avoid false positive findings in cardiovascular nuclear medicine caused by defibrillator patch electrodes, patients with patch electrodes should be referred to PET, if available. (orig.) [Deutsch] Ziel und Methoden: Um den Effekt eines epikardial oder subkutan implantierten Defibrillator-Patches bei der nuklearmedizinischen Herzdiagnostik mittels SPECT und PET abzuschaetzen, wurden Messungen an einem Koerperphantom mit zwei verschiedenen Patchelektroden durchgefuehrt. Ergebnisse: Es zeigte sich, dass bei der {sup 201}Tl-SPECT bei epikardialer Plazierung eine der beiden Elektroden Pseudodefekte verursacht, die insbesondere im Falle duennwandiger Herzen die Beurteilung erschweren oder sogar zu falsch-positiven Befunden (`Pseudoinfarkte`) fuehren koennen. Bei Messungen mit {sup 99m}Tc findet man dieselben Pseudodefekte in nahezu gleicher Auspraegung. Im Falle subkutaner Plazierung sind beide Elektroden sowohl bei der {sup 201}Tl-SPECT als auch bei der {sup 99m}Tc-SPECT unkritisch. Bei der PET stellen die untersuchten Patchelektroden selbst bei epikardialer Plazierung keine erkennbare Stoerung dar, so dass hier die Gefahr eines falsch

  10. Imaging dynamics of organs and drugs at sub-half-MM and sub-minite resolution using focusing pinhole spect

    NARCIS (Netherlands)

    Beekman, F.J.; Van der Have, F.; Vastenhouw, B.; Branderhorst, W.J.; Van der Linden, A.; Smidt, M.P.

    We demonstrate new technologies for SPECT imaging with unsurpassed resolution in mice and rats. Results of the imaging of living animals will be shown. In addition development of detectors for next generation systems with an even higher resolution will be shown.

  11. Perfusion impairments on brain SPECT in patients with infantile autism and nonautistic pervasive developmental disorders: comparison with MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon; Lee, Jong Doo; Yoon, Pyeong Ho; Kim, Dong Ik; Jeon, Tae Joo; Shin, Yee Jin; Lee, Byung Hee; Shin, Hyung Cheol [College of Medecine, Soonchunhyang Univ., Chonan (Korea, Republic of)

    1998-07-01

    Neuroimaging findings of autism has been the subjects of continuing investigation. Because previous study had not demonstrated consistent and specific neuroimaging findings of autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and structural abnormalities in pre-school aged autistic children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with nonautistic pervasive developmental disorders (PDD). 58 children between 3 and 8 years of age infantile autism (n=37) and non-autistic PDD (n=21) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of autism and non-autistic PDD was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 37 autistic patients, 32 revealed decreased perfusion of cerebellar hemisphere, followed by hypoperfusion of thalami (n=30), parietal cortex (n=16), temporal cortex (n=12). Of those 21 PDD patients, 14 patients showed hypoperfusion of the thalami and 10 patients showed temporal hypoperfusion. However, cerebellar hemispheric (n=8) and parietal (n=1) hypoperfusion was infrequently seen. All autistic and nonautistic PDD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. Cerebellar hemispheric and parietal hypoperfusion is significantly frequently noted in autistic patients although they had normal MRI and SPECT may be useful and more sensitive modality in reflecting pathophysiology of autism as evidenced by previous MRI and postmortem studies. Thalamic and temporal hypoperfusion can be seen in both autistic and nonautistic patients and further studies are necessary to determine the significance of the thalamic hypoperfusion.

  12. Sequential dual-isotope SPECT imaging with thallium-201 and technetium-99m-sestamibi.

    Science.gov (United States)

    Heo, J; Wolmer, I; Kegel, J; Iskandrian, A S

    1994-04-01

    This study examined the results of sequential SPECT dual-isotope imaging with 201Tl and 99mTc-sestamibi in 148 patients, 114 of whom also had coronary angiography and 34 had exercise testing or adenosine infusion at a rate of 140 micrograms/kg/min for 6 min. The study was completed within 2 hr. The stress and rest images were normal in 11 of 17 patients (65%) with no CAD by angiography and in 33 of 34 patients with a low pretest probability of CAD (normalcy rate = 97%). The images were abnormal in 75 patients with CAD (77%). The perfusion pattern was compared to wall motion in 485 segments (97 patients) assessed by contrast ventriculography. There were no or reversible perfusion defects in 357 of 386 segments (92%) with no wall motion abnormality. Sequential dual-isotope imaging is feasible and can be completed in a short period of time and may therefore enhance laboratory throughput and patient convenience.

  13. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  14. Optimizing Image Quantification for Lu-177 SPECT/CT Based on a 3D Printed 2-Compartment Kidney Phantom.

    Science.gov (United States)

    Tran-Gia, Johannes; Lassmann, Michael

    2017-11-02

    The aim of this work was to find an optimal setup for activity determination of Lu-177-based single photon emission computed tomography (SPECT) / computed tomography (CT) imaging reconstructed with two commercially available reconstructions (xSPECT Quant and Flash3D, Siemens Healthcare). For this purpose, 3D printed phantoms of different geometries were manufactured, different partial volume correction (PVC) methods were applied, and the accuracy of the activity determination was evaluated. METHODS: A 2-compartment kidney phantom (70% cortical and 30% medullary compartment), a sphere, and an ellipsoid of equal volumes were 3D printed, filled with Lu-177, and scanned with a SPECT/CT system. Reconstructions were performed with xSPECT and Flash3D. Different PVC methods were applied to find an optimal quantification setup: 1) Geometry-specific recovery coefficient based on the 3D printing model. 2) Geometry-specific recovery coefficient based on the low-dose CT. 3) Enlarged volume-of-interest (VOI) including spilled-out counts. 4) Activity concentration in the peak milliliter applied to the entire CT-based volume. 5) Fixed threshold of 42% of the maximum in a large volume containing the object-of-interest. Additionally, the influence of post-reconstruction Gaussian filtering was investigated. RESULTS: While the recovery coefficients of sphere and ellipsoid only differed by 0.7%, a difference of 31.7% was observed between the sphere and renal cortex phantoms . Without post-filtering, the model-based recovery coefficients (methods 1 and 2) resulted in the best accuracies (xSPECT: 1.5%, Flash3D: 10.3%), followed by the enlarged volume (xSPECT: 8.5%, Flash3D: 13.0%). The peak-milliliter method showed large errors only for sphere and ellipsoid (xSPECT: 23.4%, Flash3D: 21.6%). Applying a 42%-threshold led to the largest quantification errors (xSPECT: 32.3%, Flash3D: 46.7%). After post-filtering, a general increase of the errors was observed. CONCLUSION: In this work, 3D

  15. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  16. Physical phantom evaluation of EM-IntraSPECT (EMIS) algorithm for nonuniform attenuation correction in cardiac imaging

    Science.gov (United States)

    Krol, Andrzej; Bowsher, James E.; Feiglin, David H.; Gagne, George M.; Hellwig, Bradford J.; Tornai, Martin P.; Thomas, Frank D.

    2001-07-01

    The purpose of this study was to evaluate performance of the EM-IntraSPECT (EMIS) algorithm for non-uniform attenuation correction in the chest. EMIS is a maximum-likelihood expectation maximization (MLEM) algorithm for simultaneously estimating SPECT emission and attenuation parameters from emission data alone. EMIS uses the activity within the patient as transmission tomography sources, with which attenuation coefficients can be estimated. A thorax phantom with a normal heart was used. The activity images reconstructed by EMIS were compared to images reconstructed using a conventional MLEM with a fixed uniform attenuation map. Uniformity of normal heart was improved with EMIS as compared to a conventional MLEM.

  17. Study of the point spread function (PSF) for {sup 123}I SPECT imaging using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cot, A [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Sempau, J [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Pareto, D [Unitat de BiofIsica i Bioenginyeria, Universitat de Barcelona, Casanova 143, 08036 Barcelona (Spain); Bullich, S [Unitat de BiofIsica i Bioenginyeria, Universitat de Barcelona, Casanova 143, 08036 Barcelona (Spain); PavIa, J [Servei de Medicina Nuclear, Hospital ClInic i Provincial de Barcelona, Villarroel 170, 08036 Barcelona (Spain); Calvino, F [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Ros, D [Unitat de BiofIsica i Bioenginyeria, Universitat de Barcelona, Casanova 143, 08036 Barcelona (Spain)

    2004-07-21

    The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with {sup 123}I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a {sup 18}F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.

  18. Feasibility of a streamlined imaging protocol in technetium-99m-Tektrotyd somatostatin receptor SPECT/CT.

    Science.gov (United States)

    Al-Chalabi, H; Cook, A; Ellis, C; Patel, C N; Scarsbrook, A F

    2018-02-01

    To assess the feasibility and efficacy of a streamlined single time-point 99m Tc-HYNIC-Tyr3-octreotide (Tektrotyd) somatostatin receptor scintigraphy (SRS) protocol to differentiate pathological uptake by neuroendocrine tumours (NETs) from physiological activity. Tektrotyd imaging in 50 consecutive patients with NETs was reviewed retrospectively. Imaging was independently assessed by two experienced reporters with dual-certification in radiology and nuclear medicine and agreed in consensus. The presence of physiological bowel activity and/or further sites of equivocal uptake on 4-hour planar imaging and whether combined single-photon-emission computed tomography (SPECT)/computed tomography (CT) assessment allowed accurate diagnosis was tabulated. A judgement was also made in each case on whether 2-hour planar imaging was necessary for accurate diagnostic interpretation. Thirty-six patients (72%) had positive findings on Tektrotyd SPECT/CT. Eight patients (16%) had bowel activity on 4-hour planar imaging, which could be considered to have hampered interpretation without access to SPECT/CT. Eleven studies in 10 patients (20%) demonstrated areas of indeterminate uptake on planar imaging; five in the uncinate process of the pancreas, three in the nasal cavity or paranasal sinuses, one in the adrenal glands, one in a focus of inflammation on the posterior abdominal wall, and one at the tip of a central venous line. In all cases, accurate interpretation of findings was possible with SPECT/CT, without the 2-hour planar image. Two-hour planar imaging could be safely omitted from Tektrotyd SRS incorporating SPECT/CT imaging without reducing the accuracy of diagnostic interpretation. Streamlined imaging has the potential to reduce patient inconvenience and improve scanner and staff efficiency. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, G.C.; Pekcanlar, A.; Bekis, R.; Ada, E.; Miral, S.; Emiroglu, N.; Durak, H. [Dokuz Eylul Univ., Izmir (Turkey). School of Medicine

    2002-12-01

    Attention deficit hyperactivity disorder (ADHD) is a developmental, neurobehavioral syndrome with an onset in childhood. The aim of this study was to investigate the existence of regional perfusion changes in ADHD by means of Tc-99m HMPAO brain SPECT. Thirteen children with a diagnosis of ADHD and 7 healthy, age-matched controls were included in this study. Hypoperfusion was observed on the right temporal cortex in 9, and on the left temporal cortex in 3 children. The distribution of the lesions showed right lateral temporal cortex involvement in 3, right medial temporal cortex in 9 and left medial temporal cortex in 8 children. Asymmetric perfusion was seen on the caudate nucleus in 4, on the thalamus in 3 and on the frontal cortex in 6 children. There was a significant difference between children with ADHD and controls in right medial temporal cortex: cerebellum and right lateral temporal cortex: cerebellum ratios. Hypoperfusion in the right medial temporal cortex was significantly and inversely correlated with Du Paul teachers' questionnaire rating scale (r=-0.71, p=0.006). It has been postulated that difficulty in self regulating response to stimuli in ADHD is mediated by underfunctioning of the orbital frontal cortex and subsequent connection to the limbic system. Decreased temporal cortex perfusion may dysfunction of the limbic system or the orbito-frontal-limbic axis. (author)

  20. I-123-lodo-alpha-methyl tyrosine SPECT in non-parenchymal brain tumours.

    Science.gov (United States)

    Matheja, P; Weckesser, M; Rickert, Ch; Franzius, Ch; Palkovic, St; Riemann, B; Schober, O

    2002-01-01

    Scintigraphy using I-123-iodo-alpha-methyl tyrosine (IMT) is useful in the preoperative characterization of gliomas, in detecting recurrent glioma and in the biological re-evaluation of residual or recurrent tumours. A systematic evaluation of non-parenchymal brain tumours has not yet been performed. The aim of the present study was to evaluate IMT SPECT in the management of intracerebral metastases and lymphomas. IMT uptake was analyzed in 31 patients with 28 metastases of extracerebral solid tumours and 7 cerebral lymphomas. Histology revealed high grade lymphomas, melanomas, and carcinomas of the following origin: lung, unknown primary, breast, colon, renal cell, ovary, vagina, frontal sinus. IMT uptake was quantified as ratio between maximal tumour accumulation and average uptake in the contralateral hemisphere. All tumours except two renal cell and one small cell lung carcinoma metastases accumulated IMT (91%). The highest IMT uptake was found in a metastasis of lung carcinoma. IMT uptake was highly variable and was similar in primary and in recurrent tumours. Significant accumulation of IMT is seen in the majority of tumours, so that this technique might be helpful for the management of cerebral metastases and lymphomas.

  1. Measurement of [123I]FP-CIT binding to the dopamine transporter (DAT) in healthy mouse striatum using dedicated small animal SPECT imaging: feasibility, optimization and validation.

    Science.gov (United States)

    Greco, A; Zannetti, A; Pappatà, S; Albanese, A; Coda, A R; Ragucci, M; Nardelli, A; Brunetti, A; Cuocolo, A; Salvatore, M

    2015-09-01

    In vivo imaging of dopamine transporter (DAT), a reliable marker of degeneration of nigrostriatal dopaminergic innervation, has gained increasing interest in preclinical neurodegenerative research for studying disease mechanisms and testing new therapeutic strategies. We assessed the feasibility and the reliability of in vivo and ex vivo quantification of Methyl (3S,4S,5R)-8-(3-fluoropropyl)-3-(4-iodophenyl)-8-azabicyclo[3.2.1]octane-4- carboxylate ([123I]FP-CIT) binding to striatal DAT sites in mouse brain. Dedicated small animal single-photon emission computed tomography (SPECT) images of [123I]FPCIT binding were obtained in 3 groups of healthy mice: untreated (n=6), pre-treated with lugol solution (n=4), and pre-treated with selective dopamine transporter uptake inhibitor GBR12909 (n=4). Ex-vivo autoradiography studies were performed at the end of SPECT studies with phosphor image system in 4 out of the 6 untreated mice and in all mice pretreated with lugol. Regions of interest were defined over the striatum. The specific binding (SB) was calculated using the cerebral cortex as reference region. SPECT images in untreated mice showed high [123I]FP-CIT uptake in the striatum and extra-cerebral regions. Lugol pre-treatment improved striatal images quality decreasing salivary and thyroid glands uptake. SB was higher (plugol (5.97±0.60) than in untreated mice (2.25±0.28). Autoradiography showed similar SB findings in untreated (2.27±0.33) and lugol-treated (4.27±0.57) mice (plugol might improve striatal [123I]FP-CIT SB in mice.

  2. Reconstruction of 4-D dynamic SPECT images from inconsistent projections using a Spline initialized FADS algorithm (SIFADS).

    Science.gov (United States)

    Abdalah, Mahmoud; Boutchko, Rostyslav; Mitra, Debasis; Gullberg, Grant T

    2015-01-01

    In this paper, we propose and validate an algorithm of extracting voxel-by-voxel time activity curves directly from inconsistent projections applied in dynamic cardiac SPECT. The algorithm was derived based on factor analysis of dynamic structures (FADS) approach and imposes prior information by applying several regularization functions with adaptively changing relative weighting. The anatomical information of the imaged subject was used to apply the proposed regularization functions adaptively in the spatial domain. The algorithm performance is validated by reconstructing dynamic datasets simulated using the NCAT phantom with a range of different input tissue time-activity curves. The results are compared to the spline-based and FADS methods. The validated algorithm is then applied to reconstruct pre-clinical cardiac SPECT data from canine and murine subjects. Images, generated from both simulated and experimentally acquired data confirm the ability of the new algorithm to solve the inverse problem of dynamic SPECT with slow gantry rotation.

  3. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model...... contains statistical information of the variability of left ventricular shape. CAFU was adjusted based on the results from the analysis of five simulated gated-SPECT studies with well defined volumes of the left ventricle. The digital phantom NURBS-based Cardiac-Torso (NCAT) and the Monte-Carlo method...... agreement between QGS and CAFU. The findings of this study indicate that our new automated method for quantification of gated-SPECT images can accurately measure left ventricular volumes and EF....

  4. Neuropsychological functions and rCBF SPECT in Parkinson's disease patients considered candidates for deep brain stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Paschali, Anna; Lakiotis, Velissarios; Vassilakos, Paulos [University of Patras Medical School, Department of Nuclear Medicine, Patras (Greece); Messinis, Lambros; Lyros, Epameinondas; Papathanasopoulos, Panagiotis [University of Patras Medical School, Department of Neurology, Neuropsychology Section, Patras (Greece); Constantoyannis, Costas; Kefalopoulou, Zinovia [University of Patras Medical School, Department of Neurosurgery, Patras (Greece)

    2009-11-15

    In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H and Y) scale. During all assessments patients were ''on'' standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings. (orig.)

  5. Dual-Energy SPECT and the Development of Peptide p5+14 for Imaging Amyloidosis

    Directory of Open Access Journals (Sweden)

    Jonathan S. Wall PhD

    2017-05-01

    Full Text Available Amyloidosis is associated with a number of rare diseases and is characterized by the deposition, in abdominothoracic organs and peripheral nerves, of extracellular protein fibrils, which leads to dysfunction and severe morbidity. Effective clinical evaluation and management of patients with systemic amyloidosis are hampered by the lack of a noninvasive, quantitative method for detecting whole-body amyloid load. We have used a battery of assays including dual-energy SPECT imaging and comparative effectiveness studies in support of translation of a synthetic polybasic peptide, p5+14, as a novel radiotracer for visualization of amyloidosis by molecular imaging. These data provide support for a phase 1 positron emission tomography/computed tomography imaging trial of this reagent, labeled with iodine-124, in patients with all forms of systemic amyloidosis.

  6. Metastases seen on SPECT imaging despite a normal planar bone scan.

    Science.gov (United States)

    Roland, J; van den Weyngaert, D; Krug, B; Brans, B; Scalliet, P; Vandevivere, J

    1995-12-01

    Although bone scintigraphy is an extremely sensitive method for the detection of focal bone disease, small lesions below the resolution of planar imaging may be missed. This is a report of a patient with carcinoma of the breast who showed tumor progression 1 year after initial treatment. Complete evaluation was performed in order to detect the origin of increased level of a tumor marker. Although planar bone scintigraphy could not demonstrate any lesion in the spine, multiple metastases were detected in the lumbar and the thoracic spines on SPECT imaging. Only some of these lesions were seen with MRI. Repeat planar bone imaging 6 weeks later showed multiple bone lesions in the lumbar and thoracic areas.

  7. Dual-Energy SPECT and the Development of Peptide p5+14 for Imaging Amyloidosis

    Science.gov (United States)

    Kennel, Stephen J.; Martin, Emily B.

    2017-01-01

    Amyloidosis is associated with a number of rare diseases and is characterized by the deposition, in abdominothoracic organs and peripheral nerves, of extracellular protein fibrils, which leads to dysfunction and severe morbidity. Effective clinical evaluation and management of patients with systemic amyloidosis are hampered by the lack of a noninvasive, quantitative method for detecting whole-body amyloid load. We have used a battery of assays including dual-energy SPECT imaging and comparative effectiveness studies in support of translation of a synthetic polybasic peptide, p5+14, as a novel radiotracer for visualization of amyloidosis by molecular imaging. These data provide support for a phase 1 positron emission tomography/computed tomography imaging trial of this reagent, labeled with iodine-124, in patients with all forms of systemic amyloidosis. PMID:28654386

  8. Neuropharmacological imaging in epilepsy with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Henry, T.R.; Pennell, P.B. [Atlanta, Emory Univ. School of Medicine, GE (United States). Emory Epilepsy Center. Dept. of Neurology

    1998-09-01

    Functional neuroimaging with positron and single photon emitter-labeling has added considerably to the understanding of epileptic seizure activity and of the postictal and interictal cerebral dysfunctions that accompany many epilepsies. Some of these functional alterations cannot be studied in humans by any other technique, and in other instances the information is complementary to that provided by other techniques, some of which are invasive or even require tissue destruction. Available radiotracer imaging techniques have yet to be fully applied to several important epileptic syndromes (including the Lennox-Gastaut syndrome and other secondary generalized epilepsies), to physiological aspects of the natural history of temporal lobe epilepsy or any other commonly occurring epilepsy, and to the assessment of mechanism of action and adverse effects of antiepileptic drugs and other epilepsy therapies. New radiotracers should be developed to permit study of specific excitatory amino acid receptors and other receptor sites that are known to be relevant to the development of epilepsy, to the onset of individual seizures, and to interical dysfunctions.

  9. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with (99m)Tc- and (123)I-labelled probes.

    Science.gov (United States)

    Pissarek, M; Meyer-Kirchrath, J; Hohlfeld, T; Vollmar, S; Oros-Peusquens, A M; Flögel, U; Jacoby, C; Krügel, U; Schramm, N

    2009-09-01

    The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of (123)I- and (99m)Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake. A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D(2) receptor ligand [(123)I]IBZM and the cerebral perfusion tracer [(99m)Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [(123)I]IPPA (0.94 +/- 0.05 MBq/g body weight) and the perfusion tracer [(99m)Tc]sestamibi (3.8 +/- 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP(3) receptor. In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [(123)I]IBZM and of cardiac [(99m)Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [(123)I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [(99m)Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [(123)I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight. Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of (123)I- and (99m)Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers.

  10. The Neuroactivation of Cognitive Processes Investigated with SPECT

    Directory of Open Access Journals (Sweden)

    Daniela Montaldi

    2000-01-01

    Full Text Available The last ten years have seen the development and expansion of an exciting new field of neuroscientific research; functional mapping of the human brain. Whilst many of the questions addressed by this area of research could be answered using SPECT, relatively few SPECT activation studies of this kind have been carried out. The present paper combines an evaluation of SPECT procedures used for neuroactivation studies, and their comparison with other imaging modalities (i.e., PET and fMRI, with a review of SPECT neuroactivation studies that yield information concerning normal brain function with a particular emphasis on the brain activations produced by memory processing. The paper aims to describe and counter common misunderstandings regarding potential limitations of the SPECT technique, to explain and illustrate which SPECT procedures best fulfill the requirements of a neuroactivation study, and how best to obtain information about normal brain function (whether using normal healthy subjects or patients and finally to highlight SPECT’s potential future role in the functional mapping of the human brain.

  11. Usefulness of {sup 99m}Tc-ECD brain SPECT in acute onset pediatric CNS diseases. In comparison with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teisuke; Chikatsu, Hiroko; Nishiyama, Hiromune; Endo, Hiroko; Kono, Tatsuo; Iimura, Fumitoshi; Kuwashima, Shigeko; Saiki, Natoru; Fujioka, Mutsuhisa [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    2001-07-01

    The purpose of this study was to assess the usefulness of regional cerebral blood flow (rCBF) measured by {sup 99m}Tc-L, L-ethyl cysteinate dimer (ECD) brain SPECT in the acute onset type of pediatric central nervous system (CNS) diseases. Thirteen children (7 girls, 6 boys, 4 month-12 years of age) who were diagnosed with 9 cases of viral encephalitis, two cases of febrile convulsion and one each of migraine and metabolic disorder underwent {sup 99m}Tc-ECD brain SPECT, CT and/or MRI within one week interval. The incidence of abnormal findings in the 13 patients was 96.4% (30/31) on {sup 99m}Tc-ECD brain SPECT, 17.6% (3/17) on CT and 63.6% (14/22) on MRI. The positive detection rate of {sup 99m}Tc-ECD brain SPECT was statistically (P<0.01 by a {chi}{sup 2} and/or Fisher's exact probability test) higher than those of CT and MRI. And the changes in rCBF were demonstrated. {sup 99m}Tc-ECD brain SPECT is a useful examination for the diagnosis and follow up management in patients with the acute onset type of pediatric CNS diseases. (author)

  12. [Elaboration of the SPM template for the standardization of SPECT images with 123I-Ioflupane].

    Science.gov (United States)

    García-Gómez, F J; García-Solís, D; Luis-Simón, F J; Marín-Oyaga, V A; Carrillo, F; Mir, P; Vázquez-Albertino, R J

    2013-01-01

    Statistical parametric mapping (SPM) is a widely used produced for normalization of functional images. This study has aimed to develop a normalization template of (123)I-Ioflupane SPECT-imaging DaTSCAN(®), GE Healthcare), not available in SPM5, and to validate it compared to other quantification methods. In order to write the template we retrospectively selected 26 subjects who had no evidence of nigrostriatal degeneration and whose age distribution was similar to that of the patients in the usual practice of our Department: 2 subjects (7.6%) were 65 years (57.7%). All the studies were normalized with the T1-template available in SPM5 and an average image of the value was obtained for each voxel. For validation we analyzed 60 patients: 30 with idiopathic Parkinson's disease patients (iPD) with right involvement (66.83±12.20 years) and 30 with essential tremor patients (ET) (67.27±8.33 years). Specific uptake rates (SUR) of different striatal regions were compared after image normalization with our template and the application of a semiautomated VOIs-map created with Analyze v9.0 ((©)BIR, Mayo Clinic), against two quantification methods: a) manual adjustment of a ROIs-map drawn in Analyze, and b) semi-automated method (HERMES-BRASS) with normalization and implementation of VOIs-map. No statistically significant differences in the iPD/ET discriminatory capacity between the three methods analyzed were observed (p0,871, p<0,001). This difference was greater in patients with PD. Our study demonstrates the efficacy of our SPM «template» for (123)I-Ioflupane SPECT-imaging, obtained from normalization with «T1-template». Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  13. Software-based hybrid perfusion SPECT/CT provides diagnostic accuracy when other pulmonary embolism imaging is indeterminate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nishant; Xie, Karen; Mar, Winnie; Anderson, Thomas M.; Carney, Benjamin; Mehta, Nikhil; Machado, Roberto; Blend, Michael J.; Lu, Yang [University of Illinois Hospital and Health Sciences System, Chicago (Korea, Republic of)

    2015-12-15

    To investigate the diagnostic performance of perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) in patients suspected to have pulmonary embolism (PE) but with indeterminate computed tomographic pulmonary angiography (CTPA) or planar ventilation/perfusion (V/Q) scans. This retrospective study included two groups of patients. Group I consisted of 49 patients with nondiagnostic CTPA. These 49 patients underwent subsequent V/Q scans. Further Q-SPECTs were obtained in patients with indeterminate planar images and fused with existing CTPA. Group II consisted of 182 non-CTPA patients with indeterminate V/Q scans. These 182 patients underwent further Q-SPECT and separate noncontrast low-dose CT chest. Fusion Q-SPECT/CT scans were obtained through FDA-approved software and interpreted according to published criteria as positive, negative, or indeterminate for PE. Upon retrospective analyses, the final diagnosis was made using composite reference standards including all available clinical and imaging information for at least 6-month follow-up. In group I patients, 1 was positive, 24 were negative, and another 24 (49 %, 24/49) were indeterminate. In the subsequent 24 Q-SPECT/CTPAs, 4 were positive, 19 were negative, and 1 was indeterminate (4.2 %, 1/24). In group II patients, 9 (4.9 %, 9/182) were indeterminate, 33 were positive, and 140 were negative. The combined nondiagnostic rate for Q-SPECT/CT was only 4.9 % (10/206). There was six false-negative and one false-positive Q-SPECT/CT examinations. The sensitivity, specificity, and positive and negative predictive value of Q-SPECT/CT were 85.7 % (36/42), 99.4 % (153/154), 97.3 % (36/37) and 96.2 % (153/159), respectively. Q-SPECT/CT improves the diagnostic rate with promising accuracy in diagnosing PE that yields a satisfactory clinical verdict, especially when the CTPA and planar V/Q scan are indeterminate.

  14. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  15. Motor cortex stimulation(MCS) for intractable complex regional pain syndrome (CRPS) type II: PSM analysis of Tc-99m ECD brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Son, B. C.; Yoo, I. R.; Kim, S. H.; Kim, E. N.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    We had experienced a patient with intractable CRPS in whom statistical parametric mapping (SPM) analysis of cerebral perfusion explained the mechanism of pain control by MCS. A 43-year-old man presented spontaneous severe burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. After the electrodes for neuromodulation therapy were inserted in the central sulcus, the baseline and stimulation brain perfusion SPECT using Tc-99m ECD were obtained within two days. The differences between the baseline and stimulation SPECT images, estimated at every voxel using t-statistics using SPM-99 software, were considered significant at a threshold of uncorrected P values less than 0.01. Among several areas significantly activated following pain relief with MCS, ipsilateral pyramidal tract in the cerebral peduncle might be related to the mechanism of pain control with MCS through efferent motor pathway. The result suggested that corticospinal neurons themselves or motor cortex efferent pathway maintained by the presence of intact corticospinal neurons could play an important role in producing pain control after MCS. This study would helpful in understanding of neurophysiology.

  16. SU-E-J-104: Single Photon Image From PET with Insertable SPECT Collimator for Boron Neutron Capture Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Yoon, D; Suh, T [The catholic University of Korea, College of Medicine/Graduate School of Medicine, Seoul (Korea, Republic of); Hong, K [Molecular Imaging Program at Stanford (MIPS), Palo Alto, CA (United States)

    2014-06-01

    Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full width at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No

  17. The Superiority of Tsallis Entropy over Traditional Cost Functions for Brain MRI and SPECT Registration

    Directory of Open Access Journals (Sweden)

    Henrique Amaral-Silva

    2014-03-01

    Full Text Available Neuroimage registration has an important role in clinical (for both diagnostic and therapeutic purposes and research applications. In this article we describe the applicability of Tsallis Entropy as a new cost function for neuroimage registration through a comparative analysis based on the performance of the traditional approaches (correlation based: Entropy Correlation Coefficient (ECC and Normalized Cross Correlation (NCC; and Mutual Information (MI based: Mutual Information using Shannon Entropy (MIS and Normalized Mutual Information (NMI and the proposed one based on MI using Tsallis entropy (MIT. We created phantoms with known geometric transformations using Single Photon Emission Computed Tomography (SPECT and Magnetic Resonance Imaging from 3 morphologically normal subjects. The simulated volumes were registered to the original ones using both the proposed and traditional approaches. The comparative analysis of the Relative Error (RE showed that MIT was more accurate in the intra-modality registration, whereas for inter-modality registration, MIT presented the lowest RE for rotational transformations, and the ECC the lowest RE for translational transformations. In conclusion, we have shown that, with certain limitations, Tsallis Entropy has application as a better cost function for reliable neuroimage registration.

  18. Design and synthesis of tumor-targeting theranostic drug conjugates for SPECT and PET imaging studies.

    Science.gov (United States)

    Wang, Tao; Vineberg, Jacob G; Honda, Tadashi; Ojima, Iwao

    2017-12-11

    Theranostics will play a significant role in the next-generation chemotherapy. Two novel tumor-targeting theranostic drug conjugates, bearing imaging arms, were designed and synthesized. These theranostic conjugates consist of biotin as the tumor-targeting moiety, a second generation taxoid, SB-T-1214, as a potent anticancer drug, and two different imaging arms for capturing 99mTc for SPECT (single photon emission computed tomography) and 64Cu for PET (positron emission tomography). To explore the best reaction conditions for capturing radionuclides and work out the chemistry directly applicable to "hot" nuclides, cold chemistry was investigated to capture 185Re(I) and 63Cu(II) species as surrogates for 99mTc and 64Cu, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  20. Investigating the role of 99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson’s disease

    OpenAIRE

    Geng, Yu; Shi, Guo-Hua; Jiang, Yun; Xu, Ling-xun; Hu, Xing-Yue; Shao, Yu-quan

    2004-01-01

    Objective: To investigate the role of 99mTc-TRODAT-1 SPECT in diagnosis and assessing severity of idiopathic Parkinson’s disease (PD). Methods: Thirty-eight patients with primary, tentative diagnosis of PD and eighteen age-matched normal controls were studied with 99mTc-TRODAT-1 SPECT imaging. The regions of interests (ROIs) were drawn manually on cerebellum (CB), occipital cortex (OC) and three transverse plane slice-views of striatums, the semiquantitative BG (background)/[(OC+CB)/2] were t...

  1. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  2. THETA AND ALPHA EEG FREQUENCY INTERPLAY IN SUBJECTS WITH MILD COGNITIVE IMPAIRMENT: EVIDENCE FROM EEG, MRI AND SPECT BRAIN MODIFICATIONS

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2015-03-01

    Full Text Available Background: reduction of regional cerebral perfusion in hippocampus as well as temporo-parietal and medial temporal cortex atrophy are associated to mild cognitive impairment (MCI due to Alzheimer disease (AD. Methods: 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG recording and high resolution 3D magnetic resonance imaging (MRI. Among the patients, a subset of 27 subjects underwent also perfusion single-photon emission computed tomography (SPECT and hippocampal atrophy evaluation. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of alpha3/alpha2 power ratio and difference of cortical thickness among the groups estimated. Results: higher alpha3/alpha2 power ratio group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Subjects with higher alpha3/alpha2 frequency power ratio showed a constant trend to a lower perfusion than lower alpha3/alpha2 group. Moreover, this group correlates with both a bigger hippocampal atrophy and an increase of theta frequency power.Conclusion: Higher EEG alpha3/alpha2 power ratio was associated with temporo-parietal cortical thinning, hippocampal atrophy and reduction of regional cerebral perfusion in medial temporal cortex. In this group an increase of theta frequency power was detected inMCI subjects. The combination of higher EEG alpha3/alpha2 power ratio, cortical thickness measure and regional cerebral perfusion reveals a complex interplay between EEG cerebral rhythms, structural and functional brain modifications.

  3. Fusion imaging using a hybrid SPECT-CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Denecke, Timm; Lehmkuhl, Lukas; Peters, Nils; Pech, Maciej; Ricke, Jens; Felix, Roland; Amthauer, Holger [Charite-Universitatsmedizin Berlin - Klinik fur Strahlenheilkunde und PET-Zentrum Berlin, Campus Virchow-Klinikum, Berlin (Germany); Hildebrandt, Bert; Nicolaou, Annett; Riess, Hanno [Charite-Universitatsmedizin Berlin - Medizinische Klinik m.S. Haematologie Onkologie, Campus Virchow-Klinikum, Berlin (Germany)

    2005-09-01

    Exclusive and homogeneous perfusion of the liver is considered essential for the efficacy of hepatic arterial infusion of chemotherapy (HAI). The aim of this study was to evaluate port perfusion scintigraphy in colorectal cancer patients using a hybrid SPECT-CT system for control of minimally invasive intra-arterial port systems within the scope of a phase II trial. In 24 consecutive patients, the perfusion territories of intra-arterial hepatic port systems were assessed by port scintigraphy with{sup 99m}Tc-labelled macroaggregated albumin employing planar imaging, SPECT and SPECT-CT (acquired with a hybrid SPECT-CT camera). The results of blinded reading of the scintigraphic modalities concerning the intra- and extrahepatic perfusion pattern were compared with combined image analysis (angiography and contrast-enhanced dedicated CT) and patient history for validation. Extrahepatic perfusion was correctly seen in three patients, while suspected extrahepatic perfusion could be excluded in one. In 46 liver lobes, perfusion patterns were correctly visualised by SPECT-CT in 100% of cases (planar, 67%; SPECT, 86%). Assessing the perfusion pattern inside the liver on a segmental basis (segments, n=138), SPECT-CT revealed correct segmental assignment of tracer distribution in 100% and was significantly superior to SPECT alone (accuracy, 84%; p<0.001). The scintigraphic findings resulted in changes in therapeutic management in 8/24 patients (33%); in two of these the relevant findings were visualised only by SPECT-CT. In patients receiving HAI, port perfusion scintigraphy by fusion imaging with a hybrid SPECT-CT system provides important information for therapy optimisation and appears to be superior to SPECT alone. (orig.)

  4. Use of quantitative SPECT/CT reconstruction in99mTc-sestamibi imaging of patients with renal masses.

    Science.gov (United States)

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  5. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  6. In vivo evaluation of [{sup 123}I]-4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine, an iodinated SPECT tracer for imaging the P-gp transporter

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyne, Sylvie; Wyffels, Leonie [Laboratory for Radiopharmacy, Ghent University, 9000 Ghent (Belgium); Boos, Terrence L. [Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (United States); Staelens, Steven; Deleye, Steven [IBITECH-Medisip, Ghent University-IBBT, 9000 Ghent (Belgium); Rice, Kenner C. [Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (United States); De Vos, Filip [Laboratory for Radiopharmacy, Ghent University, 9000 Ghent (Belgium)], E-mail: filipx.devos@ugent.be

    2010-05-15

    Introduction: P-glycoprotein (P-gp) is an energy-dependent transporter that contributes to the efflux of a wide range of xenobiotics at the blood-brain barrier playing a role in drug-resistance or therapy failure. In this study, we evaluated [{sup 123}I]-4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine ([{sup 123}I]-FMIP) as a novel single photon emission computed tomography (SPECT) tracer for imaging P-gp at the brain in vivo. Methods: The tissue distribution and brain uptake as well as the metabolic profile of [{sup 123}I]-FMIP in wild-type and mdr1a (-/-) mice after pretreatment with physiological saline or cyclosporin A (CsA) (50 mg/kg) was investigated. The influence of increasing doses CsA on brain uptake of [{sup 123}I]-FMIP was explored. {mu}SPECT images of mice brain after injection of 11.1 MBq [{sup 123}I]-FMIP were obtained for different treatment strategies thereby using the Milabs U-SPECT-II. Results: Modulation of P-gp with CsA (50 mg/kg) as well as mdr1a gene depletion resulted in significant increase in cerebral uptake of [{sup 123}I]-FMIP with only minor effect on blood activity. [{sup 123}I]-FMIP is relative stable in vivo with >80% intact [{sup 123}I]-FMIP in brain at 60 min p.i. in the different treatment regiments. A dose-dependent sigmoidal increase in brain uptake of [{sup 123}I]-FMIP with increasing doses of CsA was observed. In vivo region of interest-based SPECT measurements correlated well with the observations of the biodistribution studies. Conclusions: These findings indicate that [{sup 123}I]-FMIP can be applied to assess the efficacy of newly developed P-gp modulators. It is also suggested that [{sup 123}I]-FMIP is a promising SPECT tracer for imaging P-gp at the blood-brain barrier.

  7. A comparison of high dose Ga-67 SPECT and FDG PET imaging in malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kaliff, V.; Hicks, R.J.; Binns, D.S.; Henderson, M.A.; Ainslie, J.; Jenner, D.A. [Peter McCallum Cancer Institute, Melbourne, VIC (Australia)

    1998-06-01

    Full text: Ga-67 imaging for tumour localisation lost favour in the 1970`s. With improvement in technology and use of higher doses, it has now found an important role in lymphoma. A similar phenomenon may be possible in the staging of melanoma. This study therefore compares high dose (370 MBq) Ga-67 imaging using a day 5 and 7 whole-body and comprehensive SPECT protocol, with (100 MBq) F-18 fluorodeoxyglucose (FDG) imaging using positron emission tomography (PET): a technique recently shown to be highly accurate in this condition. 85 patients; 46 males, mean age 52+17 yrs: range 22-83 yrs, underwent both studies within 9{+-}16 days (max-91 days). Scans were judged as positive (+ve), negative (-ve) or equivocal (EQ) for local, regional and distant disease. Clinical follow-up resolved discordant scan findings. PET and Ga-67 results were concordant in 61 (70%) patients (19 with +ve, 37 -ve and 5 EQ scans). None of the 9 ps with one EQ and one eye scan had disease on follow-up. Follow-up was available in 4/5 patients with discordantly +ve (3 patients) or more extensive Ga-67 abnormality: 3 patients had disease confirmed, 1 patient false +ve (asymmetric lung hilum). Follow-up was available in 9/10 patients with discordantly +ve (3 patients) or more extensive PET abnormality: 4 patients had confirmed disease, l pt false +ve (bladder diverticulum). A further 4 patients had second primaries (2 rectal carcinomas, 1 plasmacytoma, 1 basal cell carcinoma). High dose Ga-67 scanning incorporating SPECT appears to be a reasonable alternative to FDG PET for screening patients with melanoma. In this series PET`s main advantages were in the detection of other occult tumours, greater patient convenience and lower radiation dosimetry.

  8. Imaging lung function in mice using SPECT/CT and per-voxel analysis.

    Directory of Open Access Journals (Sweden)

    Brian N Jobse

    Full Text Available Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q single photon emission computed tomography (SPECT with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with (99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03 in 12 week old animals and a mean log(V/Q ratio of -0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies.

  9. Assessment of cerebral hemodynamics to acetazolamide using brain perfusion SPECT in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    Science.gov (United States)

    Park, Soon-Ah; Yang, Chung-Yong; Choi, See-Sung; Kim, Woo Hyoung

    2011-02-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary microangiopathy caused by mutations in the Notch3 gene located on chromosome 19, leading to 4 cardinal features with aura, cerebrovascular ischemic events, mood disturbances, and dementia. Acetazolamide (ACZ) has been promoted as a drug to determine cerebral hemodynamics, including cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in patients with cerebrovascular disease. In CADASIL patients with small-vessel disease, ACZ may be possible to increase CBF. We present that reduced CBF was dramatically improved after administration of ACZ on Tc-99m ECD brain perfusion SPECT in a CADASIL patient.

  10. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently

  11. [ I - 123 ] IPT SPECT Dopamine Reuptake Site Imaging : Differences in Normal Controls and Parkinson's Patients by Semiquantitat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Joung; Yang, Seoung Oh; Ryu, Jin Sook; Choi, Yun Young; Lee, Hee Kyung [Asan Medical Center, University of Ulsan, Seoul (Korea, Republic of); Im, Joo Hyuck; Lee, Myung Chong [Asan Medical Center, University of Ulsan, Seoul (Korea, Republic of)

    1996-03-15

    Dopamine transporter concentrations have been known to decrease in Parkinson's disease (PD) or increase in Tourette's disorder. The purpose of this study was to evaluate the effectiveness of [I-123]N-(3-iodopropene-2-yl)-2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl) tropane (IPT) as an imaging agent for measuring changes in transporter concentrations with PD. IPT labelled with 6.69+/-0.64 mCi (247.53+/-23.68 MBq) of I-123 was intravenously injected into ten patients(age: 55+/-11) with PD, and six normal controls(NC)(age: 46+/-14) as a bolus. Dynamic SPECT scans of the brain were then performed for 5 minutes each over 120 minutes on a triple headed camera. Time activity curves were generated for the left basal ganglia(LBG), right basal ganglia(RBG), and occipital cortex(OCC). The statistical parameters included the time to peak activity, the contrast ratio of LEG and RBG to OCC at several time points, and the accumulated specific binding counts/mCi/pixel (ASBC) from 0 to 115 minutes. The uptake of IPT in the brains of PD and NC peaked within 10 minutes of injection in all subjects. The maximum target to background ratio in the basal ganglia of PD and NC occurred at 85+/-20 min and 110-+/-6 min of injection, respectively. The BG/OCC ratios at 115 minutes for PD and NC were 2.15+/-0.54 and 4.26+/-0.73, respectively. The ASBC at 115 minutes for PD and NC were 152.91+/-50.09 and 289.51+/-49.00, respectively. The ratio of BG/OCC for the NC was significantly higher than the ratio for PD. SPECT data matched with clinical diagnosis for PDs. The ratio between BG and OCC and the ASBC for PD were clearly separated from NC and may be useful outcome measures for clinical diagnosis. The findings suggest that IPT may be a very useful tracer for early diagnosis of PD and study of dopamine reuptake site.

  12. 3-Pyridyl ethers as SPECT radioligands for imaging nicotinic acetylcholine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, D.J.; Eberl, S.; Thomson, S.; Smith, A.; Allan, R.D.; Fulham, M.J.; Loiacono, R.; Kassiou, M. E-mail: mkassiou@med.usyd.edu.au

    2004-05-01

    To develop a suitable single photon emission computed tomography (SPECT) radioligand for neuronal nicotinic acetylcholine receptors (nAChRs) that displays faster in vivo kinetics than 5-[{sup 123}I]iodo-A-85380, we synthesised the radioiodinated analogue of A-84543. 5-[{sup 123}I]Iodo-A-84543 was prepared by electrophilic iododestannylation in a modest yield of 23%. In the baboon brain, 5-[{sup 123}I]iodo-A-85380 displayed a profile consistent with the known distribution of nAChRs, however, 5-[{sup 123}I]iodo-A-84543 displayed a homogenous uptake with no preferential localisation in regions known to contain nAChRs. To examine the effect of halogen substitution on the 3-pyridyl ether, A-84543, the 5-chloro, 5-bromo and 5-iodo analogues were synthesised and evaluated with respect to nAChR binding. In vitro binding data revealed that halogen substitution at the 5-position of A-84543 was not well tolerated with an increase in halogen size resulting in lower binding towards nAChRs. The 5-chloro analogue 4 displayed highest affinity, K{sub i}=1.3 nM, compared to the 5-bromo and 5-iodo compounds, 5 K{sub i}=3.3 nM and 3 K{sub i}=40.8 nM, respectively. Taken together, these results clearly indicate that 5-[{sup 123}I]iodo-A-84543 is not suitable for the study of nAChRs in vivo using SPECT.

  13. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox.

    Science.gov (United States)

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J; Dierckx, Rudi A J O; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (ptracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].

  14. Development of a high-resolution detection module for the INSERT SPECT/MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Busca, Paolo; Fiorini, Carlo; Butt, Arslan D; Occhipinti, Michele; Quaglia, Riccardo; Trigilio, Paolo [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 40, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Nemeth, Gabor; Major, Peter; Bukki, Tamas; Nagy, Kalman [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto [Fondazione Bruno Kessler (FBK), Via Sommarive, 18, 38123 Trento (Italy); Rieger, Jan [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Niendorf, Thoralf [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Berlin Ultrahigh Field Facility (B.UniversityF.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin (Germany)

    2014-07-29

    A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes are being developed, one dedicated to preclinical imaging (7 and 9.4 T), the second one dedicated to clinical imaging (3 T).

  15. Analysis of Regional Cerebral Blood Flow Using {sup 99m}Tc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1988-03-15

    {sup 99m}Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, {sup 99m}Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  16. Brain {sup 18}F-FDG, {sup 18}F-florbtaben PET/CT, {sup 123}I-FP-CIT SPECT and cardiac {sup 123}I-MBG imaging for diagnosis of a 'cerebral type' of Lewy Body disease

    Energy Technology Data Exchange (ETDEWEB)

    Gucht, Axel Van Der; Bélissant, Ophélie; Rabu, Corenti; Cottereau, Anne-Ségolène; Evangelista, Eva; Chalaye, Julia; Bonnot-Lours, Sophie; Fénelon, Gilles; Itti, Emmanuel [Dept. of Nuclear Medicine, AP-HP, Henri-Mondor Teaching Hospital, Crteil (France); De Langavant, Laurent Cleret [Cognitive Neurology Unit, H. Mondor Hospital, Creteil (France)

    2016-09-15

    A 67-year-old man was referred for fluctuating neuropsychiatric symptoms, featuring depression, delirious episodes, recurrent visual hallucinations and catatonic syndrome associated with cognitive decline. No parkinsonism was found clinically even under neuroleptic treatment. {sup 18}F-FDG PET/CT showed hypometabolism in the posterior associative cortex including the occipital cortex, suggesting Lewy body dementia, but {sup 123}I-FP-CIT SPECT was normal and cardiac {sup 123}I-MIBG imaging showed no signs of sympathetic denervation. Alzheimer's disease was excluded by a normal {sup 18}F-florbetaben PET/CT. This report suggests a rare case of α-synucleinopathy without brainstem involvement, referred to as 'cerebral type' of Lewy body disease.

  17. Basic design and simulation of a SPECT microscope for in vivo stem cell imaging

    Science.gov (United States)

    Moats, Rex A.; Tang, Yang; Hugg, James W.; Meier, Dirk; Koos, David; Hartsough, Neal E.; Patt, Bradley E.; Wagenaar, Douglas J.

    2011-03-01

    The need to understand the behavior of individual stem cells at the various stages of their differentiation and to assess the resulting reparative action in pre-clinical model systems, which typically involves laboratory animals, provides the motivation for imaging of stem cells in vivo at high resolution. Our initial focus is to image cells and cellular events at single cell resolution in vivo in shallow tissues (few mm of intervening tissue) in laboratory mice and rates. In order to accomplish this goal we are building a SPECT-based microscope. We based our design on earlier theoretical work with near-field coded apertures and have adjusted the components of the system to meet the real-world demands of instrument construction and of animal imaging. Our instrumental design possesses a reasonable trade-off between field-of-view, sensitivity, and contrast performance (photon penetration). A layered gold aperture containing 100 pinholes and intended for use in coded aperture imaging application has been designed and constructed. A silicon detector connected to a TimePix readout from the CERN collaborative group was selected for use in our prototype microscope because of its ultra-high spatial and energy resolution capabilities. The combination of the source, aperture, and detector has been modeled and the coded aperture reconstruction of simulated sources is presented in this work.

  18. Application of Artificial Neural Network to Computer-Aided Diagnosis of Coronary Artery Disease in Myocardial SPECT Bull's-eye Images

    National Research Council Canada - National Science Library

    Fujita, Hiroshi; Katafuchi, Tetsuro; Uehara, Toshiisa; Nishimura, Tsunehiko

    1992-01-01

    .... The technique employs a neural network to analyze 201 Tl myocardial SPECT bull's-eye images. This multi-layer feed-forward neural network with a backpropagation algorithm has 256 input units (pattern...

  19. The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for [123I]FP-CIT SPECT imaging

    National Research Council Canada - National Science Library

    Dickson, John C; Tossici-Bolt, Livia; Sera, Terez; Booij, Jan; Ziebell, Morten; Morbelli, Silvia; Assenbaum-Nan, Susanne; Borght, Thierry Vander; Pagani, Marco; Kapucu, Ozlem L; Hesse, Swen; Van Laere, Koen; Darcourt, Jacques; Varrone, Andrea; Tatsch, Klaus

    2017-01-01

    The use of a normal database for [123I]FP-CIT SPECT imaging has been found to be helpful for cases which are difficult to interpret by visual assessment alone, and to improve reproducibility in scan interpretation...

  20. Double-blind, placebo-controlled, randomized pilot study of cerebral blood flow patterns employing SPECT imaging in dental postsurgical pain patients with and without pain relief

    National Research Council Canada - National Science Library

    Newberg, Andrew B; Hersh, Elliot V; Levin, Lawrence M; Giannakopoulos, Helen; Secreto, Stacey A; Wintering, Nancy A; Farrar, John T

    2011-01-01

    .... The purpose of this pilot study was to employ SPECT to measure CBF distribution associated with postoperative dental pain and to compare these CBF patterns to subsequent images in the same patients...

  1. Assessment of Hyperperfusion by Brain Perfusion SPECT in Transient Neurological Deterioration after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Kim, Yu Kyeong; Lee, Sang Mi; Eo, Jae Sun; Oh, Chang Wan; Lee, Won Woo; Paeng, Jin Chul; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-08-15

    Transient neurological deterioration (TND) is one of the complications after extracranial-intracranial bypass surgery, and it has been assumed to be caused by postoperative transient hyperperfusion. This study was performed to evaluate the relationship between TND and preoperative and postoperative cerebral perfusion status on brain perfusion SPECT following superficial temporal artery.middle cerebral artery (STA-MCA) anastomosis surgery. A total of 60 STA-MCA anastomosis surgeries of 56 patients (mean age: 50{+-}16 yrs; M:F=29:27; atherosclerotic disease: 33, moyamoya disease: 27) which were done between September 2003 and July 2006 were enrolled. The resting cerebral perfusion and cerebral vascular reserve (CVR) after acetazolamide challenge were measured before and 10 days after surgery using 99mTc-ethylcysteinate dimer (ECD) SPECT. Moreover, the cerebral perfusion was measured on the third postoperative day. With the use of the statistical parametric mapping and probabilistic brain atlas, the counts for the middle cerebral artery (MCA) territory were calculated for each image, and statistical analyses were performed. In 6 of 60 cases (10%), TND occurred after surgery. In all patients, the preoperative cerebral perfusion of affected MCA territory was significantly lower than that of contralateral side (p=0.002). The cerebral perfusion on the third and tenth day after surgery was significantly higher than preoperative cerebral perfusion (p=0.001, p=0.02). In TND patients, basal cerebral perfusion and CVR on preoperative SPECT were significantly lower than those of non-TND patients (p=0.01, p=0.05). Further, the increases in cerebral perfusion on the third day after surgery were significant higher than those in other patients (p=0.008). In patients with TND, the cerebral perfusion ratio of affected side to contralateral side on third postoperative day was significantly higher than that of other patients (p=0.002). However, there was no significant difference of

  2. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  3. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  4. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson's disease based on [123I]FP-CIT SPECT images.

    Science.gov (United States)

    Oliveira, Francisco P M; Faria, Diogo Borges; Costa, Durval C; Castelo-Branco, Miguel; Tavares, João Manuel R S

    2017-12-23

    This work aimed to assess the potential of a set of features extracted from [ 123 I]FP-CIT SPECT brain images to be used in the computer-aided "in vivo" confirmation of dopaminergic degeneration and therefore to assist clinical decision to diagnose Parkinson's disease. Seven features were computed from each brain hemisphere: five standard features related to uptake ratios on the striatum and two features related to the estimated volume and length of the striatal region with normal uptake. The features were tested on a dataset of 652 [ 123 I]FP-CIT SPECT brain images from the Parkinson's Progression Markers Initiative. The discrimination capacities of each feature individually and groups of features were assessed using three different machine learning techniques: support vector machines (SVM), k-nearest neighbors and logistic regression. Cross-validation results based on SVM have shown that, individually, the features that generated the highest accuracies were the length of the striatal region (96.5%), the putaminal binding potential (95.4%) and the striatal binding potential (93.9%) with no statistically significant differences among them. The highest classification accuracy was obtained using all features simultaneously (accuracy 97.9%, sensitivity 98% and specificity 97.6%). Generally, slightly better results were obtained using the SVM with no statistically significant difference to the other classifiers for most of the features. The length of the striatal region uptake is clinically useful and highly valuable to confirm dopaminergic degeneration "in vivo" as an aid to the diagnosis of Parkinson's disease. It compares fairly well to the standard uptake ratio-based features, reaching, at least, similar accuracies and is easier to obtain automatically. Thus, we propose its day to day clinical use, jointly with the uptake ratio-based features, in the computer-aided diagnosis of dopaminergic degeneration in Parkinson's disease.

  5. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  6. Comparative value of brain perfusion SPECT and [{sup 123}I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko [Tokyo Medical University, Department of Geriatric Medicine, Tokyo (Japan); Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira [Tokyo Medical University, 2. Department of Internal Medicine, Tokyo (Japan); Koizumi, Kiyoshi; Abe, Kimihiko [Tokyo Medical University, Department of Radiology, Tokyo (Japan)

    2006-03-15

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[{sup 123}I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  7. Evaluation of Patients with Acute Chest Pain Using SPECT Myocardial Perfusion Imaging: Prognostic Implications of Mildly Abnormal Scans.

    Science.gov (United States)

    Goldkorn, Ronen; Naimushin, Alexey; Beigel, Roy; Naimushin, Ekaterina; Narodetski, Michael; Matetzky, Shlomi

    2017-06-01

    While patients presenting to emergency departments (ER) with chest pain are increasingly managed in chest pain units (CPU) that utilize accelerated diagnostic protocols for risk stratification, such as single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), data are lacking regarding the prognostic implications of mildly abnormal scans in this population. To evaluate the prognostic implications of mildly abnormal SPECT MPI results in patients with acute chest pain. Of the 3753 chest pain patients admitted to the CPU at the Leviev Heart Center, Sheba Medical Center 1593 were further evaluated by SPECT MPI. Scans were scored by extent and severity of stress-induced perfusion defects, with 1221 patients classified as normal, 82 with myocardial infarction without ischemia, 236 with mild ischemia, and 54 with more than mild ischemia. Mild ischemia patients were further classified to those who did and did not undergo coronary angiography within 7 days. Mild ischemia patients who underwent coronary angiography were more likely to be male (92% vs. 81%, P = 0.01) and to have left anterior descending ischemia (67% vs. 42%, P = 0.004). After 50 months, these patients returned less often to the ER with chest pain (53% vs. 87%, P acute coronary syndrome and death (8% vs. 16%, P patients with chronic stable angina, patients presenting with acute chest pain exhibiting mildly abnormal SPECT MPI findings should perhaps undergo a more aggressive diagnostic and therapeutic approach.

  8. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT.

    Science.gov (United States)

    Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent

    2016-07-01

    The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT

  9. Count-based quantitation of functional renal volume by SPECT imaging

    Science.gov (United States)

    King, M. A.; Narayanan, M.; Bohyer, C.; Licho, R.; Fung, L. C. T.

    1998-08-01

    The quantitation of absolute renal functional volume is of interest because many pathological processes are known to affect the growth and parenchymal volume of kidneys. Unlike thresholding and edge-detection methods, the count-based method of volume quantitation is not highly sensitive to boundary definition. In this investigation, count-based kidney volume quantitation was compared to that of fixed threshold-based estimation with and without including attenuation and scatter compensation in the reconstruction. The Alderson Organ Scanning Phantom kidneys were filled with a Tc-99m solution and placed in the Organ scanning phantom. Inserts shaped like the pelvis region of the kidneys were used to vary kidney volume. Emission imaging of the Tc-99m, and transmission imaging of a Gd-153 line source were performed by a triple-headed SPECT system. Without compensating for attenuation and scatter, the count-based method significantly under-estimated kidney volume. When attenuation and scatter compensation were included, count-based volume quantitation was more accurate than volume estimation with a fixed threshold adapted to the image acquisition and reconstruction strategies employed.

  10. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report.

    Science.gov (United States)

    Ayeni, Olusegun Akinwale; Malan, Nico; Hammond, Emmanuel Niiboye; Vangu, Mboyo-Di-Tamba Heben

    2016-01-01

    Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis) is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-year-old man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD). The incidence and presentation of CAD in patients with dextrocardia are similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights the distinctive applications and potential pitfalls of myocardial perfusion single-photon emission computed tomography (SPECT) imaging in patients with dextrocardia.

  11. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report

    Directory of Open Access Journals (Sweden)

    Olusegun Akinwale Ayeni

    2016-07-01

    Full Text Available Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-yearold man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD. The incidence and presentation of CAD in patients with dextrocardiaare similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights thedistinctive applications and potential pitfalls of myocardial perfusion single photon emission computed tomography (SPECT imaging in patients with dextrocardia.

  12. Computational tools and methods for objective assessment of image quality in x-ray CT and SPECT

    Science.gov (United States)

    Palit, Robin

    Computational tools of use in the objective assessment of image quality for tomography systems were developed for computer processing units (CPU) and graphics processing units (GPU) in the image quality lab at the University of Arizona. Fast analytic x-ray projection code called IQCT was created to compute the mean projection image for cone beam multi-slice helical computed tomography (CT) scanners. IQCT was optimized to take advantage of the massively parallel architecture of GPUs. CPU code for computing single photon emission computed tomography (SPECT) projection images was written calling upon previous research in the image quality lab. IQCT and the SPECT modeling code were used to simulate data for multi-modality SPECT/CT observer studies. The purpose of these observer studies was to assess the benefit in image quality of using attenuation information from a CT measurement in myocardial SPECT imaging. The observer chosen for these studies was the scanning linear observer. The tasks for the observer were localization of a signal and estimation of the signal radius. For the localization study, area under the localization receiver operating characteristic curve (A LROC) was computed as AMeasLROC = 0.89332 ± 0.00474 and ANoLROC = 0.89408 ± 0.00475, where "Meas" implies the use of attenuation information from the CT measurement, and "No" indicates the absence of attenuation information. For the estimation study, area under the estimation receiver operating characteristic curve (AEROC) was quantified as AMeasEROC = 0.55926 ± 0.00731 and ANoEROC = 0.56167 ± 0.00731. Based on these results, it was concluded that the use of CT information did not improve the scanning linear observer's ability to perform the stated myocardial SPECT tasks. The risk to the patient of the CT measurement was quantified in terms of excess effective dose as 2.37 mSv for males and 3.38 mSv for females. Another image quality tool generated within this body of work was a singular value

  13. Reduction of noise due to systematic uncertainties in 113mIn SPECT imaging using information theory.

    Science.gov (United States)

    Krishna Kumar, P T; Phoha, Vir V; Iyengar, S S; Iyengar, Puneeth

    2009-05-01

    SPECT images using radiopharmaceuticals are limited by noise caused by both random and systematic uncertainties. All the efforts so far have been directed only to minimize the random uncertainty and no attempt has ever been made to minimize the noise due to systematic uncertainty. As these radiopharmaceuticals encounter many systematic uncertainties during their formation, we constructed the covariance matrix with some of these systematic uncertainties for the gamma count rate of (113m)In. We describe the algorithm we have developed based on the technique of determinant inequalities and the concept of minimization of mutual information to process the covariance matrix element by element to minimize the noise caused by systematic uncertainty in the SPECT imaging of (113m)In and its utility to experimentalists to design and improve their process of measurement and instrumentation.

  14. A study of partial volume effect on SPECT imaging using myocardial phantom. With HCM (ASH) model myocardial phantom

    Energy Technology Data Exchange (ETDEWEB)

    Onoguchi, Masahisa [Kanazawa Univ. (Japan). School of Medicine

    1997-05-01

    In order to evaluate simultaneously both myocardial perfusion and regional wall motion using ECG-gated myocardial SPECT imaging, correction for the partial volume effect (PVE) should be performed. For the quantitative analysis of myocardial SPECT imaging in patients with hypertrophic cardiomyopathy (HCM), we formed a new phantom simulating HCM with various septal wall thicknesses and estimated PVE using the recovery coefficient (RC). The value of RC in all phantoms increased with increasing thickness of the septal wall reaching a plateau at 25 mm for the cylindrical phantom and 25 mm for the Ep-phantom. Compared with the RC value, the PMMA-phantom had little influence on PVE. Therefore, our results suggested that the count in the septal wall could be underestimated if PVE was corrected by the value obtained for the cylindrical phantom. In conclusion, our new phantom simulating HCM was useful in assessing PVE in the hypertrophic septal wall. (author)

  15. MRI and N-isopropyl(I-123)p-iodoamphetamine SPECT findings in cases of moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Yuji; Kato, Terumi; Ohta, Yoshio (Tottori Univ., Yonago (Japan). School of Medicine); Caner, B.E.

    1993-07-01

    Six patients with moyamoya disease underwent magnetic resonance imaging (MRI), and in 4 of 6 cases, MRI findings were compared with N-isopropyl(I-123)p-iodoamphetamine (IMP) single-photon emission computed tomography (SPECT) brain scans to determine if there was a correlation between the morphology, as seen on MRI, and cerebral perfusion and/or metabolic changes detected by IMP-SPECT. MRI clearly revealed abnormalities secondary to moyamoya disease: nonvisualization of a signal void flow sign in the arteries, moyamoya vessels, and cerebral atrophy. All the perfusion abnormalities of the cortex, except a small one, observed on MR images were also detected on IMP-SPECT images, but small white matter abnormalities demonstrated on MR images could not be revealed by IMP-SPECT. Interestingly, in 2 patients, 2 additional cortical defects that were not observed on MR images were revealed by IMP-SPECT. Moreover, 3 areas with perfusion defects were larger on the IMP-SPECT scans than on the MR images. The cortical defects observed on the IMP-SPECT images but not on the MR images may reflect mild ischemia and/or certain metabolic abnormalities that lead to low tracer accumulation. Overall, IMP-SPECT and MRI may play complementary roles in the evaluation of this disease. (author).

  16. Brain SPECT in dementia a clinical-scintigraphic correlation SPECT cerebral na demência: uma correlação clínico-cintilográfica

    Directory of Open Access Journals (Sweden)

    Carlos A. Buchpiguel

    1996-09-01

    Full Text Available The aim of this study was to compare the accuracy of computed tomography (CT and single photon emission computerized tomography (SPECT in the diagnosis of dementia. Fifty-two patients with clinical diagnosis of dementia and 11 controls were studied. The scans were interpreted by one experienced neuroradiologist and one nuclear radiologist, both blinded to the clinical data. In the diagnosis of dementia, CT and SPECT showed equal sensitivity (82.7% and statistically similar specificity (63.8 and 81.8%, respectively. The specificity of SPECT in diagnosing Alzheimer's disease (100% was statistically superior to CT (69%. However, both methods showed similar sensitivity in detecting Alzheimer's disease. In conclusion, SPECT and CT showed similar accuracy in the diagnosis of dementia. The quite high specificity of SPECT in Alzheimer's disease may be useful for confirming that diagnosis, particularly for patients with presenile onset of the disease.O objetivo deste estudo foi comparar a acurácia da tomografia computadorizada (TC e da tomografia computadorizada por emissão de fóton único (SPECT no diagnóstico de demência. Cinquenta e dois pacientes com diagnóstico clínico de demência e 11 controles foram estudados. Os exames foram interpretados por um neuroradiologista e um radiologista nuclear, ambos cegos quanto aos dados clínicos. No diagnóstico de demência, a TC e a SPECT mostraram sensibilidades iguais (82,7% e estatisticamente especificidades semelhantes (63,8 e 81,8%, respectivamente. A especificidade da SPECT no diagnóstico da doença de Alzheimer (100% foi significativamente superior à da TC (69%. Contudo, ambos os métodos mostraram sensibilidades semelhantes na detecção de doença de Alzheimer. Em conclusão, TC e SPECT mostraram acurácia similar no diagnóstico de demência. A alta especificidade observada no diagnóstico de doença de Alzheimer pode ser útil na confirmação do diagnóstico clínico, especialmente na forma

  17. Selective Spleen Scintigraphy in the Evaluation of Accessory Spleen/ Splenosis in Splenectomized/Nonsplenectomized Patients and the Contribution of SPECT Imaging

    Directory of Open Access Journals (Sweden)

    Şeyma Ekmekçi

    2015-02-01

    Full Text Available Objective: We aimed to evaluate the results of selective spleen scintigraphy (SSS and contribution of SPECT imaging to planar imaging in splenectomized and nonsplenectomized patients. Methods: We retrospectively examined 112 SSSs of 96 patients. The patients were divided into two groups as splenectomized group (SP and non-splenectomized group (NSP. The findings were evaluated by comparing the results of surgery,computerized tomography (CT, ultrasonography (USG and magnetic resonance imaging (MRI. In addition, whether or not differences existed between the results of SPECT and planar imaging was determined. Results: Of 66 scintigraphies performed in the NSP group, 3 (5% had positive, 3 (5% had suspicious and 60 (90% had negative results. In the NSP group, 28 patients underwent surgery and 12 accessory spleens were removed. Only 3 of these tissues were detected by scintigraphy. Of 46 patients in the SP group, 26 (57% had positive findings whereas 20 (43% had negative scintigraphies. Twelve accessory spleens/splenosis were removed surgically in 10 patients with a positive SSS in the SP group. There were no false positive results in both groups of patients who underwent surgery. There was no significant difference between the results of SSS, USG and CT. Of 39 patients to whom SPECT were performed, 10 had positive results both with planar and SPECT imaging. On the other hand, 26 patients, 3 of whom had suspected findings in SPECT images, demonstrated negative results when evaluated with both imaging methods. Remaining 3 were considered suspicious by only SPECT images for the hilar area. Conclusion: SSS has high specificity in the detection of accessory spleens/splenosis. The sensitivity of SSS is low in the NSP group,but higher in the SP group. There is no contribution of SPECT imaging to planar imaging

  18. Selective Spleen Scintigraphy in the Evaluation of Accessory Spleen/Splenosis in Splenectomized/Nonsplenectomized Patients and the Contribution of SPECT Imaging

    Science.gov (United States)

    Ekmekçi, Şeyma; Diz-Küçükkaya, Reyhan; Türkmen, Cüneyt; Adalet, Işık

    2015-01-01

    Objective: We aimed to evaluate the results of selective spleen scintigraphy (SSS) and contribution of SPECT imaging to planar imaging in splenectomized and nonsplenectomized patients. Methods: We retrospectively examined 112 SSSs of 96 patients. The patients were divided into two groups as splenectomized group (SP) and non-splenectomized group (NSP). The findings were evaluated by comparing the results of surgery,computerized tomography (CT), ultrasonography (USG) and magnetic resonance imaging (MRI). In addition, whether or not differences existed between the results of SPECT and planar imaging was determined. Results: Of 66 scintigraphies performed in the NSP group, 3 (5%) had positive, 3 (5%) had suspicious and 60 (90%) had negative results. In the NSP group, 28 patients underwent surgery and 12 accessory spleens were removed. Only 3 of these tissues were detected by scintigraphy. Of 46 patients in the SP group, 26 (57%) had positive findings whereas 20 (43%) had negative scintigraphies. Twelve accessory spleens/splenosis were removed surgically in 10 patients with a positive SSS in the SP group. There were no false positive results in both groups of patients who underwent surgery. There was no significant difference between the results of SSS, USG and CT. Of 39 patients to whom SPECT were performed, 10 had positive results both with planar and SPECT imaging. On the other hand, 26 patients, 3 of whom had suspected findings in SPECT images, demonstrated negative results when evaluated with both imaging methods. Remaining 3 were considered suspicious by only SPECT images for the hilar area. Conclusion: SSS has high specificity in the detection of accessory spleens/splenosis. The sensitivity of SSS is low in the NSP group,but higher in the SP group. There is no contribution of SPECT imaging to planar imaging. PMID:25800591

  19. Differential diagnosis of posterior fossa brain tumors: Multiple discriminant analysis of Tl-SPECT and FDG-PET.

    Science.gov (United States)

    Yamauchi, Moritaka; Okada, Tomohisa; Okada, Tsutomu; Yamamoto, Akira; Fushimi, Yasutaka; Arakawa, Yoshiki; Miyamoto, Susumu; Togashi, Kaori

    2017-08-01

    This study investigated the combined capability of thallium-201 (Tl)-SPECT and fluorine-18-fluoro-deoxy-glucose (FDG)-PET for differential diagnosis of posterior fossa brain tumors using multiple discriminant analysis.This retrospective study was conducted under approval of the institutional review board. In the hospital information system, 27 patients with posterior fossa intra-axial tumor between January 2009 and June 2015 were enrolled and grouped as the following 7 entities: low grade glioma (LGG) 6, anaplastic astrocytoma (AA) 2, glioblastoma (GBM) 3, medulloblastoma (MB) 3, hemangioblastoma (HB) 6, metastatic tumor (Mets) 3, and malignant lymphoma (ML) 4. Tl and FDG uptakes were measured at the tumors and control areas, and several indexes were derived. Using indexes selected by the stepwise method, discriminant analysis was conducted with leave-one-out cross-validation.The predicted accuracy for tumor classification was 70.4% at initial analysis and 55.6% at cross-validation to differentiate 7 tumor entities. HB, LGG, and ML were well-discriminated, but AA was located next to LGG. GBM, MB, and Mets largely overlapped and could not be well distinguished even applying multiple discriminant analysis. Correct classification in the original and cross-validation analyses was 44.4% and 33.3% for Tl-SPECT and 55.6% and 48.1% for FDG-PET.

  20. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  1. SPECT imaging as a tool to prevent proliferation of nuclear weapons

    Science.gov (United States)

    Lundqvist, Tobias; Jacobsson Svärd, Staffan; Håkansson, Ane

    2007-10-01

    International efforts are taken to avoid the proliferation of material and technologies that may lead to the development of nuclear weapons. These activities are called safeguards and involve inspections of spent nuclear fuel at nuclear power plants and storage facilities. At these inspections, various measuring techniques are employed for verifying the presence and identity of spent nuclear fuel assemblies. However, a fuel assembly contains about 100-300 fuel rods and techniques are also required for verifying that no individual fuel rods have been removed from the assembly. For this purpose, a non-destructive tomographic measurement technique for spent-fuel assemblies is being developed at Uppsala University, based on single photon emission computed tomography (SPECT). The technique utilizes the γ-ray emission from spent fuel. The first step of the methodology is the recording of the γ-ray flux distribution in a large number of positions around the fuel assembly, using γ-ray detectors attached to a collimator system. In the following step, a cross-sectional image of the source distribution in the fuel assembly is reconstructed. Because the fuel rods are highly activated during reactor operation, and because they are stored in water with practically no radioactive content, they appear very clearly in this type of image. The technique has earlier been used for determining the power distribution in fuel assemblies [S. Jacobsson Svärd, A. Håkansson, et al., Nucl. Technol. 151(1) (2005) 70. [1

  2. Evaluation of two conjugate gradient based algorithms for quantitation in cardiac SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sire, P.; Grangeat, P.; Iovleff, S.; Mallon, L.A. [LETI CEA - Technologies Avancees, Grenoble (France)

    1996-12-31

    Correction attenuation in SPECT is a very important issue in cardiac imaging. In this paper we evaluate two conjugate gradient (CG) based algorithms to reconstruct an attenuation compensated emission map. The first algorithm is a classic preconditioned CG approach, the second one uses the minimal residual (MR) algorithm. We discuss the emission reconstruction problem and the difficulty to get a good uniformity within the reconstructed cardiac wall. An evaluation on numerical and real phantoms shows that the point spread function (PSF) of the system strongly affects the uniformity. Thus, two essential improvements are made. First, the response of the reconstruction procedure is made isotropic by replacing the classic 1D apodized ramp reconstruction filter with a 2D filter. Second, to improve the spatial resolution, we apply a PSF deconvolution to the projections. A threshold parameter is used to prevent the deconvolution from amplifying high-frequency noise. Stabilization is also achieved by incorporating into the reconstruction algorithms a regularization, which is made spatially adaptive to preserve high contrast within the heart while smoothing the rest of the image. Results obtained on numerical and anatomic phantoms show that the proposed algorithms lead to fast, stabilized and more accurate attenuation compensation.

  3. Small-animal SPECT and SPECT/CT : Application in cardiovascular research

    NARCIS (Netherlands)

    Golestani, R.; Wu, C.; Tio, R.A.; Zeebregts, C.J.; Petrov, A.D.; Beekman, F.J.; Dierckx, R.A.J.O.; Boersma, H.H.; Slart, R.H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses

  4. Memory networks in tinnitus: a functional brain image study.

    Science.gov (United States)

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI). The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8). A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  5. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  6. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Cicala, Silvana; Paladini, Rodolfo; Leva, Francesco de [Santobono-Pausilipon Children Medical Hospital, Division of Cardiology, Department of Paediatrics, Naples (Italy); Pellegrino, Teresa; Caprio, Maria Grazia [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Storto, Giovanni [IRCCS, CROB, Rionero in Vulture (Italy); Mainolfi, Ciro; Cuocolo, Alberto [Federico II University, Department of Biomorphological and Functional Sciences, Naples (Italy); National Council of Research, Institute of Biostructures and Bioimages, Naples (Italy)

    2010-12-15

    The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. Sixteen children with a history of KD underwent {sup 99m}Tc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n = 4) with regressed and group 2 (n = 6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5 {+-} 0.3 vs 1.7 {+-} 0.7, p < 0.05). A significant difference in coronary endothelial function among groups was found (F = 5.21, p < 0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9 {+-} 0.6 vs 1.4 {+-} 0.7, p < 0.02). SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD. (orig.)

  7. SPECT/CT Imaging of High-Risk Atherosclerotic Plaques using Integrin-Binding RGD Dimer Peptides.

    Science.gov (United States)

    Yoo, Jung Sun; Lee, Jonghwan; Jung, Jae Ho; Moon, Byung Seok; Kim, Soonhag; Lee, Byung Chul; Kim, Sang Eun

    2015-06-30

    Vulnerable atherosclerotic plaques with unique biological signatures are responsible for most major cardiovascular events including acute myocardial infarction and stroke. However, current clinical diagnostic approaches for atherosclerosis focus on anatomical measurements such as the degree of luminal stenosis and wall thickness. An abundance of neovessels with elevated expression of integrin αvβ3 is closely associated with an increased risk of plaque rupture. Herein we evaluated the potential of an αvβ3 integrin-targeting radiotracer, (99m)Tc-IDA-D-[c(RGDfK)]2, for SPECT/CT imaging of high-risk plaque in murine atherosclerosis models. In vivo uptake of (99m)Tc-IDA-D-[c(RGDfK)]2 was significantly higher in atherosclerotic aortas than in relatively normal aortas. Comparison with the negative-control peptide, (99m)Tc-IDA-D-[c(RADfK)]2, proved specific binding of (99m)Tc-IDA-D-[c(RGDfK)]2 for plaque lesions in in vivo SPECT/CT and ex vivo autoradiographic imaging. Histopathological characterization revealed that a prominent SPECT signal of (99m)Tc-IDA-D-[c(RGDfK)]2 corresponded to the presence of high-risk plaques with a large necrotic core, a thin fibrous cap, and vibrant neoangiogenic events. Notably, the RGD dimer based (99m)Tc-IDA-D-[c(RGDfK)]2 showed better imaging performance in comparison with the common monomeric RGD peptide probe (123)I-c(RGDyV) and fluorescence tissue assay corroborated this. Our preclinical data demonstrated that (99m)Tc-IDA-D-[c(RGDfK)]2 SPECT/CT is a sensitive tool to noninvasively gauge atherosclerosis beyond vascular anatomy by assessing culprit plaque neovascularization.

  8. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with {sup 99m}Tc- and {sup 123}I-labelled probes

    Energy Technology Data Exchange (ETDEWEB)

    Pissarek, M. [Research Centre Juelich, Institute of Neurosciences and Biophysics-Nuclear Chemistry (INB-4), Juelich (Germany); Meyer-Kirchrath, J.; Hohlfeld, T. [Heinrich Heine University, Institute of Pharmacology and Clinical Pharmacology, Duesseldorf (Germany); Vollmar, S. [Max Planck Institute for Neurological Research, Cologne (Germany); Oros-Peusquens, A.M. [Research Centre Juelich, Institute of Neurosciences and Biophysics-Medicine (INB-3), Juelich (Germany); Floegel, U.; Jacoby, C. [Heinrich Heine University, Institute of Heart and Circulation Physiology, Duesseldorf (Germany); Kruegel, U. [University of Leipzig, Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig (Germany); Schramm, N. [Research Centre Juelich, Central Institute for Electronics, Juelich (Germany)

    2009-09-15

    The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of {sup 123}I- and {sup 99m}Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake. A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D{sub 2} receptor ligand [{sup 123}I]IBZM and the cerebral perfusion tracer [{sup 99m}Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [{sup 123}I]IPPA (0.94 {+-} 0.05 MBq/g body weight) and the perfusion tracer [{sup 99m}Tc]sestamibi (3.8 {+-} 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP{sub 3} receptor. In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [{sup 123}I]IBZM and of cardiac [{sup 99m}Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [{sup 123}I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [{sup 99m}Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [{sup 123}I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight. Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of {sup 123}I- and {sup 99m}Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers. (orig.)

  9. NP-59 SPECT/CT Imaging in Stage 1 Hypertensive and Atypical Primary Aldosteronism: A 5-Year Retrospective Analysis of Clinicolaboratory and Imaging Features

    Directory of Open Access Journals (Sweden)

    Yi-Chun Chen

    2013-01-01

    Full Text Available Objective. We retrospectively analyzed all primary aldosteronism (PA patients undergoing NP-59 SPECT/CT imaging with regard to their clinicolaboratory and imaging features, investigation, and outcomes. Material and Methods. 11 PA patients who presented to our hospital for NP-59 SPECT/CT imaging between April 2007 and March 2012 and managed here were analyzed. Results. Among 11 PA patients, eight (73% had stage 1 hypertension, three (27% stage 2 hypertension, four (36% normal plasma aldosterone concentration, nine (82% nonsuppressed plasma renin activity (PRA, six (55% normal aldosterone-renin-ratio (ARR, eight (73% serum potassium ≧3 mEq/L, seven (64% subclinical presentation, seven (64% negative confirmatory testing, and four (36% inconclusive results on CT scan and seven (64% on planar NP-59 scan. All 11 (100% patients had positive results on NP-59 SPECT/CT scan. Two (18% met typical triad and nine (82% atypical triad. Among nine atypical PA patients, three (33% had clinical presentation, six (67% subclinical presentation, six (67% negative confirmatory testing, and four (44% inconclusive results on CT scan and six (67% on planar NP-59 scan. All patients had improved outcomes. Significant differences between typical and atypical PA existed in PRA and ARR. Conclusions. NP-59 SPECT/CT may provide diagnostic potential in stage 1 hypertensive and atypical PA.

  10. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  11. SPECT {sup 99m}Tc-sestamibi/{sup 123}I subtraction images merged to the scanner: interest of patients with hyperparathyroidism, candidates to surgery; Images de soustraction SPECT 99mTc-Sestamibi/123 I fusionnees au scanner: interet chez des patients avec hyperparathyroidie, candidats a la chirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Poullias, X.; Hapdey, S.; Salles, A.; Vera, P.; Edet-Sanson, A. [Centre Henri-Becquerel, 76 - Rouen (France); Guernou, M. [Centre cardiologique du Nord, 93 - Saint-Denis (France); Hitzel, A. [CHU de Toulouse, 31 (France)

    2010-07-01

    Purpose: the aim of this study is to evaluate the interest of SPECT subtraction images merged to the scanner (S/CT), compared to planar subtraction (S/PL) and to echography, in the framework of hyperparathyroidism. Conclusions: Although subtraction SPECT images merged on CT have a sensitivity close to planar subtraction images, making this modality often allows to visualize the lesion to define its size and anatomical reports. These elements are a help for surgical management. (N.C.)

  12. Evaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom

    Directory of Open Access Journals (Sweden)

    Akira Maebatake

    2016-07-01

    Full Text Available Objective(s: The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT single-photon emission computed tomography (SPECT. The results were compared between filtered back projection (FBP and different attenuation correction (AC methods.Methods: An anthropomorphic striatal phantom was filled with 123I solutions at different striatum-to-background radioactivity ratios. Data were acquired using two SPECT/CT devices, equipped with a low-to-medium-energy general-purpose collimator (cameras A-1 and B-1 and a low-energy high-resolution (LEHR collimator (cameras A-2 and B-2.The SPECT images were once reconstructed by FBP using Chang’s AC and once by ordered subset expectation maximization (OSEM using both CTAC and Chang’s AC; moreover, scatter correction was performed. OSEM on cameras A-1 and A-2 included resolution recovery (RR. The images were analyzed, using the specific binding ratio (SBR. Regions of interest for the background were placed on both frontal and occipital regions.Results: The optimal number of iterations and subsets was 10i10s on camera A-1, 10i5s on camera A-2, and 7i6s on cameras B-1 and B-2. The optimal full width at half maximum of the Gaussian filter was 2.5 times the pixel size. In the comparison between FBP and OSEM, the quality was superior on OSEM-reconstructed images, although edge artifacts were observed in cameras A-1 and A-2. The SBR recovery of OSEM was higher than that of FBP on cameras A-1 and A-2, while no significant difference was detected on cameras B-1 and B-2. Good linearity of SBR was observed in all cameras. Inthe comparison between Chang’s AC and CTAC, a significant correlation was observed on all cameras. The difference in the background region influenced SBR differently in Chang’s AC and CTAC on cameras A-1 and B-1.Conclusion: Iterative reconstruction improved image quality on all cameras

  13. SPECT/CT and a portable gamma-camera for image-guided laparoscopic sentinel node biopsy in testicular cancer.

    Science.gov (United States)

    Brouwer, Oscar R; Valdés Olmos, Renato A; Vermeeren, Lenka; Hoefnagel, Cornelis A; Nieweg, Omgo E; Horenblas, Simon

    2011-04-01

    The purpose of this study was to evaluate the utility of SPECT/CT and real-time intraoperative imaging with a portable γ-camera for laparoscopic sentinel node (SN) localization in stage I testicular cancer. Ten patients with clinical stage I testicular cancer were studied between November 2006 and November 2010. Their mean age was 37 y (range, 25-50 y). The primary tumors were situated on the right side in 5 patients and on the left side in 5. After a funicular block with 2% lidocaine, an average dose of 80 MBq (range, 59-98 MBq) of (99m)Tc-nanocolloid in a volume of 0.2 mL was injected into the testicular parenchyma. Shortly after injection, a 10-min dynamic study was performed, followed by the acquisition of static planar images at 15 min and 2 h. SPECT/CT was performed at 2 h. After image fusion, SNs were visualized, and their exact anatomic location was determined. The SPECT/CT images were displayed in the operation room to guide SN detection using a laparoscopic γ-ray probe and a portable γ-camera. Lymphatic drainage to the retroperitoneum was seen in all patients. SPECT/CT identified interaortocaval or paracaval SNs in the 5 patients with right-sided tumors, one of whom had an additional SN adjacent to the testicular vessels. In all 5 patients with left-sided tumors, paraaortic SNs were visualized; a node along the testicular vessels was visualized in 2 of these 5. Twenty-six SNs were laparoscopically removed (range, 1-4 per patient). An SN contained metastases in 1 case. No recurrences developed in the 9 patients with a tumor-free SN during a median follow-up of 21 mo (range, 2-50 mo). SPECT/CT enables accurate anatomic localization of retroperitoneal SNs in patients with testicular cancer, facilitating their laparoscopic retrieval. Real-time image guidance by a portable γ-camera improves intraoperative SN detection and appears to identify (20%) additional SNs.

  14. Cerebral fat embolism studied with MRI and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, E. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Namer, I.J. (Inst. of Biophysics, Faculty of Medicine, Louis Pasteur Univ., Strasbourg (France)); Saribas, O. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Aras, T. (Dept. of Nuclear Medicine, Hacettepe Univ. School of Medicine Ankara (Turkey)); Tan, E. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey)); Bekdik, C. (Dept. of Nuclear Medicine, Hacettepe Univ. School of Medicine Ankara (Turkey)); Zileli, T. (Dept. of Neurology, Hacettepe Univ. School of Medicine, Ankara (Turkey))

    1993-03-01

    In a patient with fat embolism to the brain CT showed no abnormality. MRI performed after recovery from coma, when the patient had aphasia and quadriparesis, demonstrated multiple high signal abnormalities in the white matter on both T1- and T2-weighted images. HMPAO-SPECT showed left-sided hypoperfusion which resolved in parallel with clinical improvement 1 month later. (orig.)

  15. Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2016-12-01

    Several terbium isotopes are suited for diagnosis or therapy in nuclear medicine. Tb-155 is of interest for SPECT imaging and/or Auger therapy. High radionuclide purity is mandatory for many applications in medicine. The quantification of the activity of the produced contaminants is therefore as important as that of the radionuclide of interest. The experiments performed at the ARRONAX cyclotron (Nantes, France), using the deuteron beam delivered up to 34MeV, provide an additional measurement of the excitation function of the Gd-nat(d,x)Tb-155 reaction and of the produced terbium and gadolinium contaminants. In this study, we investigate the achievable yield for each radionuclide produced in natural gadolinium as a function of the deuteron energy. Other reactions are discussed in order to define the production route that could provide Tb-155 with a high yield and a high radionuclide purity. This article aims to improve data for the Gd-nat(d,x) reaction and to optimize the irradiation conditions required to produce Tb-155. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of the scanning linear estimator (SLE) and ROI methods for quantitative SPECT imaging

    Science.gov (United States)

    Könik, Arda; Kupinski, Meredith; Hendrik Pretorius, P.; King, Michael A.; Barrett, Harrison H.

    2015-08-01

    In quantitative emission tomography, tumor activity is typically estimated from calculations on a region of interest (ROI) identified in the reconstructed slices. In these calculations, unpredictable bias arising from the null functions of the imaging system affects ROI estimates. The magnitude of this bias depends upon the tumor size and location. In prior work it has been shown that the scanning linear estimator (SLE), which operates on the raw projection data, is an unbiased estimator of activity when the size and location of the tumor are known. In this work, we performed analytic simulation of SPECT imaging with a parallel-hole medium-energy collimator. Distance-dependent system spatial resolution and non-uniform attenuation were included in the imaging simulation. We compared the task of activity estimation by the ROI and SLE methods for a range of tumor sizes (diameter: 1-3 cm) and activities (contrast ratio: 1-10) added to uniform and non-uniform liver backgrounds. Using the correct value for the tumor shape and location is an idealized approximation to how task estimation would occur clinically. Thus we determined how perturbing this idealized prior knowledge impacted the performance of both techniques. To implement the SLE for the non-uniform background, we used a novel iterative algorithm for pre-whitening stationary noise within a compact region. Estimation task performance was compared using the ensemble mean-squared error (EMSE) as the criterion. The SLE method performed substantially better than the ROI method (i.e. EMSE(SLE) was 23-174 times lower) when the background is uniform and tumor location and size are known accurately. The variance of the SLE increased when a non-uniform liver texture was introduced but the EMSE(SLE) continued to be 5-20 times lower than the ROI method. In summary, SLE outperformed ROI under almost all conditions that we tested.

  17. The prognostic value of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease.

    Science.gov (United States)

    Doukky, Rami; Fughhi, Ibtihaj; Campagnoli, Tania; Wassouf, Marwan; Ali, Amjad

    2017-02-01

    The prognostic value of regadenoson SPECT myocardial perfusion imaging (MPI) has not been specifically studied in patients with end-stage renal disease (ESRD). We prospectively followed ESRD patients enrolled in the ASSUAGE and ASSUAGE-CKD trials in which they received regadenoson-stress 99m Tc-tetrofosmin SPECT-MPI. Images were semiquantitatively analyzed by an investigator blinded to clinical and outcome data. Patients were followed for cardiac death, myocardial infarction (MI), and coronary revascularization (CR). Revascularizations occurring >90 days post-MPI were considered "late" events. Survival analysis was performed using Cox regression models, adjusting for age, gender, diabetes, dyslipidemia, smoking, and known coronary artery disease. We analyzed 303 patients (mean age 54 years; 64% men), who were followed for 35 ± 10 months. Adjusting for clinical covariates, abnormal regadenoson-stress MPI (SSS ≥ 4) was associated with increased risk of the composite of cardiac death or MI (23.9% vs 14.4%; HR 1.88; CI 1.04-3.41; P = .037) and the composite of cardiac death, MI, or late CR (27.3% vs 16.7%; HR 1.80; CI 1.03-3.14; P = .039). Adjusting for clinical covariates, regadenoson-induced myocardial ischemia (SDS ≥ 2) was associated with increased rate of the composite endpoint of cardiac death, MI, or CR (33.3% vs 16.9%; HR 1.97; CI 1.19-3.27; P = .008). Regadenoson-stress SPECT-MPI provides a significant prognostic value in patients with ESRD. ESRD patients with normal SPECT-MPI have relatively high adverse event rates.

  18. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  19. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies

    DEFF Research Database (Denmark)

    de Nijs, Robin; Holm, Søren; Thomsen, Gerda

    2010-01-01

    with identical width is preferred. This secondary window needs to be weighted with a factor higher than one, due to a broad backscatter peak from high-energy photons appearing at 172 keV. Spatial dependency and the numerical value of this weighting factor and the image contrast improvement of this correction...... were investigated in this study. Energy windows with a width of 32 keV were centered at 159 keV and 200 keV. The weighting factor was measured both with an I-123 point source and in a dopamine transporter brain SPECT study in 10 human subjects (5 healthy subjects and 5 patients) by minimizing...... the background outside the head. Weighting factors ranged from 1.11 to 1.13 for the point source and from 1.16 to 1.18 for human subjects. Point source measurements revealed no position dependence. After correction, the measured specific binding ratio (image contrast) increased significantly for healthy subjects...

  20. Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality.

    Science.gov (United States)

    Kersemans, Veerle; Thompson, James; Cornelissen, Bart; Woodcock, Michael; Allen, Philip D; Buls, Nico; Muschel, Ruth J; Hill, Mark A; Smart, Sean C

    2011-11-01

    CT is widely used for anatomic referencing of PET and SPECT images of small animals but requires sufficiently high radiation doses capable of causing significant DNA damage. Therefore, we described the relationship between radiation dose, biologic damage, and image quality to determine whether CT can be used without significantly compromising radiotherapy and tumor development studies. The CT dose index generated by the nanoSPECT/CT system was compared with measurements using EBT2 gafchromic film. The effects of micro-CT were evaluated in 2 mouse strains that differ in sensitivity to radiation. γH2AX foci analysis to determine leukocyte, liver, and jejunum DNA damage and hematoxylin and eosin staining to investigate macroscopic jejunum damage were performed. Signal-to-noise ratio, contrast-to-noise ratio, and scanner linearity were determined to assess image quality. For the standard settings, that is, as set by the manufacturers, EBT2 gafchromic film dosimetry showed that the nanoSPECT/CT system underestimated the absorbed dose. Moreover, significant doses were obtained, resulting in a significant increase in γH2AX formation in leukocytes, liver, and jejunum 40 min after CT, using preset parameters when compared with nonimaged controls. The jejenum response was more pronounced for the more radiosensitive strain. In contrast to leukocytes, the liver and jejunum still showed evidence of DNA damage 3 d after CT. Contrast-to-noise ratio, signal-to-noise ratio, and scanner linearity were sufficient to allow for anatomic referencing for both imaging protocols tested. Anatomic reference images can be produced with no observable DNA damage or compromising image quality using low radiographic voltage, flux, and duration.

  1. ELSI Priorities for Brain Imaging

    OpenAIRE

    Illes, Judy; De Vries, Raymond; Cho, Mildred K.; Schraedley-Desmond, Pam

    2006-01-01

    As one of the most compelling technologies for imaging the brain, functional MRI (fMRI) produces measurements and persuasive pictures of research subjects making cognitive judgments and even reasoning through difficult moral decisions. Even after centuries of studying the link between brain and behavior, this capability presents a number of novel significant questions. For example, what are the implications of biologizing human experience? How might neuroimaging disrupt the mysteries of human...

  2. Reduction in occupational and patient radiation exposure from myocardial perfusion imaging: impact of stress-only imaging and high-efficiency SPECT camera technology.

    Science.gov (United States)

    Duvall, W Lane; Guma, Krista A; Kamen, Jacob; Croft, Lori B; Parides, Michael; George, Titus; Henzlova, Milena J

    2013-08-01

    Recently introduced high-efficiency SPECT cameras have demonstrated the ability to reduce radiation exposure to patients undergoing myocardial perfusion imaging studies, especially when combined with stress-only imaging protocols. To date there have been no relevant studies examining the reduced occupational radiation exposure to medical staff. We sought to determine whether changes in stress myocardial perfusion imaging protocols and camera technology can reduce the occupational radiation exposure to the staff of a nuclear cardiology laboratory. Monthly radiation dosimeter readings from 4 nuclear technologists, 4 nurses, and 2 administrative employees were analyzed from two 12-mo periods: October 2007-September 2008 (period 1), before the use of high-efficiency SPECT, and October 2010-September 2011 (period 2), after high-efficiency SPECT was introduced. The average monthly dose equivalent in millirems (1 mrem = 0.01 mSv) was recorded from personal dosimeters worn on laboratory coats. The total activity of (99m)Tc used per month, mean (99m)Tc administered activity per patient, average number of patients per month, patient time spent in the laboratory, and proportion of stress-only studies were determined. There were 3,539 patients in period 1 and 3,898 in period 2. An approximately 40% reduction in the dose equivalent across all staff members occurred during this time (-16.9 and -16.2 mrem for nuclear technologists and nurses, respectively; P efficiency SPECT technology and stress-only protocols resulted in a 34.7% reduction in mean total (99m)Tc administered activity between time periods, with camera technology being responsible for 39.2% of the reduction and stress-only protocols for 60.8%. A combination of high-efficiency SPECT technology and selective use of stress-only protocols significantly reduces the occupational radiation dose equivalent to the staff of a nuclear cardiology laboratory.

  3. Calculation of variability in myocardial uptake of {sup 99m}Tc-tetrofosmin at exercise and rest SPECT images. Application to hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Nii, Takeshi; Nishida, Takuji; Kakizaki, Junko; Sugahara, Syuji [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-11-01

    We examined whether or not it is better to use delayed myocardial SPECT images in determining the variability in myocardial uptake ({Delta}TF) of {sup 99m}Tc-tetrofosmin under the one-day protocol. We injected 370 MBq of {sup 99m}Tc-tetrofosmin at peak exercise, and initial (TF1) and delayed (TF2) exercise SPECT images were acquired 30 min and 3 hr, respectively, after the injection. Then, 740 MBq of {sup 99m}Tc-tetrofosmin was reinjected soon after TF2 acquisition, and rest SPECT images (TF3) were obtained 30 min later. Myocardial counts of TF1, TF2, and TF3 were defined as C1, C2, and C3, respectively, and {Delta}TF was determined by the following formula: {Delta}TF(A) = ({l_brace}C1 x R-(C3-C2`){r_brace}/(C3-C2`)) x 100(%). {Delta}TF(B) = ({l_brace}C1 x R-(C3-C1`){r_brace}/(C3-C1`)) x 100(%), where R is dose ratio, A is the procedure of imaging with delayed exercise SPECT, and B is the procedure of imaging without delayed exercise SPECT. The combination in which the delayed image was used better clarified the decreased uptake of {sup 99m}Tc-tetrofosmin at the hypertrophied myocardium, and thus proved to be useful. (author)

  4. Detection of breast cancer microcalcification using 99mTc-MDP SPECT or Osteosense 750EX FMT imaging

    Science.gov (United States)

    Felix, Dayo D.; Gore, John C.; Yankeelov, Thomas E.; Peterson, Todd E.; Barnes, Stephanie; Whisenant, Jennifer; Weis, Jared; Shoukouhi, Sepideh; Virostko, John; Nickels, Michael; McIntyre, J. Oliver; Sanders, Melinda; Abramson, Vandana; Tantawy, Mohammed N.

    2015-01-01

    Background In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used 18F-NaF to detect these types of cancers in mouse models as the free fluorine, 18F−, binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including 99mTc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. Methods Thirteen mice were injected subcutaneously in the right flank with 106 MDA-MB-231 cells. When the tumor size reached ~0.6 cm3, mice (n = 9) were injected with ~37 MBq of 99mTc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n = 4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 µm slices, and underwent autoradiography or von Kossa staining to correlate 99mTc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. Results Uptake of 99mTc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34 ± 1.46 (mean ± SD), 2.22 ± 0.95, and 0.05 ± 0.04 %ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35 ± 0.07 (mean ± SD) and 0.04 ± 0.01 picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between the two

  5. Detection of breast cancer microcalcification using (99m)Tc-MDP SPECT or Osteosense 750EX FMT imaging.

    Science.gov (United States)

    Felix, Dayo D; Gore, John C; Yankeelov, Thomas E; Peterson, Todd E; Barnes, Stephanie; Whisenant, Jennifer; Weis, Jared; Shoukouhi, Sepideh; Virostko, John; Nickels, Michael; McIntyre, J Oliver; Sanders, Melinda; Abramson, Vandana; Tantawy, Mohammed N

    2015-03-01

    In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used (18)F-NaF to detect these types of cancers in mouse models as the free fluorine, (18)F(-), binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including (99m)Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. Thirteen mice were injected subcutaneously in the right flank with 10(6) MDA-MB-231 cells. When the tumor size reached ~0.6 cm(3), mice (n=9) were injected with ~37 MBq of (99m)Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n=4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 μm slices, and underwent autoradiography or von Kossa staining to correlate (99m)Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. Uptake of (99m)Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34±1.46 (mean±SD), 2.22±0.95, and 0.05±0.04%ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35±0.07 (mean±SD) and 0.04±0.01picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between the two modalities (5.1±2.3 for SPECT and 8.8

  6. The Evaluation of Pulmonary Embolism Diagnosis Using SPECT V/Q Imaging Combined with D-Dimer Assay

    Directory of Open Access Journals (Sweden)

    LU Xia;MENG Jing-jing;XIE Xiao-fen;WANG Qian

    2016-11-01

    Full Text Available 全文: PDF (2692 KB HTML (1 KB 输出: BibTeX | EndNote (RIS 摘要 研究V/Q断层显像半定量分析联合测定血浆D-二聚体早期、准确诊断肺栓塞的价值,尤其在小面积肺栓塞诊断中的应用优势。疑诊肺栓塞来核医学科行V/Q断层显像患者共156例,以CT肺血管造影(computed tomographic pulmonary angiography, CTPA)检查及临床诊断为分组标准,肺栓塞组患者101例,非肺栓塞组患者55例。比较SPECT V/Q断层显像、血浆D-二聚体测定以及SPECT V/Q断层显像联合血浆D-二聚体测定三种方法对肺栓塞的诊断效能。应用Philips公司Oasis图像后处理软件对栓塞面积进行半定量分析,进一步评估对于肺栓塞面积占双肺容积≤15%的小面积肺栓塞的诊断价值。结果显示,血浆D-二聚体测定对于肺栓塞的诊断有较高的灵敏度(70.3%),但是特异性(61.8%)差;SPECT V/Q断层显像半定量分析对于肺栓塞的诊断具有较高的灵敏度和特异性,分别为85.1%、90.9%;而二者联合应用,诊断肺栓塞效能最高,灵敏度和特异性分别为91.1%、98.2%。 其中SPECT V/Q断层显像半定量分析对于肺栓塞面积小于15%的小面积肺栓塞诊断有优势。放射性核素SPECT V/Q断层显像联合测定血浆D-二聚体能显著提高肺栓塞的诊断效能,是临床实用、安全有效的肺栓塞疑诊患者诊断策略。 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章 卢霞 孟晶晶 解小芬 王蒨 关键词 : 肺栓塞, SPECT V/Q显像, 血浆D-二聚体测定, 诊断效能 Abstract: To evaluate the early and accurate diagnostic value of SPECT V/Q imaging combined with D-dimer assay,especially in non massive pulmonary embolism group. 156 patients with computed tomographic pulmonary angiography (CTPA, Geneva score, response of anticoagulation treatments, who was selected from 321

  7. Risk stratification using line source attenuation correction with rest/stress Tc-99m sestamibi SPECT myocardial perfusion imaging.

    Science.gov (United States)

    Ardestani, Afrooz; Ahlberg, Alan W; Katten, Deborah M; Santilli, Krista; Polk, Donna M; Bateman, Timothy M; Heller, Gary V

    2014-02-01

    Although line source attenuation correction (AC) in SPECT MPI studies improves diagnostic accuracy, its prognostic value is less understood. Consecutive patients (n = 6,513) who underwent rest/stress AC ECG-gated SPECT MPI were followed for cardiac death or non-fatal myocardial infarction (MI). A 17-segment model and AC summed stress score (SSS) were used to classify images. Of the 6,513 patients, cardiac death or non-fatal MI occurred in 267 (4.1%), over 2.0 ± 1.4 years. The AC-SSS in patients with a cardiac event (5.6 ± 7.8) was significantly higher than in those without (1.9 ± 4.6, P 8 with annualized cardiac event rates of 1.1%, 3.2%, and 8.5%, respectively (P 8 emerged as independent predictors of cardiac events (P stress ECG-gated SPECT MPI with line source AC provides highly effective and incremental risk stratification for future cardiac events.

  8. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  9. Estudio sobre las alteraciones de la perfusión cerebral valorado mediante SPECT cerebral, en pacientes usuarios de drogas de abuso Study of brain perfusion anomalies assessed with cerebral SPECT in drug abuse patients

    Directory of Open Access Journals (Sweden)

    Eduardo Rodríguez Raimondo

    2010-06-01

    Full Text Available El abuso de sustancias psicotóxicas representa un gran problema de Salud Pública en los diferentes distritos estatales. Este trabajo pretende determinar cuáles son los efectos nocivos de estas sustancias sobre el parénquima cerebral de los pacientes en los que se ha demostrado un consumo activo de drogas prohibidas. Para ello se empleó la técnica de SPECT cerebral con ECD - 99mTc aplicada a aquellos pacientes adictos, a los cuales previamente se les realizó una encuesta para conocer el tipo de droga, el tiempo y la duración de su adicción. Como resultado se detectó que el mayor número de defectos de perfusión corticales, es decir, déficits funcionales, se localizaron en la corteza órbito-frontal y en los lóbulos temporales, lo cual explicaría los importantes trastornos de conducta y personalidad que manifiestan estos pacientes. Se demostró con este método que el SPECT cerebral es un excelente método para detectar las zonas afectadas por estas drogas psicoadictivas, su extensión y la evolución y posible respuesta al tratamiento.Psychoactive drug abuse is a major public health problem in many districts. This study seeks to determine the harmful effects of such drugs on the brain parenchyma of patients known to abuse illegal drugs. Brain scans were obtained using 99 M Tc- ECD SPECT from drug addicts that had been previously surveyed to ascertain the type of drug, the timing and duration of their addiction SPECT findings showed a larger number of cortical perfusion defects, that is to say functional defects located in the orbital-frontal cortex and in the temporal lobes that may explain the significant behavior and personality disorders these patients display. Cerebral SPECT showed to be an excellent method to detect areas affected by psychoactive drugs, their extent, likely evolution and response to treatment.

  10. Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

    Directory of Open Access Journals (Sweden)

    Hedén Bo

    2009-08-01

    Full Text Available Abstract Background It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem. Methods In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR with delayed-enhancement technique to confirm or exclude myocardial infarction. Results There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR. Conclusion Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.

  11. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  12. Double-blind, placebo-controlled, randomized pilot study of cerebral blood flow patterns employing SPECT imaging in dental postsurgical pain patients with and without pain relief.

    Science.gov (United States)

    Newberg, Andrew B; Hersh, Elliot V; Levin, Lawrence M; Giannakopoulos, Helen; Secreto, Stacey A; Wintering, Nancy A; Farrar, John T

    2011-12-01

    Single-photon emission computed tomography (SPECT) has been employed in the study of altered regional cerebral blood flow (CBF) in experimental and chronic pain. CBF patterns have not been evaluated in patients with acute postoperative pain. The purpose of this pilot study was to employ SPECT to measure CBF distribution associated with postoperative dental pain and to compare these CBF patterns to subsequent images in the same patients who were experiencing pain relief versus continued or worsening pain who had received active or placebo analgesic interventions. The primary outcome measure was the percentage change in blood flow in various regions of interest. Twenty-two healthy individuals (10 males and 12 females, age range 20-29 years) who underwent the removal of ≥1 partial or full bony impacted mandibular third molars were evaluated for pain intensity as the local anesthesia dissipated, employing a 0 to10 numeric rating scale (0 = no pain; 10 = worst imaginable). When the subjects' pain level reached ≥4/10, they were injected intravenously with 260 MBq of technetium Tc 99m bicisate (ethyl cysteinate dimer). Under double-blind conditions and 10 minutes before being placed in the SPECT scanner, the first 10 subjects were randomized to receive intravenous ketorolac 15 mg or saline while the remaining 12 subjects were randomized to receive by mouth either ibuprofen 400 mg, ibuprofen 200 mg, acetaminophen 1000 mg, or placebo. One hour after drug administration, subjects were reevaluated for pain, injected with 925 MBq of technetium Tc 99m bicisate, given rescue medication if required, and then rescanned. CBF ratios were obtained for regions of interest and by normalizing to average whole brain activity. Subjects generally had a moderate degree (mean [SD], 7.3% [4.0%]) of thalamic asymmetry on initial scans with pain; after treatment, subjects reporting worsening pain regardless of the intervention had higher thalamic asymmetry (8.1% vs 2.8%) than those

  13. Double-phase (131)I whole body scan and (131)I SPECT-CT images in patients with differentiated thyroid cancer: their effectiveness for accurate identification.

    Science.gov (United States)

    Wakabayashi, Hiroshi; Nakajima, Kenichi; Fukuoka, Makoto; Inaki, Anri; Nakamura, Ayane; Kayano, Daiki; Kinuya, Seigo

    2011-11-01

    This study aims to determine whether a (131)I double-phase whole body scan (WBS) and SPECT-CT images have added value over a single-phase WBS image in identifying benign and malignant lesions in patients with well-differentiated thyroid cancer (DTC) at their first radioactive iodine (RAI) treatment. This study included 42 DTC patients who underwent their first radioablation. Post-therapeutic WBS images were acquired after 3 days (early phase) and 7 days (delayed phase). Following early-phase WBS, SPECT-CT images were obtained. The images were reviewed independently of the clinical data by 2 board-certified observers with a 6-point scoring system (benign to malignant -3 to +3). The double-phase WBS and SPECT-CT images showed 115 radioiodine-avid localizations (81 benign and 34 malignant accumulations). Confidence levels of benign accumulations were significantly higher with SPECT-CT (average score -2.40 ± 1.06) compared to those of the early-phase WBS (average score -1.39 ± 1.88) (p images (average score -1.49 ± 1.19) (p confidence score in the early-phase WBS image, the confidence level of the delayed-phase WBS was higher compared to that of the early-phase WBS images (p = 0.0012). The confidence levels of malignant accumulations were significantly higher with SPECT-CT images (average score 2.37 ± 0.96) compared to the early-phase WBS (average score 1.44 ± 1.21) (p images (average score 1.50 ± 1.13) (p image was superior to the early-phase WBS image in enhancing the confidence level and accurately localizing the lesions. The delayed-phase WBS image contributed to the accurate diagnosis of benign lesions with a low confidence level in the early-phase WBS image.

  14. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  15. Brain Imaging Findings in Dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Fang Sun

    2010-04-01

    Full Text Available Dyslexia is a brain-based disorder that has been intensively studied in the Western world for more than a century because of its social burden. However, affected individuals in Chinese communities are neither recognized nor formally diagnosed. Previous studies have concentrated on the disadvantages of reading deficits, and few have addressed non-linguistic skills, which are included in the symptoms. In addition, certain dyslexics possess visual spatial talents that have usually been ignored. In this review, we discuss the available information regarding brain imaging studies of dyslexia based on studies in Caucasian subjects. Gray matter deficits have been demonstrated in dyslexics using structural magnetic resonance imaging. Reduced neural activities in the left temporal and left parietal cortices, and diffuse widespread activation patterns in the cerebellum could be detected using functional magnetic resonance imaging. Changes in lactate levels, N-acetylaspartate/choline-containing compounds and N-acetylaspartate/creatine ratios, and phosphomonoester peak area were detected in magnetic resonance spectroscopy studies. Lower fractional aniso tropy values in bilateral white matter tracts have been demonstrated by diffusion tensor imaging. Abnormal Broca's area activation was found using positron emission tomography imaging. Increased activities in the right frontal and temporal brain regions were detected using electroencephalography. Reduced hemispheric asymmetry and increased left inferior frontal activation were reported following magnetoencephalography. Although these imaging modalities are not currently diagnostic or prognostic, they are able to provide information on the causes of dyslexia beyond what was previously provided by behavioral or cognition studies.

  16. Voxel-based multimodel fitting method for modeling time activity curves in SPECT images.

    Science.gov (United States)

    Sarrut, David; Halty, Adrien; Badel, Jean-Noel; Ferrer, Ludovic; Bardiès, Manuel

    2017-12-01

    Estimating the biodistribution and the pharmacokinetics from time-sequence SPECT images on a per-voxel basis is useful for studying activity nonuniformity or computing absorbed dose distributions by convolution of voxel kernels or Monte-Carlo radiation transport. Current approaches are either region-based, thus assuming uniform activity within the region, or voxel-based but using the same fitting model for all voxels. We propose a voxel-based multimodel fitting method (VoMM) that estimates a fitting function for each voxel by automatically selecting the most appropriate model among a predetermined set with Akaike criteria. This approach can be used to compute the time integrated activity (TIA) for all voxels in the image. To control fitting optimization that may fail due to excessive image noise, an approximated version based on trapezoid integration, named restricted method, is also studied. From this comparison, the number of failed fittings within images was estimated and analyzed. Numerical experiments were used to quantify uncertainties and feasibility was demonstrated with real patient data. Regarding numerical experiments, root mean square errors of TIA obtained with VoMM were similar to those obtained with bi-exponential fitting functions, and were lower ( 10%) than with single model approaches that consider the same fitting function for all voxels. Failure rates were lower with VoMM and restricted approaches than with single-model methods. On real clinical data, VoMM was able to fit 90% of the voxels and led to less failed fits than single-model approaches. On regions of interest (ROI) analysis, the difference between ROI-based and voxel-based TIA estimations was low, less than 4%. However, the computation of the mean residence time exhibited larger differences, up to 25%. The proposed voxel-based multimodel fitting method, VoMM, is feasible on patient data. VoMM leads organ-based TIA estimations similar to conventional ROI-based method. However, for

  17. SPECT/CT for imaging of the spine and pelvis in clinical routine: a physician's perspective of the adoption of SPECT/CT in a clinical setting with a focus on trauma surgery

    Energy Technology Data Exchange (ETDEWEB)

    Scheyerer, Max J.; Zimmermann, Stefan M.; Osterhoff, Georg; Simmen, Hans-Peter; Werner, Clement M.L. [University Hospital Zurich, Department of Surgery, Division of Trauma Surgery, Zuerich (Switzerland); Pietsch, Carsten [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland)

    2014-05-15

    Injuries of the axial skeleton are an important field of work within orthopaedic surgery and traumatology. Most lesions following trauma may be diagnosed by means of conventional plain radiography, computed tomography or magnetic resonance imaging. However, for some aspects SPECT/ CT can be helpful even in a trauma setting. In particular, the combination of highly sensitive but nonspecific scintigraphy with nonsensitive but highly specific computed tomography makes it particularly useful in anatomically complex regions such as the pelvis and spine. From a trauma surgeon's point of view, the four main indications for nuclear medicine imaging are the detection of (occult) fractures, and the imaging of inflammatory bone and joint diseases, chronic diseases and postoperative complications such as instability of instrumentation or implants. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical setting. (orig.)

  18. SPECT/CT for imaging of the spine and pelvis in clinical routine: a physician's perspective of the adoption of SPECT/CT in a clinical setting with a focus on trauma surgery.

    Science.gov (United States)

    Scheyerer, Max J; Pietsch, Carsten; Zimmermann, Stefan M; Osterhoff, Georg; Simmen, Hans-Peter; Werner, Clement M L

    2014-05-01

    Injuries of the axial skeleton are an important field of work within orthopaedic surgery and traumatology. Most lesions following trauma may be diagnosed by means of conventional plain radiography, computed tomography or magnetic resonance imaging. However, for some aspects SPECT/ CT can be helpful even in a trauma setting. In particular, the combination of highly sensitive but nonspecific scintigraphy with nonsensitive but highly specific computed tomography makes it particularly useful in anatomically complex regions such as the pelvis and spine. From a trauma surgeon's point of view, the four main indications for nuclear medicine imaging are the detection of (occult) fractures, and the imaging of inflammatory bone and joint diseases, chronic diseases and postoperative complications such as instability of instrumentation or implants. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical setting.

  19. [Brain SPECT with 123I-lisuride in patients with Parkinson's disease and controls].

    Science.gov (United States)

    Hierholzer, J; Cordes, M; Schelosky, L; Richter, W; Schrag, A; Poewe, W; Schulze, P E; Semmler, W; Eichstädt, H; Felix, R

    1995-08-01

    The goal was to visualize cerebral dopamine-D2 receptors in 6 patients with Parkinson's disease and in 3 healthy controls using iodine-123-Lisuride-SPECT. In addition, we performed receptor-replacement studies using 123I-Lisuride and cold Lisuride as competitive ligands. The highest uptake of 123I-Lisuride was observed in the striatum, a region with known high dopamine receptor density. In two patients premedication with cold Lisuride displaced 123I-Lisuride from the dopamine receptor. 123I-Lisuride is valuable as a radiotracer in cerebral dopamine-D2 receptor scintigraphy. Whether or not it is possible to determine dynamic changes of dopamine receptor density or function by receptor replacement studies needs further evaluation in larger patient populations.

  20. Brain perfusion SPECT of patients with anorexia nervosa. Evaluation using statistical parametric mapping (SPM96)

    Energy Technology Data Exchange (ETDEWEB)

    Nakabeppu, Yoshiaki; Nakajoh, Masayuki; Tsuchimochi, Shinsaku; Tani, Atsushi; Umanodan, Tomokazu [Kagoshima Univ. (Japan). Faculty of Medicine; Naruo, Tetsuro; Nozoe, Shinichi

    2001-02-01

    Anorexia nervosa (AN) has two subtypes; restricting type (AN-R) and binge-eating/purging type (AN-BP). It is suggested that AN-R is different from AN-BP on psychopathological aspects. We compared regional cerebral blood flows of 7 female patients with AN-R, 7 female patients with AN-BP and 7 age-matched normal volunteers (NV) using Tc99m-HMPAO SPECT processed by SPM96. There were significant decreased perfusions in the anterior cingulate gyrus in AN-R when compared with those of AN-BP and NV. These results suggest that the mechanism of outbreak of AN-R may be different from that of AN-BP. (author)

  1. SPECT cerebral na doença de Huntington antes e após terapia com olanzapina: relato de caso

    OpenAIRE

    ETCHEBEHERE, ELBA C. S. C.; LIMA, MARIANA C. L.; PASSOS, WALMIR; MACIEL JR, JAIME A.; SANTOS, ALLAN O.; RAMOS, CELSO DARÍO; CAMARGO, EDWALDO E.

    1999-01-01

    Olanzapine, an atypical antipsychotic drug, was administered to a patient with Huntington's disease (HD) with marked choreiform movements. Brain SPECT with 99mTc-HMPAO was performed before and after treatment. Brain SPECT imaging has been performed in patients with HD in order to determine the status of basal ganglia perfusion. The use of brain SPECT with 99mTc-HMPAO before and after treatment in patients with HD has not been yet reported. The marked hypoperfusion of the basal ganglia on brai...

  2. Three-dimensional brain metabolic imaging in patients with toxic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Callender, T.J.; Duhon, D.; Ristovv, M. (Med-Health, Ltd. Clinic, Lafayette, LA (United States)); Morrow, L. (Univ. of Pittsburgh, PA (United States)); Subramanian, K. (Lafayette General Hospital, LA (United States))

    1993-02-01

    Thirty-three workers, ages 24 to 63, developed clinical toxic encephalopathy after exposure to neurotoxins and were studied by SPECT brain scans. Five were exposed to pesticides, 13 were acutely exposed to mixtures of solvents, 8 were chronically exposed to mixtures of hazardous wastes that contained organic solvents, 2 were acutely exposed to phosgene and other toxins, and 5 had exposures to hydrogen sulfide. Twenty-nine had neuropsychological testing and all had a medical history and physical. Of the workers who had a clinical diagnosis of toxic encephalopathy, 31 (93.9%) had abnormal SPECT brain scans with the most frequent areas of abnormality being temporal lobes (67.7%), frontal lobes (61.3%), basal ganglia (45.2%), thalamus (29.0%), parietal lobes (12.9%), motorstrip (9.68%), cerebral hemisphere (6.45%), occipital lobes (3.23%), and caudate nucleus (3.23%). Twenty-three out of 29 (79.3%) neuropsychological evaluations were abnormal. Other modalities when performed included the following percentages of abnormals: NCV, 33.3%; CPT sensory nerve testing, 91.3%, vestibular function testing, 71.4%; olfactory testing, 89.2%; sleep EEG analysis, 85.7%; EEG, 8.33%; CT, 7.14%; and MRI brain scans, 28.6%. The complex of symptoms seen in toxic encephalopathy implies dysfunction involving several CNS regions. This series of patients adds to the previous experience of brain metabolic imaging and demonstrates that certain areas of the brain are typically affected despite differences in toxin structure, that these lesions can be globally defined by SPECT/PET brain scans, that these lesions correlate well with clinical and neuropsychological testing, and that such testing is a useful adjunct to previous methods. EEG and structural brain imaging such as CT and MRI are observed to have poor sensitivity in this type of patient. 32 refs., 5 tabs.

  3. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang [First Affiliated Hospital of Nanjing Medical University, Department of Cardiology, Nanjing, Jiangsu (China); Feng, Jianlin [First Affiliated Hospital of Nanjing Medical University, Department of Nuclear Medicine, Nanjing, Jiangsu (China); Lloyd, Michael S. [Emory University School of Medicine, Division of Cardiology, Atlanta, GA (United States); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-07-15

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  4. Prospective clinical and DaT-SPECT imaging in premotorLRRK2G2019S-associated Parkinson disease.

    Science.gov (United States)

    Sierra, María; Martínez-Rodríguez, Isabel; Sánchez-Juan, Pascual; González-Aramburu, Isabel; Jiménez-Alonso, Mikel; Sánchez-Rodríguez, Antonio; Berciano, José; Banzo, Ignacio; Infante, Jon

    2017-08-01

    To assess the value of baseline clinical and imaging biomarkers in a cohort of asymptomatic LRRK2 G2019S carriers for predicting conversion to Parkinson disease (PD) at 4 years. Thirty-two asymptomatic carriers of LRRK2 G2019S mutation underwent baseline and 4-year evaluation including clinical examination (Unified Parkinson's Disease Rating Scale, part III, olfaction University of Pennsylvania Smell Identification Test [UPSIT]) and dopamine transporter (DaT) SPECT ( 123 I-ioflupane). Visual and semiquantitative analysis of images was performed. The specific striatal binding ratio was calculated (striatal region of interest [ROI] - occipital ROI/occipital ROI). Three carriers, asymptomatic at baseline, had converted to PD at 4-year evaluation. Twenty-three participants were fully evaluated. PD converters had lower striatal DaT binding at baseline than nonconverters ( p = 0.002). A baseline scan with a ratio of bilateral striatal uptake below 1 predicted conversion to PD within the 4-year period with high sensitivity and specificity (area under the curve 1; p = 0.006). The slope of DaT binding decline between the 2 scans was similar in PD converters and nonconverters. Age-adjusted UPSIT score at baseline and at 4 years was similar in both groups. Semiquantitative DaT-SPECT could be used to predict early conversion to PD in asymptomatic carriers of the LRRK2 G2019S mutation. Rate of conversion to PD at 4 years in this cohort aged ∼64 years was 12%. The slope of DaT binding decline on DaT-SPECT imaging seems to be similar across different stages of the premotor period. © 2017 American Academy of Neurology.

  5. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT.

    Science.gov (United States)

    Zhou, Yang; Chakraborty, Sudipta; Liu, Shuang

    2011-01-18

    The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the α(v)β(3) is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the α(IIb)β(3 )is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling ("inside-out" and "outside-in") and allows the aggregation of platelets during vascular injury. The α(IIb)β(3) plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the α(IIb)β(3) on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of α(IIb)β(3 )are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of α(v)β(3)-targeted radiotracers for imaging tumors and the use of α(IIb)β(3)-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of

  6. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT

    Science.gov (United States)

    Zhou, Yang; Chakraborty, Sudipta; Liu, Shuang

    2011-01-01

    The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the αvβ3 is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the αIIbβ3 is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling (“inside-out” and “outside-in”) and allows the aggregation of platelets during vascular injury. The αIIbβ3 plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the αIIbβ3 on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of αIIbβ3 are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of αvβ3-targeted radiotracers for imaging tumors and the use of αIIbβ3-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic RGD peptides

  7. Comparison of SPECT imaging using monoclonal antibodies with computed tomography (CT) and ultrasonography (US) for detection of recurrences of colorectal carcinoma: A prospective clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Chatal, J.F.; Saccavini, J.C.; Douillard, J.Y.; Curtet, C.; Kremer, M.; Le Mevel, B.

    1985-05-01

    A prospective clinical study compared SPECT imaging, ultrasonography (US), and computed tomography (CT) in 22 patients clinically or biologically (increased CEA and/or CA 19-9 serum concentration) suspected of recurrence of colorectal carcinoma. The recordings were performed 3 to 5 days after injection of 111 to 129.5 MBq of cocktail of I-131-labeled anti-CEA and 19-9 (F(ab')2 fragments) monoclonal antibodies. Twenty nine tumor sites were demonstrated by surgery or concordant results of conventional diagnostic methods. SPECT visualized 21 of these 29 tumor sites (72%). It was negative in 4 cases with no demonstrated recurrence (by any method and follow-up). With respect to localization of tumor sites, SPECT visualized 7/12 liver metastases, 8/8 local pelvic recurrences and 6/8 abdominal recurrences. CT and US, systematically performed blind after SPECT, respectively visualized 9/10 and 9/12 liver metastases, 7/12 and 4/13 pelvic and abdominal recurrences. Image interpretation of SPECT was difficult due to poor tumor contrast and the large number of low-intensity, nonspecific radioactive foci. A focus had to recur in at least 3 successive slices to be considered pathological. Four tumor sites were visualized with SPECT and not with US and CT (negative or uncertain results). SPECT would appear to be useful for localizing pelvic or abdominal recurrences in cases in which interpretation of US and CT images is difficult, often because their nonspecific approach does not make it possible to differentiate a tumor recurrence from post-operative anatomical changes.

  8. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What It ...

  9. Efficacy Assessment of Endovascular Stenting in Patients with Unilateral Middle Cerebral Artery Stenosis Using Statistical Probabilistic Anatomical Mapping Analysis of Basal/Acetazolamide Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Won; Won, Kyoung Sook; Zeon, Seok Kil; Lee, Chang Young [Keimyung University, School of Medicine, Daegu (Korea, Republic of)

    2009-08-15

    The aim of this study was to evaluate the hemodynamic changes after endovascular stenting in patients with unilateral middle cerebral artery (MCA) stenosis using statistical probabilistic anatomical mapping (SPAM) analysis of basal/acetazolamide (ACZ) Tc-99m ECD brain perfusion SPECT. Eight patients (3 men and 5 women, 64.8{+-}10.5 years) who underwent endovascular stenting for unilateral MCA stenosis were enrolled. Basal/ACZ Tc-99m ECD brain perfusion SPECT studies were performed by one-day protocol before and after stenting. Using SPAM analysis, we compared basal cerebral perfusion (BCP) counts and cerebrovascular reserve (CVR) index of the MCA territory before stenting with those after stenting. After stenting, no patient had any complication nor additional stroke. In SPAM analysis, 7 out of the 8 patients had improved BCP counts of the MCA territory and 7 out of the 8 patients had improved CVR index of the MCA territory after stenting. Before stenting, the mean BCP counts and CVR index in the affected MCA territory were 47.1{+-}2.2 ml/min/100 g and -2.1{+-}2.9%, respectively. After stenting, the mean BCP counts and CVR index in the affected MCA territory were improved significantly (48.3{+-}2.9 ml/min/100 g, p=0.025 and 0.1{+-}1.3%, p=0.036). This study revealed that SPAM analysis of basal/ACZ brain perfusion SPECT would be helpful to evaluate hemodynamic efficacy of endovascular stenting in unilateral MCA stenosis.

  10. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  11. Evaluation of 99mTc-labeled PSMA-SPECT/CT imaging in prostate cancer patients who have undergone biochemical relapse

    Directory of Open Access Journals (Sweden)

    Heng-Chuan Su

    2017-01-01

    Full Text Available Using conventional imaging modalities, it is difficult to detect recurrent lesions in prostate cancer patients who have undergone biochemical relapse, especially in patients with low prostate-specific antigen (PSA levels. We retrospectively reviewed the files of fifty patients with histopathologically confirmed prostate cancer who underwent 99mTc-labeled prostate-specific membrane antigen (PSMA single-photon emission computed tomography (SPECT/computed tomography (CT, magnetic resonance imaging (MRI, and bone scan within a 30-day period. PSMA-SPECT/CT indicated metastatic lesions in 39 patients and had a higher detection rate (78.0% than bone scan (34.0% or MRI (40.0%. The diagnostic efficiency of PSMA-SPECT/CT imaging for bone and lymph node metastases (50.0% and 42.0% was better than bone scan (34.0% and 0.0% or MRI (24.0% and 20.0%. PSMA-SPECT/CT provided a higher detection rate at serum PSA levels of ≤1 ng ml−1, 1-4 ng ml−1, 4-10 ng ml−1, and >10 ng ml−1. No correlation was found between Gleason score, PSA level, and the tracer tumor/background ratio of metastatic lesions. With the aid of PSMA-SPECT/CT imaging, the therapeutic strategy was changed for 31 patients, and this may have enhanced their clinical outcome. In conclusion, PSMA-SPECT/CT imaging could detect more metastatic lesions and achieve a higher detection rate than conventional imaging modalities at different serum PSA levels in prostate cancer patients who had undergone biochemical relapse.

  12. Preparation and biodistribution assessment of {sup 111}In-BPAMD as a novel agent for bone SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2015-07-01

    An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. In this study, a new agent for SPECT-imaging of bone metastases, {sup 111}In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid ({sup 111}In-BPAMD) complex has been developed with specific activity of 2.85 TBq/mmol. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography method indicated high radiochemical purity > 95% at the optimal conditions. The complex demonstrated significant stability at room temperature and in human serum at least for 48 h. Hydroxyapatite (HA) binding assay showed high binding ability of the radiolabeled complex even at the low amounts of HA. Also, log P measurements highlighted the strong hydrophilic nature of the complex. Biodistribution studies as well as planar imaging after injection of the complex into the male Syrian mice showed major accumulation of the labelled compound in the bone tissue. Totally, the obtained results indicated that {sup 111}In-BPAMD has interesting characteristics as an agent for SPECT-imaging of the bone metastases.

  13. Limitations of Tc99m-MIBI-SPECT imaging scans in persistent primary hyperparathyroidism

    NARCIS (Netherlands)

    Witteveen, Janneke E.; Kievit, Job; Stokkel, Marcel P. M.; Morreau, Hans; Romijn, Johannes A.; Hamdy, Neveen A. T.

    2011-01-01

    In primary hyperparathyroidism (PHPT) the predictive value of technetium 99m sestamibi single emission computed tomography (Tc99m-MIBI-SPECT) for localizing pathological parathyroid glands before a first parathyroidectomy (PTx) is 83-100%. Data are scarce in patients undergoing reoperative

  14. Collar Osteophytes Mimicking Osteonecrosis in Planar Bone Scintigraphy and Usefulness of SPECT/CT Images.

    Science.gov (United States)

    Juang, Jr-Jian; Chen, Yi-Hsing; Tsai, Shih-Chuan; Lin, Wan-Yu

    2017-03-01

    The use of prednisolone is one major risk factor for osteonecrosis in patients with systemic lupus erythematosus. Bone scintigraphy can be a diagnostic tool for early diagnosis. We present a case who had collar osteophytes at the bilateral femoral heads, which mimicked osteonecrosis in the planar bone scintigram. An SPECT/CT scan avoided this pitfall and increased the diagnostic accuracy for osteonecrosis.

  15. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  16. SPECT imaging of D-2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, Cynthia; de Bruin, Kora; Beekman, Freek; Booij, Jan

    2008-01-01

    Purpose The dopamine D-2 receptor (D2R) is important in the mediation of addiction. [I-123]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [I-123]IBZM

  17. Corrective 111 In Capromab Pendetide SPECT Image Reconstruction Methods for Improved Detection of Recurrent Prostate Cancer

    Science.gov (United States)

    2006-06-01

    with compensation for attenuation and detector response (OSAD). The results in pink are from 25% lesion contrast with respect to background and the...Trans. Nucl. Sci., 1980. NS-27(3): p. 1137-1153. 10. Jaszczak, R.J., C.E. Floyd , Jr., and R.E. Coleman, Scatter Compensation Techniques For SPECT

  18. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    Energy Technology Data Exchange (ETDEWEB)

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-02-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease.

  19. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S; Touch, M [Duke University Medical Physics Graduate Program, Durham, NC (United States); Bowsher, J; Yin, F [Duke University Medical Physics Graduate Program, Durham, NC (United States); Duke University Medical Center, Durham, NC (United States); Cheng, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.

  20. A Giant Hepatic Hemangioma Complicated by Kasabach-Merritt Syndrome: Findings of Tc-99m RBC Scintigraphy and SPECT Including a Total Body Blood Pool Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yim, Chang Yeol [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2009-02-15

    Kasabach-Merritt syndrome (KMS) consists of thrombocytopenia, microangiopathic hemolytic anemia, and localized consumption coagulopathy that develops within vascular hemangioma. This syndrome may also be associated with occult hemangiomas located at various sites. Tc-99m RBC scintigraphy and SPECT have proven to be reliable for confirming or excluding hemangioma. Total body blood pool imaging study during the scintigraphy also provides a means of screening for occult lesions. The authors report the case of a 29-year-old man who presented with a giant hepatic hemangioma complicated by KMS, and underwent Tc-99m RBC scintigraphy and SPECT including a total body blood pool imaging study.

  1. SPECT imaging using [{sup 123}I]{beta}-CIT and [{sup 123}I]IBF in extrapyramidal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takahiro; Amano, Takahiro; Hashimoto, Jun; Itoh, Yoshiaki; Muramatsu, Kazuhiro; Kubo, Atsushi; Fukuuchi, Yasuo [Keio Univ., Tokyo (Japan). School of Medicine

    2003-01-01

    Imaging of dopaminergic function is useful in the investigation of patients with Parkinson disease (iPD) and other extrapyramidal diseases. Using agents that bind to dopamine transporters ([{sup 123}I]{beta}-CIT) and receptors ([{sup 123}I]IBF SPECT), we investigated SPECT in 9 healthy volunteers and 24 patients for dopamine transporters as well as 15 patients for dopamine receptors. In {beta}-CIT SPECT studies, we examined 17 iPD patients (63.3{+-}9.9 y/o), 3 multiple system atrophy (MSA) patients (olivopontocerebellar atrophy (OPCA) type) (64.0{+-}8.0 y/o), 2 vascular parkinsonism (VP) patients (71.0{+-}0.0 y/o), 1 progressive supranuclear palsy (PSP) patient (69 y/o), 1 cortico-basal degeneration (CBD) patient (50 y/o) and nine healthy controls (39.1{+-}9.3 y/o). For IBF SPECT studies 11 iPD patients (60.6{+-}10.9 y/o), 3 MSA patients (2 OPCA type (50.5{+-}3.5 y/o) and 1 striatonigral degeneration (SND) type (65 y/o)) and 1 PSP patient (60 y/o) underwent SPECT scans after the injection of [{sup 123}I]IBF. The specific to nonspecific striatal ratio (St/Oc-1), ratio of putaminal uptake to caudatal uptake (Pu/Ca), and asymmetry indices (AI) were estimated. {beta}-CIT studies showed ST/Oc-1 as follows; iPD: 2.66{+-}1.09 (n=17), VP: 5.73 and 7.39, MSA: 1.84{+-}0.46 (n=3), PSP: 2.34, CBD: 2.16. In all extrapyramidal diseases except VP, St/Oc-1 ratios were significantly lower than those in normal volunteers (6.46{+-}1.08) (p<0.01). Also in early-phase iPD patients (Yahr I-II), St/Oc-1 (3.16{+-}1.49: n=4) was significantly lower than those in normal volunteers (p<0.01). In IBF studies, St/Oc-1 ratios were significantly higher in early-phase (Yahr I-II) iPD patients (1.82{+-}0.25: n=5) than those in late-phase (Yahr III-IV) iPD patients (1.38{+-}0.32: n=6) (p<0.05). The Pu/Ca ratios in iPD patients (1.12{+-}0.13) and MSA (OPCA type) patients (0.95{+-}0.05) were higher than that in MSA (SND type) patient (0.78) and were lower than that in PSP patient (1.55). In conclusion

  2. Comparison of HR-SPECT and MR-imaging in the diagnosis of Perthes disease; Vergleich von HR-SPECT und MRT bei der Diagnostik des Morbus Perthes

    Energy Technology Data Exchange (ETDEWEB)

    Mellerowicz, H. [Orthopaedische Klinik und Poliklinik, Oskar-Helene-Heim, Freie Univ. Berlin (Germany); Schulze, C. [Orthopaedische Klinik und Poliklinik, Oskar-Helene-Heim, Freie Univ. Berlin (Germany); Stelling, E. [Orthopaedische Klinik und Poliklinik, Oskar-Helene-Heim, Freie Univ. Berlin (Germany); Stabell, U. [Praxis fuer Nuklearmedizin, Berlin (Germany); Schedel, H. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Freie Univ. Berlin (Germany)

    1993-12-31

    Children, who are supposed to suffer from M. Legg-Perthes, are diagnosed by clinical-, X-ray examination and today mostly by MRT. MRT gives the most reliable information but high cost, small availability and the demand for resting motionless during the examination is regarded as a problem, especially concerning children. The aim of our study was to evaluate 3D-HR-SPECT as an alternative diagnostic procedure to MRT. 28 children (2-12 years, mean 6,2 years) suspected of suffering from M. Legg-Perthes underwent 3D-HR-SPECT and 16 of them MRT examination. In all 28 children diagnostic assessment of M. Legg-Perthes could be achieved by HR-SPECT (incl. 4 negative cases of transient synovialitis). In 10 cases findings corresponded to MRT evaluation. The statement upon the area of necrosis was similar in both methods, but the reaction of bone to necrosis could be judged in a more differentiated way in HR-SPECT. Besides lower costs further advantages of HR-SPECT were found due to the deficit of movement artifacts (no sedation was required). A disadvantage of this method is X-ray contamination at a low level of 250-400 MBrg. To our experience HR-SPECT is an alternative to MRT for early diagnosis of M. Calve-Legg-Perthes. (orig.) [Deutsch] Bei Kindern mit klinischem Verdacht auf einen M. Perthes ist neben der Anamnese, der klinischen Untersuchung und dem konventionellen Roentgenbild heute haeufig die Durchfuehrung einer kernspintomographischen Untersuchung der naechste Schritt. Der hohen Treffsicherheit dieses Verfahrens stehen jedoch die vergleichsweise geringe Verfuegbarkeit, die hohen Kosten und die Notwendigkeit, waehrend der Untersuchung ruhig zu liegen, was vor allem juengeren Kindern nicht immer gelingt, gegenueber. Ziel unserer Studie war es, die diagnostische Wertigkeit der 3D-HR-SPECT (High Resolution - Single Photonen Emission Computed Tomography) als alternatives Verfahren zur MRT zu ueberpruefen. Hierzu wurden 28 Kinder im Alter von 2-12 Jahren mit klinischem

  3. Imaging the Addicted Brain: Alcohol.

    Science.gov (United States)

    Dupuy, M; Chanraud, S

    2016-01-01

    Alcohol use disorder (AUD) represents a major public health issue due to its prevalence and severe health consequences. It may affect several aspects of an individual's life including work and relationships, and it also increases risk for additional problems such as brain injury. The causes and outcomes of AUD are varied; thus, attempting to understand this complex phenomenon requires investigation from multiple perspectives. Magnetic resonance imaging (MRI) is a powerful means to investigate brain anatomical and functional alterations related to AUD. Recent advances in MRI methods allow better investigation of the alterations to structural and functional brain networks in AUD. Here, we focus on findings from studies using multiple MRI techniques, which converge to support the considerable vulnerability of frontal systems. Indeed, MRI studies provide evidence for a "disconnection syndrome" which could be involved in the poor behavioral control observed in AUD. © 2016 Elsevier Inc. All rights reserved.

  4. Computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines

    Science.gov (United States)

    Oliveira, Francisco P. M.; Castelo-Branco, Miguel

    2015-04-01

    Objective. The aim of the present study was to develop a fully-automated computational solution for computer-aided diagnosis in Parkinson syndrome based on [123I]FP-CIT single photon emission computed tomography (SPECT) images. Approach. A dataset of 654 [123I]FP-CIT SPECT brain images from the Parkinson’s Progression Markers Initiative were used. Of these, 445 images were of patients with Parkinson’s disease at an early stage and the remainder formed a control group. The images were pre-processed using automated template-based registration followed by the computation of the binding potential at a voxel level. Then, the binding potential images were used for classification, based on the voxel-as-feature approach and using the support vector machines paradigm. Main results. The obtained estimated classification accuracy was 97.86%, the sensitivity was 97.75% and the specificity 98.09%. Significance. The achieved classification accuracy was very high and, in fact, higher than accuracies found in previous studies reported in the literature. In addition, results were obtained on a large dataset of early Parkinson’s disease subjects. In summation, the information provided by the developed computational solution potentially supports clinical decision-making in nuclear medicine, using important additional information beyond the commonly used uptake ratios and respective statistical comparisons. (ClinicalTrials.gov Identifier: NCT01141023)

  5. Evaluation of cerebral metabolism in patients with unilateral carotid stenosis by proton MR spectroscopy: a correlative study with cerebral hemodynamics by acetazolamide stress brain perfusion SPECT (acz-SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung; Kim, Geun Eun; Lee, Jeong Hee; Kim, Do Gyun; Kim, Sang Tae; Lee, Hee Kyung [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)

    2001-07-01

    Carotid stenosis may lead not only to cerebral hemodynamic compromise but also cerebral metabolic changes without overt infarction. To investigate the brain metabolic changes as a result of hemodynamic compromise in pts with carotid stenosis, we compared the changes in metabolism of the gray and white matter detected by proton MRS with cortical hemodynamics measured by Acz-SPECT. We prospectively studied symptomatic 18 pts (M/F=15/3, mean ages: 64.4y) with unilateral carotid stenosis. All pts underwent Acz-SPECT and MRS with 3 days. rCBF and rCVR of MCA territory were assessed by Acz-SPECT. Hemodynamic compromise was graded as stage 0 (normal rCBF and rCVR), stage 1 (normal rCBF and reduced rCVR), and stage 2( reduced rCBF and rCVR). Brain metabolism was assessed by measuring the peaks of N-acetyl aspartate (NAA), choline (Cho), and the sum of creatine and phosphocreatine (Cr) from noninfarcted white matter in the both centrum semiovales and gray matter in both MCA territories. On Acz-SPECT, 7 pts showed stage 2 were significantly lower than in pts with stage 0 (p<0.01). The asymmetric ratio of NAA/Cr in pts with state 2 was also significantly lower than in pts with stage 1(p<0.05). The asymmetric ratio of Cho/Cr was increased as hemodynamic stage increased but the differences were not statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased and that of Cho/Cr was increased as hemodynamic stage increased. However, these differences were not statistically significant among 3 stages. The asymmetric ratios of NAA/Cho of centrum semiovale in pts with reduced rCBF and/or reduced rCVR were lower than in pts with normal perfusion. Our results indicate the metabolic changes detected by proton MRS in patients with carotid stenosis reflect a hemodynamic compromised state.

  6. The influence of the image reconstruction in relative quantification in SPECT/PET/CT animal; A influencia da reconstrucao da imagem na quantificacao relativa em SPECT/PET/CT animal

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah; Sa, Lidia Vasconcellos de, E-mail: sarahsoriano@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Sergio; Barboza, Thiago [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The objective of this study is to evaluate the spatial resolution of the equipment SPECT/PET/CT animal to different reconstruction methods and the influence of this parameter in the mouse dosimetry C57BL6, aimed at development of new radiopharmaceuticals for use in humans. CT and SPECT images were obtained from a simulator composed of four spheres of different diameters (d), which simulate captating lesions by the equipment FLEX ™ Triumph ™ Pre-Clinical Imaging System used for preclinical studies in the Hospital Universitario (HU/UFRJ). In order to simulate a real study, the total volume of the simulator (body) was filled with a solution of {sup 99m}Tc diluted in water and the spheres were filled with concentrations four time higher than the body of the simulator. From the gross SPECT images it was used filtered backprojection method (FBP) with application of different filters: Hamming, Hann and Ramp, ranging the cutoff frequencies. The resolution of the equipment found in the study was 9.3 to 9.4 mm, very below the value provided by the manufacturer of 1.6mm. Thus, the protocol for mice can be optimized as being the FBP reconstruction method of Hamming filter, cutoff of 0.5 to yield a resolution from 9.3 to 9.4mm. This value indicates that captating regions of diameter below 9.3 mm are not properly quantified.

  7. Effect of acupuncture on regional cerebral blood flow at acupoints GV 20, GV. 26, LI, 4. ST. 36, SP. 6 evaluated by Tc-99m ECD brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun; Bom, Hee Seung; Kang, Hwa Jeong; Kim, Seong Min; Jeong, Hwan Jeong; Kim, Ji Yeul [College of Medicine, Dongshin Univ., Naju (Korea, Republic of); Ahn, Soo Gi [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    2000-12-01

    To evaluate the effect of acupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascular diseases. Rest/acupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 54 normal volunteers (34 males, 20 females, age range from 18 to 62 years) using six paradigms: acupuncture at acupoints GV. 20, GV. 26, LI. 4, ST. 36 and SP. 6. In the control study, needle location was chosen on a non-meridian focus 1 cm posterior to the right fibular head. All images were spatially normalized, and the differences between rest and acupuncture stimulation were statistically analyzed using SPM for Windows. Acupuncture applied at acupoint GV. 20 increased rCBF in both the anterior frontal lobes, the right frontotemporal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at GV. 26 increased rCBF in the left prefrontal cortex. Acupuncture at LI. 4 increased rCBF in the left prefrontal and both the inferior frontal lobes, and the left anterior temporal lobe and the left cerebell