WorldWideScience

Sample records for brain size evolution

  1. Genetic architecture supports mosaic brain evolution and independent brain–body size regulation

    OpenAIRE

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D.; Williams, Robert W.

    2012-01-01

    The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental co...

  2. Allomaternal care, life history and brain size evolution in mammals

    OpenAIRE

    Isler, K.; van Schaik, C. P.

    2012-01-01

    Humans stand out among the apes by having both an extremely large brain and a relatively high reproductive output, which has been proposed to be a consequence of cooperative breeding. Here, we test for general correlates of allomaternal care in a broad sample of 445 mammal species, by examining life history traits, brain size, and different helping behaviors, such as provisioning, carrying, huddling or protecting the offspring and the mother. As predicted from an energetic-cost perspective, a...

  3. Evolution of brain size in the Palaeognath lineage, with an emphasis on new zealand ratites.

    Science.gov (United States)

    Corfield, Jeremy R; Wild, J Martin; Hauber, Mark E; Parsons, Stuart; Kubke, M Fabiana

    2008-01-01

    Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i.e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds.

  4. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  5. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii).

    Science.gov (United States)

    Walsh, Matthew R; Broyles, Whitnee; Beston, Shannon M; Munch, Stephan B

    2016-07-13

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  6. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  7. Brain size and thermoregulation during the evolution of the genus Homo.

    Science.gov (United States)

    Naya, Daniel E; Naya, Hugo; Lessa, Enrique P

    2016-01-01

    Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement.

  8. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    Science.gov (United States)

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.

  9. Plausible mechanisms for brain structural and size changes in human evolution.

    Science.gov (United States)

    Blazek, Vladimir; Brùzek, Jaroslav; Casanova, Manuel F

    2011-09-01

    Encephalization has many contexts and implications. On one hand, it is concerned with the transformation of eating habits, social relationships and communication, cognitive skills and the mind. Along with the increase in brain size on the other hand, encephalization is connected with the creation of more complex brain structures, namely in the cerebral cortex. It is imperative to inquire into the mechanisms which are linked with brain growth and to find out which of these mechanisms allow it and determine it. There exist a number of theories for understanding human brain evolution which originate from neurological sciences. These theories are the concept of radial units, minicolumns, mirror neurons, and neurocognitive networks. Over the course of evolution, it is evident that a whole range of changes have taken place in regards to heredity. These changes include new mutations of genes in the microcephalin complex, gene duplications, gene co-expression, and genomic imprinting. This complex study of the growth and reorganization of the brain and the functioning of hereditary factors and their external influences creates an opportunity to consider the implications of cultural evolution and cognitive faculties.

  10. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds.

    Science.gov (United States)

    Vincze, Orsolya

    2016-09-01

    Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the "energetic trade-off hypothesis" claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the "behavioral flexibility hypothesis" argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade-off hypothesis, by showing the validity of the trade-off among long-distance migratory species alone. Third, using resident and short-distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade-off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum. PMID:27436482

  11. DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution

    Science.gov (United States)

    Dumas, Laura J.; O’Bleness, Majesta S.; Davis, Jonathan M.; Dickens, C. Michael; Anderson, Nathan; Keeney, J.G.; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S.C.; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R.; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M.

    2012-01-01

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R2 = 0.98; p = 1.8 × 10−6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. PMID:22901949

  12. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  13. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  14. Brain evolution by brain pathway duplication

    OpenAIRE

    Chakraborty, Mukta; Jarvis, Erich D

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel ...

  15. Human Brain and Its Size

    Institute of Scientific and Technical Information of China (English)

    邹国如

    2006-01-01

    @@ Two studies suggest that the human brain continues to change through the process of evolution.The findings conflict with a common belief that the brain has evolved about as much as it ever will.Scientists say modern humans developed about two hundred thousand years ago.Bruce Lahn of the Howard Hughes Medical Institute and the University of Chicago led the studies.The findings appeared in Science magazine.

  16. Evolution of Brain and Language

    Science.gov (United States)

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  17. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size.

    Science.gov (United States)

    Kotrschal, A; Corral-Lopez, A; Zajitschek, S; Immler, S; Maklakov, A A; Kolm, N

    2015-04-01

    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits--they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated. PMID:25705852

  18. Genes and human brain evolution

    OpenAIRE

    Geschwind, Daniel H.; Konopka, Genevieve

    2012-01-01

    Several genes were duplicated during human evolution. It seems that one such duplication gave rise to a gene that may have helped to make human brains bigger and more adaptable than those of our ancestors.

  19. Metabolic correlates of hominid brain evolution.

    Science.gov (United States)

    Leonard, William R; Robertson, Marcia L; Snodgrass, J Josh; Kuzawa, Christopher W

    2003-09-01

    Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition. PMID:14527625

  20. Evolutionary divergence in brain size between migratory and resident birds.

    Directory of Open Access Journals (Sweden)

    Daniel Sol

    Full Text Available Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68% of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better.

  1. Brain size of Homo floresiensis and its evolutionary implications.

    Science.gov (United States)

    Kubo, Daisuke; Kono, Reiko T; Kaifu, Yousuke

    2013-06-01

    The extremely small endocranial volume (ECV) of LB1, the type specimen of Homo floresiensis, poses a challenge in our understanding of human brain evolution. Some researchers hypothesize dramatic dwarfing of relative brain size from Homo erectus presumably without significant decrease in intellectual function, whereas others expect a lesser degree of brain diminution from a more primitive, small-brained form of hominin currently undocumented in eastern Asia. However, inconsistency in the published ECVs for LB1 (380-430 cc), unclear human intraspecific brain-body size scaling and other uncertainties have hampered elaborative modelling of its brain size reduction. In this study, we accurately determine the ECV of LB1 using high-resolution micro-CT scan. The ECV of LB1 thus measured, 426 cc, is larger than the commonly cited figure in previous studies (400 cc). Coupled with brain-body size correlation in Homo sapiens calculated based on a sample from 20 worldwide modern human populations, we construct new models of the brain size reduction in the evolution of H. floresiensis. The results show a more significant contribution of scaling effect than previously claimed. PMID:23595271

  2. 人类大脑容量及语言进化的分子生物学证据与质疑%Controversial Researches on Molecular Evolution of Language and Brain Size

    Institute of Scientific and Technical Information of China (English)

    俞建梁

    2015-01-01

    Language and larger brain size than other primates are the deifning features of human beings. The evolution of language and brain size has been the research hotspot all the time. Over the past 20 years the research in the evolution of language and brain size through molecular biology, which transcends the disputes between nature and nurture in language aquisition, has made great achievement. But many test results are incongruous or even controversial over the questions whether the evolution of FOXP2 might underlie linguistic behavior and whether the evolution of genes such as MCPH1, ASPM and etc. has undergone positive selection or implicated in the brain size and intelligence. The discussion of these questions allows us to understand the current situation of the molecular evolution of language and brain size, and the developmental trend of biolinguistics.%语言和拥有比其他灵长类动物更大的脑容量是人类的显著特征。语言与大脑的进化一直是人们研究的热点。过去近20年有关人类语言与脑容量进化的分子生物学研究超越了思辨层面的先天论和后天论之争,取得了许多重要的发现。但许多研究结果相左,有的甚至相互矛盾:FOXP2基因的进化是否与语言相关;MCPH1、ASPM等基因的进化是否受到正向选择、是否影响大脑容量以及是否与智力有关等等。这些问题在分子生物学领域引起了诸多争论和质疑。对这些问题的了解有助于认识当前有关语言与大脑容量进化的研究现状和生物语言学的发展动态。

  3. Social intelligence, innovation, and enhanced brain size in primates

    OpenAIRE

    Reader, S.M.; Laland , K. N.

    2002-01-01

    Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and ‘‘intelligence’’ are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes...

  4. Not all brains are made the same: new views on brain scaling in evolution.

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-01-01

    Evolution has generated mammalian brains that vary by a factor of over 100,000 in mass. Despite such tremendous diversity, brain scaling in mammalian evolution has tacitly been considered a homogeneous phenomenon in terms of numbers of neurons, neuronal density, and the ratio between glial and neuronal cells, with brains of different sizes viewed as similarly scaled-up or scaled-down versions of a shared basic plan. According to this traditional view, larger brains would have more neurons, smaller neuronal densities (and, hence, larger neurons), and larger glia/neuron ratios than smaller brains. Larger brains would also have a cerebellum that maintains its relative size constant and a cerebral cortex that becomes relatively larger to the point that brain evolution is often equated with cerebral cortical expansion. Here I review our recent data on the numbers of neuronal and nonneuronal cells that compose the brains of 28 mammalian species belonging to 3 large clades (Eulipotyphla, Glires, and Primata, plus the related Scandentia) and show that, contrary to the traditional notion of shared brain scaling, both the cerebral cortex and the cerebellum scale in size as clade-specific functions of their numbers of neurons. As a consequence, neuronal density and the glia/neuron ratio do not scale universally with structure mass and, most importantly, mammalian brains of a similar size can hold very different numbers of neurons. Remarkably, the increased relative size of the cerebral cortex in larger brains does not reflect an increased relative concentration of neurons in the structure. Instead, the cerebral cortex and cerebellum appear to gain neurons coordinately across mammalian species. Brain scaling in evolution, hence, should no longer be equated with an increasing dominance of the cerebral cortex but rather with the concerted addition of neurons to both the cerebral cortex and the cerebellum. Strikingly, all brains appear to gain nonneuronal cells in a similar

  5. Evolution of brain-body allometry in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2016-07-01

    Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. PMID:27241216

  6. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; M?ller; Johannes; Erritz?e

    2015-01-01

    Background: Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.Methods: Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.Results: There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains.Conclusions: These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  7. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mller; Johannes Erritze

    2015-01-01

    Background:Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains. Methods:Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size. Results:There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains. Conclusions:These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  8. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  9. MCPH1: a window into brain development and evolution

    Directory of Open Access Journals (Sweden)

    Jeannette eNardelli

    2015-03-01

    Full Text Available The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.

  10. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.

  11. Manipulation complexity in primates coevolved with brain size and terrestriality.

    Science.gov (United States)

    Heldstab, Sandra A; Kosonen, Zaida K; Koski, Sonja E; Burkart, Judith M; van Schaik, Carel P; Isler, Karin

    2016-01-01

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921

  12. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  13. On the Evolution of the Mammalian Brain.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes. PMID:27147985

  14. On the evolution of the mammalian brain

    Directory of Open Access Journals (Sweden)

    John Steven Torday

    2016-04-01

    Full Text Available Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.. This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation, circumventing the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment (= evolution. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday JS. A Central Theory of Biology. Med Hypotheses. 2015 Jul;85(1:49-57, perhaps being the functional homolog for brain heat dissipation and consciousness/mind. The skin and brain similarly share molecular homologies through the ‘skin-brain’ hypothesis, giving insight to the cellular-molecular ‘arc’ of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the

  15. On the Evolution of the Mammalian Brain

    Science.gov (United States)

    Torday, John S.; Miller, William B.

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the “skin-brain” hypothesis, giving insight to the cellular-molecular “arc” of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes. PMID

  16. Schizophrenia, abnormal connection, and brain evolution.

    Science.gov (United States)

    Randall, P L

    1983-03-01

    Abnormalities of functional connection between specialized areas in the human brain may underlie the symptoms which constitute the schizophrenia syndrome. Callosal and intrahemispheric fibres may be equally involved. The clinical emergence of symptoms in the later stages of brain maturation may be dependent on myelination of these fibre groups, both of which have extended myelination cycles. Ontogenetically earlier variants of the same mechanism could theoretically result in dyslexia and the syndromes of Kanner and Gilles de la Tourette. As new and unique extensions of specialized function emerge within the evolving brain, biological trial and error of connection both within and between them may produce individuals possessing phylogenetically advanced abilities, or equally, others possessing a wide range of abnormalities including those which comprise the schizophrenia syndrome. A dormant phenotypic potential for schizophrenia may exist in individuals who never develop symptoms during the course of a lifetime though some of these may become clinically apparent under the influence of various precipitating factors. It is concluded that abnormal functional connection and its normal and "supernormal" counterparts may be natural, essential, and inevitable consequences of brain evolution, and that this may have been so throughout the history of vertebrate brain evolution.

  17. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    Science.gov (United States)

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  18. Female brain size and parental care in carnivores.

    OpenAIRE

    Gittleman, J L

    1994-01-01

    Comparative studies indicate that species differences in mammalian brain size relate to body size, ecology, and life-history traits. Previous analyses failed to show intrasexual or behavioral patterns of brain size in mammals. Across the terrestrial Carnivora, I find to the contrary. Differences in female, but not male, brain size associate with a fundamental ecological and evolutionary characteristic of female behavior. Other factors equal, females that provide the sole parental care have la...

  19. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  20. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  1. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  2. Evolution, brain, and the nature of language.

    Science.gov (United States)

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human. PMID:23313359

  3. Evolution, brain, and the nature of language.

    Science.gov (United States)

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human.

  4. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    Science.gov (United States)

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  5. Expression change in Angiopoietin-1 underlies change in relative brain size in fish.

    Science.gov (United States)

    Chen, Yu-Chia; Harrison, Peter W; Kotrschal, Alexander; Kolm, Niclas; Mank, Judith E; Panula, Pertti

    2015-07-01

    Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large- and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large- and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.

  6. Larger brain size indirectly increases vulnerability to extinction in mammals.

    Science.gov (United States)

    Gonzalez-Voyer, Alejandro; González-Suárez, Manuela; Vilà, Carles; Revilla, Eloy

    2016-06-01

    Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial, or detrimental effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions, the constraints on life history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favored increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals.

  7. Larger brain size indirectly increases vulnerability to extinction in mammals.

    Science.gov (United States)

    Gonzalez-Voyer, Alejandro; González-Suárez, Manuela; Vilà, Carles; Revilla, Eloy

    2016-06-01

    Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial, or detrimental effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions, the constraints on life history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favored increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals. PMID:27159368

  8. Brain size predicts problem-solving ability in mammalian carnivores.

    Science.gov (United States)

    Benson-Amram, Sarah; Dantzer, Ben; Stricker, Gregory; Swanson, Eli M; Holekamp, Kay E

    2016-03-01

    Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem.

  9. Evolution of body size in Galapagos marine iguanas

    OpenAIRE

    Wikelski, Martin

    2005-01-01

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger isla...

  10. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    Science.gov (United States)

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-01

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species.

  11. Absolute, not relative brain size correlates with sociality in ground squirrels.

    Science.gov (United States)

    Matějů, Jan; Kratochvíl, Lukáš; Pavelková, Zuzana; Pavelková Řičánková, Věra; Vohralík, Vladimír; Němec, Pavel

    2016-03-30

    The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other. PMID:27009231

  12. Brain size-related breeding strategies in a seabird.

    Science.gov (United States)

    Jaatinen, Kim; Öst, Markus

    2016-01-01

    The optimal compromise between decision speed and accuracy may depend on cognitive ability, associated with the degree of encephalization: larger brain size may select for accurate but slow decision-making, beneficial under challenging conditions but costly under benign ones. How this brain size-dependent selection pressure shapes avian breeding phenology and reproductive performance remains largely unexplored. We predicted that (1) large-brained individuals have a delayed breeding schedule due to thorough nest-site selection and/or prolonged resource acquisition, (2) good condition facilitates early breeding independent of relative brain size, and (3) large brain size accrues benefits mainly to individuals challenged by environmental or intrinsic constraints. To test these predictions, we examined how the relative head volume of female eiders (Somateria mollissima) of variable body condition correlated with their breeding schedule, hatching success and offspring quality. The results were consistent with our predictions. First, large head size was associated with a progressively later onset of breeding with increasing breeding dispersal distance. Second, increasing body condition advanced the timing of breeding, but this effect was significantly weaker in large-brained females. Third, larger head volume was associated with increased hatching success mainly among late breeders and those in poor body condition, and duckling body condition was positively related to maternal head volume, but only in poor-condition mothers. Our study is, to our knowledge, the first to demonstrate the presence of brain size-related differences in reproductive strategies within a single natural population.

  13. Brain size-related breeding strategies in a seabird.

    Science.gov (United States)

    Jaatinen, Kim; Öst, Markus

    2016-01-01

    The optimal compromise between decision speed and accuracy may depend on cognitive ability, associated with the degree of encephalization: larger brain size may select for accurate but slow decision-making, beneficial under challenging conditions but costly under benign ones. How this brain size-dependent selection pressure shapes avian breeding phenology and reproductive performance remains largely unexplored. We predicted that (1) large-brained individuals have a delayed breeding schedule due to thorough nest-site selection and/or prolonged resource acquisition, (2) good condition facilitates early breeding independent of relative brain size, and (3) large brain size accrues benefits mainly to individuals challenged by environmental or intrinsic constraints. To test these predictions, we examined how the relative head volume of female eiders (Somateria mollissima) of variable body condition correlated with their breeding schedule, hatching success and offspring quality. The results were consistent with our predictions. First, large head size was associated with a progressively later onset of breeding with increasing breeding dispersal distance. Second, increasing body condition advanced the timing of breeding, but this effect was significantly weaker in large-brained females. Third, larger head volume was associated with increased hatching success mainly among late breeders and those in poor body condition, and duckling body condition was positively related to maternal head volume, but only in poor-condition mothers. Our study is, to our knowledge, the first to demonstrate the presence of brain size-related differences in reproductive strategies within a single natural population. PMID:26456024

  14. Evolutionary History of a Brain Controlling Brain Size

    OpenAIRE

    Natalay Kouprina; Adam Pavlicek; Mochida, Ganeshwaran H.; Gregory Solomon; William Gersch; Young-Ho Yoon; Randall Collura; Maryellen Ruvolo; J Carl Barrett; C Geoffrey Woods; Walsh, Christopher A.; Jerzy Jurka; Vladimir Larionov

    2004-01-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH....

  15. Increase in human brain size a key to increase in body size

    Directory of Open Access Journals (Sweden)

    S.P.Singh

    2016-05-01

    Full Text Available Lucy, considered to be the ancestor to all humanity was a very short creature about three and a half feet tall, weighing some 60 to 65 pounds and lived around 3.2 million years ago in Ethiopia. Perhaps the growth period among the australopithecines was much shorter than that of the modern day humans and hence simply by this yardstick, there has to be a lot of difference in body size between them. The longer the growth period the larger the body size and this is what seemed to happen to the humans during evolutionary history. Recently Mark Grabowski, a researcher at American Museum of Natural History, New York,observed in his research paper that "Bigger brains led to bigger bodies... as over the last four million years, brain size and body size increased substantially in our human ancestors" (Current Anthropology, Vol. 57, 174-196, April 2016. These observations were not new and were clearly understood by the scientific community earlier also. However, numerous hypotheses put forth had emphasized the role of natural selection on different traits independently. But none of them had gone in the direction of a correlated response to natural selection in favour of enlarging the brain size and the body size together. These viewpoints had concluded that increase in brain size and body size were the products of separate natural selection forces. However, Mark Grabowski states that "some genes cause variation in both brain and body size, with the result that selection on either trait can lead to a correlated response in the unselected trait." This is a new explanation to the problem. It highlights the role of correlated outcomes of the natural selection phenomena occurring to one trait but affecting the other trait even if that is not selected for. It is similar to saying that as the brain size increased from Lucy to Homo erectus so did the body size as if the animal pulled itself up and increased in size proportionately as well to keep pace with the

  16. Brain mass and cranial nerve size in shrews and moles.

    Science.gov (United States)

    Leitch, Duncan B; Sarko, Diana K; Catania, Kenneth C

    2014-09-01

    We investigated the relationship between body size, brain size, and fibers in selected cranial nerves in shrews and moles. Species include tiny masked shrews (S. cinereus) weighing only a few grams and much larger mole species weighing up to 90 grams. It also includes closely related species with very different sensory specializations - such as the star-nosed mole and the common, eastern mole. We found that moles and shrews have tiny optic nerves with fiber counts not correlated with body or brain size. Auditory nerves were similarly small but increased in fiber number with increasing brain and body size. Trigeminal nerve number was by far the largest and also increased with increasing brain and body size. The star-nosed mole was an outlier, with more than twice the number of trigeminal nerve fibers than any other species. Despite this hypertrophied cranial nerve, star-nosed mole brains were not larger than predicted from body size, suggesting that magnification of their somatosensory systems does not result in greater overall CNS size.

  17. Developmental modes and developmental mechanisms can channel brain evolution

    Directory of Open Access Journals (Sweden)

    Christine J Charvet

    2011-02-01

    Full Text Available Anseriform birds (ducks and geese as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own, parrots and songbirds are altricial (e.g., hatchlings are fed by their parents. We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  18. Developmental Modes and Developmental Mechanisms can Channel Brain Evolution.

    Science.gov (United States)

    Charvet, Christine J; Striedter, Georg F

    2011-01-01

    Anseriform birds (ducks and geese) as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own), parrots and songbirds are altricial (e.g., hatchlings are fed by their parents). We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  19. Task-Based Cohesive Evolution of Dynamic Brain Networks

    Science.gov (United States)

    Davison, Elizabeth

    2014-03-01

    Applications of graph theory to neuroscience have resulted in significant progress towards a mechanistic understanding of the brain. Functional network representation of the brain has linked efficient network structure to psychometric intelligence and altered configurations with disease. Dynamic graphs provide us with tools to further study integral properties of the brain; specifically, the mathematical convention of hyperedges has allowed us to study the brain's cross-linked structure. Hyperedges capture the changes in network structure by identifying groups of brain regions with correlation patterns that change cohesively through time. We performed a hyperedge analysis on functional MRI data from 86 subjects and explored the cohesive evolution properties of their functional brain networks as they performed a series of tasks. Our results establish the hypergraph as a useful measure in understanding functional brain dynamics over tasks and reveal characteristic differences in the co-evolution structure of task-specific networks.

  20. Social intelligence, innovation, and enhanced brain size in primates

    NARCIS (Netherlands)

    Reader, S.M.; Laland, K.N.

    2002-01-01

    Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and ‘‘intelligence’’ are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learn

  1. Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes

    Directory of Open Access Journals (Sweden)

    Kolm Niclas

    2009-09-01

    Full Text Available Abstract Background The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids. Results Total brain size explained 86% of the variance in brain structure volume in cichlids, a lower proportion than what has previously been reported for mammals. Brain structures showed variation in pair-wise allometry suggesting some degree of independence in evolutionary changes in size. This result is supported by variation among structures on the strength of their loadings on the principal size axis of the allometric analysis. The rate of evolution analyses generally supported the results of the multivariate allometry analyses, showing variation among several structures in their evolutionary patterns. The olfactory bulbs and hypothalamus were found to evolve faster than other structures while the dorsal medulla presented the slowest evolutionary rate. Conclusion Our results favor a mosaic model of brain evolution, as certain

  2. Evaluation of large-sized brains for neurotoxic endpoints.

    Science.gov (United States)

    Garman, Robert H

    2003-01-01

    Sampling of large-sized brains (eg, dog, primate) for microscopic examination is frequently inadequate to detect localized neurotoxic injury. Furthermore, the examination of H&E-stained sections alone will often be insufficient for the detection of subtle neuropathogic alteration. It is imperative for any pathologist evaluating brain sections to have knowledge of microscopic neuroanatomy and to also have some understanding of basic neurochemistry. When a focus of degeneration is detected within the brain, the pathologist needs to ascertain not only the specific anatomic location of this focus but also the neuroanatomic regions that project to and receive output from the injured focus. Because of the complexity of brain circuitry and the fact that the brain contains many distinctive neuron populations, many more brain sections are required for adequate microscopic evaluation than for any other body organ. Deciding which and how many areas should be examined, microscopically, from a large size brain is often problematic. Although any sampling protocol will be influenced by what is known about the test chemical, it has been well established that certain regions of the brain (eg, hippocampus and other components of the limbic system, basal ganglia, Purkinje neurons) are more susceptible than others to a variety of physical, metabolic, and chemical insults. Knowledge of these regional sensitivities will assist in guiding the pathologist in the development of an adequate sampling protocol. PMID:12597429

  3. The evolution of genome size in ants

    Directory of Open Access Journals (Sweden)

    Spagna Joseph C

    2008-02-01

    Full Text Available Abstract Background Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta, and the two published estimates for this species differ by 146.7 Mb (0.15 pg. Results Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile, Neotropical army ants (genera Eciton and Labidus, trapjaw ants (Odontomachus, fungus-growing ants (Apterostigma, Atta and Sericomyrmex, harvester ants (Messor, Pheidole and Pogonomyrmex, carpenter ants (Camponotus, a fire ant (Solenopsis, and a bulldog ant (Myrmecia. Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. Conclusion This is the first analysis of genome size in ants (Formicidae and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may

  4. Manipulation complexity in primates coevolved with brain size and terrestriality

    OpenAIRE

    Sandra A. Heldstab; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Karin Isler

    2016-01-01

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions,...

  5. Mind, Brain and Education: A Decade of Evolution

    Science.gov (United States)

    Schwartz, Marc

    2015-01-01

    This article examines the evolution of Mind, Brain, and Education (MBE), the field, alongside that of the International Mind, Brain and Education Society (IMBES). The reflections stem mostly from my observations while serving as vice president, president-elect, and president of IMBES during the past 10 years. The article highlights the evolution…

  6. The evolution of complex brains and behaviors in African cichlid fishes

    Directory of Open Access Journals (Sweden)

    Caroly A. Shumway

    2010-02-01

    Full Text Available In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples from primates and birds where appropriate. In closely related fishes from the monophyletic Ectodinii clade of Lake Tanganyika, both forces influence cichlid brains and behavior. Considering social influences first, visual acuity differs with respect to social organization (monogamy versus polygyny. Both the telencephalon and amygdalar homologue, area Dm, are larger in monogamous species. Monogamous species are found to have more vasotocin-immunoreactive cells in the preoptic area of the brain. Habitat complexity also influences brain and behavior in these fishes. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are enhanced in cichlids living in more complex environments. However habitat complexity and social forces affect cichlid brains differently. Taken together, our field data and plasticity data suggest that some of the species-specific neural effects of habitat complexity could be the consequence of the corresponding social correlates. Environmental forces, however, exert a broader effect on brain structures than social ones do, suggesting allometric expansion of the brain structures in concert with brain size and/or co-evolution of these structures [Current Zoology 56 (1: 144–156 2010].

  7. Genome size is inversely correlated with relative brain size in parrots and cockatoos.

    Science.gov (United States)

    Andrews, Chandler B; Gregory, T Ryan

    2009-03-01

    Genome size (haploid nuclear DNA content) has been found to correlate positively with cell size and negatively with cell division rate in a variety of taxa. These cytological relationships manifest in various ways at the organism level, for example, in terms of body size, metabolic rate, or developmental rate, depending on the biology of the organisms. In birds, it has been suggested that high metabolic rate and strong flight ability are linked to small genome size. However, it was also hypothesized that the exceptional cognitive abilities of birds may impose additional constraints on genome size through effects on neuron size and differentiation, as has been observed in amphibians. To test this hypothesis, a comparative analysis was made between genome size, cell (erythrocyte) size, and brain size in 54 species of parrots and cockatoos (order Psittaciformes, family Psittacidae). Relative brain volume, which is taken as an indicator of investment in brain tissue and is widely correlated with behavioural and ecological traits, was found to correlate inversely with genome size. Several possible and mutually compatible explanations for this relationship are described.

  8. Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain.

    Science.gov (United States)

    Charvet, Christine J; Striedter, Georg F

    2009-05-10

    In adult zebra finches (Taeniopygia guttata), the telencephalon occupies 64% of the entire brain. This fraction is similar to what is seen in parrots, but many other birds possess a significantly smaller telencephalon. The aim of the present study was to determine the developmental time course and cellular basis of telencephalic enlargement in zebra finches, and then to compare these findings with what is known about telencephalic enlargement in other birds. To this end we estimated the volumes of all major brain regions from serial sections in embryonic and post-hatching zebra finches. We also labeled proliferating cells with antibodies against proliferating cell nuclear antigen and phosphorylated histone H3. An important finding to emerge from this work is that the telencephalon of zebra finches at hatching contains a thick proliferative subventricular zone (SVZ) that extends from the subpallium into the dorsal pallium. The data also show that the onset and offset of telencephalic neurogenesis are both delayed in zebra finches relative to quail (Galliformes). This delay in neurogenesis, in conjunction with the expanded SVZ, probably accounts for most of the telencephalic enlargement in passerines such as the zebra finch. In addition, passerines enlarged their telencephalon by decreasing the proportional size of their midbrain tectum. Because the presumptive tectum is proportionally smaller in zebra finches than quail before neurogenesis begins, this difference in tectum size cannot be due to evolutionary alterations in neurogenesis timing. Collectively these findings indicate that several different developmental mechanisms underlie the evolution of a large telencephalon in passerines.

  9. Body size evolution of ammonoids shows limited correlation with diversity

    Science.gov (United States)

    Pelagio, M.; Khong, C.; Heines, S.; Seixas, G.; Payne, J.

    2012-12-01

    Although many studies have been conducted on patterns of size evolution in marine and terrestrial species, there is not a concrete answer as to what are the most important controlling factors are in different taxa. In this study, we collected body size data from the Treatise on Invertebrate Paleontology volumes on ammonoids. Ammonoids are an extinct group of marine mollusks that lived from the Devonian to the late Cretaceous periods. In this study, we tested three models for size evolution: general random walk, unbiased random walk and forcing by diversity. The mean size of the ammonoids increased from a 4.60 to a 5.07 log10 mm3 from the time they appeared to their extinction. At the same time, the maximum size increased gradually with the biggest number in late Cretaceous, just before the last species disappeared. The results were more favorable to diversity forcing followed by unbiased random walk leaving general random walk last. Based on these results, we conclude that the evolution in size depends on the diversity of a species. However, because of the great possibility of an unbiased random walk for the data, further research should be done to find the interplay between different models of size evolution of the ammonoids.

  10. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  11. Environmental influences on the evolution of body size in Ammonoids

    Science.gov (United States)

    Hines, S.; Khong, C.; Pelagio, M.; Seixas, G.; Payne, J.

    2012-12-01

    A major debate in evolutionary biology and paleobiology focuses on the relative importance of ecological interactions between species versus changes in the physical environment in governing large-scale evolutionary patterns. Body size is among the most important traits of any organism, and so identifying the factors that influence size evolution can shed light on both the causes and consequences of many major evolutionary trends. However, the extent to which body size evolution over time can be explained by changes in the physical versus ecological context remains unknown. In this study, we examined body size evolution in ammonoids, an extinct group of marine cephalopods. We collected a representative body size for each genus from illustrated specimens in the Treatise on Invertebrate Paleontology. We then examined relative statistical support for six models of size evolution: random walk, directional trend, stasis, and environmental control by oxygen availability, temperature, and global sea level. No model is unambiguously supported over all others. Unbiased random walk was the best supported model (34%) and environmental control by atmospheric pO2 was the second best supported model (22%). Stasis received the least support (extinction events.

  12. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    Science.gov (United States)

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion. PMID:27199631

  13. The relationship between social group size and head size: Investigating the Social Brain Hypothesis

    OpenAIRE

    van Breen, Jolien Anne

    2009-01-01

    Abstract In a series of experiments Dunbar (1993; 1995; 1998) has demonstrated that social group size is related to brain size in non-human animals. In two experiments, the present study aimed to extend findings by Dunbar and Spoors (1995) using their measure of social group size in humans. This measure postulates that there are three different closeness levels in social group size and that the levels scale up in a ratio of 3:1, level 1 being the smallest. Moreover, we aimed to place stud...

  14. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    OpenAIRE

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with spec...

  15. Social fishes and single mothers: brain evolution in African cichlids

    OpenAIRE

    Gonzalez-Voyer, Alejandro; Winberg, Svante; Kolm, Niclas

    2008-01-01

    As with any organ, differences in brain size—after adequate control of allometry—are assumed to be a response to selection. With over 200 species and an astonishing diversity in niche preferences and social organization, Tanganyikan cichlids present an excellent opportunity to study brain evolution. We used phylogenetic comparative analyses of sexed adults from 39 Tanganyikan cichlid species in a multiple regression framework to investigate the influence of ecology, sexual selection and paren...

  16. Evolution of alternative splicing in primate brain transcriptomes

    OpenAIRE

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among t...

  17. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  18. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  19. Online social network size is reflected in human brain structure.

    Science.gov (United States)

    Kanai, R; Bahrami, B; Roylance, R; Rees, G

    2012-04-01

    The increasing ubiquity of web-based social networking services is a striking feature of modern human society. The degree to which individuals participate in these networks varies substantially for reasons that are unclear. Here, we show a biological basis for such variability by demonstrating that quantitative variation in the number of friends an individual declares on a web-based social networking service reliably predicted grey matter density in the right superior temporal sulcus, left middle temporal gyrus and entorhinal cortex. Such regions have been previously implicated in social perception and associative memory, respectively. We further show that variability in the size of such online friendship networks was significantly correlated with the size of more intimate real-world social groups. However, the brain regions we identified were specifically associated with online social network size, whereas the grey matter density of the amygdala was correlated both with online and real-world social network sizes. Taken together, our findings demonstrate that the size of an individual's online social network is closely linked to focal brain structure implicated in social cognition. PMID:22012980

  20. On the evolution of the mammalian brain

    OpenAIRE

    John Steven Torday; Miller, William B.

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation), circumventing the Second Law of Thermodynamics permitting the transfer of information between li...

  1. Spectral properties of the temporal evolution of brain network structure

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  2. Spectral properties of the temporal evolution of brain network structure.

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems. PMID:26723151

  3. Comparative primate neurobiology and the evolution of brain language systems.

    Science.gov (United States)

    Rilling, James K

    2014-10-01

    Human brain specializations supporting language can be identified by comparing human with non-human primate brains. Comparisons with chimpanzees are critical in this endeavor. Human brains are much larger than non-human primate brains, but human language capabilities cannot be entirely explained by brain size. Human brain specializations that potentially support our capacity for language include firstly, wider cortical minicolumns in both Broca's and Wernicke's areas compared with great apes; secondly, leftward asymmetries in Broca's area volume and Wernicke's area minicolumn width that are not found in great apes; and thirdly, arcuate fasciculus projections beyond Wernicke's area to a region of expanded association cortex in the middle and inferior temporal cortex involved in processing word meaning.

  4. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    Science.gov (United States)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  5. Brain size and encephalization in early to Mid-Pleistocene Homo.

    Science.gov (United States)

    Rightmire, G Philip

    2004-06-01

    Important changes in the brain have occurred during the course of human evolution. Both absolute and relative size increases can be documented for species of Homo, culminating in the appearance of modern humans. One species that is particularly well-represented by fossil crania is Homo erectus. The mean capacity for 30 individuals is 973 cm(3). Within this group there is substantial variation, but brain size increases slightly in specimens from later time periods. Other Middle Pleistocene crania differ from those of Homo erectus. Characters of the facial skeleton, vault, and cranial base suggest that fossils from sites such as Arago Cave in France, the Sima de los Huesos in Spain, Bodo in Ethiopia, Broken Hill in Zambia, and perhaps Dali in China belong to the taxon Homo heidelbergensis. Ten of these mid-Quaternary hominins have brains averaging 1,206 cm(3) in volume, and many fall beyond the limits of size predicted for Homo erectus of equivalent age. When orbit height is used to construct an index of relative brain size, it is apparent that the (significant) increase in volume documented for the Middle Pleistocene individuals is not simply a consequence of larger body mass. Encephalization quotient values confirm this finding. These changes in absolute and relative brain size can be taken as further corroborative evidence for a speciation event, in which Homo erectus produced a daughter lineage. It is probable that Homo heidelbergensis originated in Africa or western Eurasia and then ranged widely across the Old World. Archaeological traces indicate that these populations differed in their technology and behavior from earlier hominins. PMID:15160365

  6. Evolution of the human brain : when bigger is better

    NARCIS (Netherlands)

    Hofman, Michel A

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the

  7. ARTIFICIAL SELECTION ON RELATIVE BRAIN SIZE REVEALS A POSITIVE GENETIC CORRELATION BETWEEN BRAIN SIZE AND PROACTIVE PERSONALITY IN THE GUPPY

    OpenAIRE

    Kotrschal, Alexander; Lievens, Eva J.P.; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A.; Winberg, Svante; Panula, Pertti; Kolm, Niclas

    2014-01-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection li...

  8. Evolution, development, and plasticity of the human brain: from molecules to bones

    Directory of Open Access Journals (Sweden)

    Branka eHrvoj-Mihic

    2013-10-01

    Full Text Available Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species.The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.

  9. Discriminating Between the Physical Processes that Drive Spheroid Size Evolution

    CERN Document Server

    Hopkins, Philip F; Hernquist, Lars; Wuyts, Stijn; Cox, Thomas J

    2009-01-01

    Massive galaxies at high-z have smaller effective radii than those today, but similar central densities. Their size growth therefore relates primarily to the evolving abundance of low-density material. Various models have been proposed to explain this evolution, which have different implications for galaxy, star, and BH formation. We compile observations of spheroid properties as a function of redshift and use them to test proposed models. Evolution in progenitor gas-richness with redshift gives rise to initial formation of smaller spheroids at high-z. These systems can then evolve in apparent or physical size via several channels: (1) equal-density 'dry' mergers, (2) later major or minor 'dry' mergers with less-dense galaxies, (3) adiabatic expansion, (4) evolution in stellar populations & mass-to-light-ratio gradients, (5) age-dependent bias in stellar mass estimators, (6) observational fitting/selection effects. If any one of these is tuned to explain observed size evolution, they make distinct predict...

  10. Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting?

    Directory of Open Access Journals (Sweden)

    Alexander Kotrschal

    Full Text Available Selection pressures that act differently on males and females produce numerous differences between the sexes in morphology and behaviour. However, apart from the controversial report that males have slightly heavier brains than females in humans, evidence for substantial sexual dimorphism in brain size is scarce. This apparent sexual uniformity is surprising given that sexually distinct selection pressures are ubiquitous and that brains are one of the most plastic vertebrate organs. Here we demonstrate the highest level of sexual brain size dimorphism ever reported in any vertebrate: male three-spined stickleback of two morphs in an Icelandic lake have 23% heavier brains than females. We suggest that this dramatic sexual size dimorphism is generated by the many cognitively demanding challenges that males are faced in this species, such as an elaborate courtship display, the construction of an ornate nest and a male-only parental care system. However, we consider also alternative explanations for smaller brains in females, such as life-history trade-offs. Our demonstration of unprecedented levels of sexual dimorphism in brain size in the three-spined stickleback implies that behavioural and life-history differences among the sexes can have strong effects also on neural development and proposes new fields of research for understanding brain evolution.

  11. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered.

  12. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered. PMID:18805445

  13. Origin and evolution of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Vittorio Alessandro eSironi

    2011-08-01

    Full Text Available This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the 18th century and was subsequently used by the early 20th century, even for therapeutic purposes. In mid-20th century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, DBS was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson's disease, essential tremor and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette's syndrome, psychiatric diseases (depression, obsessive-compulsive disorder, some kinds of headache, eating disorders and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results.

  14. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  15. Cognition in an ever-changing world: climatic variability is associated with brain size in Neotropical parrots.

    Science.gov (United States)

    Schuck-Paim, Cynthia; Alonso, Wladimir J; Ottoni, Eduardo B

    2008-01-01

    Research on the conditions favoring the evolution of complex cognition and its underlying neural structures has increasingly stressed the role of environmental variability. These studies suggest that the ability to learn, behave flexibly and innovate would be favored under unpredictable variations in the availability of resources, as it would enable organisms to adjust to novel conditions. Despite the growing number of studies based on the idea that larger-brained organisms would be better prepared to cope with environmental challenges, direct testing of the association between brain size and environmental variability per se remains scant. Here we focus on Neotropical parrots as our model group and test the hypothesis that if relatively larger brains were favored in climatically variable environments, larger-brained species should currently tolerate a higher degree of environmental uncertainty. Although we show that there are also other factors underlying the dynamics of brain size variation in this group, our results support the hypothesis that proportionally larger-brained species are more tolerant to climatic variability, both on a temporal and spatial scale. Additionally, they suggest that the differences in relative brain size among Neotropical parrots represent multiple, recent events in the evolutionary history of the group, and are particularly tied to an increased dependence on more open and climatically unstable habitats. As this is the first study to present evidence of the link between brain size and climatic variability in birds, our findings provide a step towards understanding the potential benefits underlying variation in brain size and the maintenance of highly enlarged brains in this and other groups.

  16. A conceptual framework for clutch size evolution in songbirds

    Science.gov (United States)

    Martin, Thomas E.

    2014-01-01

    Causes of evolved differences in clutch size among songbird species remain debated. I propose a new conceptual framework that integrates aspects of traditional life history theory, while including novel elements, to explain evolution of clutch size among songbirds. I review evidence that selection by nest predation on length of time that offspring develop in the nest creates a gradient in offspring characteristics at nest-leaving (fledging), including flight mobility, spatial dispersion, and self-feeding rate. I postulate that this gradient has consequences for offspring mortality rates and parental energy expenditure per offspring. These consequences then determine how reproductive effort is partitioned among offspring, while reproductive effort evolves from age-specific mortality effects. Using data from a long-term site in Arizona, as well as from the literature, I provide support for hypothesized relationships. Nestling development period consistently explains fledgling mortality, energy expenditure per offspring, and clutch size while accounting for reproductive effort (i.e., total energy expenditure) to thereby support the framework. Tests in this paper are not definitive, but they document previously unrecognized relationships and address diverse traits (developmental strategies, parental care strategies, energy requirements per offspring, evolution of reproductive effort, clutch size) that justify further investigations of hypotheses proposed here.

  17. Effects of grain size evolution on mantle dynamics

    Science.gov (United States)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  18. Kinetics of crystallite size evolution by ball milling

    Directory of Open Access Journals (Sweden)

    Zdujić Miodrag V.

    2002-01-01

    Full Text Available One of the distinguishing features of mechanochemical treatment is crystallite size reduction. The crystallite size of the powder subjected to milling decreases to some minimal value characteristic for the given material. Two processes occur concurrently during milling: reduction of the crystallite size and grain growth, whereby the steady-state crystallite size is attained when the rates of these processes are in equilibrium. This study deals with the kinetics of crystallite size evolution by milling. Published experimental data were analyzed using three kinetic models: dr / dt=-k1r2 + k2r-1; dr / dt=-k1r3 + k2r and dr / dt=-nktn-1(r - rs, where r and rs are the crystallite radius and steady-state crystallite radius respectively, t time, k1 and k2 the rate constants of crystallite reduction and grain growth, respectively, k the rate constant and n the Avrami exponent. The applied kinetic relations describe the crystallite size dependence on milling time in a satisfactory manner.

  19. Evolution of genome size and complexity in Pinus.

    Directory of Open Access Journals (Sweden)

    Alison M Morse

    Full Text Available BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea. If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.

  20. THE SIGNIFICANCE OF THE SUBPLATE FOR EVOLUTION AND DEVELOPMENTAL PLASTICITY OF THE HUMAN BRAIN

    Directory of Open Access Journals (Sweden)

    MILOS eJUDAS

    2013-08-01

    Full Text Available The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

  1. Nonapeptides and the Evolution of Social Group Sizes in Birds

    Directory of Open Access Journals (Sweden)

    James L. Goodson

    2011-03-01

    Full Text Available Species-typical patterns of grouping have profound impacts on many aspects of physiology and behavior. However, prior to our recent studies in estrildid finches, neural mechanisms that titrate species-typical group size preferences, independent of other aspects of social organization (e.g., mating system and parental care, have been wholly unexplored, likely because species-typical group size is typically confounded with other aspects of behavior and biology. An additional complication is that components of social organization are evolutionarily labile and prone to repeated divergence and convergence. Hence, we cannot assume that convergence in social structure has been produced by convergent modifications to the same neural characters, and thus any comparative approach to grouping must include not only species that differ in their species-typical group sizes, but also species that exhibit convergent evolution in this aspect of social organization. Using five estrildid finch species that differ selectively in grouping (all biparental and monogamous we have demonstrated that neural motivational systems evolve in predictable ways in relation to species-typical group sizes, including convergence in two highly gregarious species and convergence in two relatively asocial, territorial species. These systems include nonapeptide (vasotocin and mesotocin circuits that encode the valence of social stimuli (positive-negative, titrate group-size preferences, and modulate anxiety-like behaviors. Nonapeptide systems exhibit functional and anatomical properties that are biased towards gregarious species, and experimental reductions of nonapeptide signaling by receptor antagonism and antisense oligonucleotides significantly decrease preferred group sizes in the gregarious zebra finch. Combined, these findings suggest that selection on species-typical group size may reliably target the same neural motivation systems when a given social structure evolves

  2. Grain size effects on He bubbles distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-02-15

    Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.

  3. Evolution of Particle Size Distributions in Fragmentation Over Time

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  4. An Improved Brain Storm Optimization with Differential Evolution Strategy for Applications of ANNs

    Directory of Open Access Journals (Sweden)

    Zijian Cao

    2015-01-01

    Full Text Available Brain Storm Optimization (BSO algorithm is a swarm intelligence algorithm inspired by human being’s behavior of brainstorming. The performance of BSO is maintained by the creating process of ideas, but when it cannot find a better solution for some successive iterations, the result will be so inefficient that the population might be trapped into local optima. In this paper, we propose an improved BSO algorithm with differential evolution strategy and new step size method. Firstly, differential evolution strategy is incorporated into the creating operator of ideas to allow BSO jump out of stagnation, owing to its strong searching ability. Secondly, we introduce a new step size control method that can better balance exploration and exploitation at different searching generations. Finally, the proposed algorithm is first tested on 14 benchmark functions of CEC 2005 and then is applied to train artificial neural networks. Comparative experimental results illustrate that the proposed algorithm performs significantly better than the original BSO.

  5. Functional constraints in the evolution of brain circuits

    Science.gov (United States)

    Bosman, Conrado A.; Aboitiz, Francisco

    2015-01-01

    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor. PMID:26388716

  6. Continuity, divergence and the evolution of brain language pathways

    Directory of Open Access Journals (Sweden)

    James eRilling

    2012-01-01

    Full Text Available Recently, the assumption of evolutionary continuity between humans and non-human primates has been used to bolster the hypothesis that human language is mediated especially by the ventral extreme capsule pathway that mediates auditory object recognition in macaques. Here, we argue for the importance of evolutionary divergence in understanding brain language evolution. We present new comparative data reinforcing our previous conclusion that the dorsal arcuate fasciculus pathway was more significantly modified than the ventral extreme capsule pathway in human evolution. Twenty-six adult human and twenty six adult chimpanzees were imaged with diffusion-weighted MRI and probabilistic tractography was used to track and compare the dorsal and ventral language pathways. Based on these and other data, we argue that the arcuate fasciculus is likely to be the pathway most essential for higher-order aspects of human language such as syntax and lexical-semantics.

  7. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Gibby, Mary; Jansen, Robert K

    2012-09-01

    The phylogeny of 58 Pelargonium species was estimated using five plastid markers (rbcL, matK, ndhF, rpoC1, trnL-F) and one mitochondrial gene (nad5). The results confirmed the monophyly of three major clades and four subclades within Pelargonium but also indicate the need to revise some sectional classifications. This phylogeny was used to examine karyotype evolution in the genus: plotting chromosome sizes, numbers and 2C-values indicates that genome size is significantly correlated with chromosome size but not number. Accelerated rates of nucleotide substitution have been previously detected in both plastid and mitochondrial genes in Pelargonium, but sparse taxon sampling did not enable identification of the phylogenetic distribution of these elevated rates. Using the multigene phylogeny as a constraint, we investigated lineage- and locus-specific heterogeneity of substitution rates in Pelargonium for an expanded number of taxa and demonstrated that both plastid and mitochondrial genes have had accelerated substitution rates but with markedly disparate patterns. In the plastid, the exons of rpoC1 have significantly accelerated substitution rates compared to its intron and the acceleration was mainly due to nonsynonymous substitutions. In contrast, the mitochondrial gene, nad5, experienced substantial acceleration of synonymous substitution rates in three internal branches of Pelargonium, but this acceleration ceased in all terminal branches. Several lineages also have dN/dS ratios significantly greater than one for rpoC1, indicating that positive selection is acting on this gene, whereas the accelerated synonymous substitutions in the mitochondrial gene are the result of elevated mutation rates.

  8. ASPM and the evolution of cerebral cortical size in a community of New World monkeys.

    Directory of Open Access Journals (Sweden)

    Fernando A Villanea

    Full Text Available The ASPM (abnormal spindle-like microcephaly associated gene has been proposed as a major determinant of cerebral cortical size among primates, including humans. Yet the specific functions of ASPM and its connection to human intelligence remain controversial. This debate is limited in part by a taxonomic focus on Old World monkeys and apes. Here we expand the comparative context of ASPM sequence analyses with a study of New World monkeys, a radiation of primates in which enlarged brain size has evolved in parallel in spider monkeys (genus Ateles and capuchins (genus Cebus. The primate community of Costa Rica is perhaps a model system because it allows for independent pairwise comparisons of smaller- and larger-brained species within two taxonomic families. Accordingly, we analyzed the complete sequence of exon 18 of ASPM in Ateles geoffroyi, Alouatta palliata, Cebus capucinus, and Saimiri oerstedii. As the analysis of multiple species in a genus improves phylogenetic reconstruction, we also analyzed eleven published sequences from other New World monkeys. Our exon-wide, lineage-specific analysis of eleven genera and the ratio of rates of nonsynonymous to synonymous substitutions (d(N/d(S on ASPM revealed no detectable evidence for positive selection in the lineages leading to Ateles or Cebus, as indicated by d(N/d(S ratios of <1.0 (0.6502 and 0.4268, respectively. Our results suggest that a multitude of interacting genes have driven the evolution of larger brains among primates, with different genes involved in this process in different encephalized lineages, or at least with evidence for positive selection not readily apparent for the same genes in all lineages. The primate community of Costa Rica may serve as a model system for future studies that aim to elucidate the molecular mechanisms underlying cognitive capacity and cortical size.

  9. The Co-evolution of Language and the Brain: A Review of Two Contrastive Views (Pinker & Deacon)

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2001-01-01

    This article is a review of two contrastive views on the co-evolution of language and the brain – The Language Instinct by Steven Pinker (1994) and The Symbolic Species by Terrence Deacon (1997). As language is a trait unique to mankind it can not be equated with nonlinguistic communication – human...... or nonhuman. This points to a special human brain architecture. Pinker’s claim is that certain areas on the left side of the brain constitute a language organ and that language acquisition is instinctual. To Deacon, however, those areas are non-language-specific computational centers. Moreover, they are parts...... in a larger symbolic computational chain controlled by regions in the frontal parts of the brain. To Deacon, a symbolic learning algorithm drives language acquisition. The increase in size of the human brain in relation to the body may be due to a “cognitive arms race”. Both Pinker and Deacon agree...

  10. Why Sex Matters: Brain Size Independent Differences in Gray Matter Distributions between Men and Women

    OpenAIRE

    Luders, Eileen; Gaser, Christian; Narr, Katherine L.; Toga, Arthur W.

    2009-01-01

    The different brain anatomy of men and women is both a classic and continuing topic of major interest. Among the most replicated and robust sex differences are larger overall brain dimensions in men, and relative increases of global and regional gray matter (GM) in women. However, the question remains whether sex-typical differences in brain size (i.e., larger male and smaller female brains) or biological sex itself account for the observed sex effects on tissue amount and distribution. Explo...

  11. Magnetic Resonance Imaging Brain Size/IQ Relations in Turkish University Students

    OpenAIRE

    Tan, Uner; Tan, Meliha; Polat, Pinar; Ceylan, Yasar; Suma, Selami; Okur, Adnan

    1999-01-01

    The relation of IQ (Cattell's Culture Fair Intelligence Test) to brain size was studied in 103 right- and left-handed men and women at Ataturk University in eastern Turkey. Cerebral areas were measured on a midsagittal section of the brain using MRI. An overall correlation of 40 was found between MRI-measured total area and IQ thereby further supporting the IQ¯brain size hypothesis. Additional analyses suggested that these results may need qualification. In men, only anterior cerebral area...

  12. Evolution and plasticity of body size of Drosophila in response to temperature.

    OpenAIRE

    Calboli, F. C. F.

    2004-01-01

    Ectotherm body size is positively correlated with latitude, giving rise to body size clines, found in different continents. Ectotherm body size also shows a developmental response to temperature, increasing at lower developmental temperatures. To investigate the effects of temperature in the evolution and plasticity of body size dines, I used two species of the genus Drosophila as model organisms. To investigate the cellular mechanism underlying the evolution of wing size clines the two newly...

  13. [Contribution of brain function analysis to the evolution of neurorehabilitation].

    Science.gov (United States)

    Miyai, Ichiro; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Kawano, Teiji; Yagura, Hajime

    2012-01-01

    Recent studies of functional neuroimaging and clinical neurophysiology have implied that functional recovery after stroke is associated with use-dependent plasticity of the damaged brain. However the property of the reorganized neural network depends on site and size of the lesion, which makes it difficult to assess what the adaptive plasticity is. From clinical point of view there is accumulating randomized controlled trials for the benefit of task-oriented rehabilitative intervention including constraint-induced movement therapy, robotics, and body-weight supported treadmill training. However dose-matched control intervention is usually as effective as a specific intervention. This raises a question regarding the specificity of a task-oriented intervention. Second question is whether such intervention goes beyond the biological destiny of human. Specifically there is no known strategy enhancing recovery of severely impaired hand. To augment functional gain, several methods of neuro-modulation may bring break-through on the assumption that they induce greater adaptive plasticity. Such neuro-modulative methods include neuropharmacological modulation, brain stimulation using transcranial magnetic stimulation and direct current stimulation, peripheral nerve stimulation, neurofeedback using real-time fMRI and real-time fNIRS, and brain-machine interface. A preliminary randomized controlled trial regarding real-time feedback of premotor activities revealed promising results for recovery of paretic hand in patients with stroke. PMID:23196554

  14. High-resolution ultrasound evaluation of experimental brain abscess evolution: comparison with computed tomography and neuropathology

    Energy Technology Data Exchange (ETDEWEB)

    Enzmann, D.R.; Britt, R.H.; Lyons, B.; Carroll, B.; Wilson, D.A.; Buxton, J.

    1982-01-01

    Computed tomographic (CT) and high-resolution ultrasound (HRUS) imaging of experimental brain abscess were correlated with neuropathologic findings in nine mongrel dogs. The HRUS scan was more sensitive to different histologic features than the CT scan but both accurately delineated the evolution of the experimental brain abscess. All stages of abscess evolution were characterized by an appearance of an echogenic rim with a hypoechoic center. In the early stages the echogenicity of the abscess was related primarily to marked cellular infiltration while in the late stages extensive collagen deposition correlated closely with the echo pattern. The size of the abscess in the cerebritis stages appeared smaller on the HRUS scan than on the CT scan because the latter modality detected the extensive cerebritis around the developing necrotic center whereas the HRUS scan did not. This discrepancy disappeared in the capsule stages. The HRUS scan provided a more accurate depiction of the neuropathologic characteristics of the necrotic center than did the CT scan. Healing of the abscess, indicated by a decrease in size of the hypoechoic center, was accurately detected by the HRUS scan.

  15. High-resolution ultrasound evaluation of experimental brain abscess evolution: comparison with computed tomography and neuropathology

    International Nuclear Information System (INIS)

    Computed tomographic (CT) and high-resolution ultrasound (HRUS) imaging of experimental brain abscess were correlated with neuropathologic findings in nine mongrel dogs. The HRUS scan was more sensitive to different histologic features than the CT scan but both accurately delineated the evolution of the experimental brain abscess. All stages of abscess evolution were characterized by an appearance of an echogenic rim with a hypoechoic center. In the early stages the echogenicity of the abscess was related primarily to marked cellular infiltration while in the late stages extensive collagen deposition correlated closely with the echo pattern. The size of the abscess in the cerebritis stages appeared smaller on the HRUS scan than on the CT scan because the latter modality detected the extensive cerebritis around the developing necrotic center whereas the HRUS scan did not. This discrepancy disappeared in the capsule stages. The HRUS scan provided a more accurate depiction of the neuropathologic characteristics of the necrotic center than did the CT scan. Healing of the abscess, indicated by a decrease in size of the hypoechoic center, was accurately detected by the HRUS scan

  16. Convergent evolution of brain morphology and communication modalities in lizards

    Institute of Scientific and Technical Information of China (English)

    Christopher D.ROBINSON; Michael S.PATTON; Brittney M.ANDRE; Michele A.JOHNSON

    2015-01-01

    Animals communicate information within their environments via visual,chemical,auditory,and/or tactile modalities.The use of each modalityis generally linked to particular brain regions,but it is not yet known whether the cellular morphology of neurons in these regions has evolved in association with the relative use of a modality.We investigated relationships between the behavioral use of communication modalities and neural morphologies in six lizard species.Two of these species (Anolis carolinensis and Leiocephalus carinatus) primarily use visual signals to communicate with conspecifics and detect potential prey,and two (Aspidoscelis gularis and Scincella lateralis) communicate and forage primarily using chemical signals.Two other species (Hemidactylus turcicus and Sceloporus olivaceus) use both visual and chemical signals.For each species,we performed behavioral observations and quantified rates of visual and chemical behaviors.We then cryosectioned brain tissues from 9-10 males of each species and measured the soma size and density of neurons in two brain regions associated with visual behaviors (the lateral geniculate nucleus and the nucleus rotundus) and one region associated with chemical behaviors (the nucleus sphericus).With analyses conducted in a phylogenetic context,we found that species that performed higher rates of visual displays had a denser lateral geniculatc nucleus,and species that used a higher proportion of chemical displays had larger somas in the nucleus sphericus.These relationships suggest that neural morphologies in the brain have evolved convergently in species with similar communication behaviors [Current Zoology 61 (2):281-291,2015].

  17. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    Science.gov (United States)

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  18. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  19. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Science.gov (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D

    2012-01-01

    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent. PMID:22860132

  20. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  1. Aggressive behavior, brain size and domestication in clonal rainbow trout lines.

    Science.gov (United States)

    Campbell, Janet M; Carter, Patrick A; Wheeler, Paul A; Thorgaard, Gary H

    2015-03-01

    Domestication causes behavior and brain size changes in many species. We addressed three questions using clonal rainbow trout lines: What are the mirror-elicited aggressive tendencies in lines with varying degrees of domestication? How does brain size relate to genotype and domestication level? Finally, is there a relationship between aggressive behavior and brain size? Clonal lines, although sampling a limited subset of the species variation, provide us with a reproducible experimental system with which we can develop hypotheses for further research. We performed principal component analyses on 12 continuous behavior and brain/body size variables and one discrete behavioral variable ("yawn") and detected several aggression syndromes. Two behaviors, "freeze" and "escape", associated with high domestication; "display" and "yawn" behavior associated with wild lines and "swim against the mirror" behavior associated with semi-wild and domestic lines. Two brain size traits, total brain and olfactory volume, were significantly related to domestication level when taking total body size into account, with domesticated lines having larger total brain volume and olfactory regions. The aggression syndromes identified indicate that future QTL mapping studies on domestication-related traits would likely be fruitful.

  2. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles.

    Directory of Open Access Journals (Sweden)

    Joshua J Amiel

    Full Text Available Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility, or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability.

  3. CT ASSESSMENT OF BRAIN VENTRICULAR SIZE BASED ON AGE AND SEX: A STUDY OF 112 CASES

    Directory of Open Access Journals (Sweden)

    Vinoo

    2013-12-01

    Full Text Available CT being the primary modality of choice in many centers for the diagnosis of brain pathology, normal brain ventricular size measurem ents is an important parameter for the diagnosis of conditions like hydrocephalus, age related atrophic changes and also other brain pathologies producing ventriculomegaly. It is also important for knowing the normal upper and lower limits of the brain ven tricular system in the different age groups, and in both sexes so as to diagnose brain pathology.The ventricular system of the brain undergoes changes with aging and varies with gender.Our study consists of 48 female, and 64 male patients. Apart from the v entricular measurements, two ratios and two indices were also calculated – which included the right and left Evan’s ratio, CM index, and ventricular size inde

  4. Magnetic Resonance Imaging Brain Size/IQ Relations in Turkish University Students.

    Science.gov (United States)

    Tan, Uner; Tan, Meliha; Polat, Pinar; Ceylan, Yasar; Suma, Selami; Okur, Adnan

    1999-01-01

    Studied the relation of intelligence quotient (IQ) to brain size on 103 right-handed and left-handed male and female college students in Turkey. Measured cerebral areas and found an overall correlation between brain area and IQ. Discusses some sex differences. (SLD)

  5. Evolution of oxytocin pathways in the brain of vertebrates.

    Science.gov (United States)

    Knobloch, H Sophie; Grinevich, Valery

    2014-01-01

    The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots. PMID:24592219

  6. Evolution of oxytocin pathways in the brain of vertebrates

    Directory of Open Access Journals (Sweden)

    H. Sophie Knobloch

    2014-02-01

    Full Text Available The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians, magnocellular neurosecretory neurons producing oxytocin, vasopressin and their homologs reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds and mammals into the paraventricular and supraoptic nuclei with accessory nuclei between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.

  7. Expression change in Angiopoietin-1 underlies change in relative brain size in fish

    OpenAIRE

    Chen, Y. C.; Harrison, P. W.; Kotrschal, A.; Kolm, N.; Mank, J. E.; Panula, P

    2015-01-01

    Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and sma...

  8. Why Size Matters: Differences in Brain Volume Account for Apparent Sex Differences in Callosal Anatomy

    OpenAIRE

    Luders, Eileen; Toga, Arthur W.; Thompson, Paul M.

    2013-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus...

  9. Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids

    OpenAIRE

    Tsuboi, Masahito; González-Voyer, Alejandro; Kolm, N.

    2014-01-01

    Abstract Background Phenotypic integration among different anatomical parts of the head is a common phenomenon across vertebrates. Interestingly, despite centuries of research into the factors that contribute to the existing variation in brain size among vertebrates, little is known about the role of phenotypic integration in brain size diversification. Here we used geometric morphometrics on the morphologically diverse Tanganyikan cichlids to investigate phenotypic integration across key mor...

  10. Third brain ventricle deformation analysis using fractional differentiation and evolution strategy in brain cine-MRI

    Science.gov (United States)

    Nakib, Amir; Aiboud, Fazia; Hodel, Jerome; Siarry, Patrick; Decq, Philippe

    2010-03-01

    In this paper, we present an original method to evaluate the deformations in the third cerebral ventricle on a brain cine- MR imaging. First, a segmentation process, based on a fractional differentiation method, is directly applied on a 2D+t dataset to detect the contours of the region of interest (i.e. lamina terminalis). Then, the successive segmented contours are matched using a procedure of global alignment, followed by a morphing process, based on the Covariance Matrix Adaptation Evolution Strategy (CMAES). Finally, local measurements of deformations are derived from the previously determined matched contours. The validation step is realized by comparing our results with the measurements achieved on the same patients by an expert.

  11. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    Science.gov (United States)

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  12. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia

    Science.gov (United States)

    Matsumoto, Mitsuyuki; Straub, Richard E.; Marenco, Stefano; Nicodemus, Kristin K.; Matsumoto, Shun-ichiro; Fujikawa, Akihiko; Miyoshi, Sosuke; Shobo, Miwako; Takahashi, Shinji; Yarimizu, Junko; Yuri, Masatoshi; Hiramoto, Masashi; Morita, Shuji; Yokota, Hiroyuki; Sasayama, Takeshi; Terai, Kazuhiro; Yoshino, Masayasu; Miyake, Akira; Callicott, Joseph H.; Egan, Michael F.; Meyer-Lindenberg, Andreas; Kempf, Lucas; Honea, Robyn; Vakkalanka, Radha Krishna; Takasaki, Jun; Kamohara, Masazumi; Soga, Takatoshi; Hiyama, Hideki; Ishii, Hiroyuki; Matsuo, Ayako; Nishimura, Shintaro; Matsuoka, Nobuya; Kobori, Masato; Matsushime, Hitoshi; Katoh, Masao; Furuichi, Kiyoshi; Weinberger, Daniel R.

    2008-01-01

    The G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3′ UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy. PMID:18413613

  13. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii.

    Directory of Open Access Journals (Sweden)

    Jesse M Meik

    Full Text Available BACKGROUND: Speckled rattlesnakes (Crotalus mitchellii inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size evolving in response to shifts in prey size. METHODOLOGY/PRINCIPAL FINDINGS: Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Angel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. CONCLUSIONS/SIGNIFICANCE: Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in

  14. The evolution of acoustic size exaggeration in terrestrial mammals.

    Science.gov (United States)

    Charlton, Benjamin D; Reby, David

    2016-01-01

    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production. PMID:27598835

  15. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    OpenAIRE

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that ...

  16. Primate brains, the 'island rule' and the evolution of Homo floresiensis

    OpenAIRE

    Montgomery, S. H.

    2013-01-01

    The taxonomic status of the small bodied hominin, Homo floresiensis, remains controversial. One contentious aspect of the debate concerns the small brain size estimated for specimen LB1 (Liang Bua 1). Based on intraspecific mammalian allometric relationships between brain and body size, it has been argued that the brain of LB1 is too small for its body mass and is therefore likely to be pathological. The relevance and general applicability of these scaling rules has, however, been challenged,...

  17. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution

    Science.gov (United States)

    Okie, Jordan G.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Saarinen, Juha J.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Sibly, Richard M.

    2013-01-01

    Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity. PMID:23760865

  18. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution.

    Science.gov (United States)

    Okie, Jordan G; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Evans, Alistair R; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Saarinen, Juha J; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica; Uhen, Mark D; Sibly, Richard M

    2013-08-01

    Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow-fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow-fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

  19. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila.

    Science.gov (United States)

    Lack, Justin B; Yassin, Amir; Sprengelmeyer, Quentin D; Johanning, Evan J; David, Jean R; Pool, John E

    2016-08-01

    Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster. PMID:27547363

  20. Prenatal famine exposure has sex-specific effects on brain size.

    Science.gov (United States)

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    2016-08-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract. PMID:27401522

  1. Prenatal famine exposure has sex-specific effects on brain size.

    Science.gov (United States)

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    2016-08-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract.

  2. Size Evolution of Early-Type Galaxies and Massive Compact Objects as the Dark Matter

    CERN Document Server

    Totani, Tomonori

    2009-01-01

    The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryonic cold dark matter is composed of compact objects having a mass scale of ~10^5 M_sun. This form of dark matter is consistent with or only weakly constrained by the currently available observations. The kinetic energy of the dark compact objects is transferred to stars by dynamical friction, and stars around the effective radius are pushed out to larger radii, resulting in a pure size evolution. This scenario has several good properties to explain the observations, including the ubiquitous nature of size evolution and faster disappearance of higher density galaxies.

  3. On the evolution of clutch size and nest size in passerine birds.

    Science.gov (United States)

    Slagsvold, T

    1989-05-01

    I examined the hypothesis that the clutch size of some altricial birds may be limited by over-crowding of the nestlings in the nest, by comparing data on different species of European passerines. Large-sized birds build, relative to the body, larger nests than small-sized birds, both as regards the inner and the outer nest widths and as regards edge breadth; only inner nestcup depth did not change relatively to body size. Nest size also varied in relation to nesting place. Birds with open nests built off the ground had a rather narrow nestcup, whereas those with a domed nest, or which nest in a cavity, had a wide nestcup. When only open-nesters were compared, birds nesting on, or close to, the ground tended to have a wider nestcup than birds nesting above the ground. Inner nestcup width was correlated with the amount of mosses and lichens used in building the nest; the more of such materials the narrower the nestcup. The three variables: standardised body size, nesting place, and type of nesting material used accounted for 92% of the overall variation observed in inner nestcup width. When controlling for adult body size, clutch size was positively correlated with the size of the nestcup. A multiple regression analysis showed that relative nestcup depth, nest site, and type of nesting materials used, accounted for 64% of the overall variation in clutch size. PMID:23921394

  4. Genome size and genome evolution in diploid Triticeae species.

    Science.gov (United States)

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  5. The evolution of island gigantism and body size variation in tortoises and turtles

    OpenAIRE

    Jaffe, Alexander L.; Slater, Graham J.; Alfaro, Michael E.

    2011-01-01

    Extant chelonians (turtles and tortoises) span almost four orders of magnitude of body size, including the startling examples of gigantism seen in the tortoises of the Galapagos and Seychelles islands. However, the evolutionary determinants of size diversity in chelonians are poorly understood. We present a comparative analysis of body size evolution in turtles and tortoises within a phylogenetic framework. Our results reveal a pronounced relationship between habitat and optimal body size in ...

  6. Critical Exponent of Species-Size Distribution in Evolution

    CERN Document Server

    Adami, C; Yirdaw, R; Adami, Christoph; Seki, Ryoichi; Yirdaw, Robel

    1998-01-01

    We analyze the geometry of the species- and genotype-size distribution in evolving and adapting populations of single-stranded self-replicating genomes: here programs in the Avida world. We find that a scale-free distribution (power law) emerges in complex landscapes that achieve a separation of two fundamental time scales: the relaxation time (time for population to return to equilibrium after a perturbation) and the time between mutations that produce fitter genotypes. The latter can be dialed by changing the mutation rate. In the scaling regime, we determine the critical exponent of the distribution of sizes and strengths of avalanches in a system without coevolution, described by first-order phase transitions in single finite niches.

  7. Temporal and spatial evolution of brain network topology during the first two years of life.

    Science.gov (United States)

    Gao, Wei; Gilmore, John H; Giovanello, Kelly S; Smith, Jeffery Keith; Shen, Dinggang; Zhu, Hongtu; Lin, Weili

    2011-01-01

    The mature brain features high wiring efficiency for information transfer. However, the emerging process of such an efficient topology remains elusive. With resting state functional MRI and a large cohort of normal pediatric subjects (n = 147) imaged during a critical time period of brain development, 3 wk- to 2 yr-old, the temporal and spatial evolution of brain network topology is revealed. The brain possesses the small world topology immediately after birth, followed by a remarkable improvement in whole brain wiring efficiency in 1 yr olds and becomes more stable in 2 yr olds. Regional developments of brain wiring efficiency and the evolution of functional hubs suggest differential development trend for primary and higher order cognitive functions during the first two years of life. Simulations of random errors and targeted attacks reveal an age-dependent improvement of resilience. The lower resilience to targeted attack observed in 3 wk old group is likely due to the fact that there are fewer well-established long-distance functional connections at this age whose elimination might have more profound implications in the overall efficiency of information transfer. Overall, our results offer new insights into the temporal and spatial evolution of brain topology during early brain development.

  8. Temporal and spatial evolution of brain network topology during the first two years of life.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The mature brain features high wiring efficiency for information transfer. However, the emerging process of such an efficient topology remains elusive. With resting state functional MRI and a large cohort of normal pediatric subjects (n = 147 imaged during a critical time period of brain development, 3 wk- to 2 yr-old, the temporal and spatial evolution of brain network topology is revealed. The brain possesses the small world topology immediately after birth, followed by a remarkable improvement in whole brain wiring efficiency in 1 yr olds and becomes more stable in 2 yr olds. Regional developments of brain wiring efficiency and the evolution of functional hubs suggest differential development trend for primary and higher order cognitive functions during the first two years of life. Simulations of random errors and targeted attacks reveal an age-dependent improvement of resilience. The lower resilience to targeted attack observed in 3 wk old group is likely due to the fact that there are fewer well-established long-distance functional connections at this age whose elimination might have more profound implications in the overall efficiency of information transfer. Overall, our results offer new insights into the temporal and spatial evolution of brain topology during early brain development.

  9. A phylogenetic analysis of body size evolution in the Anolis roquet group (Sauria: Iguanidae): character displacement or size assortment?

    Science.gov (United States)

    Giannasi, N; Thorpe, R S; Malhotra, A

    2000-02-01

    The important role that competition plays in structuring communities is well documented; however, the role of competition in an evolutionary context remains unclear. Evolutionary investigations into the role of competition have often focused on the process of character displacement, and a good example of this is the evolution of body size in the Anolis lizards of the Caribbean islands. Previous work on the A. roquet species group has taken a phylogenetic approach and concluded that patterns of body size differences are not caused by character displacement but are a result of size assortment. Using a phylogenetic reconstruction based on the sequence of the cytochrome b gene (cyt-b) and ancestral character-state reconstruction methods, we investigated the roles of character displacement and size assortment. Our results indicated that size assortment alone was insufficient to explain the observed patterns of body size differences. Furthermore, we found that change in body size was associated with a change in allopatry/sympatry, thus supporting the character-displacement hypothesis. We conclude that patterns of body size differences in the A. roquet species group appear to be the result of a combination of character displacement and size assortment because character displacement was only found to be possible on three occasions.

  10. The Cambrian explosion triggered by critical turning point in genome size evolution.

    Science.gov (United States)

    Li, Dirson Jian; Zhang, Shengli

    2010-02-01

    The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution. PMID:20074549

  11. Stature, body mass, and brain size: a two-million-year odyssey.

    Science.gov (United States)

    Gallagher, Andrew

    2013-12-01

    Physical size has been critical in the evolutionary success of the genus Homo over the past 2.4 million-years. An acceleration in the expansion of savannah grasslands in Africa from 1.6Ma to 1.2Ma witnessed concomitant increases in physical stature (150-170cm), weight (50-70kg), and brain size (750-900cm(3)). With the onset of 100,000year Middle Pleistocene glacial cycles ("ice ages") some 780,000years ago, large-bodied Homo groups had reached modern size and had successfully dispersed from equatorial Africa, Central, and Southeast Asia to high-latitude localities in Atlantic Europe and North East Asia. While there is support for incursions of multiple Homo lineages to West Asia and Continental Europe at this time, data does not favour a persistence of Homo erectus beyond ∼400,000years ago in Africa, west and Central Asia, and Europe. Novel Middle Pleistocene Homo forms (780,000-400,000years) may not have been substantially taller (150-170cm) than earlier Homo (1.6Ma-800,000years), yet brain size exceeded 1000cm(3) and body mass approached 80kg in some males. Later Pleistocene Homo (400,000-138,000years) were 'massive' in their height (160-190cm) and mass (70-90kg) and consistently exceed recent humans. Relative brain size exceeds earlier Homo, yet is substantially lower than in final glacial H. sapiens and Homo neanderthalensis. A final leap in absolute and relative brain size in Homo (300,000-138,000years) occurred independent of any observed increase in body mass and implies a different selective mediator to that operating on brain size increases observed in earlier Homo. PMID:23562520

  12. The value of size. Bioeconomic consequences of size-dependent pricing and fishing-induced evolution

    OpenAIRE

    Zimmermann, Fabian

    2011-01-01

    The influence of fishing on the dynamics of fish stocks is a core element in fisheries management. One of the most notable characteristics in this context is the sizestructure of a fish stock, composed by the individual and its body size. From a biological perspective, individual size is directly linked to most relevant life-history traits like growth, maturation or reproductive output, connecting it to evolutionary processes. In the context of fisheries, individual fish consti...

  13. Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting.

    Science.gov (United States)

    O'Dea, Aaron; Shaffer, Marian Lynne; Doughty, Douglas R; Wake, Thomas A; Rodriguez, Felix A

    2014-05-01

    Intensive size-selective harvesting can drive evolution of sexual maturity at smaller body size. Conversely, prehistoric, low-intensity subsistence harvesting is not considered an effective agent of size-selective evolution. Uniting archaeological, palaeontological and contemporary material, we show that size at sexual maturity in the edible conch Strombus pugilis declined significantly from pre-human (approx. 7 ka) to prehistoric times (approx. 1 ka) and again to the present day. Size at maturity also fell from early- to late-prehistoric periods, synchronous with an increase in harvesting intensity as other resources became depleted. A consequence of declining size at maturity is that early prehistoric harvesters would have received two-thirds more meat per conch than contemporary harvesters. After exploring the potential effects of selection biases, demographic shifts, environmental change and habitat alteration, these observations collectively implicate prehistoric subsistence harvesting as an agent of size-selective evolution with long-term detrimental consequences. We observe that contemporary populations that are protected from harvesting are slightly larger at maturity, suggesting that halting or even reversing thousands of years of size-selective evolution may be possible. PMID:24648229

  14. The History and Evolution of Experimental Traumatic Brain Injury Models.

    Science.gov (United States)

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  15. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  16. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents.

    Directory of Open Access Journals (Sweden)

    Jeanie L Y Cheong

    Full Text Available OBJECTIVES: Extremely preterm (EP survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks and term-born (≥ 37 weeks control adolescents, (ii to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS: Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI and the Wide Range Achievement Test(WRAT-4, respectively. RESULTS: Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume. The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5], spelling(-8.0 [-11.5, -4.6], math computation(-10.3 [-13.7, -6.9] and word reading(-5.6 [-8.8, -2.4] scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS: EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and

  17. Independent Effects of Protein Core Size and Expression on Residue-Level Structure-Evolution Relationships

    OpenAIRE

    Franzosa, Eric A.; Yu Xia

    2012-01-01

    Recently, we demonstrated that yeast protein evolutionary rate at the level of individual amino acid residues scales linearly with degree of solvent accessibility. This residue-level structure-evolution relationship is sensitive to protein core size: surface residues from large-core proteins evolve much faster than those from small-core proteins, while buried residues are equally constrained independent of protein core size. In this work, we investigate the joint effects of protein core size ...

  18. Intense selective hunting leads to artificial evolution in horn size.

    Science.gov (United States)

    Pigeon, Gabriel; Festa-Bianchet, Marco; Coltman, David W; Pelletier, Fanie

    2016-04-01

    The potential for selective harvests to induce rapid evolutionary change is an important question for conservation and evolutionary biology, with numerous biological, social and economic implications. We analyze 39 years of phenotypic data on horn size in bighorn sheep (Ovis canadensis) subject to intense trophy hunting for 23 years, after which harvests nearly ceased. Our analyses revealed a significant decline in genetic value for horn length of rams, consistent with an evolutionary response to artificial selection on this trait. The probability that the observed change in male horn length was due solely to drift is 9.9%. Female horn length and male horn base, traits genetically correlated to the trait under selection, showed weak declining trends. There was no temporal trend in genetic value for female horn base circumference, a trait not directly targeted by selective hunting and not genetically correlated with male horn length. The decline in genetic value for male horn length stopped, but was not reversed, when hunting pressure was drastically reduced. Our analysis provides support for the contention that selective hunting led to a reduction in horn length through evolutionary change. It also confirms that after artificial selection stops, recovery through natural selection is slow. PMID:27099619

  19. The evolution of body size and shape in the human career.

    Science.gov (United States)

    Jungers, William L; Grabowski, Mark; Hatala, Kevin G; Richmond, Brian G

    2016-07-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the 'best' for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans.This article is part of the themed issue 'Major transitions in human evolution'. PMID:27298459

  20. The evolution of the social brain: anthropoid primates contrast with other vertebrates

    OpenAIRE

    Shultz, Susanne; Dunbar, R. I. M.

    2007-01-01

    The social brain hypothesis argues that large brains have arisen over evolutionary time as a response to the social and ecological conflicts inherent in group living. We test predictions arising from the hypothesis using comparative data from birds and four mammalian orders (Carnivora, Artiodactyla, Chiroptera and Primates) and show that, across all non-primate taxa, relative brain size is principally related to pairbonding, but with enduring stable relationships in primates. We argue that th...

  1. Male and female brain evolution is subject to contrasting selection pressures in primates

    OpenAIRE

    Dunbar Robin IM

    2007-01-01

    Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between th...

  2. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals

    OpenAIRE

    Romain eWillemet

    2013-01-01

    Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behaviour of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise s...

  3. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  4. Brain Dynamics of Word Familiarization in 20-Month-Olds: Effects of Productive Vocabulary Size

    Science.gov (United States)

    Torkildsen, Janne von Koss; Hansen, Hanna Friis; Svangstu, Janne Mari; Smith, Lars; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus

    2009-01-01

    The present study investigated the brain mechanisms involved during young children's receptive familiarization with new words, and whether the dynamics of these mechanisms are related to the child's productive vocabulary size. To this end, we recorded event-related potentials (ERPs) from 20-month-old children in a pseudoword repetition task.…

  5. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    Science.gov (United States)

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  6. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    Energy Technology Data Exchange (ETDEWEB)

    Emmer, B.J. [Erasmus Medical Centre, Department of Radiology, Postbus 2040, Rotterdam (Netherlands); Rijkee, M.; Walderveen, M.A.A. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Niesten, J.M.; Velthuis, B.K. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Wermer, M.J.H. [Leiden University Medical Centre, Department of Neurology, Leiden (Netherlands)

    2014-12-15

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  7. Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships?

    Science.gov (United States)

    Mirth, Christen K; Anthony Frankino, W; Shingleton, Alexander W

    2016-02-01

    The relationship between organ and body size, known as morphological allometry, has fascinated biologists for over a century because changes in allometry generate the vast diversity of organism shapes. Nevertheless, progress has been limited in understanding the genetic mechanisms that regulate allometries and how these mechanisms evolve. This is perhaps because allometry is measured at the population level, however adult organ and body size depends on genetic background and the developmental environment of individuals. Recent findings have enhanced our understanding of how insects regulate their organ and body sizes in response to environmental conditions, particularly nutritional availability. We argue that merging these developmental insights with a population genetics approach will provide a powerful system for understanding the evolution of allometry. PMID:27436558

  8. Finite-size effect on evolution of Griffiths phase in manganite nanoparticles.

    Science.gov (United States)

    Pramanik, A K; Banerjee, A

    2016-09-01

    The finite-size effect on the evolution of the Griffiths phase (GP) is studied using nanoparticles of half-doped manganite Pr0.5Sr0.5MnO3 with different average particle sizes but with similar structural parameters. All the samples exhibit pronounced GP behavior. With reducing the particle size, the Griffiths temperature remains almost unchanged but the characteristic critical temperature [Formula: see text] decreases and the GP properties are strengthened. It is noteworthy that the shift of [Formula: see text] follows finite-size scaling with the particle size revealing an exotic interplay between the GP properties and the sample dimension. This reinforces an earlier proposal of length-scale related evolution of GP. PMID:27383058

  9. Finite-size effect on evolution of Griffiths phase in manganite nanoparticles

    Science.gov (United States)

    Pramanik, A. K.; Banerjee, A.

    2016-09-01

    The finite-size effect on the evolution of the Griffiths phase (GP) is studied using nanoparticles of half-doped manganite Pr0.5Sr0.5MnO3 with different average particle sizes but with similar structural parameters. All the samples exhibit pronounced GP behavior. With reducing the particle size, the Griffiths temperature remains almost unchanged but the characteristic critical temperature T\\text{c}R decreases and the GP properties are strengthened. It is noteworthy that the shift of T\\text{c}R follows finite-size scaling with the particle size revealing an exotic interplay between the GP properties and the sample dimension. This reinforces an earlier proposal of length-scale related evolution of GP.

  10. Assessing sources of error in comparative analyses of primate behavior: Intraspecific variation in group size and the social brain hypothesis.

    Science.gov (United States)

    Sandel, Aaron A; Miller, Jordan A; Mitani, John C; Nunn, Charles L; Patterson, Samantha K; Garamszegi, László Zsolt

    2016-05-01

    Phylogenetic comparative methods have become standard for investigating evolutionary hypotheses, including in studies of human evolution. While these methods account for the non-independence of trait data due to phylogeny, they often fail to consider intraspecific variation, which may lead to biased or erroneous results. We assessed the degree to which intraspecific variation impacts the results of comparative analyses by investigating the "social brain" hypothesis, which has provided a framework for explaining complex cognition and large brains in humans. This hypothesis suggests that group life imposes a cognitive challenge, with species living in larger social groups having comparably larger neocortex ratios than those living in smaller groups. Primates, however, vary considerably in group size within species, a fact that has been ignored in previous analyses. When within-species variation in group size is high, the common practice of using a mean value to represent the species may be inappropriate. We conducted regression and resampling analyses to ascertain whether the relationship between neocortex ratio and group size across primate species persists after controlling for within-species variation in group size. We found that in a sample of 23 primates, 70% of the variation in group size was due to between-species variation. Controlling for within-species variation in group size did not affect the results of phylogenetic analyses, which continued to show a positive relationship between neocortex ratio and group size. Analyses restricted to non-monogamous primates revealed considerable intraspecific variation in group size, but the positive association between neocortex ratio and group size remained even after controlling for within-species variation in group size. Our findings suggest that the relationship between neocortex size and group size in primates is robust. In addition, our methods and associated computer code provide a way to assess and account for

  11. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  12. Climate change and size evolution in an island rodent species: new perspectives on the island rule.

    Science.gov (United States)

    Millien, Virginie; Damuth, John

    2004-06-01

    As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.

  13. The evolution of body size, antennal size and host use in parasitoid wasps (Hymenoptera: Chalcidoidea: a phylogenetic comparative analysis.

    Directory of Open Access Journals (Sweden)

    Matthew R E Symonds

    Full Text Available Chalcidoid wasps represent one of the most speciose superfamilies of animals known, with ca. 23,000 species described of which many are parasitoids. They are extremely diverse in body size, morphology and, among the parasitoids, insect hosts. Parasitic chalcidoids utilise a range of behavioural adaptations to facilitate exploitation of their diverse insect hosts, but how host use might influence the evolution of body size and morphology is not known in this group. We used a phylogenetic comparative analysis of 126 chalcidoid species to examine whether body size and antennal size showed evolutionary correlations with aspects of host use, including host breadth (specificity, host identity (orders of insects parasitized and number of plant associates. Both morphological features and identity of exploited host orders show strong phylogenetic signal, but host breadth does not. Larger body size in these wasps was weakly associated with few plant genera, and with more specialised host use, and chalcidoid wasps that parasitize coleopteran hosts tend to be larger. Intriguingly, chalcidoid wasps that parasitize hemipteran hosts are both smaller in size in the case of those parasitizing the suborder Sternorrhyncha and have relatively larger antennae, particularly in those that parasitize other hemipteran suborders. These results suggest there are adaptations in chalcidoid wasps that are specifically associated with host detection and exploitation.

  14. MICRO, SMALL AND MEDIUM-SIZED BUSINESSES IN JALISCO: THEIR EVOLUTION, AND STRATEGIC CHALLENGES

    OpenAIRE

    Carlos Fong Reynoso; Moisés Alejandro Alarcón Osuna; Luis Ernesto Ocampo Figueroa

    2014-01-01

    The business structure in Jalisco, Mexico is primarily composed of micro, small and medium-sized enterprises (SMEs). Thus, it is fundamentally necessary to understand the dynamics, evolution and above all, the strategic challenges of this sector in order to understand the state’s economic performance and the possibilities for future development in Jalisco. As a result, this study analyzes the evolution of the SMEs (known as PyME, in Spanish) in Mexico and Jalisco by using data from the Econom...

  15. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  16. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    Science.gov (United States)

    Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-01

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  17. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    Science.gov (United States)

    Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-01

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  18. Body Size Evolution in Conodonts from the Cambrian through the Triassic

    Science.gov (United States)

    Schaal, E. K.; Morgan, D. J.; Payne, J.

    2013-12-01

    The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine chordates) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont P1 element measurements for 575 species and subspecies from the Cambrian through Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased during the early Paleozoic, peaked during the Devonian-Mississippian, and then generally decreased until conodonts went extinct at the end of the Triassic. We used regression analyses to compare conodont mean size trends to potential environmental predictors, such as changing atmospheric pO2, atmospheric pCO2, and sea level. Conodont size exhibited poor correlation with these environmental factors, suggesting that conodont evolution may have been more strongly influenced by other environmental covariates or ecological variables such as predation and competition.

  19. No association between brain size and male sexual behavior in the guppy

    Institute of Scientific and Technical Information of China (English)

    Alberto CORRAL-L(O)PEZ; Simon ECKERSTR(O)M-LIEDHOLM; Wouter VAN DER BIJL; Alexander KOTRSCHAL; Niclas KOLM

    2015-01-01

    Animal behavior is remarkably variable at all taxonomic levels.Over the last decades,research on animal behavior has focused on understanding ultimate processes.Yet,it has progressively become more evident that to fully understand behavioral variation,ultimate explanations need to be complemented with proximate ones.In particular,the mechanisms generating variation in sexual behavior remain an open question.Variation in aspects of brain morphology has been suggested as a plausible mechanism underlying this variation.However,our knowledge of this potential association is based almost exclusively on comparative analyses.Experimental studies are needed to establish causality and bridge the gap between micro-and macroevolutionary mechanisms concerning the link between brain and sexual behavior.We used male guppies that had been artificially selected for large or small relative brain size to study this association.We paired males with females and scored the full known set of male and female sexual behaviors described in guppies.We found several previously demonstrated associations between male traits,male behavior and female behavior.Females responded more strongly towards males that courted more and males with more orange coloration.Also,larger males and males with less conspicuous coloration attempted more coerced copulations.However,courting,frequency of coerced copulation attempts,total intensity of sexual behavior,and female response did not differ between large-and small-brained males.Our data suggest that relative brain size is an unlikely mechanism underlying variation in sexual behavior of the male guppy.We discuss these findings in the context of the conditions under which relative brain size might affect male sexual behavior [Current Zoology 61 (2):265-273,2015].

  20. A simple rule governs the evolution and development of hominin tooth size.

    Science.gov (United States)

    Evans, Alistair R; Daly, E Susanne; Catlett, Kierstin K; Paul, Kathleen S; King, Stephen J; Skinner, Matthew M; Nesse, Hans P; Hublin, Jean-Jacques; Townsend, Grant C; Schwartz, Gary T; Jernvall, Jukka

    2016-02-25

    The variation in molar tooth size in humans and our closest relatives (hominins) has strongly influenced our view of human evolution. The reduction in overall size and disproportionate decrease in third molar size have been noted for over a century, and have been attributed to reduced selection for large dentitions owing to changes in diet or the acquisition of cooking. The systematic pattern of size variation along the tooth row has been described as a 'morphogenetic gradient' in mammal, and more specifically hominin, teeth since Butler and Dahlberg. However, the underlying controls of tooth size have not been well understood, with hypotheses ranging from morphogenetic fields to the clone theory. In this study we address the following question: are there rules that govern how hominin tooth size evolves? Here we propose that the inhibitory cascade, an activator-inhibitor mechanism that affects relative tooth size in mammals, produces the default pattern of tooth sizes for all lower primary postcanine teeth (deciduous premolars and permanent molars) in hominins. This configuration is also equivalent to a morphogenetic gradient, finally pointing to a mechanism that can generate this gradient. The pattern of tooth size remains constant with absolute size in australopiths (including Ardipithecus, Australopithecus and Paranthropus). However, in species of Homo, including modern humans, there is a tight link between tooth proportions and absolute size such that a single developmental parameter can explain both the relative and absolute sizes of primary postcanine teeth. On the basis of the relationship of inhibitory cascade patterning with size, we can use the size at one tooth position to predict the sizes of the remaining four primary postcanine teeth in the row for hominins. Our study provides a development-based expectation to examine the evolution of the unique proportions of human teeth.

  1. Total to central luminosity ratios of quiescent galaxies in MODS as an indicator of size evolution

    CERN Document Server

    Akhlaghi, Mohammad; Kajisawa, Masaru

    2012-01-01

    Using the very deep Subaru images of the GOODS-N region, from the MOIRCS Deep Survey and images from the HST/ACS, we have measured the Luminosity Ratio (LR) of the outer to the central regions of massive (M>10^{10.5}M_{Sun}) galaxies at fixed radii in a single rest-frame for z<3.5 as a new approach to the problem of size evolution. We didn't observe any evolution in the median LR. Had a significant size growth occurred, the outer to central luminosity ratios would have demonstrated a corresponding increase with a decrease in redshift.

  2. The use of magnetic resonance imaging to study the brain size of young children with autism

    Directory of Open Access Journals (Sweden)

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  3. Stone tools, language and the brain in human evolution

    OpenAIRE

    Stout, Dietrich; Chaminade, Thierry

    2012-01-01

    Long-standing speculations and more recent hypotheses propose a variety of possible evolutionary connections between language, gesture and tool use. These arguments have received important new support from neuroscientific research on praxis, observational action understanding and vocal language demonstrating substantial functional/anatomical overlap between these behaviours. However, valid reasons for scepticism remain as well as substantial differences in detail between alternative evolution...

  4. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki.

    Science.gov (United States)

    Turschwell, Mischa P; White, Craig R

    2016-01-01

    It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR) and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations. PMID:26794608

  5. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki

    Directory of Open Access Journals (Sweden)

    Mischa P. Turschwell

    2016-03-01

    Full Text Available It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations.

  6. Plasticity of brain wave network interactions and evolution across physiologic states

    Directory of Open Access Journals (Sweden)

    Kang K. L. Liu

    2015-10-01

    Full Text Available Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very

  7. Plasticity of brain wave network interactions and evolution across physiologic states.

    Science.gov (United States)

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  8. Plasticity of brain wave network interactions and evolution across physiologic states

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  9. Evolution of sperm size in nematodes: sperm competition favours larger sperm.

    OpenAIRE

    LaMunyon, C W; Ward, S.

    1999-01-01

    In the free-living rhabditid nematode Caenorhabditis elegans, sperm size is a determinant of sperm competitiveness. Larger sperm crawl faster and physically displace smaller sperm to take fertilization priority, but not without a cost: larger sperm are produced at a slower rate. Here, we investigate the evolution of sperm size in the family Rhabditidae by comparing sperm among 19 species, seven of which are hermaphroditic (self-fertile hermaphrodites and males), the rest being gonochoristic (...

  10. Population Size and Cultural Evolution in Nonindustrial Food-Producing Societies

    OpenAIRE

    Mark Collard; April Ruttle; Briggs Buchanan; Michael J. O'Brien

    2013-01-01

    Modeling work suggests that population size affects cultural evolution such that larger populations can be expected to have richer and more complex cultural repertoires than smaller populations. Empirical tests of this hypothesis, however, have yielded conflicting results. Here, we report a study in which we investigated whether the subsistence toolkits of small-scale food-producers are influenced by population size in the manner the hypothesis predicts. We applied simple linear and standard ...

  11. Functional craniology and brain evolution: from paleontology to biomedicine

    OpenAIRE

    Emiliano eBruner; José Manuel eDe la Cuétara; Michael eMasters; Hideki eAmano; Naomichi eOgihara

    2014-01-01

    Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawback...

  12. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  13. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  14. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    Science.gov (United States)

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  15. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size.

    Science.gov (United States)

    Chen, Jian-Fu; Zhang, Ying; Wilde, Jonathan; Hansen, Kirk C; Lai, Fan; Niswander, Lee

    2014-05-30

    Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly.

  16. Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

    Directory of Open Access Journals (Sweden)

    J. Gordon Burleigh

    2012-01-01

    Full Text Available Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous phylogenetic analyses, including weak support for Gnetales sister to Pinaceae. A lineage through time plot suggests elevated rates of diversification within the last 100 million years, and there is evidence of shifts in diversification rates in several clades within cycads and conifers. A likelihood-based analysis of the evolution of genome size in 165 gymnosperms finds evidence for heterogeneous rates of genome size evolution due to an elevated rate in Pinus.

  17. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    Science.gov (United States)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  18. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  19. Two-size approximation: a simple way of treating the evolution of grain size distribution in galaxies

    CERN Document Server

    Hirashita, Hiroyuki

    2014-01-01

    Full calculations of the evolution of grain size distribution in galaxies are in general computationally heavy. In this paper, we propose a simple model of dust enrichment in a galaxy with a simplified treatment of grain size distribution by imposing a `two-size approximation'; that is, all the grain population is represented by small (grain radius a 0.03 micron) grains. We include in the model dust supply from stellar ejecta, destruction in supernova shocks, dust growth by accretion, grain growth by coagulation and grain disruption by shattering, considering how these processes work on the small and large grains. We show that this simple framework reproduces the main features found in full calculations of grain size distributions as follows. The dust enrichment starts with the supply of large grains from stars. At a metallicity level referred to as the critical metallicity of accretion, the abundance of the small grains formed by shattering becomes large enough to rapidly increase the grain abundance by acc...

  20. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  1. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    Science.gov (United States)

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.

  2. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates.

  3. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  4. Evolution and maintenance of sexual size dimorphism: Aligning phylogenetic and experimental evidence

    Directory of Open Access Journals (Sweden)

    Matjaz eKuntner

    2014-06-01

    Full Text Available Integrating the insights derived from both phylogenetic and experimental approaches offers a more complete understanding of evolutionary patterns and processes, yet it is rarely a feature of investigations of the evolutionary significance of trait variation. We combine these approaches to reinterpret the patterns and processes in the evolution of female biased sexual size dimorphism in Nephilidae, a spider lineage characterized by the most extreme sexual size dimorphism among terrestrial animals. We use a molecular phylogeny to reconstruct the size evolution for each sex and reveal a case of sexually dimorphic gigantism: both sexes steadily outgrow their ancestral sizes, but the female and male slopes differ, and hence sexual size dimorphism steadily increases. A review of the experimental evidence reveals a predominant net selection for large size in both sexes, consistent with the phylogenetic pattern for females but not for males. Thus, while sexual size dimorphism in spiders most likely originates and is maintained by fecundity selection on females, it is unclear what selection pressures prevent males from becoming as large as females. This integrated approach highlights the dangers of inferring evolutionary significance from experimental studies that isolate the effects of single selection pressures.

  5. A fossil brain from the Cretaceous of European Russia and avian sensory evolution

    OpenAIRE

    Kurochkin, Evgeny N; Gareth J Dyke; Saveliev, Sergei V.; Pervushov, Evgeny M; Popov, Evgeny V

    2007-01-01

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ...

  6. Male and female brain evolution is subject to contrasting selection pressures in primates

    Directory of Open Access Journals (Sweden)

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  7. Effect of Growing Size of Interaction Neighbors on the Evolution of Cooperation in Spatial Snowdrift Game

    Institute of Scientific and Technical Information of China (English)

    张娟娟; 王娟; 孙世温; 王莉; 王震; 夏承遗

    2012-01-01

    In this paper,we study the influence of the size of interaction neighbors(k) on the evolution of cooperation in the spatial snowdrift game.At first,we consider the effects of noise K and cost-to-benefit ratio r,the simulation results indicate that the evolution of cooperation depends on the combined action of noise and cost-to-benefit ratio.For a lower r,the cooperators are multitudinous and the cooperation frequency ultimately increases to 1 as the increase of noise.However,for a higher r,the defectors account for the majority of the game and dominate the game if the noise is large enough.Then we mainly investigate how k influences the evolution of cooperation by varying the noise in detail.We find that the frequency of cooperators is closely related to the size of neighborhood and cost-to-benefit ratio r.In the case of lower r,the augmentation of k plays no positive role in promoting the cooperation as compared with that of k = 4,while for higher r the cooperation is improved for a growing size of neighborhood.At last,based on the above discussions,we explore the cluster-forming mechanism among the cooperators.The current results are beneficial to further understand the evolution of cooperation in many natural,social and biological systems.

  8. Effect of Growing Size of Interaction Neighbors on the Evolution of Cooperation in Spatial Snowdrift Game

    International Nuclear Information System (INIS)

    In this paper, we study the influence of the size of interaction neighbors (k) on the evolution of cooperation in the spatial snowdrift game. At first, we consider the effects of noise K and cost-to-benefit ratio r, the simulation results indicate that the evolution of cooperation depends on the combined action of noise and cost-to-benefit ratio. For a lower r, the cooperators are multitudinous and the cooperation frequency ultimately increases to 1 as the increase of noise. However, for a higher r, the defectors account for the majority of the game and dominate the game if the noise is large enough. Then we mainly investigate how k influences the evolution of cooperation by varying the noise in detail. We find that the frequency of cooperators is closely related to the size of neighborhood and cost-to-benefit ratio r. In the case of lower r, the augmentation of k plays no positive role in promoting the cooperation as compared with that of k = 4, while for higher r the cooperation is improved for a growing size of neighborhood. At last, based on the above discussions, we explore the cluster-forming mechanism among the cooperators. The current results are beneficial to further understand the evolution of cooperation in many natural, social and biological systems. (general)

  9. Oxygen no longer plays a major role in Body Size Evolution

    Science.gov (United States)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  10. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?

    Science.gov (United States)

    Stilling, Roman M; Bordenstein, Seth R; Dinan, Timothy G; Cryan, John F

    2014-01-01

    The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a "social triangle" that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  11. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development?

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-10-01

    Full Text Available The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behaviour. Here in this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a ‘social triangle’ that drives human social behaviour and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  12. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  13. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    Directory of Open Access Journals (Sweden)

    Daniel Frynta

    Full Text Available The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family.

  14. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    Science.gov (United States)

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family.

  15. Brain May Still Be Evolving%大脑可能还在进化

    Institute of Scientific and Technical Information of China (English)

    Nicholas Wade; 刘学诚

    2005-01-01

    @@ Two genes involved in determining the size of the human brain have undergone substantial1 evolution2 in the last 60,000years, researchers say, leading to the surprising suggestion that the brain is still undergoing rapid evolution.

  16. WITNESSING THE DIFFERENTIAL EVOLUTION OF DISK GALAXIES IN LUMINOSITY AND SIZE VIA GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2013-11-01

    We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.

  17. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    CERN Document Server

    Cunha, Diana; Laskar, Jacques

    2014-01-01

    Planets with masses between 0.1 - 10 M_earth are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolve either to 0 or 180 degrees. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of this equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems, so they cannot be neglected when we search for their potential habitability.

  18. Extreme Sexual Brain Size Dimorphism in Sticklebacks: A Consequence of the Cognitive Challenges of Sex and Parenting?

    OpenAIRE

    Alexander Kotrschal; Katja Räsänen; Kristjánsson, Bjarni K; Mike Senn; Niclas Kolm

    2012-01-01

    Selection pressures that act differently on males and females produce numerous differences between the sexes in morphology and behaviour. However, apart from the controversial report that males have slightly heavier brains than females in humans, evidence for substantial sexual dimorphism in brain size is scarce. This apparent sexual uniformity is surprising given that sexually distinct selection pressures are ubiquitous and that brains are one of the most plastic vertebrate organs. Here we d...

  19. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny.

    Science.gov (United States)

    Clark, James; Hidalgo, Oriane; Pellicer, Jaume; Liu, Hongmei; Marquardt, Jeannine; Robert, Yannis; Christenhusz, Maarten; Zhang, Shouzhou; Gibby, Mary; Leitch, Ilia J; Schneider, Harald

    2016-05-01

    The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades.

  20. Plant water use efficiency shapes co-evolution of stomata size and density over geologic time

    Science.gov (United States)

    Assouline, S.; Or, D.

    2010-12-01

    The appearance of stomata and formation of impervious leaf cuticle are key elements in terrestrial plant evolution allowing plants to control gaseous diffusion and regulate water loss during simultaneous carbon dioxide uptake. An important plant gaseous diffusion adaptation was achieved by co-evolution of stomata density (D) and maximum aperture size (S), whose product α=S.D defines the evaporating fraction of the leaf surface and determines gaseous conductance. The plant leaf fossil record reveals significant variations in D and S over the 400 Myrs of the Phanerozoic eon, whose impact on gas-exchange capacity and on plant evolution are not fully understood. Characteristics of evaporation suppression from perforated diffusion barriers deduced from plant fossil record delineate the evolution of α as atmospheric CO2 declined from 4000 ppm to present day values. Surprisingly, despite non monotonous variations in α during plant evolution, plant water use efficiency (WUE) has improved systematically during the decrease in atmospheric CO2 over the Phanerozoic, at variance with conventional predictions. The new WUE trend is based on physical relations between α and evaporation suppression by perforated diffusion barriers, providing new insights on the dominance of water related regulatory function and on consequences of future CO2 enriched atmosphere on plant function and hydrologic cycle such as continental runoff scenarios.

  1. Body mass estimates of hominin fossils and the evolution of human body size.

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G

    2015-08-01

    Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. PMID:26094042

  2. Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs.

    Science.gov (United States)

    Verdeny-Vilalta, O; Fox, C W; Wise, D H; Moya-Laraño, J

    2015-06-01

    Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits.

  3. Model for evolution of grain size in the rim region of high burnup UO2 fuel

    Science.gov (United States)

    Xiao, Hongxing; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO2 fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO2 fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO2 fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results.

  4. The role of size-specific predation in the evolution and diversification of prey life histories.

    Science.gov (United States)

    Day, Troy; Abrams, Peter A; Chase, Jonathan M

    2002-05-01

    Some of the best empirical examples of life-history evolution involve responses to predation. Nevertheless, most life-history theory dealing with responses to predation has not been formulated within an explicit dynamic food-web context. In particular, most previous theory does not explicitly consider the coupled population dynamics of the focal species and its predators and resources. Here we present a model of life-history evolution that explores the evolutionary consequences of size-specific predation on small individuals when there is a trade-off between growth and reproduction. The model explicitly describes the population dynamics of a predator, the prey of interest, and its resource. The selective forces that cause life-history evolution in the prey species emerge from the ecological interactions embodied by this model and can involve important elements of frequency dependence. Our results demonstrate that the strength of the coupling between predator and prey in the community determines many aspects of life-history evolution. If the coupling is weak (as is implicitly assumed in many previous models), differences in resource productivity have no effect on the nature of life-history evolution. A single life-history strategy is favored that minimizes the equilibrium resource density (if possible). If the coupling is strong, then higher resource productivities select for faster growth into the predation size refuge. Moreover, under strong coupling it is also possible for natural selection to favor an evolutionary diversification of life histories, possibly resulting in two coexisting species with divergent life-history strategies.

  5. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    Science.gov (United States)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  6. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Science.gov (United States)

    Li, Wei; Cai, Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc. The variation of the IE near the critical point yields an exponent entropy index E = (tau-1)/sigma, where tau and sigma represent the critical exponents for avalanche size distribution and avalanche size cutoff, respectively. A new quantity Dtau(g) (g = 1-(fc-G)(tau-1)/sigma, where G is the gap of the current state), defined as 1-Itau(g)/Itau(1), with Itau(g) and Itau(1) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  7. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Institute of Scientific and Technical Information of China (English)

    LI Wei; CAI Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc ? The variation of the IE near the critical point yields an exponent entropy index E = (T - l)/size distribution and avalanche size cutoff, respectively. A new quantity DT(g) (g = 1 - (fc - G)'r-1' , where G is the gap of the current state), denned as 1 - IT(g)/IT(l), with IT(g) and /T(l) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  8. Evolution Balancing of the Small-Sized Wheel Loader Assembly Line

    Directory of Open Access Journals (Sweden)

    Rongshen Lai

    2015-01-01

    Full Text Available Assembly line balancing not only directly determines production efficiency but also influences precision and quality of key assemblies or even the overall performance of final products. Driven by market demand and development of science and technology, product family must evolve constantly, which necessitates frequent adjustment and rebalancing of product family assembly line (PFAL. In order to maintain production efficiency, improve assembly quality and precision, and reduce costs for adjustment, the evolution balancing problem of PFAL for small-sized wheel loader is solved in this paper. Firstly, the evolution balancing model of PFAL is put forward. Then, with minimizing the number of workstations, the in-station and between-station load indexes and adjustment costs, and maximizing relevancy between activities as optimization objectives, meanwhile regarding product platform planning, modularity design and the critical chain technology in concurrent engineering as constraint conditions, the evolution balancing problem of PFAL is optimized using improved genetic algorithm (IGA. Finally, the whole analysis procedure is demonstrated by the small-sized wheel loader PFAL case study and the effectiveness of the proposed method is verified.

  9. A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments.

    Science.gov (United States)

    Bentkowski, Piotr; Van Oosterhout, Cock; Mock, Thomas

    2015-08-04

    Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.

  10. Coevolving parasites and population size shape the evolution of mating behaviour

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2013-02-01

    Full Text Available Abstract Background Coevolution with parasites and population size are both expected to influence the evolution of mating rates. To gain insights into the interaction between these dual selective factors, we used populations from a coevolution experiment with the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. We maintained each experimental population at two different population sizes. We assayed the mating behaviour of both males and females from coevolved and paired non-coevolved control populations after 24 generations of coevolution with parasites. Results Males from large, coevolved populations (i.e. ancestors were exposed to parasites showed a reduced eagerness to mate compared to males from large, non-coevolved populations. But in small populations, coevolution did not lead to decreased male mating rates. Coevolved females from both large and small populations appeared to be more willing to accept mating than non-coevolved females. Conclusions This study provides unique, experimental insights into the combined roles of coevolving parasites and population size on the evolution of mating rate. Furthermore, we find that males and females respond differently to the same environmental conditions. Our results show that parasites can be key determinants of the sexual behaviour of their hosts.

  11. Effect of grain size in compression deformation on the microstructural evolution of an austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rehrl, Christian, E-mail: christian.rehrl@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstr. 12, 8700 Leoben (Austria); Kleber, Siegfried [Boehler Edelstahl GmbH, Kapfenberg, Mariazeller Str. 25, 8605 Kapfenberg (Austria); Renk, Oliver; Pippan, Reinhard [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstr. 12, 8700 Leoben (Austria)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Increasing the starting grain size retards the dynamic recrystallization process. Black-Right-Pointing-Pointer Forming compatibility is achieved by grain fragmentation in coarser structures. Black-Right-Pointing-Pointer The stored GND density increases for smaller starting grain sizes. Black-Right-Pointing-Pointer Nucleation process of new grains is driven by the stored deformation energy. Black-Right-Pointing-Pointer Cast structured state promotes dynamic recovery as softening mechanism. - Abstract: The influence of initial grain size on the dynamic recrystallization behavior has been investigated in a commercial austenitic stainless steel. Compression tests were performed at constant temperatures of 810, 980 and 1150 Degree-Sign C at an average strain rate {epsilon}{sup .} of 0.01 s{sup -1} and 0.1 s{sup -1}. In order to capture the microstructural evolution after the deformation the electron back scatter diffraction technique (EBSD) was used. The results show that nucleation of new grains is strongly grain size dependent. Increasing the grain size of the material reduces the stored energy measured in terms of kernel average misorientation, well known as driving force for dynamic recrystallization. This leads to the problem of grain refinement in coarse structured materials. Applying large plastic strains or using static recrystallization in a double hit forming process seems promising for an efficient refinement strategy.

  12. Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels

    International Nuclear Information System (INIS)

    The magnetic properties of nonoriented electrical steels are influenced by the grain size and crystallographic texture. The technologies used to control the grain size in nonoriented electrical steels are approaching their limits. However, there is still some room for improvement of the magnetic properties through texture control. Hot-band annealing is known to be one of the most effective processing stages for texture modification. In this study, two types of initial grain sizes prior to cold rolling are obtained by different hot-band annealing. The effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels containing 2% Si is examined. The specimens having different initial grain sizes have significantly different textures in the cold-rolled state and the annealed state. During the recrystallization stage, new grains formed in the coarse-grained specimens have stronger Goss but weaker γ-fibre texture than those in the fine-grained specimens. During the grain growth after complete recrystallization, the coarse-grained specimens still have weaker γ-fibre texture than the fine-grained specimens. The magnetic induction of the coarse-grained specimens is always higher at the same temperature than that of the fine-grained specimens. The core loss of the coarse-grained specimens is lower at the same temperature than that of fine-grained specimens. However, the improvement of the core loss becomes less pronounced as the annealing temperature increases.

  13. Homo erectus and Middle Pleistocene hominins: brain size, skull form, and species recognition.

    Science.gov (United States)

    Rightmire, G Philip

    2013-09-01

    Hominins that differ from Homo erectus, the Neanderthals, and recent humans are known from Middle Pleistocene localities across the Old World. The taxonomic status of these populations has been clouded by controversy. Perhaps the most critical problem has been an incomplete understanding of variation in skull form. Here, both H. erectus and later mid-Pleistocene hominins are the focus of an investigation aimed at clarifying the relationships among brain volume, basicranial dimensions, neurocranial shape, and certain facial characters. Brain size in H. erectus averages about 950 cm(3), while in a series of Middle Pleistocene crania from Africa and Europe, volume is about 1230 cm(3). If encephalization is the primary mechanism operating in the mid-Pleistocene, then diverse aspects of cranial form cannot all be treated as independent variables. Correlation is utilized to examine the associations among measurements for more than 30 H. erectus crania that are reasonably well preserved. A similar approach is used with the Middle Pleistocene sample. Patterns of covariation are compared in order to assess integration. Next, factor analysis is applied to the H. erectus specimens in an attempt to identify modules, tightly integrated traits that can evolve independently. Studies of the variation within H. erectus are followed by direct comparisons with the Middle Pleistocene population. Discriminant functions facilitate the description of intergroup differences. Traits that vary independently from brain volume include anterior frontal broadening, lateral expansion of the parietal vault, elevation of the lambda-inion chord, and rounding of the sagittal contour of the occipital. This finding helps to resolve the problem of species recognition. Neurocranial proportions as well as characters from the cranial base and face can be incorporated into a differential diagnosis for the mid-Pleistocene sample. Evidence presented here supports arguments for speciation in the Middle

  14. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    Science.gov (United States)

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments.

  15. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions.

    Science.gov (United States)

    Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; Urrutia, Araxi O; Gutiérrez, Humberto

    2014-01-22

    Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.

  16. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    OpenAIRE

    Brocklehurst, Neil

    2016-01-01

    Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this in...

  17. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    International Nuclear Information System (INIS)

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract

  18. Effect of grain size and arrangement on dynamic damage evolution of ductile metal

    Institute of Scientific and Technical Information of China (English)

    Qi Mei-Lan; Zhong Sheng; He Hong-Liang; Fan Duan; Zhao Li

    2013-01-01

    Plate-impact experiments have been carried out to examine the effect of grain size and grain arrangement on the damage evolution of ultrapure aluminum.Two groups of samples,"cross-cut" and "longitudinal-cut," are obtained from the rolled aluminum rod along different directions.The peak compressive stress is approximately 1.25 GPa-l.61 GPa,which can cause incipient spall damage that is correlated to the material microstructure.The metallographic analyses of all recovered samples show that nearly all damage nucleates at the grain boundaries,especially those with larger curvature.Moreover,under lower shock stress,the spall strength of the "longitudinal-cut" sample is smaller than that of the "crosscut" sample,because the different grain sizes and arrangement of the two samples cause different nucleation,growth,and coalescence processes.In this study,the difference in the damage distribution between "longitudinal-cut" and "cross-cut"samples and the causes for this difference under lower shock-loading conditions are also analyzed by both qualitative and semi-quantitative methods.It is very important for these conclusions to establish a reasonable and perfect equation of damage evolution for ductile metals.

  19. Can AGN feedback-driven star formation explain the size evolution of massive galaxies?

    CERN Document Server

    Ishibashi, W; Canning, R E A

    2013-01-01

    Observations indicate that massive galaxies at z~2 are more compact than galaxies of comparable mass at z~0, with effective radii evolving by a factor of ~3-5. This implies that galaxies grow significantly in size but relatively little in mass over the past ~10 Gyr. Two main physical models have been proposed in order to explain the observed evolution of massive galaxies: "mergers" and "puffing-up" scenarios. Here we introduce another possibility, and discuss the potential role of the central active galactic nucleus (AGN) feedback on the evolution of its host galaxy. We consider triggering of star formation, due to AGN feedback, with radiation pressure on dusty gas as the driving feedback mechanism. In this picture, stars are formed in the feedback-driven outflow at increasingly larger radii and build up the outer regions of the host galaxy. The resulting increase in size and stellar mass can be compared with the observed growth of massive galaxies. Star formation in the host galaxy is likely obscured due to ...

  20. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    Science.gov (United States)

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  1. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  2. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    International Nuclear Information System (INIS)

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  3. Enhanced Z-LDA for Small Sample Size Training in Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Dongrui Gao

    2015-01-01

    Full Text Available Background. Usually the training set of online brain-computer interface (BCI experiment is small. For the small training set, it lacks enough information to deeply train the classifier, resulting in the poor classification performance during online testing. Methods. In this paper, on the basis of Z-LDA, we further calculate the classification probability of Z-LDA and then use it to select the reliable samples from the testing set to enlarge the training set, aiming to mine the additional information from testing set to adjust the biased classification boundary obtained from the small training set. The proposed approach is an extension of previous Z-LDA and is named enhanced Z-LDA (EZ-LDA. Results. We evaluated the classification performance of LDA, Z-LDA, and EZ-LDA on simulation and real BCI datasets with different sizes of training samples, and classification results showed EZ-LDA achieved the best classification performance. Conclusions. EZ-LDA is promising to deal with the small sample size training problem usually existing in online BCI system.

  4. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-type Porous Magnesium Fabricated with Gasar Process

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN

    2006-01-01

    The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.

  5. Body size and the small branch niche: using marsupial ontogeny to model primate locomotor evolution.

    Science.gov (United States)

    Shapiro, Liza J; Young, Jesse W; VandeBerg, John L

    2014-03-01

    Recently proposed ancestral locomotor and morphological 'stages' leading to the evolution of primates have emphasized small body size, and a transition from a clawed non-grasping stage, to a clawed, grasping stage with clawless opposable hallux, to a fully-nailed primate with grasping extremities. This evolutionary transition was presumably associated with frequent use of the small branch niche. To model elements of these evolutionary transitions, we investigate how body size, substrate size, substrate orientation and grasping morphology interact to influence quadrupedal kinematics within and between ontogenetic samples of two small-bodied marsupials, one arboreal (Petaurus breviceps) and the other mainly terrestrial (Monodelphis domestica). Longitudinal morphometric and kinematic data were collected from four juvenile P. breviceps (33-75 g) and two juvenile M. domestica (18-95 g) walking across poles of three diameters (2.5, 1.0, and 0.5 cm) and three orientations (horizontal, 30° incline, 30° decline). The two species responded similarly to some substrate conditions, but diverged in response to others. Kinematic divergence between the two species reflects Monodelphis' relatively shorter digits, reduced grasping ability and greater need for stabilizing mechanisms on narrow substrates. At a given relative body size or pole orientation, Monodelphis used higher limb duty factors, more limbs in support per stride, lower limb phases, and in some conditions, faster speeds compared with Petaurus. Interspecific differences were the least distinct on declined poles, highlighting the particular challenge of this substrate condition, even for arboreally adapted species. Small-bodied, arboreal primate ancestors would likely have employed the kinematic mechanisms common to our model taxa, but those with enhanced grasping adaptations would most likely not have required the increased level of stabilizing mechanisms exhibited by Monodelphis. Thus, using these two species

  6. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    Science.gov (United States)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between

  7. Modeling the seasonal evolution of the Arctic sea ice floe size distribution

    Directory of Open Access Journals (Sweden)

    Jinlun Zhang

    2016-09-01

    Full Text Available Abstract To better simulate the seasonal evolution of sea ice in the Arctic, with particular attention to the marginal ice zone, a sea ice model of the distribution of ice thickness, floe size, and enthalpy was implemented into the Pan-arctic Ice–Ocean Modeling and Assimilation System (PIOMAS. Theories on floe size distribution (FSD and ice thickness distribution (ITD were coupled in order to explicitly simulate multicategory FSD and ITD distributions simultaneously. The expanded PIOMAS was then used to estimate the seasonal evolution of the Arctic FSD in 2014 when FSD observations are available for model calibration and validation. Results indicate that the simulated FSD, commonly described equivalently as cumulative floe number distribution (CFND, generally follows a power law across space and time and agrees with the CFND observations derived from TerraSAR-X satellite images. The simulated power-law exponents also correlate with those derived using MODIS images, with a low mean bias of –2%. In the marginal ice zone, the modeled CFND shows a large number of small floes in winter because of stronger winds acting on thin, weak first-year ice in the ice edge region. In mid-spring and summer, the CFND resembles an upper truncated power law, with the largest floes mostly broken into smaller ones; however, the number of small floes is lower than in winter because floes of small sizes or first-year ice are easily melted away. In the ice pack interior there are fewer floes in late fall and winter than in summer because many of the floes are “welded” together into larger floes in freezing conditions, leading to a relatively flat CFND with low power-law exponents. The simulated mean floe size averaged over all ice-covered areas shows a clear annual cycle, large in winter and smaller in summer. However, there is no obvious annual cycle of mean floe size averaged over the marginal ice zone. The incorporation of FSD into PIOMAS results in reduced

  8. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  9. Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher

    2012-01-01

    Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.

  10. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns.

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E

    2016-07-13

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics.

  11. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns.

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E

    2016-07-13

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. PMID:27412279

  12. Brain Volume and Paper Size%大脑容量与论文篇幅

    Institute of Scientific and Technical Information of China (English)

    李睿

    2014-01-01

    古人类学证明:在从古猿到人的转变中,大脑容量不断增长;期刊比较证明:在学术发展过程中,论文篇幅不断增长。尽管如此,如“大脑越大越聪明”之虚妄,“论文越长越好”同样无法成立。目前,受核心期刊、学位论文、基金课题对篇幅要求之影响,存在论文写作者凑字数导致论文篇幅异常增大的现象。大脑容量异常增大意味着大脑疾病,论文篇幅异常增大意味着论文失范。体系导向写法、阐释自明概念、无谓历史分期、欧式句法、“车轱辘话”、大段引用、堆积案例、空谈意义、沉溺描述、对策癖好等都会导致论文篇幅异常增大,其根本原因在于论证无力。论文之为论文,核心即在论证,故应关注论证质量,而非刻意增大篇幅,以求要言不烦,名论不刊。%Paleoanthropologists have proven that brain volume kept growing while the transition from ape to man ;the comparative studies of academic journal suggests papers nowadays occupy much more pages than before .However ,“the longer ,the better” for the paper is as w rong as“the bigger the brain ,the cleverer the man” .Currently ,some authors enlarge their paper deliberately to meet the demands of size to publish in major academic journals ,to get degrees or to finish projects with funds .An abnormally large brain suggests brain disease while an abnormally large paper means academic anomie .The abnormality can be caused by many rea‐sons ,such as system -oriented writing style ,interpretation of self -evident concepts ,unnecessary time dividing ,English style Chi‐nese ,excess wordage ,long passages of quotations ,piling up cases ,empty talk of significance ,indulging in description ,addiction to policy suggestion .They all rooted in impotence of argument ,while argument is the key to any academic paper .So ,we shall focus on argument rather than enlarging paper on purpose to make our

  13. On diet and gut size in non-human primates and humans: is there a relationship to brain size?

    OpenAIRE

    Hladik, Claude Marcel; Chivers, David,; Pasquet, Patrick

    1999-01-01

    International audience Our pioneering paper includes measurements of gut size was a study ofthe allometric relationship of gut and body size for various dietary adaptations. It was disappointing that Aiello and Wheeler did not use the measurements on human guts, made with a similar method, introduced in papers published in the 80's (e.g. Mac Larnon et al., 1986). Some of these data are reported here, combined with one of our original figures (Chivers and Hladik, 1980) illustrating the redu...

  14. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size

    OpenAIRE

    Dénes Ádám; Ferenczi Szilamér; Kovács Krisztina J.

    2011-01-01

    Abstract Background Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair...

  15. Evolution of earthquake rupture potential along active faults, inferred from seismicity rates and size distributions

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Enescu, Bogdan; Woessner, Jochen

    2016-04-01

    One of the major unresolved questions in seismology is the evolution in time and space of the earthquake rupture potential and thus time-dependent hazard along active faults. What happens after a major event: is the potential for further large events reduced as predicted from elastic rebound, or increased as proposed by current-state short-term clustering models? How does the rupture potential distribute in space, i.e. does it reveal imprints of stress transfer? Based on the rich earthquake record from the Pacific Plate along the Japanese coastline we investigate what information on spatial distributions and temporal changes of a normalized rupture potential (NRP) for different magnitudes can be derived from time-varying, local statistical characteristics of well and frequently observed small-to-moderate seismicity. Seismicity records show strong spatio-temporal variability in both activity rates and size distribution. We analyze 18 years of seismicity, including the massive 2011 M9 Tohoku earthquake and its aftermath. We show that the size distribution of earthquakes has significantly changed before (increased fraction of larger magnitudes) and after that mainshock (increased fraction of smaller magnitudes), strongest in areas of highest coseismic slip. Remarkably, a rapid recovery of this effect is observed within only few years. We combine this significant temporal variability in earthquake size distributions with local activity rates and infer the evolution of NRP distributions. We study complex spatial patterns and how they evolve, and more detailed temporal characteristics in a simplified spatial selection, i.e. inside and outside the high slip zone of the M9 earthquake. We resolve an immediate and strong NRP increase for large events prior to the Tohoku event in the subsequent high slip patch and a very rapid decrease inside this high-stress-release area, coupled with a lasting increase of NRP in the immediate surroundings. Even in the center of the Tohoku

  16. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2005-02-01

    Full Text Available Abstract Background Birds have smaller average genome sizes than other tetrapod classes, and it has been proposed that a relatively low frequency of repeating DNA is one factor in reduction of avian genome sizes. Results DNA repeat arrays in the sequenced portion of the chicken (Gallus gallus autosomes were quantified and compared with those in human autosomes. In the chicken 10.3% of the genome was occupied by DNA repeats, in contrast to 44.9% in human. In the chicken, the percentage of a chromosome occupied by repeats was positively correlated with chromosome length, but even the largest chicken chromosomes had repeat densities much lower than those in human, indicating that avoidance of repeats in the chicken is not confined to minichromosomes. When 294 simple sequence repeat types shared between chicken and human genomes were compared, mean repeat array length and maximum repeat array length were significantly lower in the chicken than in human. Conclusions The fact that the chicken simple sequence repeat arrays were consistently smaller than arrays of the same type in human is evidence that the reduction in repeat array length in the chicken has involved numerous independent evolutionary events. This implies that reduction of DNA repeats in birds is the result of adaptive evolution. Reduction of DNA repeats on minichromosomes may be an adaptation to permit chiasma formation and alignment of small chromosomes. However, the fact that repeat array lengths are consistently reduced on the largest chicken chromosomes supports the hypothesis that other selective factors are at work, presumably related to the reduction of cell size and consequent advantages for the energetic demands of flight.

  17. Précis of Foundations of language: brain, meaning, grammar, evolution.

    Science.gov (United States)

    Jackendoff, Ray

    2003-12-01

    The goal of this study is to reintegrate the theory of generative grammar into the cognitive sciences. Generative grammar was right to focus on the child's acquisition of language as its central problem, leading to the hypothesis of an innate Universal Grammar. However, generative grammar was mistaken in assuming that the syntactic component is the sole course of combinatoriality, and that everything else is "interpretive." The proper approach is a parallel architecture, in which phonology, syntax, and semantics are autonomous generative systems linked by interface components. The parallel architecture leads to an integration within linguistics, and to a far better integration with the rest of cognitive neuroscience. It fits naturally into the larger architecture of the mind/brain and permits a properly mentalistic theory of semantics. It results in a view of linguistic performance in which the rules of grammar are directly involved in processing. Finally, it leads to a natural account of the incremental evolution of the language capacity.

  18. Maximum (prior brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study

    Directory of Open Access Journals (Sweden)

    Deary Ian J

    2009-04-01

    Full Text Available Abstract Background Brain size is associated with cognitive ability in adulthood (correlation ~ .3, but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life. Methods We recruited 107 community-dwelling volunteers (29% male aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA (an estimate of maximal brain volume, and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA. Results Whole brain volume (WBV correlated with general cognitive ability (g (r = .21, P Conclusion The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.

  19. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae.

    Science.gov (United States)

    Brocklehurst, Neil

    2016-01-01

    Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived

  20. Evolution of the brain: from behavior to consciousness in 3.4 billion years.

    Science.gov (United States)

    Oró, John J

    2004-06-01

    Once life began as single-cell organisms, evolution favored those able to seek nutrients and avoid risks. Receptors sensed the environment, memory traces were laid, and adaptive responses were made. Environmental stress, at times as dramatic as the collision of an asteroid, resulted in extinctions that favored small predators with dorsal nerve cords and cranially positioned brains. Myelination, and later thermoregulation, led to increasingly efficient neural processing. As somatosensory, visual, and auditory input increased, a neocortex developed containing both sensory and motor neural maps. Hominids, with their free hands, pushed cortical development further and began to make simple stone tools. Tools and increasing cognition allowed procurement of a richer diet that led to a smaller gut, thus freeing more energy for brain expansion. Multimodal association areas, initially developed for processing incoming sensory information, blossomed and began to provide the organism with an awareness of self and environment. Advancements in memory storage and retrieval gave the organism a sense of continuity through time. This developing consciousness eventually left visible traces, which today are dramatically evident on cave walls in France and Spain. We will take this journey from the single cell to human consciousness.

  1. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. PMID:26916364

  2. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  3. Automatic segmentation of different-sized leukoaraiosis regions in brain MR images

    Science.gov (United States)

    Uchiyama, Yoshikazu; Kunieda, Takuya; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    Cerebrovascular diseases are the third leading cause of death in Japan. Therefore, a screening system for the early detection of asymptomatic brain diseases is widely used. In this screening system, leukoaraiosis is often detected in magnetic resonance (MR) images. The quantitative analysis of leukoaraiosis is important because its presence and extension is associated with an increased risk of severe stroke. However, thus far, the diagnosis of leukoaraiosis has generally been limited to subjective judgments by radiologists. Therefore, the purpose of this study was to develop a computerized method for the segmentation of leukoaraiosis, and provide an objective measurement of the lesion volume. Our database comprised of T1- and T2-weighted images obtained from 73 patients. The locations of leukoaraiosis regions were determined by an experienced neuroradiologist. We first segment cerebral parenchymal regions in T1-weighted images by using a region growing technique. For determining the initial candidate regions for leukoaraiosis, the k-means clustering of pixel values in the T1- and T2-weighted images was applied to the segmented cerebral region. For the elimination of false positives (FPs), we determined features such as the location, size, and circularity from each of the initial candidates. Finally, rule-based schemes and a quadratic discriminant analysis with these features were employed for distinguishing between the leukoaraiosis regions and the FPs. The results indicated that the sensitivity for the detection of leukoaraiosis was 100% with 5.84 FPs per image. Our computerized scheme can be useful in assisting radiologists for the quantitative analysis of leukoaraiosis in T1- and T2-weighted images.

  4. Costs of reproduction can explain the correlated evolution of semelparity and egg size: theory and a test with salmon.

    Science.gov (United States)

    Kindsvater, Holly K; Braun, Douglas C; Otto, Sarah P; Reynolds, John D

    2016-06-01

    Species' life history traits, including maturation age, number of reproductive bouts, offspring size and number, reflect adaptations to diverse biotic and abiotic selection pressures. A striking example of divergent life histories is the evolution of either iteroparity (breeding multiple times) or semelparity (breed once and die). We analysed published data on salmonid fishes and found that semelparous species produce larger eggs, that egg size and number increase with salmonid body size among populations and species and that migratory behaviour and parity interact. We developed three hypotheses that might explain the patterns in our data and evaluated them in a stage-structured modelling framework accounting for different growth and survival scenarios. Our models predict the observation of small eggs in iteroparous species when egg size is costly to maternal survival or egg number is constrained. By exploring trait co-variation in salmonids, we generate new hypotheses for the evolution of trade-offs among life history traits.

  5. Costs of reproduction can explain the correlated evolution of semelparity and egg size: theory and a test with salmon.

    Science.gov (United States)

    Kindsvater, Holly K; Braun, Douglas C; Otto, Sarah P; Reynolds, John D

    2016-06-01

    Species' life history traits, including maturation age, number of reproductive bouts, offspring size and number, reflect adaptations to diverse biotic and abiotic selection pressures. A striking example of divergent life histories is the evolution of either iteroparity (breeding multiple times) or semelparity (breed once and die). We analysed published data on salmonid fishes and found that semelparous species produce larger eggs, that egg size and number increase with salmonid body size among populations and species and that migratory behaviour and parity interact. We developed three hypotheses that might explain the patterns in our data and evaluated them in a stage-structured modelling framework accounting for different growth and survival scenarios. Our models predict the observation of small eggs in iteroparous species when egg size is costly to maternal survival or egg number is constrained. By exploring trait co-variation in salmonids, we generate new hypotheses for the evolution of trade-offs among life history traits. PMID:27146705

  6. The size evolution of galaxy discs formed within Lambda Cold Dark Matter haloes

    CERN Document Server

    Firmani, C

    2009-01-01

    By means of galaxy evolutionary models, we explore the direct consequences of the LCDM cosmogony on the size evolution of galactic discs, avoiding intentionally the introduction of intermediate (uncertain) astrophysical processes. Based on the shape of the rotation curves and guided by a simplicity criterion, we adopt an average galaxy mass baryon fraction of 0.03. In order to study general behaviors, only models with the average initial conditions are analyzed. The stellar and B-band effective radii, R* and RB, of individual galaxies grow significantly with time (inside-out disc formation) with laws that are weakly dependent on mass, M*,or luminosity, LB. However, the change of R* with z at fixed M* is slow; for z0.75. We find also that at z=0, R* ~ M*^0.38 and RB ~ LB^0.40, remaining the slopes of these relations almost the same up to z ~ 3. Our predictions are in reasonable agreement with observational inferences on the typical radius change with z of late-type galaxies more luminous (massive) than high va...

  7. Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size.

    Directory of Open Access Journals (Sweden)

    Wu Zhu

    Full Text Available Design of a digital infinite-impulse-response (IIR filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.

  8. The prediction of the evolution of grain size of land-gear forging during the die-forging process

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2015-01-01

    Full Text Available The land-gear forgings are the most important structure parts, made of high strength steel 300M. Because of the bad service environment, the microstructure and performance of the part are very strict requirements. In this article the evolution of grain size during the die-forging process is predicted, the volume fraction of dynamic recrystallization, grain refinement and development of grain size in-homogeneity, and the affection of billet shape on the grain size distribution are analyzed. The simulated results show that the grain size differences on the different billet positions are very large at the deformation beginning. But in final forging stage, the difference of the average grain size is smaller. At some center zones of the part the maximum difference of grain size is bigger than 100 μm.

  9. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution.

    Science.gov (United States)

    Sookias, Roland B; Butler, Richard J; Benson, Roger B J

    2012-06-01

    A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252-201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian-Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle-early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted 'rule' that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.

  10. Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    CERN Document Server

    Wyatt, Mark C; Booth, Mark

    2011-01-01

    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution th...

  11. Plasticity of brain wave network interactions and evolution across physiologic states

    OpenAIRE

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other a...

  12. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    Science.gov (United States)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  13. Zika Brain Damage May Occur in Babies with Normal-Sized Heads

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159621.html Zika Brain Damage May Occur in Babies With Normal- ... 2016 (HealthDay News) -- In the ongoing crisis around Zika-linked birth defects, attention has been largely focused ...

  14. The influence of complex and threatening environments in early life on brain size and behaviour

    OpenAIRE

    DePasquale, C.; Neuberger, T.; Hirrlinger, A. M.; Braithwaite, V. A.

    2016-01-01

    The ways in which challenging environments during development shape the brain and behaviour are increasingly being addressed. To date, studies typically consider only single variables, but the real world is more complex. Many factors simultaneously affect the brain and behaviour, and whether these work independently or interact remains untested. To address this, zebrafish (Danio rerio) were reared in a two-by-two design in housing that varied in structural complexity and/or exposure to a stre...

  15. Variation in hominid brain size: how much is due to method?

    Science.gov (United States)

    De Miguel, C; Henneberg, M

    2001-01-01

    Brain size represented by cranial capacity (CC) is one of the most frequently analysed characters of hominids. Accuracy of individual CC estimates depends on completeness of specimens and methods used for reconstruction and measurement. A file of published estimates of CC of hominids dated from 3.2 Ma (million years) to 10 Ka (thousand years) including 606 estimates for 243 specimens was compiled. In the file, 75 specimens are available with multiple values (3 to 15) obtained by various methods and/or by various authors. Using individuals as classes in ANOVA, intraclass variation, which represents "error" of estimates, was calculated. For the total sample of multiple estimates (N = 382) the error variance is 5315 ml2. The error standard deviation is 73 ml (coefficient of variation (CV = 7.3%), quite large in comparison to the actual variation in CC in modern humans, SD = 157 ml (CV = 11.6%). This large error makes us wonder whether any fossil can be reliably placed with respect to a particular "cerebral Rubicon" between palaeospecies. Recent discussions concerning cranial capacity of Stw505 are a case in point regarding errors in CC estimation. In actual repeated 30 time measurements on a research quality cast we obtained with various methods (water, seeds, plasticine) CC estimates ranging from 484 to 586 ml. The range of estimates in the literature is from 515 to 625 ml. When hominid CC by taxon with date as a covariate is subjected to ANOVA, taxon is responsible for 5% of the variance while date is responsible for the main portion, (89%). The relationship between CC and date is best characterised as a gradual time trend. It is proven by the ANOVA test for linearity, by gamma test for trend and by ASReml fitting of a linear function. The line of best fit to this time trend is a double exponential curve which explains 90% of the total variance in CC: CC = 306.63 (4.83(0.9995)DATE) Essentially the same curve fits subsamples of CC dated at less than 1 Ma and at 3

  16. Correlated evolution of life-history with size at maturity in Daphnia pulicaria: patterns within and between populations.

    Science.gov (United States)

    Baer, Charles F; Lynch, Michael

    2003-04-01

    Explaining the repeated evolution of similar sets of traits under similar environmental conditions is an important issue in evolutionary biology. The extreme alternative classes of explanations for correlated suites of traits are optimal adaptation and genetic constraint resulting from pleiotropy. Adaptive explanations presume that individual traits are free to evolve to their local optima and that convergent evolution represents particularly adaptive combinations of traits. Alternatively, if pleiotropy is strong and difficult to break, strong selection on one or a few particularly important characters would be expected to result in consistent correlated evolution of associated traits. If pleiotropy is common, we predict that the pattern of divergence among populations will consistently reflect the within-population genetic architecture. To test the idea that the multivariate life-history phenotype is largely a byproduct of strong selection on body size, we imposed divergent artificial selection on size at maturity upon two populations of the cladoceran Daphnia pulicaria, chosen on the basis of their extreme divergence in body size. Overall, the trajectory of divergence between the two natural populations did not differ from that predicted by the genetic architecture within each population. However, the pattern of correlated responses suggested the presence of strong pleiotropic constraints only for adult body size and not for other life-history traits. One trait, offspring size, appears to have evolved in a way different from that expected from the within-population genetic architecture and may be under stabilizing selection.

  17. Impact of maternal thyroperoxidase status on fetal body and brain size.

    Science.gov (United States)

    Wilson, Roneé E; Salihu, Hamisu M; Groer, Maureen W; Dagne, Getachew; O'Rourke, Kathleen; Mbah, Alfred K

    2014-01-01

    The obstetric consequences of abnormal thyroid function during pregnancy have been established. Less understood is the influence of maternal thyroid autoantibodies on infant outcomes. The objective of this study was to examine the influence of maternal thyroperoxidase (TPO) status on fetal/infant brain and body growth. Six-hundred thirty-one (631) euthyroid pregnant women were recruited from prenatal clinics in Tampa Bay, Florida, and the surrounding area between November 2007 and December 2010. TPO status was determined during pregnancy and fetal/infant brain and body growth variables were assessed at delivery. Regression analysis revealed maternal that TPO positivity was significantly associated with smaller head circumference, reduced brain weight, and lower brain-to-body ratio among infants born to TPO+ white, non-Hispanic mothers only, distinguishing race/ethnicity as an effect modifier in the relationship. No significant differences were noted in body growth measurements among infants born to TPO positive mothers of any racial/ethnic group. Currently, TPO antibody status is not assessed as part of the standard prenatal care laboratory work-up, but findings from this study suggest that fetal brain growth may be impaired by TPO positivity among certain populations; therefore autoantibody screening among high-risk subgroups may be useful for clinicians to determine whether prenatal thyroid treatment is warranted. PMID:24624307

  18. Impact of Maternal Thyroperoxidase Status on Fetal Body and Brain Size

    Directory of Open Access Journals (Sweden)

    Roneé E. Wilson

    2014-01-01

    Full Text Available The obstetric consequences of abnormal thyroid function during pregnancy have been established. Less understood is the influence of maternal thyroid autoantibodies on infant outcomes. The objective of this study was to examine the influence of maternal thyroperoxidase (TPO status on fetal/infant brain and body growth. Six-hundred thirty-one (631 euthyroid pregnant women were recruited from prenatal clinics in Tampa Bay, Florida, and the surrounding area between November 2007 and December 2010. TPO status was determined during pregnancy and fetal/infant brain and body growth variables were assessed at delivery. Regression analysis revealed maternal that TPO positivity was significantly associated with smaller head circumference, reduced brain weight, and lower brain-to-body ratio among infants born to TPO+ white, non-Hispanic mothers only, distinguishing race/ethnicity as an effect modifier in the relationship. No significant differences were noted in body growth measurements among infants born to TPO positive mothers of any racial/ethnic group. Currently, TPO antibody status is not assessed as part of the standard prenatal care laboratory work-up, but findings from this study suggest that fetal brain growth may be impaired by TPO positivity among certain populations; therefore autoantibody screening among high-risk subgroups may be useful for clinicians to determine whether prenatal thyroid treatment is warranted.

  19. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia.

    LENUS (Irish Health Repository)

    Rose, Emma Jane

    2013-05-01

    Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability.

  20. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia.

    Science.gov (United States)

    Rose, Emma Jane; Donohoe, Gary

    2013-05-01

    Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability. PMID:22499782

  1. Surface charge driven size evolution during the formation of self-assembled nanostructures from discrete hydrophilic silver nanoparticles

    International Nuclear Information System (INIS)

    We investigate the spontaneous evolution of mercaptosuccinic acid-capped silver nanoparticles (MSA-Ag) of size 2.5 ± 1.0 nm during the formation of assembled nanostructures at the air/water interface. In the phase transfer approach induced by the cationic surfactant cetyltrimethylammonium bromide (CTAB), the fusion among MSA-Ag nanoparticles is notably accelerated owing to the formation of a CTA-MSA bilayer on the particle surface. Provided that the size-selective separation is carried out in advance for these polydisperse MSA-Ag nanoparticles, either a unitary or a binary orderly superlattice composed of evolved nanoparticles is obtained at the air/water interface. For self-corrective equilibrium growth by adjusting the pH value of the bulk solution through the diffusion of HCl vapor, a competition is found between the superlattice formation and the size growth. The possible size evolution mechanism of each method is proposed. This work also shows that controllable evolution is a useful approach to prepare nanostructures with structural diversity

  2. Brain evolution, the determinates of food choice, and the omnivore's dilemma.

    Science.gov (United States)

    Armelagos, George J

    2014-01-01

    A coevolutionary paradigm using a biocultural perspective can help to unravel the complex interactions that led to the contemporary pattern of eating. Evolutionary history helps to understand the adaptation of diet and its nutritional implications. Anatomical and behavioral changes linked to changing dietary patterns in the Paleolithic resulted in an adaptive framework that affects modern diet. The evolution of an expanding brain, a shrinking large intestine, and lengthening small intestine necessitated a demand for nutritionally dense foods. The key to these changes is an understanding of the response to the omnivore's dilemma. Omnivores in their search for new items to feed their varied diet (neophilia) have a challenge when they fear (neophobia) novel items that may be poisonous and can cause death. The inborn mechanism initiates palate fatigue (sensory-specific satiety) ensuring a variety of foods will be eaten. Variety will limit the impact of toxins ingested and provide a more balanced diet. The development of cuisine, a momentous event in history, mediated the conflict, and changed the course of human evolution. The cuisine, a biocultural construct, defines which items found in nature are edible, how these products are transformed into food, the flavors used to add a sensory dimension to foods, and rules of eating or etiquette. Etiquette defines how, when, and with whom we eat. Patterns of eating in the modern setting are the end product of the way that Homo sapiens evolved and resolved the omnivore's dilemma. Control of fire and cooking expanded the range of available foods by creating a class of foods that are "predigested." An essential element to the evolution of the human diet was the transition to agriculture as the primary mode of subsistence. The Neolithic revolution dramatically narrowed the dietary niche by decreasing the variety of available foods, with the shift to intensive agriculture creating a dramatic decline in human nutrition. The recent

  3. Reducing Dataset Size in Frequency Domain for Brain Computer Interface Motor Imagery Classification

    Directory of Open Access Journals (Sweden)

    Ch.Aparna

    2010-12-01

    Full Text Available Brain computer interface is an emerging area of research where the BCI system is able to detect and interpret the mental activity into computer interpretable signals opening a wide area of applications where activities can be completed without using muscular movement. In Brain Computer Interface research, for classification of EEG signals the raw signals captured has to undergo some preprocessing, to obtain the right attributes for classification. In this paper, we present a system which allows for classification of mental tasks based on a statistical data obtained in frequency domain using Discrete cosine transform and extracting useful frequencies from the same with application of decision tree algorithms for classification.

  4. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.

    Science.gov (United States)

    Tourmente, M; Delbarco Trillo, J; Roldan, E R S

    2015-10-01

    Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade-off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade-off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size-determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation. PMID:26190170

  5. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    Science.gov (United States)

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods.

  6. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  7. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    Science.gov (United States)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; Balick, B.; Bond, H. E.; Bushouse, H.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D., N., B.; Holtzman, J. A.; Kaviraj, S.; Kimble, R. A.; MacKenty, J.; Trauger, J.; Young, E.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  8. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  9. Evolution of the size distribution of oil droplets on a water surface: Setup, image processing, and scaling laws

    OpenAIRE

    de Maeyer, J.

    2015-01-01

    In this thesis, I describe my work towards a novel experiment to study the dynamics of oil droplets on water. It allows following the evolution of the droplet size distribution during a coalescence process with superb statistics. Every experiment run involves more than 20,000 initial droplets coalescing into a few hundred within four to six hours, with droplet sizes ranging from 0.01 cm2 to 1,000 cm2. Data acquisition is built around an LED light source and a shadow image method that exploits...

  10. The impact of kleptoparasitic invasions on the evolution of gall-size in social and solitary Australian Acacia thrips

    Institute of Scientific and Technical Information of China (English)

    THOMAS WILLIAM CHAPMAN; KAREN LEAH FRANCIS-GEYER; MICHAEL PHILIP SCHWARZ

    2006-01-01

    Many species of gall-inducing Acacia thrips are attacked by kleptoparasitic thrips who enter the gall, destroy the occupants, and then use the gall for producing their own offspring. The hypothesis tested here is that pressure exerted by kleptoparasites (genus Koptothrips) not only provoked the evolution of soldiers in the gall-inducing clade, but have also influenced the evolution of gall size and morphology. Various size dimensions of invaded galls were compared to those of uninvaded galls using data from six gall-inducing species and their kleptoparasites. For the non-social gall-inducing species (K. ellobus and K.nicholsoni) invaded galls showed no significant size differences from galls that had not been invaded. For the four social gall-inducingspecies (K. habrus, K. intermedius, K. waterhousei and K. morrisi) invaded galls were significantly narrower and/or shorter than uninvaded galls. Galls of social species that had not been invaded and contained adult soldiers were significantly larger than galls where soldiers were still at a larval stage, suggesting that gall size is related to gall age in these species. An hypothesis is proposed that links the timing of invasion by kleptoparasites to size of the host gall: induction of a smaller gall by host founders will reduce the period of vulnerability to invasion (before soldiers become adults)for social thrips by allowing foundresses in these smaller galls to begin laying soldierdestined eggs relatively sooner.

  11. Photocatalytic H2 Evolution Using Different Commercial TiO2 Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size

    Directory of Open Access Journals (Sweden)

    Ákos Kmetykó

    2014-11-01

    Full Text Available One weight percent of differently sized Au nanoparticles were deposited on two commercially available TiO2 photocatalysts: Aeroxide P25 and Kronos Vlp7000. The primary objective was to investigate the influence of the noble metal particle size and the deposition method on the photocatalytic activity. The developed synthesis method involves a simple approach for the preparation of finely-tuned Au particles through variation of the concentration of the stabilizing agent. Au was deposited on the TiO2 surface by photo- or chemical reduction, using trisodium citrate as a size-tailoring agent. The Au-TiO2 composites were synthetized by in situ reduction or by mixing the titania suspension with a previously prepared gold sol. The H2 production activities of the samples were studied in aqueous TiO2 suspensions irradiated with near-UV light in the absence of dissolved O2, with oxalic acid or methanol as the sacrificial agent. The H2 evolution rates proved to be strongly dependent on Au particle size: the highest H2 production rate was achieved when the Au particles measured ~6 nm.

  12. The neural processing of musical instrument size information in the brain investigated by magnetoencephalography

    Science.gov (United States)

    Rupp, Andre; van Dinther, Ralph; Patterson, Roy D.

    2005-04-01

    The specific cortical representation of size was investigated by recording auditory evoked fields (AEFs) elicited by changes of instrument size and pitch. In Experiment 1, a French horn and one scaled to double the size played a three note melody around F3 or its octave, F4. Many copies of these four melodies were played in random order and the AEF was measured continuously. A similar procedure was applied to saxophone sounds in a separate run. In Experiment 2, the size and type of instrument (French horn and saxophone) were varied without changing the octave. AEFs were recorded in five subjects using magnetoencephalography and evaluated by spatio-temporal source analysis with one equivalent dipole in each hemisphere. The morphology of the source waveforms revealed that each note within the melody elicits a well-defined P1-N1-P2 AEF-complex with adaptation for the 2nd and 3rd note. At the transition of size, pitch, or both, a larger AEF-complex was evoked. However, size changes elicited a stronger N1 than pitch changes. Furthermore, this size-related N1 enhancement was larger for French horn than saxophone. The results indicate that the N1 plays an important role in the specific representation of instrument size.

  13. Some like it hot... : the evolution and genetics of temperature dependent body size in Drosophila melanogaster

    OpenAIRE

    Bochdanovits, Z.

    2003-01-01

    Body size is one of the most obvious and most important characteristic of any organism. A thorough understanding of how and why a certain individual obtains a specific body size, given its evolutionary history and ecological context, is a fundamental question in biology. One special case of variation in size is clinal variation: individuals of the same species indigenous to higher latitudes are on average larger than their conspecifics inhabiting regions at lower latitudes (closer to the equa...

  14. The Effect of Abiotic Factors on Marine Animal Body Size Evolution

    Science.gov (United States)

    Wang, X. F.; Wong, W.; Heim, N.; Payne, J.

    2015-12-01

    While there is evidence of a general increase in body size over time, there has been no comprehensive attempt to determine the influence of abiotic factors on body size. Although an increase in maximum body size has been observed during and after the Precambrian oxidation events in the Late Archean and at the onset of the Cambrian, these observations took into account the appearance of eukaryotic life and multicellular life respectively. Using a database of marine animal body sizes spanning the Phanerozoic, we conducted a series of Pearson product-moment correlation tests with igneous rock weathering (Strontium-87: Strontium-86), rate of carbon cycle (δ13C), temperature (δ18O), CO2 concentration, sulfate mineral weathering (δ34S), atmospheric oxygen concentration, and sea level as independent variables, and mean body size as the dependent variable. Our test yielded a correlation coefficient of 0.81 between δ18O and body size, and -0.78 between rCO2 and body size; since δ18O is inversely correlated with temperature, these results indicate that both temperature and CO2 have strong inverse relationships with body size. Atmospheric oxygen yielded a correlation coefficient of 0.09, demonstrating that it ceased to play an influential role in shaping body sizes following the start of the Phanerozoic.

  15. Phylogenetic correlograms and the evolution of body size in South American owls (Strigiformes

    Directory of Open Access Journals (Sweden)

    José Alexandre Felizola Diniz-Filho

    2000-06-01

    Full Text Available During the last few years, many models have been proposed to link microevolutionary processes to macroevolutionary patterns, defined by comparative data analysis. Among these, Brownian motion and Ornstein-Uhlenbeck (O-U processes have been used to model, respectively, genetic drift or directional selection and stabilizing selection. These models produce different curves of pairwise variance between species against time since divergence, in such a way that different profiles appear in phylogenetic correlograms. We analyzed variation in body length among 19 species of South American owls, by means of phylogenetic correlograms constructed using Moran's I coefficient in four distance classes. Phylogeny among species was based on DNA hybridization. The observed correlogram was then compared with 500 correlograms obtained by simulations of Brownian motion and O-U over the same phylogeny, using discriminant analysis. The observed correlogram indicates a phylogenetic gradient up to 45 mya, when coefficients tend to stabilize, and it is similar to the correlograms produced by the O-U process. This is expected when we consider that body size of organisms is correlated with many ecological and life-history traits and subjected to many constraints that can be modeled by the O-U process, which has been used to describe evolution under stabilizing selection.Nos últimos anos diversos modelos têm sido propostos a fim de realizar inferências sobre processos microevolutivos com base em padrões macroevolutivos obtidos a partir de dados comparativos. Dentre esses, o movimento Browniano e o processo Ornstein-Uhlenbeck (O-U têm sido utilizados para modelar principalmente deriva genética e seleção estabilizadora, respectivamente. Esses modelos produzem curvas diferentes de relação entre variância interespecífica e distância no tempo, de modo que eles podem ser distingüidos com base em correlogramas filogenéticos. Neste trabalho, nós analisamos a varia

  16. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. PMID:26688277

  17. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force.

  18. Evolution of M1 crown size and cusp proportions in the genus Homo.

    Science.gov (United States)

    Quam, Rolf; Bailey, Shara; Wood, Bernard

    2009-05-01

    Previous research into tooth crown dimensions and cusp proportions has proved to be a useful way to identify taxonomic differences in Pliocene and Pleistocene fossil hominins. The present study has identified changes in both M(1) crown size and cusp proportions within the genus Homo, with M(1) overall crown size reduction apparently occurring in two main stages. The first stage (a reduction of ca. 17%) is associated with the emergence of Homo ergaster and Homo erectus sensu stricto. The second stage (a reduction of ca. 10%) occurs in Homo sapiens, but the reduced modern human M(1) tooth crown size was only attained in Upper Paleolithic times. The absolute sizes of the individual cusps are highly positively correlated with overall crown size and dental reduction produces a reduction in the absolute size of each of the cusps. Most of the individual cusps scale isometrically with crown size, but the paracone shows a negative allometric relationship, indicating that the reduction in paracone size is less than in the other M(1) cusps. Thus, the phylogenetically oldest cusp in the upper molars also seems to be the most stable cusp (at least in the M(1)). The most striking change in M(1) cusp proportions is a change in the relative size of the areas of the paracone and metacone. The combination of a small relative paracone and a large relative metacone generally characterizes specimens attributed to early Homo, and the presence of this character state in Australopithecus and Paranthropus suggests it may represent the primitive condition for the later part of the hominin clade. In contrast, nearly all later Homo taxa, with the exception of Homo antecessor, show the opposite condition (i.e. a relatively large paracone and a relatively small metacone). This change in the relationship between the relative sizes of the paracone and metacone is related to an isometric reduction of the absolute size of the metacone. This metacone reduction occurs in the context of relative

  19. 3D-HST+CANDELS: The evolution of the galaxy size-mass distribution since z = 3

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Chang, Yu-Yen [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Franx, M.; Fumagalli, M. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 AA Leiden (Netherlands); Van Dokkum, P. G.; Momcheva, I. G. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Skelton, R. E. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Whitaker, K. E. [Astrophysics Science Division, Goddard Space Center, Greenbelt, MD 20771 (United States); Brammer, G. B.; Ferguson, H. C.; Koekemoer, A. M.; Behroozi, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, S. [Max-Planck Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Holden, B. P.; Barro, G. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); McGrath, E. J. [Department of Physics and Astronomy, Colby College, Waterville, ME 0490 (United States); Häussler, B. [Physics Department, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Dekel, A., E-mail: vdwel@mpia.de [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); and others

    2014-06-10

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R {sub eff}∝(1 + z){sup –1.48}, and moderate evolution for the late-type population, R {sub eff}∝(1 + z){sup –0.75}. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R{sub eff}∝M{sub ∗}{sup 0.22}, for late-type galaxies with stellar mass >3 × 10{sup 9} M {sub ☉}, and steep, R{sub eff}∝M{sub ∗}{sup 0.75}, for early-type galaxies with stellar mass >2 × 10{sup 10} M {sub ☉}. The intrinsic scatter is ≲0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (∼10{sup 11} M {sub ☉}), compact (R {sub eff} < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  20. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities

    DEFF Research Database (Denmark)

    Zhang, Lai; Andersen, Ken Haste; Dieckmann, Ulf;

    2015-01-01

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference...... interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size......-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze...

  1. The stellar mass-size evolution of galaxies from z=7 to z=0

    NARCIS (Netherlands)

    Mosleh, Moein

    2013-01-01

    One of the important properties of galaxies is their sizes which correlate with their stellar masses. Evidence is provided by many recent studies that the sizes of galaxies were smaller at higher redshifts compared to galaxies of similar mass in the local Universe. It is essential to understand whic

  2. Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles’ Brain Permeability in Association with Particle Size and Surface Modification

    Directory of Open Access Journals (Sweden)

    Sanshiro Hanada

    2014-01-01

    Full Text Available The possibility of nanoparticle (NP uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs passed through the blood–brain barrier (BBB. For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (Papp to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm, revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots, showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.

  3. The Advantage is at the Ladies: Brain Size Bias-Compensated Graph-Theoretical Parameters are Also Better in Women's Connectomes

    OpenAIRE

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    In our previous study we have shown that the female connectomes have significantly better, deep graph-theoretical parameters, related to superior "connectivity", than the connectome of the males. Since the average female brain is smaller than the average male brain, one cannot rule out that the significant advantages are due to the size- and not to the sex-differences in the data. To filter out the possible brain-volume related artifacts, we have chosen 36 small male and 36 large female brain...

  4. Single-locus tests of microsatellite evolution : Multi-step mutations and constraints on allele size

    NARCIS (Netherlands)

    Nielsen, R; Palsboll, PJ

    1999-01-01

    We evaluate some common simulation procedures as well as a recently developed likelihood method used for testing hypotheses regarding microsatellite evolution. Results from simulated data revealed that the tests for the detection of multi-step mutations in general have some power, whereas tests for

  5. Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record.

    Directory of Open Access Journals (Sweden)

    Alex L Pigot

    Full Text Available While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.

  6. Speciation and Extinction Drive the Appearance of Directional Range Size Evolution in Phylogenies and the Fossil Record

    Science.gov (United States)

    Pigot, Alex L.; Owens, Ian P. F.; Orme, C. David L.

    2012-01-01

    While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age–area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time. PMID:22371689

  7. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  8. Evolution of science I: Evolution of Mind

    CERN Document Server

    Vahia, M N

    2016-01-01

    The central nervous system and particularly the brain was designed to control the life cycle of a living being. With increasing size and sophistication, in mammals, the brain became capable of exercising significant control over life. In Homo Sapiens the brain became significantly powerful and capable of comprehension beyond survival needs with visualisation, formal thought and long term memory. Here we trace the rise of the powers of the brains of the Homo Sapiens and its capability of three comprehending the three spatial dimensions as well as time. By tracing the evolution of technology over the last millennium and particularly the late arrival of astronomy to discuss the evolution of the formal thinking process in humans. In a follow up paper we will trace the extensive use of this new faculty by humans to comprehend the working of the universe.

  9. Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods.

    Science.gov (United States)

    Almeida, Francisca C; Sánchez-Gracia, Alejandro; Campos, Jose Luis; Rozas, Julio

    2014-07-01

    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process. PMID:24951565

  10. Geochemical indicator of original eolian grain size and implications on winter monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    彭淑贞; 郭正堂

    2001-01-01

    Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to the strength of the winter monsoon because post-depositional weathering processes have significantly changed the grain size of original eolian particles. Here, non-weathered loess samples were separated into eight different particle fractions, and major chemical elements were determined in order to establish a geochemical indicator of original eolian grain size. The results show that SiO2and AI2O3contents and the SiO2/AI203 ratio in different fractions vary regularly with grain size, and that a good linear relation exists between the SiO2/AI2O3 ratio and grain size for the fractions<50μm. Because Al and Si are among the most stable elements and pedogenic processes in the Loess Plateau cannot affect the SiO2/AI2O3 ratio, this index can be used to reflect the grain size of original eolian part

  11. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    Science.gov (United States)

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  12. Comparing the Evolution of the Galaxy Disk Sizes with CDM Models The Hubble Deep Field

    CERN Document Server

    Giallongo, E; Poli, F; D'Odorico, S; Fontana, A

    2000-01-01

    The intrinsic sizes of the field galaxies with I-19) galaxies is skewed with respect to the CDM predictions and an excess of small-size disks (R_d<2 kpc) is already present at z~ 0.5. The excess persists up to z~3 and involves brighter galaxies . Such an excess may be reduced if luminosity-dependent effects, like starburst activity in interacting galaxies, are included in the physical mechanisms governing the star formation history in CDM models.

  13. Terrestrial Planet Evolution in the Stagnant-Lid Regime: Size Effects and the Formation of Self-Destabilizing Crust

    CERN Document Server

    O'Rourke, Joseph G

    2012-01-01

    The ongoing discovery of terrestrial exoplanets accentuates the importance of studying planetary evolution for a wide range of initial conditions. We perform thermal evolution simulations for generic terrestrial planets with masses ranging from that of Mars to 10 Earth-masses in the stagnant-lid regime, the most natural mode of convection with strongly temperature- dependent viscosity. Given considerable uncertainty surrounding the dependency of mantle rheology on pressure, we choose to focus on the end-member case of pressure-independent potential viscosity, where viscosity does not change with depth along an adiabatic temperature gradient. We employ principal component analysis and linear regression to capture the first-order systematics of possible evolutionary scenarios from a large number of simulation runs. With increased planetary mass, crustal thickness and the degree of mantle processing are both predicted to decrease, and such size effects can also be derived with simple scaling analyses. The likeli...

  14. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution.

    Science.gov (United States)

    Yao, Jia-Long; Xu, Juan; Cornille, Amandine; Tomes, Sumathi; Karunairetnam, Sakuntala; Luo, Zhiwei; Bassett, Heather; Whitworth, Claire; Rees-George, Jonathan; Ranatunga, Chandra; Snirc, Alodie; Crowhurst, Ross; de Silva, Nihal; Warren, Ben; Deng, Cecilia; Kumar, Satish; Chagné, David; Bus, Vincent G M; Volz, Richard K; Rikkerink, Erik H A; Gardiner, Susan E; Giraud, Tatiana; MacDiarmid, Robin; Gleave, Andrew P

    2015-10-01

    The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.

  15. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla

    Directory of Open Access Journals (Sweden)

    Welch John J

    2007-06-01

    Full Text Available Abstract Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes.

  16. The effect of stellar evolution on SiC dust grain sizes

    CERN Document Server

    Speck, A; Speck, Angela; Hofmeister, Grant Thompson & Anne

    2005-01-01

    Stars on the asymptotic giant branch (AGB) produce dust in their circumstellar shells. The nature of the dust-forming environment is influenced by the evolution of the stars, in terms of both chemistry and density, leading to an evolution in the nature of the dust that is produced. Carbon-rich AGB stars are known to produce silicon carbide (SiC). Furthermore, observations of the ~11um SiC feature show that the spectral features change in a sequence that correlates with stellar evolution. We present new infrared spectra of amorphous SiC and show that the ~9um feature seen in both emission and absorption, and correlated with trends in the ~11um feature, may be due to either amorphous SiC or to nano-crystalline diamond with a high proportion of Si substituting for C. Furthermore, we identify SiC absorption in three ISO spectra of extreme carbon stars, in addition to the four presented by Speck et al. (1997). An accurate description of the sequence in the IR spectra of carbon stars requires accounting for both Si...

  17. Mammalian Collection on Noah's Ark: The Effects of Beauty, Brain and Body Size

    OpenAIRE

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called “Noah's Ark” grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-d...

  18. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities.

    Science.gov (United States)

    Zhang, Lai; Andersen, Ken H; Dieckmann, Ulf; Brännström, Åke

    2015-09-01

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models.

  19. The evolution of nonimmune histological injury and its clinical relevance in adult-sized kidney grafts in pediatric recipients.

    Science.gov (United States)

    Naesens, M; Kambham, N; Concepcion, W; Salvatierra, O; Sarwal, M

    2007-11-01

    To describe the evolution, risk factors and impact of nonimmune histological injury after pediatric kidney transplantation, we analyzed 245 renal allograft protocol biopsies taken regularly from the time of transplantation to 2 years thereafter in 81 consecutive rejection-free pediatric recipients of an adult-sized kidney. Isometric tubular vacuolization was present early after transplantation was not progressive, and was associated with higher tacrolimus pre-dose trough levels. Chronic tubulo-interstitial damage and tubular microcalcifications were already noted at 3 months, were progressive and had a greater association with small recipient size, male donor gender, higher donor age and female recipient gender, but not with tacrolimus exposure. Renal function assessment showed that older recipients had a significant increase in absolute glomerular filtration rate with time after transplantation, which differed from small recipients who showed no increase. It is concluded that progressive, functionally relevant, nonimmune injury is detected early after adult-sized kidney transplantation in pediatric recipients. Renal graft ischemia associated with the donor-recipient size discrepancy appears to be a greater risk factor for this chronic histological injury, suggesting that the exploration of additional therapeutic approaches to increase allograft perfusion could further extend the graft survival benefit of adult-sized kidneys transplanted into small children.

  20. Hypoglossal canal size in living hominoids and the evolution of human speech.

    Science.gov (United States)

    Jungers, William L; Pokempner, Amy A; Kay, Richard F; Cartmill, Matt

    2003-08-01

    The relative size of the hypoglossal canal has been proposed as a useful diagnostic tool for the identification of human-like speech capabilities in the hominid fossil record. Relatively large hypoglossal canals (standardized to oral cavity size) were observed in humans and assumed to correspond to relatively large hypoglossal nerves, the cranial nerve that controls motor function of the tongue. It was suggested that the human pattern of tongue motor innervation and associated speech potential are very different from those of African apes and australopithecines; the modern human condition apparently appeared by the time of Middle Pleistocene Homo. A broader interspecific analysis of hypoglossal canal size in primates conducted in 1999 has rejected this diagnostic and inferences based upon it. In an attempt to resolve these differences of opinion, which we believe are based in part on biased size-adjustments and/or unwarranted assumptions, a new data set was collected and analyzed from 298 extant hominoid skulls, including orangutans, gorillas, chimpanzees, bonobos, siamang, gibbons, and modern humans. Data on the absolute size of the hypoglossal nerve itself were also gathered from a small sample of humans and chimpanzee cadavers. A scale-free index of relative hypoglossal canal size (RHCS) was computed as 100 x (hypoglossal canal area(0.5)/oral cavity volume(0.333)). No significant sexual dimorphism in RHCS was discovered in any species of living hominoid, but there are significant interspecific differences in both absolute and relative sizes of the hypoglossal canal. In absolute terms, humans possess significantly larger canals than any other species except gorillas, but there is considerable overlap with chimpanzees. Humans are also characterized by large values of RHCS, but gibbons possess an even larger average mean for this index; siamang and bonobos overlap appreciably with humans in RHCS. The value of RHCS in Australopithecus afarensis is well within both

  1. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    Science.gov (United States)

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet. PMID:27488653

  2. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    Science.gov (United States)

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.

  3. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun;

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  4. Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size

    OpenAIRE

    Wu Zhu; Jian-an Fang; Yang Tang; Wenbing Zhang; Wei Du

    2012-01-01

    Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controlla...

  5. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Overgaard, Johannes; Loeschcke, Volker;

    2011-01-01

    The ability to use different food sources is likely to be under strong selection if organisms are faced with natural variation in macro-nutrient (protein, carbohydrate and lipid) availabilities. Here, we use experimental evolution to study how variable dietary protein content affects adult body...... composition and developmental success in Drosophila melanogaster. We reared flies on either a standard diet or a protein-enriched diet for 17 generations before testing them on both diet types. Flies from lines selected on protein-rich diet produced phenotypes with higher total body mass and relative lipid...

  6. The Evolution of the Galaxy Sizes in the NTT Deep Field a Comparison with CDM Models

    CERN Document Server

    Poli, F; Menci, N; D'Odorico, S; Fontana, A

    1999-01-01

    The sizes of the field galaxies with I<25 have been measured in the NTT Deep Field. Intrinsic sizes have been obtained after deconvolution of the PSF with a multigaussian method. The reliability of the method has been tested using both simulated data and HST observations of the same field. The distribution of the half light radii is peaked at r_{hl} 0.3 arcsec, in good agreement with that derived from HST images at the same magnitude. An approximate morphological classification has been obtained using the asymmetry and concentration parameters. The intrinsic sizes of the galaxies are shown as a function of their redshifts and absolute magnitudes using photometric redshifts derived from the multicolor catalog. While the brighter galaxies with morphological parameters typical of the normal spirals show a flat distribution in the range r_{d}=1-6 kpc, the fainter population at 0.4sizes. To explore the significance of this behaviour, an analytical rendition of the standard CDM mo...

  7. Effect of sample size on intermetallic Al2Cu microstructure and orientation evolution during directional solidification

    Science.gov (United States)

    Gao, Ka; Li, Shuangming; Xu, Lei; Fu, Hengzhi

    2014-05-01

    Al-40% Cu hypereutectic alloy samples were successfully directionally solidified at a growth rate of 10 μm/s in different sizes (4 mm, 1.8 mm, and 0.45 mm thickness in transverse section). Using the serial sectioning technique, the three-dimensional (3D) microstructures of the primary intermetallic Al2Cu phase of the alloy can be observed with various growth patterns, L-shape, E-shape, and regular rectangular shape with respect to growth orientations of the (110) and (310) plane. The L-shape and regular rectangular shape of Al2Cu phase are bounded by {110} facets. When the sample size was reduced from 4 mm to 0.45 mm, the solidified microstructures changed from multi-layer dendrites to single-layer dendrite along the growth direction, and then the orientation texture was at the plane (310). The growth mechanism for the regular faceted intermetallic Al2Cu at different sample sizes was interpreted by the oriented attachment mechanism (OA). The experimental results showed that the directionally solidified Al-40% Cu alloy sample in a much smaller size can achieve a well-aligned morphology with a specific growth texture.

  8. Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, A., E-mail: ammomeni@aut.ac.ir [Department of Materials Science and Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of); Ebrahimi, G.R. [Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Jahazi, M.; Bocher, P. [Département de Génie Mécanique, École de Technologie Supérieure, Montréal, QC (Canada)

    2014-02-25

    Highlights: • Evolution of subgrains to recrystallization nuclei is possible at very low strains. • Dynamic recrystallization nuclei increases on a sigmoidal curve with strain. • Nucleation rate increases up to a maximum and decreases to zero at peak strain. • Growth of recrystallized nuclei diminishes to zero at or over the peak. • Site saturation is the mechanism of dynamic recrystallization up to the peak. -- Abstract: A physical model based on the evolution of subgrains size is proposed to describe the nucleation and growth processes during discontinuous dynamic recrystallization. The evolution of subgrains to viable recrystallization nuclei was found possible at very low strains. Afterwards, the number of stable nuclei considerably increased on a sigmoidal trend with strain and reached a saturated state at about 0.6 times the peak strain. The dependence of nucleation rate on strain was modeled using an Avrami-type equation and the driving force for the growth of recrystallized nuclei was similarly modeled in terms of strain. It is also shown that “site saturation” is the governing mechanism for the initiation of the discontinues dynamic recrystallization at the grain boundaries. The flow stress of the material was calculated using the law of mixture of recrystallized and unrecrystallized regions with fractional softening as the stress-partitioning factor. Satisfactory agreement between predicted and experimental results was obtained, thereby confirming the validity of the proposed model.

  9. Orbital evolution of colliding star and pulsar winds in 2D and 3D: dimensionality, resolution, and grid size effects

    CERN Document Server

    Bosch-Ramon, V; Perucho, M

    2014-01-01

    The structure formed by the shocked winds of a massive star and a non-accreting pulsar in a binary system suffers periodic and random variations of orbital and non-linear dynamical origin. The characterization of the evolution of the two-wind interaction region is necessary to understand the non-thermal emission from radio to gamma rays. For the first time, we simulate in 3D the interaction of isotropic stellar and relativistic pulsar winds along one full orbit, on scales well beyond the binary size. We also investigate the impact of grid resolution and size. We carry out, with the code PLUTO, relativistic hydrodynamical simulations in 2 and 3D of the interaction of a slow dense wind and a mildly relativistic wind along one full orbit, up to ~100 times the binary size. The 2-dimensional simulations are carried out with equal and larger grid resolution and size than in 3D. The simulations in 3D confirm previous results in 2D, showing a strong shock induced by Coriolis forces that terminates the pulsar wind in ...

  10. Size evolution of star-forming galaxies with $2

    CERN Document Server

    Ribeiro, B; Tasca, L A M; Lemaux, B C; Cassata, P; Garilli, B; Maccagni, D; Zamorani, G; Zucca, E; Amorín, R; Bardelli, S; Fontana, A; Giavalisco, M; Hathi, N P; Koekemoer, A; Pforr, J; Tresse, L; Dunlop, J

    2016-01-01

    We measure galaxy sizes on a sample of $\\sim1200$ galaxies with confirmed spectroscopic redshifts $2 \\leq z_{spec} \\leq 4.5$ in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with $i_\\mathrm{AB} \\leq 25$. We first derive galaxy sizes applying a classical parametric profile fitting method using GALFIT. We then measure the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compare the results obtained for the equivalent circularized radius enclosing 100\\% of the measured galaxy light $r_T^{100}$ to those obtained with the effective radius $r_{e,\\mathrm{circ}}$ measured with GALFIT. We find that the sizes of galaxies computed with our non-parametric approach span a large range but remain roughly constant on average with a median value $r_T^{100}\\sim2.2$ kpc for galaxies with $2evolution of $r_e$ wi...

  11. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing

    Science.gov (United States)

    Saarinen, Juha J.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Sibly, Richard M.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Smith, Felisa A.

    2014-01-01

    There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing. PMID:24741007

  12. Morphologies of ˜190,000 Galaxies at z = 0-10 Revealed with HST Legacy Data. I. Size Evolution

    Science.gov (United States)

    Shibuya, Takatoshi; Ouchi, Masami; Harikane, Yuichi

    2015-08-01

    We present the redshift evolution of the galaxy effective radius re obtained from the Hubble Space Telescope (HST) samples of ˜190,000 galaxies at z = 0-10. Our HST samples consist of 176,152 photo-z galaxies at z = 0-6 from the 3D-HST+CANDELS catalog and 10,454 Lyman break galaxies (LBGs) at z = 4-10 identified in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), HUDF 09/12, and HFF parallel fields, providing the largest data set to date for galaxy size evolution studies. We derive re with the same technique over the wide redshift range of z = 0-10, evaluating the optical-to-UV morphological K correction and the selection bias of photo-z galaxies+LBGs as well as the cosmological surface-brightness dimming effect. We find that re values at a given luminosity significantly decrease toward high z, regardless of statistics choices (e.g., {r}{{e}}\\propto {(1+z)}-1.10+/- 0.06 for median). For star-forming galaxies, there is no evolution of the power-law slope of the size-luminosity relation and the median Sérsic index (n˜ 1.5). Moreover, the re distribution is well represented by log-normal functions whose standard deviation {σ }{ln{r}{{e}}} does not show significant evolution within the range of {σ }{ln{r}{{e}}}˜ 0.45-0.75. We calculate the stellar-to-halo size ratio from our re measurements and the dark-matter halo masses estimated from the abundance-matching study, and we obtain a nearly constant value of {r}{{e}}/{r}{vir}=1.0%-3.5% at z = 0-8. The combination of the re-distribution shape+standard deviation, the constant {r}{{e}}/{r}{vir}, and n˜ 1.5 suggests a picture in which typical high-z star-forming galaxies have disk-like stellar components in a sense of dynamics and morphology over cosmic time of z˜ 0-6. If high-z star-forming galaxies are truly dominated by disks, the {r}{{e}}/{r}{vir} value and the disk-formation model indicate that the specific angular momentum of the disk normalized by the host halo is {j

  13. A theoretical model of the mean grain size evolution during the liquid phase sintering in CANDU advanced fuels

    International Nuclear Information System (INIS)

    In order to enhance the fuel burnup in CANDU reactors, the microstructure of the fuel pellet must by modified, in order to accommodate the fission gas released during irradiation. A large grain size structure is able to retain a large fraction of the released gases. The addition of some oxides to the UO2 powder leads to the liquid phase ocarina during sintering. Starting from the basic theory of the grain growth in solid and liquid phase sintering and from the experimental microstructure characterization, a model of the mean size evolution in the presence of very small liquid fraction is proposed. As a function of dopant concentration, solubility limits and liquid phase composition, this model explicitly takes account of the continuous distribution of the additive into the matrix during grain growth process of the wetting properties of the liquid phase and of all transfer processes governing the microstructure evolution: grain boundary diffusion, surface reaction and diffusion through the liquid phase. The model validation was done for UO2-Nb2O3 and UO2-TiO2 systems, in isothermal treatment at 1700 deg. C. The model predictions are confirmed by the qualitative and quantitative experimental results, given by SEM, X-ray diffraction investigations. (authors)

  14. The Cultural Evolution of Human Communication Systems in Different Sized Populations: Usability Trumps Learnability

    OpenAIRE

    Nicolas Fay; T Mark Ellison

    2013-01-01

    This study examines the intergenerational transfer of human communication systems. It tests if human communication systems evolve to be easy to learn or easy to use (or both), and how population size affects learnability and usability. Using an experimental-semiotic task, we find that human communication systems evolve to be easier to use (production efficiency and reproduction fidelity), but harder to learn (identification accuracy) for a second generation of naïve participants. Thus, usabil...

  15. Breaking symmetry: the marine environment, prey size, and the evolution of asymmetry in cetacean skulls.

    Science.gov (United States)

    MacLeod, C D; Reidenberg, J S; Weller, M; Santos, M B; Herman, J; Goold, J; Pierce, G J

    2007-06-01

    Skulls of odontocetes (toothed whales, including dolphins and porpoises) are typified by directional asymmetry, particularly in elements associated with the airway. Generally, it is assumed this asymmetry is related to biosonar production. However, skull asymmetry may actually be a by-product of selection pressure for an asymmetrically positioned larynx. The odontocete larynx traverses the pharynx and is held permanently in place by a ring of muscle. This allows prey swallowing while remaining underwater without risking water entering the lungs and causing injury or death. However, protrusion of the larynx through the pharynx causes a restriction around which prey must pass to reach the stomach. The larynx and associated hyoid apparatus has, therefore, been shifted to the left to provide a larger right piriform sinus (lateral pharyngeal food channel) for swallowing larger prey items. This asymmetry is reflected in the skull, particularly the dorsal openings of the nares. It is hypothesized that there is a relationship between prey size and skull asymmetry. This relationship was examined in 13 species of odontocete cetaceans from the northeast Atlantic, including four narrow-gaped genera (Mesoplodon, Ziphius, Hyperoodon, and Kogia) and eight wide-gaped genera (Phocoena, Delphinus, Stenella, Lagenorhynchus, Tursiops, Grampus, Globicephala, and Orcinus). Skulls were examined from 183 specimens to assess asymmetry of the anterior choanae. Stomach contents were examined from 294 specimens to assess prey size. Results show there is a significant positive relationship between maximum relative prey size consumed and average asymmetry relative to skull size in odontocete species (wide-gape species: R2 = 0.642, P = 0.006; narrow-gape species: R2 = 0.909, P = 0.031). This finding provides support for the hypothesis that the directional asymmetry found in odontocete skulls is related to an aquatic adaptation enabling swallowing large, whole prey while maintaining respiratory

  16. The evolution of brain waves in altered states of consciousness (REM sleep and meditation)

    OpenAIRE

    Irina E. Chiş

    2009-01-01

    Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years). The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to ...

  17. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    Science.gov (United States)

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  18. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  19. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.

    Science.gov (United States)

    Schartl, Manfred; Schmid, Michael; Nanda, Indrajit

    2016-06-01

    The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation. PMID:26715206

  20. Further constraining galaxy evolution models through the Size Function of SDSS Early-type galaxies

    CERN Document Server

    Shankar, Francesco; Bernardi, Mariangela; Boylan-Kolchin, Michael; Dai, Xinyu; Khochfar, Sadegh

    2010-01-01

    We discuss how the effective radius Phi(Re) function (ERF) recently worked out by Bernardi et al. (2009) represents a new testbed to improve the current understanding of Semi-analytic Models of Galaxy formation. In particular, we here show that a detailed hierarchical model of structure formation can broadly reproduce the correct peak in the size distribution of local early-type galaxies, although it significantly overpredicts the number of very compact and very large galaxies. This in turn is reflected in the predicted size-mass relation, much flatter than the observed one, due to too large (~3 kpc) low-mass galaxies ( 10^11 \\msun). We also find that the latter discrepancy is smaller than previously claimed, and limited to only ultracompact (Re < 0.5 kpc) galaxies when considering elliptical-dominated samples. We explore several causes behind these effects. We conclude that the former problem might be linked to the initial conditions, given that large and low-mass galaxies are present at all epochs in the...

  1. Modelling Evolution of Bed Profile and Grain Size Distribution in Unsurveyed Rivers

    Institute of Scientific and Technical Information of China (English)

    P. RONCO; G. FASOLATO; G. Di SILVIO

    2009-01-01

    The water flow and sediment transport equations have been linearized and analytically solved under the hypothesis of quasi-equilibrium conditions. This solution permits to reconstruct the river bathymetry from planimetric data, the only ones available from satellite images for most of the large rivers of the world. The linearized quasi-equilibrium solution provides a criterion to evaluate the accuracy of the approximate (uniform-flow) model, compared to the regular (steady-flow) model. For non-equilibrium conditions, a further constraint on time resolution should be added, which is however generally satisfied for long-term morphological simulations. The uniform-flow solution presents many advantages which become crucial for long-term numerical computations at watershed scale.The article provides a detailed numerical comparison of the accuracy and resolution of both steadyand uniform-flow models, with an application to the evolution of the lower Zambezi River, which confirms the theoretical criterion. The accuracy of the uniform-flow solution appears to improve when the river is schematized with a coarse computational grid although, of course, with a corresponding loss of spatial resolution.

  2. The potential for adaptive evolution of pollen grain size in Mimulus guttatus.

    Science.gov (United States)

    Lamborn, Ellen; Cresswell, James E; Macnair, Mark R

    2005-07-01

    We tested whether pollen grain size (PGS) shows heritable variation in three independent populations of Mimulus guttatus by imposing artificial selection for this character. In addition, we looked for correlated responses to selection in a range of 15 other floral characters. Heritable variation in PGS was found in all three populations, with heritabilities of between 19 and 40% (average 30%). After three generations, upward and downward lines differed on average by 30% in pollen volume. No consistent patterns of correlated response were found in other characters, indicating that PGS can respond to selective forces acting on PGS alone. Possible selection mechanisms on PGS in this species could include intermale selection, if large pollen grains produce more competitive gametophytes; or optimization of patterns of resource allocation, if local mate competition varies.

  3. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.

    Science.gov (United States)

    Hernández-Jaimes, C; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2013-06-01

    Plantain native starch was hydrolysed with sulphuric acid for twenty days. Hydrolysis kinetics was described by a logistic function, with a zero-order rate during the first seven days, followed by a slower kinetics dynamics at longer times. X-ray diffraction results revealed a that gradual increase in crystallinity occurred during the first seven days, followed by a decrease to values similar to those found in the native starch. Differential scanning calorimetry analysis suggested a sharp structure transition by the seventh day probably due to a molecular rearrangement of the starch blocklets and inhomogeneous erosion of the amorphous regions and semi crystalline lamellae. Scanning electron micrographs showed that starch granules morphology was continually degraded from an initial oval-like shape to irregular shapes due to aggregation effects. Granule size distribution broadened as hydrolysis time proceeded probably due to fragmentation and agglomeration phenomena of the hydrolysed starch granules.

  4. Using Triangular Function To Improve Size Of Population In Quantum Evolution Algorithm For Fractal Image Compression

    Directory of Open Access Journals (Sweden)

    Amin Qorbani

    2011-12-01

    Full Text Available Fractal Image Compression is a well-known problem which is in the class of NP-Hard problems.Quantum Evolutionary Algorithm is a novel optimization algorithm which uses a probabilisticrepresentation for solutions and is highly suitable for combinatorial problems like Knapsack problem.Genetic algorithms are widely used for fractal image compression problems, but QEA is not used for thiskind of problems yet. This paper improves QEA whit change population size and used it in fractal imagecompression. Utilizing the self-similarity property of a natural image, the partitioned iterated functionsystem (PIFS will be found to encode an image through Quantum Evolutionary Algorithm (QEA methodExperimental results show that our method has a better performance than GA and conventional fractalimage compression algorithms.

  5. Brain intersections of aesthetics and morals: perspectives from biology, neuroscience, and evolution.

    Science.gov (United States)

    Zaidel, D W; Nadal, M

    2011-01-01

    For centuries, only philosophers debated the relationship between aesthetics and morality. Recently, with advances in neuroscience, the debate has moved to include the brain and an evolved neural underpinning linking aesthetic reactions and moral judgment. Biological survival emphasizes mate selection strategies, and the ritual displays have been linked to human aesthetics in the arts, in faces, and in various daily decision making. In parallel, cultural human practices have evolved to emphasize altruism and morality. This article explores the biological background and discusses the neuroscientific evidence for shared brain pathways for aesthetics and morals.

  6. Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Livia Raquel C. Malheiros

    2015-01-01

    Full Text Available High-pressure torsion (HPT was used to impose severe plastic deformation on a magnesium alloy AZ31. The material was processed for 0.5, 1, 2, 3, 5 and 7 turns at room temperature under a pressure of 6.0 GPa. Samples were annealed for 1800 s at temperatures of 373 K, 423 K, 473 K, 573 K and 673 K. Microhardness tests and metallography were used to determine the evolution of strength and grain size as a function of the annealing temperature. The results show that recrystallization takes place at temperatures higher than 423 K. The annealing behavior is independent of the number of turns in HPT.

  7. Size Evolution of Ordered SiGe Islands Grown by Surface Thermal Diffusion on Pit-Patterned Si(100 Surface

    Directory of Open Access Journals (Sweden)

    Bollani Monica

    2010-01-01

    Full Text Available Abstract The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100 surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms.

  8. From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size

    Science.gov (United States)

    Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.

    2014-07-01

    Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.

  9. Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials.

    Science.gov (United States)

    Abolhasani, Milad; Oskooei, Ali; Klinkova, Anna; Kumacheva, Eugenia; Günther, Axel

    2014-07-01

    We introduce oscillatory segmented flow as a compact microfluidic format that accommodates slow chemical reactions for the solution-phase processing of colloidal nanomaterials. The strategy allows the reaction progress to be monitored at a dynamic range of up to 80 decibels (i.e., residence times of up to one day, equivalent to 720-14,400 times the mixing time) from only one sensing location. A train of alternating gas bubbles and liquid reaction compartments (segmented flow) was initially formed, stopped and then subjected to a consistent back-and-forth motion. The oscillatory segmented flow was obtained by periodically manipulating the pressures at the device inlet and outlet via square wave signals generated by non-wetted solenoid valves. The readily implementable format significantly reduced the device footprint as compared with continuous segmented flow. We investigated mixing enhancement for varying liquid segment lengths, oscillation amplitudes and oscillation frequencies. The etching of gold nanorods served as a case study to illustrate the utility of the approach for dynamic characterization and precise control of colloidal nanomaterial size and shape for 5 h. Oscillatory segmented flows will be beneficial for a broad range of lab-on-a-chip applications that require long processing times. PMID:24828153

  10. The cultural evolution of human communication systems in different sized populations: usability trumps learnability.

    Science.gov (United States)

    Fay, Nicolas; Ellison, T Mark

    2013-01-01

    This study examines the intergenerational transfer of human communication systems. It tests if human communication systems evolve to be easy to learn or easy to use (or both), and how population size affects learnability and usability. Using an experimental-semiotic task, we find that human communication systems evolve to be easier to use (production efficiency and reproduction fidelity), but harder to learn (identification accuracy) for a second generation of naïve participants. Thus, usability trumps learnability. In addition, the communication systems that evolve in larger populations exhibit distinct advantages over those that evolve in smaller populations: the learnability loss (from the Initial signs) is more muted and the usability benefits are more pronounced. The usability benefits for human communication systems that evolve in a small and large population is explained through guided variation reducing sign complexity. The enhanced performance of the communication systems that evolve in larger populations is explained by the operation of a content bias acting on the larger pool of competing signs. The content bias selects for information-efficient iconic signs that aid learnability and enhance usability. PMID:23967243

  11. The cultural evolution of human communication systems in different sized populations: usability trumps learnability.

    Directory of Open Access Journals (Sweden)

    Nicolas Fay

    Full Text Available This study examines the intergenerational transfer of human communication systems. It tests if human communication systems evolve to be easy to learn or easy to use (or both, and how population size affects learnability and usability. Using an experimental-semiotic task, we find that human communication systems evolve to be easier to use (production efficiency and reproduction fidelity, but harder to learn (identification accuracy for a second generation of naïve participants. Thus, usability trumps learnability. In addition, the communication systems that evolve in larger populations exhibit distinct advantages over those that evolve in smaller populations: the learnability loss (from the Initial signs is more muted and the usability benefits are more pronounced. The usability benefits for human communication systems that evolve in a small and large population is explained through guided variation reducing sign complexity. The enhanced performance of the communication systems that evolve in larger populations is explained by the operation of a content bias acting on the larger pool of competing signs. The content bias selects for information-efficient iconic signs that aid learnability and enhance usability.

  12. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique, F-75014 Paris (France); Shimasaku, Kazuhiro [Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Furlanetto, Steven R., E-mail: ono@icrr.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-10

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) {sup s}, we obtain a best-fit index of s=-1.30{sup +0.12}{sub -0.14} over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L{sub z=3}. The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

  13. Evolution of grain size distribution in high-redshift dusty quasars: Integrating large amounts of dust and unusual extinction curves

    CERN Document Server

    Nozawa, Takaya; Hirashita, Hiroyuki; Takeuchi, Tsutomu T

    2014-01-01

    The discoveries of huge amounts of dust and unusual extinction curves in high-redshift quasars (z > 4) cast challenging issues on the origin and properties of dust in the early universe. In this Letter, we investigate the evolutions of dust content and extinction curve in a high-z quasar, based on the dust evolution model taking account of grain size distribution. First, we show that the Milky-Way extinction curve is reproduced by introducing a moderate fraction (~0.2) of dense molecular-cloud phases in the interstellar medium for a graphite-silicate dust model. Then we show that the peculier extinction curves in high-z quasars can be explained by taking a much higher molecular-cloud fraction (>0.5), which leads to more efficient grain growth and coagulation, and by assuming amorphous carbon instead of graphite. The large dust content in high-z quasar hosts is also found to be a natural consequence of the enhanced dust growth. These results indicate that grain growth and coagulation in molecular clouds are ke...

  14. Simulating the Evolution of Functional Brain Networks in Alzheimer’s Disease: Exploring Disease Dynamics from the Perspective of Global Activity

    Science.gov (United States)

    Li, Wei; Wang, Miao; Zhu, Wenzhen; Qin, Yuanyuan; Huang, Yue; Chen, Xi

    2016-01-01

    Functional brain connectivity is altered during the pathological processes of Alzheimer’s disease (AD), but the specific evolutional rules are insufficiently understood. Resting-state functional magnetic resonance imaging indicates that the functional brain networks of individuals with AD tend to be disrupted in hub-like nodes, shifting from a small world architecture to a random profile. Here, we proposed a novel evolution model based on computational experiments to simulate the transition of functional brain networks from normal to AD. Specifically, we simulated the rearrangement of edges in a pathological process by a high probability of disconnecting edges between hub-like nodes, and by generating edges between random pair of nodes. Subsequently, four topological properties and a nodal distribution were used to evaluate our model. Compared with random evolution as a null model, our model captured well the topological alteration of functional brain networks during the pathological process. Moreover, we implemented two kinds of network attack to imitate the damage incurred by the brain in AD. Topological changes were better explained by ‘hub attacks’ than by ‘random attacks’, indicating the fragility of hubs in individuals with AD. This model clarifies the disruption of functional brain networks in AD, providing a new perspective on topological alterations. PMID:27677360

  15. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.

  16. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. PMID:25535268

  17. Neural changes in the primate brain correlated with the evolution of complex motor skills.

    Science.gov (United States)

    Yamazaki, Y; Hikishima, K; Saiki, M; Inada, M; Sasaki, E; Lemon, R N; Price, C J; Okano, H; Iriki, A

    2016-01-01

    Complex motor skills of eventual benefit can be learned after considerable trial and error. What do structural brain changes that accompany such effortful long-term learning tell us about the mechanisms for developing innovative behavior? Using MRI, we monitored brain structure before, during and after four marmosets learnt to use a rake, over a long period of 10-13 months. Throughout learning, improvements in dexterity and visuo-motor co-ordination correlated with increased volume in the lateral extrastriate cortex. During late learning, when the most complex behavior was maintained by sustained motivation to acquire the skill, the volume of the nucleus accumbens increased. These findings reflect the motivational state required to learn, and show accelerated function in higher visual cortex that is consistent with neurocognitive divergence across a spectrum of primate species. PMID:27498966

  18. Size Evolution of the Surface Short Fatigue Cracks of 1Cr18Ni9Ti Weld Metal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Size evolution of the surface short fatigue cracks of 1Cr18Ni9Ti weld metal was investigated. A local viewpoint is applied to be agreement with a so-called "effectively short fatigue crack criterion". Attention was paid to the dominant effectively short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips. The results revealed that the evolutionary size shows a significant character of microstructural short crack (MSC) and physical short crack (PSC) stages. In the MSC stage, fatigue damage is due to mainly the initiation and irregular growth of the effectively short fatigue cracks (ESFCs). In the PSC stage, the damage is conversely due to mainly the DESFC growth and partially, the growth of the ESFCs and the coalescence of the ESFCs themselves with the DESFC. The process involves from a non-ordered/chaotic state in the initiation of MSC stage, gradually to an independently random state at the transition point between the MSC and PSC stages and then, to an ordered/history-dependent random state. Interactive effect of the collective cracks is stronger and shows an increase in the MSC stage. It reaches a maximum value at the transition point and then, tends to a decrease in the PSC stage. The DESFC acts as a result of the interactive cracks and thus, is deemed suitable to describe the behaviour of collective cracks.

  19. A role for nautilus in studies of the evolution of brain and behavior

    OpenAIRE

    Crook, Robyn J.; Basil, Jennifer A

    2008-01-01

    Nautilus is an ancient remnant of a largely extinct cephalopod lineage.1 Its status within its clade is the subject of ongoing debate—its morphology, behavior and neuroanatomy may or may not be representative of an ancestral condition, and therefore its value as a model for ancestral cephalopods is uncertain. While the nautilus brain is simpler than that of more derived cephalopods2 (coleoids), it is plausible that this is a secondary simplification related to ecology, and not a precursor to ...

  20. (r)Evolution in Brain-Computer Interface Technologies for Play: (non)Users in Mind

    OpenAIRE

    Cloyd, Tristan Dane

    2014-01-01

    This dissertation addresses user responses to the introduction of Brain-Computer Interface technologies (BCI) for gaming and consumer applications in the early part of the 21st century. BCI technology has emerged from the contexts of interrelated medical, academic, and military research networks including an established computer and gaming industry. First, I show that the emergence and development of BCI technology are based on specific economic, socio-cultural, and material factors, and seco...

  1. The evolution of brain lateralization: a game-theoretical analysis of population structure.

    OpenAIRE

    Ghirlanda, Stefano; Vallortigara, Giorgio

    2004-01-01

    In recent years, it has become apparent that behavioural and brain lateralization at the population level is the rule rather than the exception among vertebrates. The study of these phenomena has so far been the province of neurology and neuropsychology. Here, we show how such research can be integrated with evolutionary biology to understand lateralization more fully. In particular, we address the fact that, within a species, left- and right-type individuals often occur in proportions differ...

  2. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture

    Science.gov (United States)

    Brady, Rhys D; Grills, Brian L; Church, Jarrod E; Walsh, Nicole C; McDonald, Aaron C; Agoston, Denes V; Sun, Mujun; O’Brien, Terence J; Shultz, Sandy R; McDonald, Stuart J

    2016-01-01

    Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring closed-skull weight-drop TBI and concomitant tibial fracture in order to investigate the effect of TBI on fracture healing. Male mice were assigned into Fracture + Sham TBI (FX) or Fracture + TBI (MULTI) groups and sacrificed at 21 and 35 days post-injury for analysis of healing fractures by micro computed tomography (μCT) and histomorphometry. μCT analysis revealed calluses from MULTI mice had a greater bone and total tissue volume, and displayed higher mean polar moment of inertia when compared to calluses from FX mice at 21 days post-injury. Histomorphometric results demonstrated an increased amount of trabecular bone in MULTI calluses at 21 days post-injury. These findings indicate that closed head TBI results in calluses that are larger in size and have an increased bone volume, which is consistent with the notion that TBI induces the formation of a more robust callus. PMID:27682431

  3. The evolution of brain waves in altered states of consciousness (REM sleep and meditation

    Directory of Open Access Journals (Sweden)

    Irina E. Chiş

    2009-12-01

    Full Text Available Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years. The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to them. This was made to avoid errors that could compromise the wholestudy. Results: It was shown that an appropriate musical background has a positive effect on brainactivity and especially on alpha waves. There were no significant results regarding REM sleep, althougha slight increase in the frequency by which the periods of REM sleep occurred was noticed. On theother hand, in meditation, the appropriate musical background had a major influence on the period inwhich the subjects entered the alpha state. This period was considerably reduced. Conclusion: Anadequate type of music can help our brain entering in, and maintaining the alpha state.

  4. The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards?

    Directory of Open Access Journals (Sweden)

    Tregenza Tom

    2008-02-01

    Full Text Available Abstract Background The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Results Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Conclusion Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat

  5. Big brains, small worlds; material culture and the evolution of the mind

    OpenAIRE

    Coward, Fiona; Gamble, Clive

    2009-01-01

    New developments in neuroimaging have demonstrated that the basic capacities underpinning human social skills are shared by our closest extant primate relatives. The challenge for archaeologists is to explain how complex human societies evolved from this shared pattern of face-to-face social interaction. We argue that a key process was the gradual incorporation of material culture into social networks over the course of hominin evolution. Here we use three long-term processes in hominin evolu...

  6. Adaptations to vision-for-action in primate brain evolution: Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Hecht, Erin

    2016-03-01

    As Arbib [1] notes, the two-streams hypothesis [5] has provided a powerful explanatory framework for understanding visual processing. The inferotemporal ventral stream recognizes objects and agents - "what" one is seeing. The dorsal "how" or "where" stream through parietal cortex processes motion, spatial location, and visuo-proprioceptive relationships - "vision for action." Hickock and Poeppel's [3] extension of this model to the auditory system raises the question of deeper, multi- or supra-sensory themes in dorsal vs. ventral processing. Petrides and Pandya [10] postulate that the evolution of language may have been influenced by the fact that the dorsal stream terminates in posterior Broca's area (BA44) while the ventral stream terminates in anterior Broca's area (BA45). In an intriguing potential parallel, a recent ALE metanalysis of 54 fMRI studies found that semantic processing is located more anteriorly and superiorly than syntactic processing in Broca's area [13]. But clearly, macaques do not have language, nor other likely pre- or co-adaptations to language, such as complex imitation and tool use. What changed in the brain that enabled these functions to evolve?

  7. Brain Drain Question of Small and Medium-sized Enterprises of Our Country%我国中小企业人才流失问题之浅析

    Institute of Scientific and Technical Information of China (English)

    徐海蓉

    2009-01-01

    The article is analysed and started with from the current situation, influence and reason of brain drain of small and medium-sized en-terprises of our country, seek and control the brain drain measure of small and medium-sized enterprises effectively; In the hope of ensuring and promoting the health, fast development of small and medium-sized enterprises better.%文章从我国中小企业人才流失的现状、影响及原因分析入手,探寻有效控制中小企业人才流失的措施,以期更好地保障和促进中小企业的健康、快速发展.

  8. No evidence for evolution in the typical rest-frame UV sizes or morphologies of L_* galaxies at 4

    CERN Document Server

    Curtis-Lake, E; Dunlop, J S; Rogers, A B; Targett, T; Dekel, A; Ellis, R S; Faber, S M; Ferguson, H C; Grogin, N A; Huang, K -H; Kocevski, D D; Koekemoer, A M; Lai, K; Robertson, B E

    2016-01-01

    We present the results of a study investigating the sizes and morphologies of redshift 4size of galaxies at each redshift as the peak of the log-normal size distribution, rather than the arithmetic mean size. Parameterizing the evolution of galaxy half-light radius as r50\\propto(1+z)^n, we find n=-0.34\\pm0.29 at bright UV-luminosities (0.3L*(z=3)evolution in typical galaxy size with redshift. Moreover, simulations based on artificially redshifting our z~4 galaxy sample also confirm that we cannot reject the null hypothesis of no size evolution. This result is caused by the systematic under-estimation of the largest galaxy sizes, such that the build-up in the tail of the...

  9. Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2007-10-01

    Full Text Available Abstract Background The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. Results The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S. Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027 from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé test nor the Tajima's D test reached significance. Conclusion The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary

  10. Causality, Symmetry, Brain, Evolution, DNA and a new Theory of Physics

    Science.gov (United States)

    Pissanetzky, Sergio

    2012-10-01

    THEORY. Except for black holes, our world is causal. In Physics, causal sets formalize causality. The easiest way to explain the importance of causets is: all finite algorithms and computer programs are causets. Let S be a causet model of a dynamical system. S has a symmetry of the action: set P of legal permutations of S. Hence all causets have conservation laws. Permutations in P represent trajectories in state space. But P is non-conservative. New Physics: an action functional F was observed. When F is minimized over P, conservative subset P* is obtained. In P*, conserved quantities emerge as group-theoretical block systems over S. Block systems are also causets, and iteration leads to a network of blocks. This is a new theory of Physics. PREDICTIONS. (1) Brain's dendritic trees must be optimally short. Cuntz (June 2012) observed a 2/3 optimally short power law. (2) Causal hierarchies. Fuster(2005) observes identical hierarchies in cortex. DNA (Sept 2012) is described as hierarchical networks. (3) Action functional. Lerner (Aug 2012) proposed an action functional and minimum entropy on trajectories of dynamical processes. Friston (2003) proposed an energy functional. (4) Simple computer-brain experiments (Pissanetzky 2011a). REFERENCES: www.SciControls.com.

  11. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified. PMID:20052546

  12. Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain.

    Science.gov (United States)

    Catania, K C

    2000-06-01

    Insectivores are traditionally described as a primitive group that has not changed much in the course of mammalian evolution. In contrast, recent studies reveal a great diversity of sensorimotor specializations among insectivores adapted to a number of different ecological niches, indicating that there has been significant diversification and change in the course of their evolution. Here the organization of sensory cortex is compared in the African hedgehog (Atelerix albiventris), the masked shrew (Sorex cinereus), the eastern mole (Scalopus aquaticus), and the star-nosed mole (Condylura cristata). Each of these four closely related species lives in a unique ecological niche, exhibits a different repertoire of behaviors, and has a different configuration of peripheral sensory receptors. Corresponding specializations of cortical sensory areas reveal a number of ways in which the cortex has evolved in parallel with changes to the sensory periphery. These specializations include expansion of cortical representations (cortical magnification), the addition or loss of cortical areas in the processing network, and the subdivision of areas into modules (barrels and stripes). PMID:10971016

  13. On the space and time evolution of regular or irregular human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2011-01-01

    A coupled map is suggested to investigate various spatial or temporal designs in biology: Several cells (or tissues) in an organ are considered as connected to each other in terms of some molecular diffusions or electrical potential differences and so on. The biological systems (groups of cells) start from various initial conditions for spatial designs (or initial signals for temporal designs) and they evolve in time in terms of the mentioned interactions (connections) besides some individual feedings. The basic aim of the present contribution is to mimic various empirical data for the heart (in normal, quasi-stable, unstable and post operative physiological conditions) or brain (regular or irregular; for epilepsy) signals. The mentioned empirical data are borrowed from various literatures which are cited. The suggested model (to be used besides or instead of the artificial network models) involves simple mathematics and the related software is easy. The results may be considered as in good agreement with the...

  14. A theory of marks and mind: the effect of notational systems on hominid brain evolution and child development with an emphasis on exchanges between mothers and children.

    Science.gov (United States)

    Sheridan, Susan Rich

    2005-01-01

    A model of human language requires a theory of meaningful marks. Humans are the only species who use marks to think. A theory of marks identifies children's scribbles as significant behavior, while hypothesizing the importance of rotational systems to hominid brain evolution. By recognizing the importance of children's scribbles and drawings in developmental terms as well as in evolutionary terms, a marks-based rather than a predominantly speech-based theory of the human brain, language, and consciousness emerges. Combined research in anthropology, primatology, art history, neurology, child development (including research with deaf and blind children), gender studies and literacy suggests the importance of notational systems to human language, revealing the importance of mother/child interactions around marks and sounds to the development of an expressive, communicative, symbolic human brain. An understanding of human language is enriched by identifying marks carved on bone 1.9 million years ago as observational lunar calendar-keeping, pushing proto-literacy back dramatically. Neurologically, children recapitulate the meaningful marks of early hominins when they scribble and draw, reminding us that literacy belongs to humankind's earliest history. Even more than speech, such meaningful marks played - and continue to play - decisive roles in human brain evolution. The hominid brain required a model for integrative, transformative neural transfer. The research strongly suggests that humankind's multiple literacies (art, literature, scientific writing, mathematics and music) depended upon dyadic exchanges between hominid mothers and children, and that this exchange and sharing of visuo-spatial information drove the elaboration of human speech in terms of syntax, grammar and vocabulary. The human brain was spatial before it was linguistic. The child scribbles and draws before it speaks or writes. Children babble and scribble within the first two years of life. Hands

  15. The evolution of galaxy size and morphology at z~0.5-3.0 in the GOODS-N region with HST/WFC3 data

    CERN Document Server

    Morishita, Takahiro; Kajisawa, Masaru

    2014-01-01

    We analyze the recent released HST/WFC3 IR images in the GOODS-N region to study the formation and evolution of Quiescent galaxies (QGs). After examining the reliability with artificial galaxies, we obtain the morphological parameters with S'ersic profile of 299 QGs and 1,083 star-forming galaxies (SFGs) at z ~ 0.5-3.0, finding the evolution of re and n of massive (M* > 10^10.5 Msun) QGs while weaker evolution of SFGs and less massive (M* < 10^10.5 Msun) QGs. The regression of the size evolution of massive QGs follows re \\propto (1 + z)-{\\alpha}re with {\\alpha}re = 1.06 \\pm 0.19 (a factor of ~ 2.2 increase from z ~ 2.5 to ~ 0.5), which is consistent with the general picture of the significant size growth. For the further understanding of the evolution scenario, we study the evolution of S'ersic index, n, and find that of massive QGs to significantly evolve as n \\propto (1 + z)-{\\alpha}n with {\\alpha}n = 0.74 \\pm 0.23 (n ~ 1 at z ~ 2.5 to n ~ 4 at z ~ 0.5), while those of the other populations are unchanged...

  16. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques.

    Science.gov (United States)

    Tierney, Travis S; Abd-El-Barr, Muhammad M; Stanford, Arielle D; Foote, Kelly D; Okun, Michael S

    2014-06-01

    Surgical therapy for treatment-resistant obsessive compulsive disorder (OCD) remains an effective option for well-selected patients managed within a multidisciplinary setting. Historically, lesions within the limbic system have been used to control both obsessive thoughts and repetitive compulsions associated with this disease. We discuss classical targets as well as contemporary neuromodulatory approaches that have been shown to provide symptomatic relief. Recently, deep brain stimulation (DBS) of the anterior limb of the internal capsule/ventral striatum received Conformité Européene (CE) mark and Food and Drug Administration (FDA) approvals for treatment of intractable OCD. Remarkably, this is the first such approval for neurosurgical intervention in a strictly psychiatric indication in modern times. This target is discussed in detail along with alternative targets currently being proposed. We close with a discussion of gamma knife capsulotomy, a modality with deep historical roots. Further directions in the surgical treatment of OCD will require better preoperative predictors of postoperative responses, optimal selection of individualized targets, and rigorous reporting of adverse events and standardized outcomes. To meet these challenges, centers must be equipped with a multidisciplinary team and patient-centered approach to ensure adequate screening and follow up of patients with this difficult-to-treat condition. PMID:24099662

  17. Design principles of the human brain: an evolutionary perspective.

    Science.gov (United States)

    Hofman, Michel A

    2012-01-01

    The evolution of the brain in mammals has been accompanied by a reorganization of the brain as a result of differential growth of certain brain regions. Consequently, the geometry of the brain, and especially the size and shape of the cerebral cortex, has changed notably during evolution. Comparative studies of the cerebral cortex suggest that there are general architectural principles governing its growth and evolutionary development and that the primate neocortex is uniformly organized and composed of neural processing units. We are beginning to understand the geometric, biophysical, and energy constraints that have governed the evolution of these neuronal networks. In this review, some of the design principles and operational modes will be explored that underlie the information processing capacity of the cerebral cortex in primates, and it will be argued that with the evolution of the human brain we have nearly reached the limits of biological intelligence.

  18. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids

    OpenAIRE

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine D.; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2014-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirementsof encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerninghow energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment intoother costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been...

  19. Evolution of growth habit, inflorescence architecture, flower size, and fruit type in Rubiaceae: its ecological and evolutionary implications.

    Directory of Open Access Journals (Sweden)

    Sylvain G Razafimandimbison

    Full Text Available During angiosperm evolution, innovations in vegetative and reproductive organs have resulted in tremendous morphological diversity, which has played a crucial role in the ecological success of flowering plants. Morindeae (Rubiaceae display considerable diversity in growth form, inflorescence architecture, flower size, and fruit type. Lianescent habit, head inflorescence, small flower, and multiple fruit are the predominant states, but arborescent habit, non-headed inflorescence, large flower, and simple fruit states occur in various genera. This makes Morindeae an ideal model for exploring the evolutionary appearances and transitions between the states of these characters. We reconstructed ancestral states for these four traits using a bayesian approach and combined nuclear/chloroplast data for 61 Morindeae species. The aim was to test three hypotheses: 1 self-supporting habit is generally ancestral in clades comprising both lianescent and arborescent species; 2 changes from lianescent to arborescent habit are uncommon due to "a high degree of specialization and developmental burden"; 3 head inflorescences and multiple fruits in Morindeae evolved from non-headed inflorescences and simple fruits, respectively. Lianescent habit, head inflorescence, large flower, and multiple fruit are inferred for Morindeae, making arborescent habit, non-headed inflorescence, small flower, and simple fruit derived within the tribe. The rate of change from lianescent to arborescent habit is much higher than the reverse change. Therefore, evolutionary changes between lianescent and arborescent forms can be reversible, and their frequency and trends vary between groups. Moreover, these changes are partly attributed to a scarcity of host trees for climbing plants in more open habitats. Changes from large to small flowers might have been driven by shifts to pollinators with progressively shorter proboscis, which are associated with shifts in breeding systems towards

  20. Phylogeny, biogeography and evolution of clutch size in South American lizards of the genus Kentropyx (Squamata: Teiidae).

    Science.gov (United States)

    Werneck, Fernanda de P; Giugliano, Lilian G; Collevatti, Rosane G; Colli, Guarino R

    2009-01-01

    The lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life-history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns' phylogenetic-subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny. Our results showed that Kentropyx comprises three monophyletic groups, with K. striata occupying a basal position in opposition to previous suggestions of relationships. Additionally, Bayesian analysis of divergence time showed that Kentropyx may have originated at the Tertiary (Eocene/Oligocene) and the 'Pleistocene Refuge Hypothesis' may not explain the species diversification. Based on ancestral reconstruction and molecular dating, we argued that a savanna ancestor is more likely and that historical events during the Tertiary of South America promoted the differentiation of the genus, coupled with recent Quaternary events that were important as dispersion routes and for the diversification at populational levels. Clutch size and egg volume were not significantly different between major clades and ecosystems of occurrence, even accounting for the phylogenetic effects. Finally, we argue that phylogenetic constraints and phylogenetic inertia might be playing essential roles in life history evolution of Kentropyx.

  1. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  2. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-03-01

    Tyrannosaurids-the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus-were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  3. The cultural evolution of language and brain: Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Colagè, Ivan

    2016-03-01

    Michael A. Arbib's Mirror System Hypothesis (MSH) [1,2] is among the most elaborate attempts at disentangling the issue of language origin. I will focus on the role that cultural evolution, as distinct from biological (genetic) evolution, may have played in the emergence of "modern" human language (as contrasted with forms of proto-languages).

  4. An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2004-01-01

    Full Text Available Aerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E. Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area in environments similar to the one studied.

  5. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats

    Directory of Open Access Journals (Sweden)

    Sun Cheuk-Kwan

    2010-06-01

    Full Text Available Abstract Background The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs on brain infarction area (BIA and neurological status in a rat model of acute ischemic stroke (IS was investigated. Methods Adult male Sprague-Dawley (SD rats (n = 30 were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction (control group and IS plus intra-venous ADMSCs (2.0 × 106 (treated interval as controls (treatment group after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. Results The results showed that BIA was larger in control group than in treatment group (p Conclusions ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.

  6. Analysis Of Brain Drain In Medium - sized And Small IT Enterprises%中小IT企业人才流失问题分析

    Institute of Scientific and Technical Information of China (English)

    张奎平

    2012-01-01

    人力资源问题已经严重制约中小型IT企业的发展,本文讨论了现阶段我国中小型IT企业人力资源管理中出现的人才流失问题,并提出了相应的应对策略。%Human resource problems have seriously restricted the development of medium - sized and small IT en- terprises. This paper discuses the problem of brain drain and puts forward relevant strategy.

  7. Evolution of sexual dimorphism in the digit ratio 2D:4D--relationships with body size and microhabitat use in iguanian lizards.

    Directory of Open Access Journals (Sweden)

    Camilla M Gomes

    Full Text Available The ratio between lengths of digit II and IV (digit ratio 2D:4D is a morphological feature that likely affects tetrapod locomotor performances in different microhabitats. Modifications of this trait may be triggered by changes in steroids concentrations during embryo development, which might reflect direct selection acting on digit ratio or be solely a consequence of hormonal differences related for example to body size. Here we apply both conventional and phylogenetic analyses on morphological data from 25 lizard species of 3 families of Iguania (Iguanidae, Polychrotidae, and Tropiduridae, in order to verify whether selective pressures related to locomotion in different microhabitats could override the prenatal developmental cues imposed on the digit ratio 2D:4D by differences in body size between males and females. Data suggest that this trait evolved in association with ecological divergence in the species studied, despite the clear effect of body size on the digit ratio 2D:4D. The ecological associations of size-corrected digit ratios were restricted to one sex, and females of species that often use perches exhibited small digit ratios in the front limbs, which translated into larger sexual dimorphism indexes of arboreal species. The results, together with the subsequent discussion, provide outlines for further investigation about possible developmental mechanisms related to the evolution of adaptive changes in digit lengths that may have occurred during the evolution of ecological divergence in squamates.

  8. Evolution of lifespan.

    Science.gov (United States)

    Neill, David

    2014-10-01

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution. PMID:24992233

  9. Neuroenergetics: How energy constraints shape brain function

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  10. Delivery of Liposomes with Different Sizes to Mice Brain after Sonication by Focused Ultrasound in the Presence of Microbubbles.

    Science.gov (United States)

    Shen, Yuanyuan; Guo, Jinxuan; Chen, Gaoshu; Chin, Chien Ting; Chen, Xin; Chen, Jian; Wang, Feng; Chen, Shiguo; Dan, Guo

    2016-07-01

    Imaging or therapeutic agents larger than the blood-brain barrier's (BBB) exclusion threshold of 400 Da could be delivered locally, non-invasively and reversibly by focused ultrasound (FUS) with circulating microbubbles. The size of agents is an important factor to the delivery outcome using this method. Liposomes are important drug carriers with controllable sizes in a range of nanometers. However, discrepancies among deliveries of intact liposomes with different sizes, especially those larger than 50 nm, across the BBB opened by FUS with microbubbles remain unexplored. In the present study, rhodamine-labeled long-circulating pegylated liposomes with diameters of 55 nm, 120 nm and 200 nm were delivered to mice brains after BBB disruption by pulsed FUS with microbubbles. Four groups of peak rarefactional pressure and microbubble dosages were used: 0.53 MPa with 0.1 μL/g (group 1), 0.53 MPa with 0.5 μL/g (group 2), 0.64 MPa with 0.1 μL/g (group 3) and 0.64 MPa with 0.5 μL/g (group 4). The delivery outcome was observed using fluorescence imaging of brain sections. It was found that the delivery of 55-nm liposomes showed higher success rates than 120-nm or 200-nm liposomes from groups 1-3. The result indicated that it may be more difficult to deliver larger liposomes (>120 nm) passively than 55-nm liposomes after BBB opening by FUS with microbubbles. The relative fluorescence area of 55-nm liposomes to the total area of the sonicated region was statistically larger than that of the 120-nm or 200-nm liposomes. Increasing peak rarefactional pressure amplitude or microbubble dose could induce more accumulation of liposomes in the brain using FUS with microbubbles. Moreover, the distribution pattern of delivered liposomes was heterogeneous and characterized by separated fluorescence spots with cloud-like periphery surrounding a bright center, indicating confined diffusion in the extracellular matrix after extravasation from the microvasculature. These

  11. Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, S. [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117 576 (Singapore); Sabat, R.K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Jayalakshmi, S. [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117 576 (Singapore); Suwas, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Gupta, M., E-mail: mpegm@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117 576 (Singapore)

    2013-10-25

    Highlights: •Mg-hybrid composites with micro-Ti and nano-SiC are developed. •Nano-SiC addition promoted localized DRX, and improved interfacial bonding. •Both Mg–5.6Ti and Mg–(5.6Ti + x-SiC){sub BM} composites showed similar texture. •The hybrid composites exhibited improved strength with retained ductility. •The best properties of strength and ductility were observed in Mg–(5.6Ti + 1.0SiC){sub BM}. -- Abstract: In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg–5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg–5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg–(5.6Ti + 1.0SiC){sub BM} hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg–5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg–(5.6Ti + 1.0SiC){sub BM} hybrid composites. The superior strength properties of the Mg–(5.6Ti + x-SiC){sub BM} hybrid composites when compared to Mg–5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.

  12. Body size as a primary determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes: Colubridae).

    Science.gov (United States)

    Pyron, R Alexander; Burbrink, F T

    2009-10-01

    Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species.

  13. Body size as a primary determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes: Colubridae).

    Science.gov (United States)

    Pyron, R Alexander; Burbrink, F T

    2009-10-01

    Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species. PMID:19702841

  14. Information processing in miniature brains

    OpenAIRE

    Chittka, L.; Skorupski, P.

    2011-01-01

    Since a comprehensive understanding of brain function and evolution in vertebrates is often hobbled by the sheer size of the nervous system, as well as ethical concerns, major research efforts have been made to understand the neural circuitry underpinning behaviour and cognition in invertebrates, and its costs and benefits under natural conditions. This special feature of Proceedings of the Royal Society B contains an idiosyncratic range of current research perspectives on neural underpinning...

  15. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling.

    Science.gov (United States)

    Gurnik, Stefanie; Devraj, Kavi; Macas, Jadranka; Yamaji, Maiko; Starke, Julia; Scholz, Alexander; Sommer, Kathleen; Di Tacchio, Mariangela; Vutukuri, Rajkumar; Beck, Heike; Mittelbronn, Michel; Foerch, Christian; Pfeilschifter, Waltraud; Liebner, Stefan; Peters, Kevin G; Plate, Karl H; Reiss, Yvonne

    2016-05-01

    The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema. PMID:26932603

  16. Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium

    International Nuclear Information System (INIS)

    The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite. - Highlights: • We examine combined Si and Mo additions on microalloy precipitation in austenite. • Precipitate size tends to decrease with increasing deformation steps. • Combined Si and Mo alloying additions increase the diffusivity of Nb in austenite

  17. Influence of Thermomechanical Control Process on the Evolution of Austenite Grain Size in a Low-Carbon Nb-Ti-Bearing Bainitic Steel

    Science.gov (United States)

    Chen, Jun; Lv, Meng-yang; Tang, Shuai; Liu, Zhen-yu; Wang, Guo-dong

    2015-10-01

    On the basis of hot rolling practice, the effects of thermomechanical control process parameters on the evolution of austenite grain size before the deformation at non-recrystallization zone were investigated in detail. The inflections in the strain hardening rate versus true stress curves show that the dynamic recrystallization (DRX) has initiated for different deformation conditions studied in the present work. But the volume fractions of the equiaxed grains in the specimens which were immediately water quenched to room temperature after deformation are different from each other. Moreover, the main refinement mechanisms for different deformation conditions have been differentiated. It is interesting to note that the austenite grain size can be refined significantly with increasing the strain from 0.0 to 0.5 for different deformation temperatures. However, when the strain increases to 0.8, the austenite grain size cannot be further refined for the higher deformation temperature range, while the austenite grain size can be further refined for the lower deformation temperature range. In addition, the effect of strain rate on the austenite grain refinement is vigorous for the higher deformation temperatures. Moreover, the empirical equation to estimate the austenite grain size for different deformation parameters was established.

  18. Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pavlina, Erik J., E-mail: e.pavlina@deakin.edu.au [Deakin University, Institute for Frontier Materials, 75 Pigdons Road, Waurn Ponds, Victoria (Australia); Van Tyne, C.J.; Speer, J.G. [Colorado School of Mines, Advanced Steel Processing and Products Research Center, 1500 Illinois Street, Golden, CO (United States)

    2015-04-15

    The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite. - Highlights: • We examine combined Si and Mo additions on microalloy precipitation in austenite. • Precipitate size tends to decrease with increasing deformation steps. • Combined Si and Mo alloying additions increase the diffusivity of Nb in austenite.

  19. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2015-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. PMID:25346264

  20. Evolution of the Sizes of Galaxies over 7

    CERN Document Server

    Ono, Yoshiaki; Curtis-Lake, Emma; Schenker, Matthew A; Ellis, Richard S; McLure, Ross J; Dunlop, James S; Robertson, Brant E; Koekemoer, Anton M; Bowler, Rebecca A A; Rogers, Alexander B; Schneider, Evan; Charlot, Stephane; Stark, Daniel P; Shimasaku, Kazuhiro; Furlanetto, Steven R; Cirasuolo, Michele

    2012-01-01

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z~7-12 using deep images from the UDF12 campaign, data which offers two distinct advantages over that used in earlier work. Firstly, we utilize the increased S/N ratio offered by the UDF12 imaging to provide improved size measurements for known galaxies at z=6.5-8 in the HUDF. Specifically, we stack the new deep F140W image with the existing F125W data in order to provide improved measurements of the half-light radii of z-dropouts. Similarly we stack this image with the new deep UDF12 F160W image to obtain new size measurements for a sample of Y-dropouts. Secondly, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z>8, we have been able to extend the measurement of average galaxy size out to significantly higher redshifts. Restricting our size measurements to sources which are now detected at >15sigma, we confirm earlier indications that the average hal...

  1. Temporal evolution of UV opacity and dust particle size at Gale Crater from MSL/REMS measurements

    Science.gov (United States)

    Vicente-Retortillo, Álvaro; Martinez, German; Renno, Nilton O.; Lemmon, Mark T.; Mason, Emily; De la Torre, Manuel

    2016-10-01

    A better characterization of the size, radiative properties and temporal variability of suspended dust in the Martian atmosphere is necessary to improve our understanding of the current climate of Mars. The REMS UV sensor onboard the Mars Science Laboratory (MSL) Curiosity rover has performed ground-based measurements of solar radiation in six different UV spectral bands for the first time on Mars.We developed a novel technique to retrieve dust opacity and particle size from REMS UV measurements. We use the electrical output current (TELRDR products) of the six photodiodes and the ancillary data (ADR products) to avoid inconsistencies found in the processed data (units of W/m2) when the solar zenith angle is above 30°. In addition, we use TELRDR and ADR data only in events during which the Sun is temporally blocked by the rover's masthead or mast to mitigate uncertainties associated to the degradation of the sensor due to the deposition of dust on it. Then we use a radiative transfer model with updated dust properties based on the Monte-Carlo method to retrieve the dust opacity and particle size.We find that the seasonal trend of UV opacity is consistent with opacity values at 880 nm derived from Mastcam images of the Sun, with annual maximum values in spring and in summer and minimum values in winter. The interannual variability is low, with two local maxima in mid-spring and mid-summer. Finally, dust particle size also varies throughout the year with typical values of the effective radius in the range between 0.5 and 2 μm. These variations in particle size occur in a similar way to those in dust opacity; the smallest sizes are found when the opacity values are the lowest.

  2. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  3. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  4. Mechanical Behaviour and Microstructure Evolution of Superplastic Mg-8.4 wt pct Li Alloy and Effect of Grain Size and Phase Ratio on Its Elongation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mechanical properties and microstructure evolution of Mg-8.4 wt pct Li alloy have been investigated. The superplastic elongation-to-failure 920% at 573 K and initial strain rate of 5×10-4 s-1at low nominal stress 2 MPa has been demonstrated. It was shown through optical microstructure that the average grain sizes at gauge length section before and after superpiastic tension and at grip section were 7.5μm, 31.7μm and 20μm respectively, indicating significant deformation induced grain growth and static grain growth. Comparison of experiment data with published data for superplastic Mg-Li alloys shows that fine grain size and about 50 to 50 phase ratio contribute to achieving the largest superplasticity. Some related research works in other alloys are compiled and further evidences to such theoretic argument are provided.

  5. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin.

    Science.gov (United States)

    Dediu, Dan; Ladd, D Robert

    2007-06-26

    The correlations between interpopulation genetic and linguistic diversities are mostly noncausal (spurious), being due to historical processes and geographical factors that shape them in similar ways. Studies of such correlations usually consider allele frequencies and linguistic groupings (dialects, languages, linguistic families or phyla), sometimes controlling for geographic, topographic, or ecological factors. Here, we consider the relation between allele frequencies and linguistic typological features. Specifically, we focus on the derived haplogroups of the brain growth and development-related genes ASPM and Microcephalin, which show signs of natural selection and a marked geographic structure, and on linguistic tone, the use of voice pitch to convey lexical or grammatical distinctions. We hypothesize that there is a relationship between the population frequency of these two alleles and the presence of linguistic tone and test this hypothesis relative to a large database (983 alleles and 26 linguistic features in 49 populations), showing that it is not due to the usual explanatory factors represented by geography and history. The relationship between genetic and linguistic diversity in this case may be causal: certain alleles can bias language acquisition or processing and thereby influence the trajectory of language change through iterated cultural transmission.

  6. Pride diaries: sex, brain size and sociality in the African lion (Panthera leo) and cougar (Puma concolor).

    Science.gov (United States)

    Arsznov, Bradley M; Sakai, Sharleen T

    2012-01-01

    The purpose of this study was to examine if differences in social life histories correspond to intraspecific variation in total or regional brain volumes in the African lion (Panthera leo) and cougar (Puma concolor). African lions live in gregarious prides usually consisting of related adult females, their dependent offspring, and a coalition of immigrant males. Upon reaching maturity, male lions enter a nomadic and often, solitary phase in their lives, whereas females are mainly philopatric and highly social throughout their lives. In contrast, the social life history does not differ between male and female cougars; both are solitary. Three-dimensional virtual endocasts were created using computed tomography from the skulls of 14 adult African lions (8 male, 6 female) and 14 cougars (7 male, 7 female). Endocranial volume and basal skull length were highly correlated in African lions (r = 0.59, p lions or cougars. However, relative anterior cerebrum volume comprised primarily of frontal cortex and surface area was significantly greater in female African lions than males, while relative posterior cerebrum volume and surface area was greater in males than females. These differences were specific to the neocortex and were not found in the solitary cougar, suggesting that social life history is linked to sex-specific neocortical patterns in these species. We further hypothesize that increased frontal cortical volume in female lions is related to the need for greater inhibitory control in the presence of a dominant male aggressor.

  7. The evolution of a brain abscess the complementary roles of radionuclide (RN) and computed tomography (CT) scans

    International Nuclear Information System (INIS)

    Serial /sup 99m/Tc glucoheptonate brain scans demonstrated a brain abscess in a patient from the earliest phase of acute focal encephalitis (cerebritis) through the capsule formation and the recovery phase. The role of the RN and CT scans in the diagnosis of the early stage of cerebritis and the complementary nature of RN and CT scans in intracranial infections, particularly abscesses, are discussed. Guidelines for the use of RN and CT scans are suggested

  8. The evolution of a brain abscess the complementary roles of radionuclide (RN) and computed tomography (CT) scans

    Energy Technology Data Exchange (ETDEWEB)

    Masucci, E.F.; Sauerbrunn, B.J.

    1982-04-01

    Serial /sup 99m/Tc glucoheptonate brain scans demonstrated a brain abscess in a patient from the earliest phase of acute focal encephalitis (cerebritis) through the capsule formation and the recovery phase. The role of the RN and CT scans in the diagnosis of the early stage of cerebritis and the complementary nature of RN and CT scans in intracranial infections, particularly abscesses, are discussed. Guidelines for the use of RN and CT scans are suggested.

  9. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in Angiosperms

    Directory of Open Access Journals (Sweden)

    Conchita eAlonso

    2015-01-01

    Full Text Available DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value. Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis and 39.2% (Narcissus. Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

  10. Size and Fraction of Active Surface Area of Some Jupiter Family Comets: Implications with Respect to their Physical Evolution

    Directory of Open Access Journals (Sweden)

    Julio A. Fernández

    2001-01-01

    Full Text Available We analyze the sample of measured nuclear magnitudes of the observed Jupiter Family comets (taken as those with orbital periods P 2 to derive sizes of comet nuclei, fraction of active surface areas, as well as to try to gain insight about their physical lifetimes and end states.

  11. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    Science.gov (United States)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Haussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  12. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since $z=3$

    CERN Document Server

    van der Wel, A; van Dokkum, P G; Skelton, R E; Momcheva, I G; Whitaker, K E; Brammer, G B; Bell, E F; Rix, H -W; Wuyts, S; Ferguson, H C; Holden, B P; Barro, G; Koekemoer, A M; Chang, Yu-Yen; McGrath, E J; Haussler, B; Dekel, A; Behroozi, P; Fumagalli, M; Leja, J; Lundgren, B F; Maseda, M V; Nelson, E J; Wake, D A; Patel, S G; Labbe, I; Faber, S M; Grogin, N A; Kocevski, D D

    2014-01-01

    Spectroscopic + photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range $03\\times 10^{9}~M_{\\odot}$, and steep, $R_{\\rm{eff}}\\propto M_*^{0.75}$, for early-type galaxies with stellar mass $>2\\times 10^{10}~M_{\\odot}$. The intrinsic scatter is $\\lesssim$0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive ($\\sim 10^{11}~M_{\\odot}$), compact ($R_{\\rm{eff}} < 2$kpc) early-type galaxies increases from $z=3$ to $z=1.5-2$ and then strongly decreases at later cosmic times.

  13. CrystalMoM: a tool for modeling the evolution of Crystals Size Distributions in magmas with the Method of Moments

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia

    2016-04-01

    It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how

  14. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers.

    Science.gov (United States)

    Laska, Matthias; Genzel, Daria; Wieser, Alexandra

    2005-02-01

    The ability of four squirrel monkeys and three pigtail macaques to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was investigated in terms of a conditioning paradigm. All animals from both species were able to discriminate between the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveole and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaaldehyde and limonene oxide. The pigtail macaques, but not the squirrel monkeys, also discriminated between the antipodes of perillaalcohol and isopulegol. A comparison of the across-task patterns of discrimination performance shows a high degree of similarity among the two primate species and also between these nonhuman primates and human subjects tested in an earlier study on the same tasks. These findings suggest that between-species comparisons of the relative size of olfactory brain structures or of the number of functional olfactory receptor genes are poor predictors of olfactory discrimination performance with enantiomers. PMID:15703336

  15. X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering

    International Nuclear Information System (INIS)

    Nanosized cobalt ferrite spinel particles have been prepared by using mechanically alloyed nanoparticles. The effects of various preparation parameters on the crystallite size of cobalt ferrite which includes milling time; ball-to powder weight ratio (BPR) and sintering temperature, were studied using X-ray diffractometer (XRD). Scherrer's equation was used to study the crystallite size evolution of the as-prepared materials. The results of the as-milled sample revealed that both milling time and BPR plays a role in determining the crystallite size of the milled powder. However, where sintering is involved, the sintering temperature results in grain growth, and thus plays a dominant role in determining the final crystallite size of the samples sintered at higher temperature (above 900 deg. C). From the vibrating-sample magnetometer (VSM) measurement it was observed that the coercivity of the as-milled samples without sintering is almost negligible, which is a type characteristic of superparamagnetic material. However, for the sintered samples, the saturation increases while coercivity decreases with increases sintering temperature.

  16. Variations on a theme - the evolution of hydrocarbon solids: III. Size-dependent properties - the optEC(s)(a) model

    CERN Document Server

    Jones, A P

    2015-01-01

    Context. The properties of hydrogenated amorphous carbon (a-C:H) dust evolve in response to the local radiation field in the interstellar medium and the evolution of these properties is particularly dependent upon the particle size. Aims. A model for finite-sized, low-temperature amorphous hydrocarbon particles, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, with surfaces passivated by hydrogen atoms, has been developed. Methods. The eRCN/DG and the optEC(s) models have been combined, adapted and extended into a new optEC(s)(a) model that is used to calculate the optical properties of hydrocarbon grain materials down into the sub-nanometre size regime, where the particles contain only a few tens of carbon atoms. Results. The optEC(s)(a) model predicts a continuity in properties from large to small (sub-nm) carbonaceous grains. Tabulated data of the size-dependent optical constants (from EUV to cm wavelengths) for a-C:H (nano-)particles as a function of the ...

  17. EVOLUTION OF INNOVATION ACTIVITY IN THE CONTEXT OF SIZE OF ENTERPRISES IN WEST POMERANIAN PROVINCE – SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Arkadiusz Świadek

    2015-09-01

    Full Text Available In transitions countries firms’ size and equity property flown on economy processes, including innovation activity in industry. Driven researches show that the key to accelerate economy development is a technology transfer from foreign countries. Implementing of new solutions depends on medium and large organizations, rather than micro and small. Traditional micro and small regional enterprises feature a low level of taking up risks capability. An innovation activity in industry systems grows up during a time flow, but only in a small domestic enterprises, and it’s similar to their foreign and larger competitors. This paper discusses the problems of size and equity own of enterprises for innovation activity in regional industry systems in West Pomeranian province in the period 2004-2006 and 2009-2011.

  18. Evolution of specific antigen recognition: size reduction and restricted length distribution of the CDRH3 regions in the rainbow trout.

    Science.gov (United States)

    Roman, T; De Guerra, A; Charlemagne, J

    1995-01-01

    The immunoglobulin heavy chain repertoire in fish was investigated by cloning a total of 88 rearranged VDJ junctions from the head kidney B cell mRNA of a salmonid, the rainbow trout (Oncorhynchus mykiss). Trout DH segments are short and cannot be classified into independent DH families. Several of the ten identified putative DH segments had stretches of nucleotide sequence identity with mouse (DQ52, DFL 16.2 and Dsp 2.1), human (DM1) and chicken (DH4) DH. There was a clear preference for one or two of the three putative DH reading frames and a stop codon is often present in the less used reading frame. Four of the six JH segments are preferentially used, and analysis of the VH-DH and DH-JH junctions suggest the presence of N-nucleotides. The absolute size and size heterogeneity of the rainbow trout CDRH3 are smaller than those of the Xenopus, mouse and human CDRH3. About 75% of the 84 in-frame trout CDRH3 have 8, 9 or 10 residues and none of them have more than 11 residues. This homogeneization of the CDRH3 loop size may partly explain the restricted antibody diversity in lower vertebrates. PMID:7843242

  19. The Role of Quenching Time in the Evolution of the Mass–size Relation of Passive Galaxies from the Wisp Survey

    Science.gov (United States)

    Zanella, A.; Scarlata, C.; Corsini, E. M.; Bedregal, A. G.; Dalla Bontà, E.; Atek, H.; Bunker, A. J.; . Colbert, J.; Dai, Y. S.; Henry, A.; Malkan, M.; Martin, C.; Rafelski, M.; Rutkowski, M. J.; Siana, B.; Teplitz, H.

    2016-06-01

    We analyze how passive galaxies at z ∼ 1.5 populate the mass–size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 ≲ z ≲ 2.05, specific star formation rates lower than 0.01 Gyr‑1, and stellar masses above 4.5 × 1010 M ⊙. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age ≤2.1 Gyr) and old (age >2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and that predicted by the mass–size relation. This result indicates that the relation between the galaxy age and its distance from the mass–size relation, if it exists, is rather shallow, with a slope α ≳ ‑0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass–size relation in passive galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  20. Grain-size records at ODP Site 1146 from the northern South China Sea: Implications on the East Asian monsoon evolution since 20 Ma

    Institute of Scientific and Technical Information of China (English)

    WAN; ShiMing; LI; AnChun; Jan-Berend; W.; STUUT; XU; FangJian

    2007-01-01

    273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian monsoon since about 20 Ma. 10-19 μm/1.3-2.4 μm, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.

  1. Evolution of the U.S. energy service company industry: Market size and project performance from 1990–2008

    International Nuclear Information System (INIS)

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a “top-down” approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a “bottom-up” analysis of a database of ∼3250 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of a severe economic recession, the U.S. ESCO industry managed to grow at about 7% per year between 2006 and 2008. ESCO industry revenues were about $4.1 billion in 2008 and ESCOs anticipate accelerated growth through 2011 (25% per year). We found that 2484 ESCO projects in our database generated ∼$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20% of all U.S. ESCO market activity from 1990–2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated ∼$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. There is empirical evidence confirming that the industry is evolving by installing more comprehensive and complex measures—including onsite generation and measures to address deferred maintenance—but this evolution has significant implications for customer project economics

  2. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-08

    investment. There is empirical evidence confirming that the industry is responding to customer demand by installing more comprehensive and complex measures—including onsite generation and measures to address deferred maintenance—but this evolution has significant implications for customer project economics, especially at K-12 schools. We found that the median simple payback time has increased from 1.9 to 3.2 years in private sector projects since the early-to-mid 1990s and from 5.2 to 10.5 years in public sector projects for the same time period.

  3. Facile synthesis of Au-Pd core-shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination.

    Science.gov (United States)

    Chiu, Chun-Ya; Yang, Min-Yi; Lin, Fan-Cheng; Huang, Jer-Shing; Huang, Michael H

    2014-07-01

    A facile synthetic method has been developed for the formation of Au-Pd core-shell nanocrystals in aqueous solution in just 0.5-2 h at 50 °C with systematic shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures using octahedral gold cores. By adjusting the amounts of H2PdCl4, ascorbic acid, and sometimes surfactants and gold cores added, the particle morphology can be finely tuned, and Pd shells with ultrathin thicknesses have been achieved. Gold cores of three different sizes (35, 45, and 74 nm in opposite corner distance) were used to obtain a full range of particle sizes and shapes for a most complete examination of their plasmonic properties. Visual observations made during particle synthesis reveal that Au-Pd cubes are formed at a faster rate than that for the growth of octahedra. For the smaller cubes, cuboctahedra, and truncated octahedra prepared using 35 and 45 nm gold cores, the surface plasmon resonance (SPR) absorption band from the gold cores can be seen only when the Pd shell thickness is just 1 nm at the thinnest points of the particles. For small-sized Au-Pd octahedra, this band is observable at a Pd shell thickness of around 5 nm. For larger Au-Pd nanocrystals synthesized from 74 nm gold cores, the Au SPR band is more recognizable for all particle shapes, although octahedra still exhibit the most obvious band. The band shifts slightly to the red going from cubes to octahedra. Simulation spectra have been performed, and they roughly match with the experimental spectra. Au-Pd octahedra with two different core sizes and shell thicknesses have been used for hydrogen sensing by comparing their UV-vis spectra before and after hydrogen incorporation forming PdH. The results show that the shell thickness is more important in producing a larger spectral red-shift after hydrogen absorption.

  4. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  5. RM-06IN VITRO CLONAL EVOLUTION OF GLIOBLASTOMA (GBM) BRAIN TUMOUR INITIATING CELLS (BTIC) TO MODEL TUMOUR RECURRENCE

    OpenAIRE

    Qazi, Maleeha; Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Hallett, Robin; Singh, Sheila

    2014-01-01

    Glioblastoma (GBM) is the most common and highly aggressive primary adult brain tumour. Despite multimodal therapy, patients on average experience relapse at 9 months and median survival rarely extends beyond 15 months. Targeting the cells that drive GBM formation as well as its inevitable and rapid recurrence has remained a major challenge, likely due to intra-tumoral heterogeneity. At the genetic level, this heterogeneity has prompted a molecular classification of GBM based on differential ...

  6. Two possible driving forces supporting the evolution of animal communication. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Moulin-Frier, Clément; Verschure, Paul F. M. J.

    2016-03-01

    In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.

  7. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    Science.gov (United States)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2008-03-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.

  8. Interspecific allometry of the brain and brain regions in parrots (psittaciformes): comparisons with other birds and primates.

    Science.gov (United States)

    Iwaniuk, Andrew N; Dean, Karen M; Nelson, John E

    2005-01-01

    Despite significant progress in understanding the evolution of the mammalian brain, relatively little is known of the patterns of evolutionary change in the avian brain. In particular, statements regarding which avian taxa have relatively larger brains and brain regions are based on small sample sizes and statistical analyses are generally lacking. We tested whether psittaciforms (parrots, cockatoos and lorikeets) have larger brains and forebrains than other birds using both conventional and phylogenetically based methods. In addition, we compared the psittaciforms to primates to determine if cognitive similarities between the two groups were reflected by similarities in brain and telencephalic volumes. Overall, psittaciforms have relatively larger brains and telencephala than most other non-passerine orders. No significant difference in relative brain or telencephalic volume was detected between psittaciforms and passerines. Comparisons of other brain region sizes between psittaciforms and other birds, however, exhibited conflicting results depending upon whether body mass or a brain volume remainder (total brain volume - brain region volume) was used as a scaling variable. When compared to primates, psittaciforms possessed similar relative brain and telencephalic volumes. The only exception to this was that in some analyses psittaciforms had significantly larger telencephala than primates of similar brain volume. The results therefore provide empirical evidence for previous claims that psittaciforms possess relatively large brains and telencephala. Despite the variability in the results, it is clear that psittaciforms tend to possess large brains and telencephala relative to non-passerines and are similar to primates in this regard. Although it could be suggested that this reflects the advanced cognitive abilities of psittaciforms, similar studies performed in corvids and other avian taxa will be required before this claim can be made with any certainty.

  9. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development : deductions from amphioxus gene expression

    OpenAIRE

    Butts, Thomas; Holland, Peter W. H.; Ferrier, David Ellard Keith

    2010-01-01

    Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus de...

  10. Computational prediction and experimental characterization of a "size switch type repacking" during the evolution of dengue envelope protein domain III (ED3).

    Science.gov (United States)

    Elahi, Montasir; Islam, Monirul M; Noguchi, Keiichi; Yohda, Masafumi; Toh, Hiroyuki; Kuroda, Yutaka

    2014-03-01

    Dengue viruses (DEN) are classified into four serotypes (DEN1-DEN4) exhibiting high sequence and structural similarities, and infections by multiple serotypes can lead to the deadly dengue hemorrhagic fever. Here, we aim at characterizing the thermodynamic stability of DEN envelope protein domain III (ED3) during its evolution, and we report a structural analysis of DEN4wt ED3 combined with a systematic mutational analysis of residues 310 and 387. Molecular modeling based on our DEN3 and DEN4 ED3 structures indicated that the side-chains of residues 310/387, which are Val(310)/Ile(387) and Met(310)/Leu(387) in DEN3wt and DEN4wt, respectively, could be structurally compensated, and that a "size switch type repacking" might have occurred at these sites during the evolution of DEN into its four serotypes. This was experimentally confirmed by a 10°C and 5°C decrease in the thermal stability of, respectively, DEN3 ED3 variants with Met(310)/Ile(387) and Val(310)/Leu(387), whereas the variant with Met(310)/Leu(387), which contains a double mutation, had the same stability as the wild type DEN3. Namely, the Met310Val mutation should have preceded the Leu387Ile mutation in order to maintain the tight internal packing of ED3 and thus its thermodynamic stability. This view was confirmed by a phylogenetic reconstruction indicating that a common DEN ancestor would have Met(310)/Leu(387), and the intermediate node protein, Val(310)/Leu(387), which then mutated to the Val(310)/Ile(387) pair found in the present DEN3. The hypothesis was further confirmed by the observation that all of the present DEN viruses exhibit only stabilizing amino acid pairs at the 310/387 sites.

  11. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    Science.gov (United States)

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. PMID:27216606

  12. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    Science.gov (United States)

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology.

  13. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner.

    Directory of Open Access Journals (Sweden)

    Alberto Jiménez-Maldonado

    Full Text Available BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C; moderate- intensity training (MIT; MIT plus K252A TrkB blocker (MITK; high-intensity training (HIT; and HIT plus K252a (HITK. Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay, glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured. PRINCIPAL FINDINGS: Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner. CONCLUSIONS/SIGNIFICANCE: Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.

  14. ENVIRONMENTAL EVOLUTION OF ORDOS DESERT IN CHINA SINCE 1.1MA B. P. AS INDICATED BY YULIN STRATIGRAPHICAL SECTION AND ITS GRAIN-SIZE ANALYSIS RESULTS

    Institute of Scientific and Technical Information of China (English)

    LI Bao-sheng; GAO Shang-yu; DONG Guang-rong; JIN He-ling

    2005-01-01

    Yulin section is a typical sedimentary record for reflecting the environmental evolution of OrdosDesert, China in the past 1.1Ma. By analyzing its sequence and grain-size composition some views have been put for-ward in this paper as follows. The layers of sand, loess and palaeosol in Yulin section were respectively formed bywind and the pedogenesis on parent material of the sand and loess. Since 1.1Ma B. P., Ordos Desert has alternately ex-perienced 11 stages of shifting dunes under extreme cold-dry climatic environment, 7 stages of fixed and semi-fixeddunes and 8 stages of dust (loess) under cold-dry climatic condition; and the pedogenesis environment under 15 timesof warm-humid climate and 3 times of temperate-humid climate (brownish-drab soils and black soils formed respec-tively). The aeolian sand had already existed in Ordos Desert at latest by 1.1Ma B. P., and from that time on it has un-dergone a series of alternative processes of shifting sands, fixed and semi-fixed dunes, loess and soils. Ordos Deserthas been situated in the transitional belt of the Mongolian High Pressure and margin of the southeast summer mon-soon since 1.1Ma B. P., and influenced repeatedly by migration of the lithofacies belts of shifting sands, fixed andsemi-fixed dunes, loess and soils, which have been caused by the climatic fluctuations of glacial and interglacial periods.

  15. Preparation and stress evolution of sol-gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals

    Science.gov (United States)

    Tian, Bingtao; Wang, Xiaodong; Niu, Yanyan; Zhang, Jinlong; Zhang, Qinghua; Zhang, Zhihua; Wu, Guangming; Zhou, Bin; Shen, Jun

    2016-04-01

    Lithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a "point contact" dip-coating method is developed to prepare sol-gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol-gel SiO2 coatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young's modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO2 coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.

  16. Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals

    Directory of Open Access Journals (Sweden)

    Bingtao Tian

    2016-04-01

    Full Text Available Lithium triborate (LiB3O5, LBO crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol–gel SiO2 coatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young’s modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO2 coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns and the coated LBO is expected to have a transmittance of over 99% at 800 nm.

  17. Specific retention of the protostome-specific PsGEF may parallel with the evolution of mushroom bodies in insect and lophotrochozoan brains

    Directory of Open Access Journals (Sweden)

    Kohno Keigo

    2009-05-01

    Full Text Available Abstract Background Gene gain and subsequent retention or loss during evolution may be one of the underlying mechanisms involved in generating the diversity of metazoan nervous systems. However, the causal relationships acting therein have not been studied extensively. Results We identified the gene PsGEF (protostome-specific GEF, which is present in all the sequenced genomes of insects and limpet but absent in those of sea anemones, deuterostomes, and nematodes. In Drosophila melanogaster, PsGEF encodes a short version of a protein with the C2 and PDZ domains, as well as a long version with the C2, PDZ, and RhoGEF domains through alternative splicing. Intriguingly, the exons encoding the RhoGEF domain are specifically deleted in the Daphnia pulex genome, suggesting that Daphnia PsGEF contains only the C2 and PDZ domains. Thus, the distribution of PsGEF containing the C2, PDZ, and RhoGEF domains among metazoans appears to coincide with the presence of mushroom bodies. Mushroom bodies are prominent neuropils involved in the processing of multiple sensory inputs as well as associative learning in the insect, platyhelminth, and annelid brains. In the adult Drosophila brain, PsGEF is expressed in mushroom bodies, antennal lobe, and optic lobe, where it is necessary for the correct axon branch formation of alpha/beta neurons in mushroom bodies. PsGEF genetically interacts with Rac1 but not other Rho family members, and the RhoGEF domain of PsGEF induces actin polymerization in the membrane, thus resulting in the membrane ruffling that is observed in cultured cells with activated forms of Rac. Conclusion The specific acquisition of PsGEF by the last common ancestor of protostomes followed by its retention or loss in specific animal species during evolution demonstrates that there are some structural and/or functional features common between insect and lophotrochozoan nervous systems (for example, mushroom bodies, which are absent in all deuterostomes

  18. The Songbird Neurogenomics (SoNG Initiative: Community-based tools and strategies for study of brain gene function and evolution

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2008-03-01

    coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.

  19. Evolution of science I: Evolution of Mind

    OpenAIRE

    Vahia, M. N.

    2016-01-01

    The central nervous system and particularly the brain was designed to control the life cycle of a living being. With increasing size and sophistication, in mammals, the brain became capable of exercising significant control over life. In Homo Sapiens the brain became significantly powerful and capable of comprehension beyond survival needs with visualisation, formal thought and long term memory. Here we trace the rise of the powers of the brains of the Homo Sapiens and its capability of three...

  20. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  1. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    Science.gov (United States)

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  2. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals

    OpenAIRE

    Richard C Connor

    2007-01-01

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission–fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2–3 levels of shifting alliances. Males mediate alliance relatio...

  3. Spontaneous evolution of an unusual cortical malformation in SOX2 anophthalmia syndrome

    Directory of Open Access Journals (Sweden)

    Jay Desai

    2013-01-01

    Full Text Available Brain malformations such as agenesis and dysgenesis of corpus callosum, pituitary hypoplasia, hypothalamic hamartoma, mesial temporal periventricular heterotopia, and abnormally oriented and misshapen hippocampi have been described with SOX2 gene mutations. A neocortical malformation is presented here in association with SOX2 deletion that over time underwent spontaneous evolution and decrease in size.

  4. Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner

    OpenAIRE

    Alberto Jiménez-Maldonado; Elena Roces de Álvarez-Buylla; Sergio Montero; Valery Melnikov; Elena Castro-Rodríguez; Armando Gamboa-Domínguez; Alejandrina Rodríguez-Hernández; Mónica Lemus; Jesús Muñiz Murguía

    2014-01-01

    BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); ...

  5. Maternal-fetal unit interactions and eutherian neocortical development and evolution

    Science.gov (United States)

    Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel

    2013-01-01

    The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189

  6. Cellular scaling rules for primate brains

    OpenAIRE

    Herculano-Houzel, Suzana; Collins, Christine E.; Wong, Peiyan; Kaas, Jon H.

    2007-01-01

    Primates are usually found to have richer behavioral repertoires and better cognitive abilities than rodents of similar brain size. This finding raises the possibility that primate brains differ from rodent brains in their cellular composition. Here we examine the cellular scaling rules for primate brains and show that brain size increases approximately isometrically as a function of cell numbers, such that an 11× larger brain is built with 10× more neurons and ≈12× more nonneuronal cells of ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  8. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  10. Metabolic costs and evolutionary implications of human brain development.

    Science.gov (United States)

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  11. A developmental approach to homology and brain evolution Un enfoque embriológico a la homología y la evolución cerebral

    Directory of Open Access Journals (Sweden)

    FRANCISCO ABOITIZ

    2010-12-01

    Full Text Available Although homology is central to evolutionary interpretations, establishing it has become a highly disputed issue in some instances. Here I argüe for a developmental understanding of evolution, where modifications of the developmental programs are a key source of evolutionary novelty. Although this perspective is not new, in comparative neurobiology it has remained controversial. Specifically, the evolutionary origin of the mammalian neocortex has been a particularly debated point. I propose a perspective that could help reconcile a long standing controversy: either the mammalian neocortex corresponds as a whole to the dorsal hemisphere of reptiles and birds, or alternatively its lateral aspect corresponds to the lateral cerebral hemisphere and is partly homologous to the dorsal ventricular ridge (DVR, a brain mass that receives the bulk of sensory input in reptiles and birds. Genetic and embryonic evidence strongly favor a dorsal origin for the whole neocortex, while the DVR derives from the lateral hemisphere. Nevertheless, the phylogenetically new elements of both the neocortex and the avian DVR derive largely from intermediate progenitor cells located in the embryonic subventricular zone (SVZ, a zone of late proliferating activity located deep to the ventral, the lateral and the dorsal hemisphere. I suggest that, despite originating in different embryonic regions (lateral vs. dorsal hemisphere, the evolutionary new cellular elements in both the avian brain and in the mammalian neocortex derive from the activation of a similar genetic pathway, possibly activated by the gene Pax-6, that induces the late proliferation of embryonic neural progenitors. This pathway can be ancestral to amniotes, reflecting genetic homology. In mammals and birds independently, this precursor proliferative activity differentiated into an SVZ, recruiting neuronal precursors from different parts of the cerebral hemisphere in each group, to contribute to brain

  12. Evolution of enlarged body size of coal tits Parus ater in geographic isolation from two larger competitors, the crested tit Parus cristatus and the willow tit Parus montanus, on six Scandinavian islands

    Directory of Open Access Journals (Sweden)

    R. Åke Norberg

    2015-11-01

    Full Text Available Here, we report that on six widely separated Scandinavian islands, the coal tit Parus ater has evolved morphologically in the direction of two absent competitors, the crested tit P. cristatus and the willow tit P. montanus, to the effect that it is up to 10% larger in linear dimensions than conspecifics on the adjacent Swedish mainland, where all three species coexist. The large size is genetically determined, as ascertained by clutch exchange experiments between island and mainland nests. We conclude that the increased size of P. ater in places where it is geographically isolated from its larger congeners is the result of evolutionary adaptation, due ultimately to relaxed interspecific competition. On the islands, P. ater has evolved into a medium-sized generalist, with selection pressures likely governed by the following causal relationships. When competitors are lacking, P. ater takes over the foraging space of the absentees. The enlarged food base allows higher population densities, which intensifies intraspecific interference competition. This, in turn, selects for increased body size. When P. ater coexists with its larger congeners, it occupies peripheral foraging sites in trees, which requires excellent manoeuvrability and energy-expensive locomotion modes. Reduction of body size increases locomotor capacity for mechanical and aerodynamic reasons and lowers energy consumption, so small size is favoured in sympatry. But in geographic isolation, P. ater exploits the tree periphery less and the inner tree regions more, and it also adopts the easier locomotion modes of the absent species. Therefore, selection for manoeuvrability and a small body size is relaxed. The new selection regime shifts the balance between opposing selection forces towards a larger body size. We were able to test 11 alternative hypotheses and available evidence conclusively eliminates them all. As a result, here, evolution could be predicted regarding both direction

  13. Evolution of enlarged body size of coal tits Parus ater in geographic isolation from two larger competitors, the crested tit Parus cristatus and the willow tit Parus montanus, on six Scandinavian islands.

    Science.gov (United States)

    Norberg, R Åke; Lindhe Norberg, Ulla M

    2015-10-21

    Here, we report that on six widely separated Scandinavian islands, the coal tit Parus ater has evolved morphologically in the direction of two absent competitors, the crested tit P. cristatus and the willow tit P. montanus, to the effect that it is up to 10% larger in linear dimensions than conspecifics on the adjacent Swedish mainland, where all three species coexist. The large size is genetically determined, as ascertained by clutch exchange experiments between island and mainland nests. We conclude that the increased size of P. ater in places where it is geographically isolated from its larger congeners is the result of evolutionary adaptation, due ultimately to relaxed interspecific competition. On the islands, P. ater has evolved into a medium-sized generalist, with selection pressures likely governed by the following causal relationships. When competitors are lacking, P. ater takes over the foraging space of the absentees. The enlarged food base allows higher population densities, which intensifies intraspecific interference competition. This, in turn, selects for increased body size. When P. ater coexists with its larger congeners, it occupies peripheral foraging sites in trees, which requires excellent manoeuvrability and energy-expensive locomotion modes. Reduction of body size increases locomotor capacity for mechanical and aerodynamic reasons and lowers energy consumption, so small size is favoured in sympatry. But in geographic isolation, P. ater exploits the tree periphery less and the inner tree regions more, and it also adopts the easier locomotion modes of the absent species. Therefore, selection for manoeuvrability and a small body size is relaxed. The new selection regime shifts the balance between opposing selection forces towards a larger body size. We were able to test 11 alternative hypotheses and available evidence conclusively eliminates them all. As a result, here, evolution could be predicted regarding both direction and amount of change.

  14. Stacking fault energy (s.f.e.) and grain size effects (d) on the tensile behaviour of f.c.c. polycrystalline alloys at 300 K: back stress and effective stress evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Haddou, H.; Gaudin, C. [Universite de Technologie de Compiegne (France). Lab. Roberval; Feaugas, X. [Universite de Technologie de Compiegne (France). Lab. Roberval; LEMMA, Univ. de La Rochelle (France)

    2001-09-01

    The aim of this work is to provide experimental results to understand grain size and stacking fault energy effects ({gamma}/{mu}b) on tensile hardening f.c.c. alloys. The hardening rate is discussed in terms of back stress (X) and effective stress ({sigma}{sub ef}) evolutions. Irrespective of the material studied, tensile hardening behaviour before necking is divided into three stages (I, II, and III). These stages were previously discussed using qualitative and semi-quantitative TEM observations [1]. In particular, we have shown that intergranular back stress evolution relates the hardening rate in stage I, where single and planar slip are observed in most of the grains. In the other stages, latent hardening and intragranular back stress are the main parts of the hardening rate in relation with the formation of heterogeneous dislocation structures. An increase of grain size and/or a decrease of stacking fault energy favour planar slip and then stage I, in terms of plastic strain. The transition between stage II and stage III seems to be less dependent on grain sizes irrespectively of s.f.e. The classical Hall-Petch relation is discussed in terms of back and effective stresses for different plastic strain levels. If these two components verify the Hall-Petch relation, however, effective stress is less dependent on grain size than back stress. This last dependence increases in stage I, where intergranular back stress is the main part of hardening and decreases in the other stages where this component decreases and intragranular back stress increases. The grain size effect on effective stress is well explained in terms of mean length path using dislocation modelling. (orig.)

  15. Psychological differences between influence of temperament with the hemishere asymmetry of a brain on size of sensorymotor reactions of male and female cosmonauts

    Science.gov (United States)

    Prisniakova, Lyudmila; Prisniakov, Volodymyr; Volkov, D. S.

    The purpose of research was definition and comparison of relative parameters of sensorimotor reactions with a choice depending on a level of lateral asymmetry of hemispheres of a brain at representatives of various types of temperament OF male and female cosmonauts . These parameters were by the bases for verification of theoretical dependence for the latent period of reaction in conditions of weightlessness and overloads. The hypothesis about influence of functional asymmetry on parameters of psychomotor in sensory-motor reactions was laid in a basis of experiment. Techniques of definition of individual characters of the sensori-motor asymmetries were used, and G. Ajzenk's questionnaire EPQ adapted by Prisniakova L. Time of sensorimotor reaction has significant distinctions between representatives of different types of temperament with a various level interchemishere asymmetry OF male and female cosmonauts. With increase in expressiveness of the right hemisphere time of reaction tends to reduction at representatives of all types of temperament, the number of erroneous reactions as a whole increases also a level of achievement tends to reduction. Results of time of sensorimotor reaction correspond with parameter L. Prisniakova which characterizes individual - psychological features. .Earlier the received experimental data of constant time of processing of the information in memory at a period of a sensorimotor reactions of the man and new results for women were used for calculation of these time constants for overloads distinct from terrestrial. These data enable to predict dynamics of behavior of cosmonauts with differing sex in conditions of flight in view of their individual characteristics connected with the hemisphere asymmetry of a brain and with by a various degree of lateralization.

  16. Expensive brains: ‘brainy’ rodents have higher metabolic rate

    Directory of Open Access Journals (Sweden)

    Raúl eSobrero

    2011-07-01

    Full Text Available Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006. Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species body mass is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of body mass for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of body mass and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur.

  17. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  18. Chernobyl birds have smaller brains.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    Full Text Available BACKGROUND: Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans. METHODOLOGY/PRINCIPAL FINDING: Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5% across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals. CONCLUSIONS/SIGNIFICANCE: Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individuals implies that there was significant directional selection on brain size with individuals with larger brains experiencing a viability advantage.

  19. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  20. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  1. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  2. Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size.

    Science.gov (United States)

    Potvin, Jean; Goldbogen, Jeremy A; Shadwick, Robert E

    2012-01-01

    Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti) and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae) exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals), the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae), fin (Balaenoptera physalus), blue (Balaenoptera musculus) and minke (Balaenoptera acutorostrata) whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting individual prey

  3. Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size.

    Directory of Open Access Journals (Sweden)

    Jean Potvin

    Full Text Available Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals, the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae, fin (Balaenoptera physalus, blue (Balaenoptera musculus and minke (Balaenoptera acutorostrata whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting

  4. The domesticated brain: genetics of brain mass and brain structure in an avian species

    Science.gov (United States)

    Henriksen, R.; Johnsson, M.; Andersson, L.; Jensen, P.; Wright, D.

    2016-01-01

    As brain size usually increases with body size it has been assumed that the two are tightly constrained and evolutionary studies have therefore often been based on relative brain size (i.e. brain size proportional to body size) rather than absolute brain size. The process of domestication offers an excellent opportunity to disentangle the linkage between body and brain mass due to the extreme selection for increased body mass that has occurred. By breeding an intercross between domestic chicken and their wild progenitor, we address this relationship by simultaneously mapping the genes that control inter-population variation in brain mass and body mass. Loci controlling variation in brain mass and body mass have separate genetic architectures and are therefore not directly constrained. Genetic mapping of brain regions indicates that domestication has led to a larger body mass and to a lesser extent a larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. Domestication has traditionally been linked to brain mass regression, based on measurements of relative brain mass, which confounds the large body mass augmentation due to domestication. Our results refute this concept in the chicken. PMID:27687864

  5. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  6. The role of quenching time in the evolution of the mass-size relation of passive galaxies from the WISP survey

    CERN Document Server

    Zanella, A; Corsini, E M; Bedregal, A G; Bontà, E Dalla; Atek, H; Bunker, A J; Colbert, J; Dai, Y S; Henry, A; Malkan, M; Martin, C; Rafelski, M; Rutkowski, M J; Siana, B; Teplitz, H

    2016-01-01

    We analyze how passive galaxies at z $\\sim$ 1.5 populate the mass-size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 $\\lesssim$ z $\\lesssim$ 2.05, specific star-formation rates lower than 0.01 Gyr$^{-1}$, and stellar masses above 4.5 $\\times$ 10$^{10}$ M$_\\odot$. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age $\\leq$ 2.1 Gyr) and old (age $>$ 2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and the one predicted by the mass-size relation. This result indicates that the relation between the galaxy age and its distance ...

  7. Evolution and the neurosciences down-under.

    Science.gov (United States)

    Macmillan, Malcolm

    2009-01-01

    At the end of the nineteenth and the beginning of the twentieth century three Australians made notable contributions to founding the neurosciences: Alfred Walter Campbell (1868-1937) conducted the first extensive histological studies of the human brain; Grafton Elliot Smith (1871-1937) studied the monotreme brain and established the basis for understanding the mammalian brain; and Stanley David Porteus (1883-1972) extended his studies of intellectual disability to encompass the relation between brain size and intelligence. The work of each was decisively influenced by important members of the Edinburgh medical school or by Edinburgh medical graduates: William Turner (1832-1916) and William Rutherford (1839-1899) Professors of Anatomy and Physiology respectively at Edinburgh; James Thomas Wilson (1861-1945) Professor of Anatomy at the University of Sydney; and Richard James Arthur Berry (1867-1962) Professor of Anatomy at the University of Melbourne. An important aspect of the influence on the Australians was a materialist view of brain function but the work of all was most important for a theory even more central held by the Scots who had influenced them: Darwin's theory of evolution. The importance of the work of Campbell and especially that of Smith for Darwinism is contrasted with Darwin's own indifference to the peculiarities of the Australian fauna he observed when he visited Australia during HMS Beagle's voyage of discovery in 1836.

  8. Hominid evolution: genetics versus memetics

    Science.gov (United States)

    Carter, Brandon

    2012-01-01

    The last few million years on planet Earth have witnessed two remarkable phases of hominid development, starting with a phase of biological evolution characterized by rather rapid increase of the size of the brain. This has been followed by a phase of even more rapid technological evolution and concomitant expansion of the size of the population that began when our own particular ‘sapiens’ species emerged, just a few hundred thousand years ago. The present investigation exploits the analogy between the neo-Darwinian genetic evolution mechanism governing the first phase, and the memetic evolution mechanism governing the second phase. From the outset of the latter until very recently - about the year 2000 - the growth of the global population N was roughly governed by an equation of the form dN/Ndt=N/T*, in which T* is a coefficient introduced (in 1960) by von Foerster, who evaluated it empirically as about 200 000 million years. It is shown here how the value of this hitherto mysterious timescale governing the memetic phase is explicable in terms of what happened in the preceding genetic phase. The outcome is that the order of magnitude of the Foerster timescale can be accounted for as the product of the relevant (human) generation timescale, about 20 years, with the number of bits of information in the genome, of the order of 10 000 million. Whereas the origin of our ‘homo’ genus may well have involved an evolutionary hard step, it transpires that the emergence of our particular ‘sapiens’ species was rather an automatic process.

  9. The place of Homo floresiensis in human evolution.

    Science.gov (United States)

    Baab, Karen

    2016-06-20

    Two main evolutionary scenarios have been proposed to explain the presence of the small-bodied and small-brained Homo floresiensis species on the remote Indonesian island of Flores in the Late Pleistocene. According to these two scenarios, H. floresiensis was a dwarfed descendent of H. erectus or a late-surviving remnant of a older lineage, perhaps descended from H. habilis. Each scenario has interesting and important implications for hominin biogeography, body size evolution, brain evolution and morphological convergences. Careful evaluation reveals that only a small number of characters support each of these scenarios uniquely. H. floresiensis exhibits a cranial shape and many cranial characters that appear to be shared derived traits with H. erectus, but postcranial traits are more primitive and resemble those of early Homo or even australopiths. Mandibular and dental traits show a mix of derived and primitive features. Unfortunately, many traits cannot be used to assess these two hypotheses because their distribution in H. erectus, early Homo (e.g., H. habilis), or both is unknown. H. erectus ancestry implies evolutionary convergence on a postcranial configuration similar to australopiths and early Homo, which could be explained by a return to more climbing behaviors. Body size reduction as well as brain size reduction on a scale only rarely documented in mammals would also accompany the origin of H. floresiensis from a H. erectus ancestor. H. habilis ancestry implies parallel evolution of numerous cranial characters, as well as a few dentognathic traits. A pre-H. erectus ancestry also suggests an early migration to Southeast Asia that is as yet undocumented in mainland Asia, but minimal body and brain size reduction. PMID:26829572

  10. Albicetus oxymycterus, a New Generic Name and Redescription of a Basal Physeteroid (Mammalia, Cetacea) from the Miocene of California, and the Evolution of Body Size in Sperm Whales.

    Science.gov (United States)

    Boersma, Alexandra T; Pyenson, Nicholas D

    2015-01-01

    Living sperm whales are represented by only three species (Physeter macrocephalus, Kogia breviceps and Kogia sima), but their fossil record provides evidence of an ecologically diverse array of different forms, including morphologies and body sizes without analog among living physeteroids. Here we provide a redescription of Ontocetus oxymycterus, a large but incomplete fossil sperm whale specimen from the middle Miocene Monterey Formation of California, described by Remington Kellogg in 1925. The type specimen consists of a partial rostrum, both mandibles, an isolated upper rostrum fragment, and incomplete tooth fragments. Although incomplete, these remains exhibit characteristics that, when combined, set it apart morphologically from all other known physeteroids (e.g., a closed mesorostral groove, and the retention of enameled tooth crowns). Kellogg originally placed this species in the genus Ontocetus, a enigmatic tooth taxon reported from the 19th century, based on similarities between the type specimen Ontocetus emmonsi and the conspicuously large lower dentition of Ontocetus oxymycterus. However, the type of the genus Ontocetus is now known to represent a walrus tusk (belonging to fossil Odobenidae) instead of a cetacean tooth. Thus, we assign this species to the new genus Albicetus, creating the new combination of Albicetus oxymycterus, gen. nov. We provide new morphological observations of the type specimen, including a 3D model. We also calculate a total length of approximately 6 m in life, using cranial proxies of body size for physeteroids. Lastly, a phylogenetic analysis of Albicetus oxymycterus with other fossil and living Physeteroidea resolves its position as a stem physeteroid, implying that large body size and robust dentition in physeteroids evolved multiple times and in distantly related lineages.

  11. Albicetus oxymycterus, a New Generic Name and Redescription of a Basal Physeteroid (Mammalia, Cetacea from the Miocene of California, and the Evolution of Body Size in Sperm Whales.

    Directory of Open Access Journals (Sweden)

    Alexandra T Boersma

    Full Text Available Living sperm whales are represented by only three species (Physeter macrocephalus, Kogia breviceps and Kogia sima, but their fossil record provides evidence of an ecologically diverse array of different forms, including morphologies and body sizes without analog among living physeteroids. Here we provide a redescription of Ontocetus oxymycterus, a large but incomplete fossil sperm whale specimen from the middle Miocene Monterey Formation of California, described by Remington Kellogg in 1925. The type specimen consists of a partial rostrum, both mandibles, an isolated upper rostrum fragment, and incomplete tooth fragments. Although incomplete, these remains exhibit characteristics that, when combined, set it apart morphologically from all other known physeteroids (e.g., a closed mesorostral groove, and the retention of enameled tooth crowns. Kellogg originally placed this species in the genus Ontocetus, a enigmatic tooth taxon reported from the 19th century, based on similarities between the type specimen Ontocetus emmonsi and the conspicuously large lower dentition of Ontocetus oxymycterus. However, the type of the genus Ontocetus is now known to represent a walrus tusk (belonging to fossil Odobenidae instead of a cetacean tooth. Thus, we assign this species to the new genus Albicetus, creating the new combination of Albicetus oxymycterus, gen. nov. We provide new morphological observations of the type specimen, including a 3D model. We also calculate a total length of approximately 6 m in life, using cranial proxies of body size for physeteroids. Lastly, a phylogenetic analysis of Albicetus oxymycterus with other fossil and living Physeteroidea resolves its position as a stem physeteroid, implying that large body size and robust dentition in physeteroids evolved multiple times and in distantly related lineages.

  12. Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals

    OpenAIRE

    Bingtao Tian; Xiaodong Wang; Yanyan Niu; Jinlong Zhang; Qinghua Zhang; Zhihua Zhang; Guangming Wu; Bin Zhou; Jun Shen

    2016-01-01

    Lithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO...

  13. Strict monandry in the ponerine army ant genus Simopelta suggests that colony size and complexity drive mating system evolution in social insects

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; O'Donnell, Sean; Boomsma, Jacobus J;

    2011-01-01

    queen mating frequencies, and therefore among the lowest degrees of colony relatedness, occur in Apis honeybees and army ants of the subfamilies Aenictinae, Ecitoninae, and Dorylinae, suggesting that common life history features such as reproduction by colony fission and male biased numerical sex......-ratios have convergently shaped these mating systems. Here we show that ponerine army ants of the genus Simopelta, which are distantly related but similar in general biology to other army ants, have strictly monandrous queens. Preliminary data suggest that workers reproduce in queenright colonies, which...... is in sharp contrast to other army ants. We hypothesize that differences in mature colony size and social complexity may explain these striking discrepancies....

  14. Miocene whale-fall from California demonstrates that cetacean size did not determine the evolution of modern whale-fall communities

    OpenAIRE

    Pyenson, Nicholas D.; Haasl, David M

    2007-01-01

    Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences bet...

  15. DEFORMATION INVESTIGATION ON iPP/SiO2 COMPOSITES: INFLUENCE OF STRETCHING TEMPERATURE AND PARTICLE SIZE ON MORPHOLOGY EVOLUTION AND CRYSTALLINE STRUCTURE OF THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Xiu-qin Zhang; Qian Xing; Rong-bo Li; Rui Wang; Du-jin Wang

    2013-01-01

    In the present work,structure changes during stretching of isotactic polypropylene (iPP) and iPP/silicon dioxide (SiO2) composites have been investigated systematically.The α-form crystal structure of both iPP and iPP/SiO2 composites is destroyed and transforms into the mesophase as the samples are stretched at a low temperature (35℃),while stretching at high temperatures (90℃ and 120℃) can restrain the appearance of defects and keep the perfection of crystal structure.FTIR results reveal that the stretching temperatures show no obvious difference of the effect on the orientation of pure iPP,however,the orientation of iPP/SiO2 composites is greatly changed by the tensile temperature.In the case of micron-sized SiO2 particles (average particle diameter d > 1 μm),the orientation of the composites is lower than that of pure iPP at all stretching temperatures.The above results suggest that the stretching temperature and the SiO2 particle size have great influence on the structure variation and orientation behavior of iPP/SiO2 composites.

  16. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis.

    Science.gov (United States)

    Caridade, Sofia G; Merino, Esther G; Alves, Natália M; Bermudez, Verónica de Zea; Boccaccini, Aldo R; Mano, João F

    2013-04-01

    A new family of biodegradable polymer/bioactive glass (BG) composite materials has emerged based on the availability of nano-sized bioactive particles. Such novel biocomposites can have enhanced performance, in terms of mechanical properties and bioactivity, and they can be designed to be used in bone regeneration approaches. In this work, membranes of chitosan (CTS) and chitosan with bioactive glass (BG) both micron and nano sized particles (CTS/μBG, CTS/nBG, respectively) were prepared by solvent casting. Microstructural and mechanical properties were evaluated in order to compare the effects of the incorporation of micro (μBG) and nano (nBG) particles in the chitosan matrix. In vitro bioactivity tests were performed to characterize the apatite layer that is formed on the surface of the material after being immersed in simulated body fluid (SBF). The biomineralization process on the biomaterials was also followed using non-conventional dynamic mechanical analysis (DMA), both online and offline. In such DMA experiments, the change in the storage modulus, E', and the loss factor, tan δ, were measured as a function of the immersion time in SBF. The results demonstrated that CTS/nBG membranes possess enhanced mechanical properties and higher bioactivity in comparison with the CTS/μBG membranes. Such results suggest the potential of nBG for the development of bioactive composites for bone regeneration applications. PMID:23466499

  17. Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-08-01

    Full Text Available Four natural lakes in the middle and lower reaches of the Yangtze River—Dongting Lake, Poyang Lake, Chaohu Lake and Taihu Lake—play a key role in the climate, environment, and ecology of this area. Upstream of these lakes, the Three Gorges Dam Project has been storing water for 12 years. Future monitoring and management of rivers and lakes can certainly benefit from research on the patterns of variation of natural lakes downstream of the Three Gorges Project. This research applies Landsat TM/ETM data to evaluate water area changes in the four lakes from 2002 to 2013. The water area is estimated using AWEI (Automated Water Extraction Index from satellite images. The average areas decreased respectively 452, 11, and 5 km2 (29.6%, 1.4% and 0.2% from 2002 to 2013 for Dongting, Chaohu, and Taihu Lakes. Meanwhile, it increased 300 km2 (11.0% for Poyang Lake. Precipitation and changes in river inflow may account for the fluctuation in the surface area to a large degree, especially between 2009 and 2013. The present study was undertaken to characterize the evolution of lakes and to explore the potential driving force of variation in order to assist the management of dams upstream in the river basin.

  18. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain

    OpenAIRE

    Gunbin, Konstantin V; Afonnikov, Dmitry A.; Kolchanov, Nikolay A; Derevianko, Anatoly P.; Rogaev, Eugeny I

    2015-01-01

    Background As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. Results A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitut...

  19. Relative cheek-tooth size in Australopithecus.

    Science.gov (United States)

    McHenry, H M

    1984-07-01

    Until the discovery of Australopithecus afarensis, cheek-tooth megadontia was unequivocally one of the defining characteristics of the australopithecine grade in human evolution along with bipedalism and small brains. This species, however, has an average postcanine area of 757 mm2, which is more like Homo habilis (759 mm2) than A. africanus (856 mm2). But what is its relative cheek-tooth size in comparison to body size? One approach to this question is to compare postcanine tooth area to estimated body weight. By this method all Australopithecus species are megadont: they have cheek teeth 1.7 to 2.3 times larger than modern hominoids of similar body size. The series from A. afarensis to A. africanus to A. robustus to A. boisei shows strong positive allometry indicating increasing megadontia through time. The series from H. habilis to H. erectus to H. sapiens shows strong negative allometry which implies a sharp reduction in the relative size of the posterior teeth. Postcanine megadontia in Australopithecus species can also be demonstrated by comparing tooth size and body size in associated skeletons: A. afarensis (represented by A.L. 288-1) has a cheek-tooth size 2.8 times larger than expected from modern hominoids; A. africanus (Sts 7) and A. robustus (TM 1517) are over twice the expected size. The evolutionary transition from the megadont condition of Australopithecus to the trend of decreasing megadontia seen in the Homo lineage may have occurred between 3.0 and 2.5 m.y. from A. afarensis to H.habilis but other evidence indicates that it is more likely to have occurred between 2.5 to 2.0 m.y. from an A. africanus-like form to H. habilis. PMID:6433716

  20. Grain-size evolution in suspended sediment and deposits from the 2004 and 2008 controlled-flood experiments in Marble and Grand Canyons, Arizona

    Science.gov (United States)

    Draut, Amy E.; Topping, David J.; Rubin, David M.; Wright, Scott A.; Schmidt, John C.

    2010-01-01

    Since the closure of Glen Canyon Dam in 1963, the hydrology, sediment supply, and distribution and size of modern alluvial deposits in the Colorado River through Grand Canyon have changed substantially (e.g., Howard and Dolan, 1981; Johnson and Carothers, 1987; Webb et al., 1999; Rubin et al., 2002; Topping et al., 2000, 2003; Wright et al., 2005; Hazel et al., 2006). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of natural floods, sediment is not deposited at elevations that regularly received sediment before dam closure. There has been a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in the early 1980s and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1990; Kearsley et al., 1994; Schmidt et al., 2004; Wright et al., 2005; Hazel et al., 2006). Fluvial sandbars are an important component of riparian ecology that, among other functions, enclose eddy backwaters that form native-fish habitat, provide a source for eolian sand that protects some archaeological sites, and are used as campsites by thousands of river-runners annually (Rubin et al., 1990; Kearsley et al., 1994; Neal et al., 2000; Wright et al., 2005; Draut and Rubin, 2008).

  1. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process.

    Science.gov (United States)

    Wade, J B; Martin, G P; Long, D F

    2015-07-01

    The feasibility of a novel reverse-phase wet granulation process has been established previously and several potential advantages over the conventional process have been highlighted (Wade et al., 2014a,b,b). Due to fundamental differences in the growth mechanism and granule consolidation behaviour between the two processes the reverse-phase approach generally formed granules with a greater mass mean diameter and a lower intragranular porosity than those formed by the conventional granulation process under the same liquid saturation and impeller tip speed conditions. The lower intragranular porosity was hypothesised to result in an increase in the granule strength and subsequent decrease in tablet tensile strength. Consequently, the aim of this study was to compare the effect of impeller tip speed and granule size on the strength and compaction properties of granules prepared using both the reverse-phase and conventional granulation processes. For the conventional granulation process an increase in the impeller tip speed from 1.57 to 4.71 ms(-1) (200-600 RPM) resulted in an increase in the mean granule strength (pimpeller tip speed had no effect (p>0.05) on mean granule strength whereas, like the conventional process, an increase in granule size fraction from 425-600 to 2000-3350 μm resulted in a decrease (p0.05) for either granulation approach. These data support the rejection of the original hypothesis which stated that an increase in granule strength may result in a decrease in the tablet tensile strength. The similar tablet tensile strength observed between the conventional and reverse-phase granulation processes indicated that while mechanistic differences exist in the formation of the granules, which resulted in significant granule-scale fracture strength differences, the granule compaction properties at pharmaceutically relevant tableting pressures were unaffected. PMID:25888799

  2. The role of the nervous system in fish evolution

    Directory of Open Access Journals (Sweden)

    Michael H Hofmann

    2015-12-01

    Full Text Available The nervous system plays an important role in the evolution and adaptation of animals. All sensory and motor functions as well as cognitive abilities are organized in the brain and spinal cord. Volumetric measurements of different brain regions were made in more than 150 species of ray finned fishes as well as in several outgroups. In Actanthopterygii, the hypothalamus shows greatest enlargement most likely due to an enormous visual input via the nucleus glomerulosos. The telencephalon is highly differentiated in many acanthopterygii, mostly coral reef species, but its relative size is not much effected. There is, however, a clear shift from olfactory to visual functions in ray finned fishes. In species with a highly differentiated telencephalon, the area where place memory may be located is very prominent. In basal ray finned fishes, lungfish, amphibia and elasmobranchs, the olfactory bulb is relatively large and the ratio of the olfactory bulb and telencephalon large as well. This holds also for elopomorpha and spiny eels, but in most other groups vision dominates. Apart from differences between larger clades, variation in brain architecture are also seen in closely related species and even between sexes of the same species. Profound differences are present in the cerebellum between male and female swordtails and in the telencephalon of sticklebacks. Morphometric analysis of brain architecture turned out to be an important tool to study the evolution and adaptations of the brain in fishes.

  3. 中小企业员工安全遵守行为演化路径%On the Evolution of Workers' Safety Compliance Behavior in Small and Medium-size Enterprises

    Institute of Scientific and Technical Information of China (English)

    刘素霞; 梅强; 张赞赞

    2012-01-01

    To find out the evaluation law of workers' safety compliance behavior in small and medium-size enterprises, the underlying reasons of workers' unsafe behaviors are analyzed. The payoff matrix of workers and enterprises is built using the method of evaluation economics. By analyzing evolution model of association between enterprises and workers, the effect of individual decision-making on organizational behavior is studied. The effects of different initial condition and different decision parameters on evolution result are discovered by numerical simulation. The research reveals the followings: the evolution route of workers' safety compliance behavior converges on two types of pattern, namely, the ideal type "compliance, checkless", and the bad locked type "violation, check"; Different type decision parameter and its size have different effects on evolution rate and evolution result. Enterprises may strengthen workers' safety compliance behavior to evolve to respective targets by developing the driving and restraint mechanism of safety behavior by setting scientific decision parameters and its size.%为研究中小企业员工安全遵守行为的演化规律,对中小企业不安全行为的原因进行了分析,并借助演化经济学方法,构建了中小企业员工与企业行为交往的支付矩阵.通过对交往过程的演化模型分析,揭示了个体策略选择对群体行为的影响.用数值仿真演示了群体不同初始比例和不同参数变化对演化趋势和结果的影响,研究发现:中小企业员工安全遵守行为演化系统收敛于两种模式,其中,(遵守,不检查)为理想模式,(违章,检查)为“不良锁定”模式;各参数的大小对系统收敛速度和收敛结果具有影响,企业在设计安全生产激励与约束机制时,通过设计科学合理的激励与约束参数,并通过调整参数的大小,可以引导员工的安全遵守行为,使中小企业员工安全行为向着预期方向和目标演进,达到制度优化的目的.

  4. Dynamic control on 8rain-size distribution of terri-genous sediments in the western South China Sea:Implication for East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN GuoCheng; ZHENG HongBo; LI JianRu; XIE Xin; MEI Xi

    2008-01-01

    High-resolution oxygen isotope stratigraphy of Core MD05-2901, which is located off eastern Vietnam in the western South China Sea (SCS), was established and indicated that the core spans a time period of the past 450 ka. Based on the bulk density, fractional porosity and lithogenic content of the sedi-ments, terrigenous mass accumulation rate (TMAR) was obtained, which is 4.9-6.0 g cm-2 ka-1 on average during interglacial stages, higher than that during glacial stages, i.e. 1.9-5.0 g cm-2 ka-1, which is different from northern and southern SCS which show higher TMAR in glacial stages. By principle component analysis of grain size distribution of all the samples, two main control factors (F1 and F2) were obtained, which are responsible for about 80% variance of granularity. The contents of grain size population 1.26-2.66 μm% and 10.8-14.3 μm% which are sensible to F1 show high-frequency fluctuation, and correlate well with the summer insolation at 15° N. They exhibit a dis-tinct cyclicity with frequencies near 23 ka and 13 ka, in contrast to a strong frequency peak near 100 ka obtained in proxies 4.24-7.42 μm% and 30.1-43.7 μm% controlled mainly by F2. The sedimentary character of this part of the SCS was controlled by variations of input flux from two main source areas, namely the southwest and north SCS, which were transported by different circulations of surface cur-rent forced by East Asian summer monsoon and winter monsoon respectively. We believe that the East Asian summer monsoon has fluctuated with high frequency and been forced by changes in solar in-solation in low latitude associated with precession and half precession, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.