WorldWideScience

Sample records for brain reveals unexpected

  1. Saturn's Rings Reveal Unexpected Phenomena

    Institute of Scientific and Technical Information of China (English)

    李颖

    2004-01-01

    Safely in orbit around Saturn, NASA's Cassini spacecraft sent back its first close-up images of the massive planet's rings on July 1, revealing an unexpectedly varied terrain featuring surprisingly sharp edges, braids and delicate ridges.

  2. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs, skin conductance responses (SCRs and heart rate (HR elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression, we also created versions without variations in tempo and loudness (without musical expression to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing and an N5 (reflecting processing of meaning information in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses. The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  3. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity

    OpenAIRE

    Koelsch, S.; Kilches, S.; Steinbeis, N.; Schelinski, S.

    2008-01-01

    BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts pl...

  4. Metagenomic Analysis Reveals Unexpected Subgenomic Diversity of Magnetotactic Bacteria within the Phylum Nitrospirae ▿ †

    Science.gov (United States)

    Lin, Wei; Jogler, Christian; Schüler, Dirk; Pan, Yongxin

    2011-01-01

    A targeted metagenomic approach was applied to investigate magnetotactic bacteria (MTB) within the phylum Nitrospirae in Lake Miyun near Beijing, China. Five fosmids containing rRNA operons were identified. Comparative sequence analysis of a total of 172 kb provided new insights into their genome organization and revealed unexpected subgenomic diversity of uncultivated MTB in the phylum Nitrospirae. In addition, affiliation of two novel MTB with the phylum Nitrospirae was verified by fluorescence in situ hybridization. One of them was morphologically similar to “Candidatus Magnetobacterium bavaricum,” but the other differed substantially in cell shape and magnetosome organization from all previously described “Ca. Magnetobacterium bavaricum”-like bacteria. PMID:21057016

  5. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    Energy Technology Data Exchange (ETDEWEB)

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  6. VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia

    Directory of Open Access Journals (Sweden)

    Ayling Roger D

    2008-11-01

    Full Text Available Abstract Background Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation. Results We have developed variable number tandem repeat (VNTR analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320. We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE and random amplified polymorphic DNA (RAPD analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates. Conclusion VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.

  7. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    Directory of Open Access Journals (Sweden)

    Tang Vivian W

    2006-12-01

    double membranes, satellite Golgi apparatus and associated vesicular structures. A working model of the tight junction consisting of multiple functions and sub-domains has been generated using the proteomics and structural data. Conclusion This study provides an unbiased proteomics and bioinformatics approach to elucidate novel functions of the tight junction. The approach has revealed an unexpected cluster associating with synaptic function. This surprising finding suggests that the tight junction may be a novel epithelial synapse for cell-cell communication. Reviewers This article was reviewed by Gáspár Jékely, Etienne Joly and Neil Smalheiser.

  8. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  9. Analysis of Hepatitis C Virus-Inoculated Chimpanzees Reveals Unexpected Clinical Profiles

    OpenAIRE

    Bassett, Suzanne E.; Brasky, Kathleen M.; Lanford, Robert E.

    1998-01-01

    The clinical course of hepatitis C virus (HCV) infections in a chimpanzee cohort was examined to better characterize the outcome of this valuable animal model. Results of a cross-sectional study revealed that a low percentage (39%) of HCV-inoculated chimpanzees were viremic based on reverse transcription (RT-PCR) analysis. A correlation was observed between viremia and the presence of anti-HCV antibodies. The pattern of antibodies was dissimilar among viremic chimpanzees and chimpanzees that ...

  10. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bianco

    Full Text Available Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.

  11. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect.

    Science.gov (United States)

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M S; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G J; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R; Sarkany, Robert P E; Lehmann, Alan R

    2016-03-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins. PMID:26884178

  12. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. PMID:26253310

  13. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    Science.gov (United States)

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time. PMID:20707997

  14. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    Science.gov (United States)

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications. PMID:26487573

  15. Health, Happiness and Human Enhancement-Dealing with Unexpected Effects of Deep Brain Stimulation.

    Science.gov (United States)

    Schermer, Maartje

    2013-01-01

    Deep Brain Stimulation (DBS) is a treatment involving the implantation of electrodes into the brain. Presently, it is used for neurological disorders like Parkinson's disease, but indications are expanding to psychiatric disorders such as depression, addiction and Obsessive Compulsive Disorder (OCD). Theoretically, it may be possible to use DBS for the enhancement of various mental functions. This article discusses a case of an OCD patient who felt very happy with the DBS treatment, even though her symptoms were not reduced. First, it is explored if the argument that 'doctors are not in the business of trading happiness', as used by her psychiatrist to justify his discontinuation of the DBS treatment, holds. The relationship between enhancement and the goals of medicine is discussed and it is concluded that even though the goals of medicine do not set strict limits and may even include certain types of enhancement, there are some good reasons for limiting the kind of things doctors are required or allowed to do. Next, the case is discussed from the perspective of beneficence and autonomy. It is argued that making people feel good is not the same as enhancing their well-being and that it is unlikely-though not absolutely impossible-that the well-being of the happy OCD patient is really improved. Finally, some concerns regarding the autonomy of a request made under the influence of DBS treatment are considered. PMID:24273618

  16. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  17. Unexpected waves

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2009-04-01

    Rogue waves have received considerable scientific attention in recent years. They are commonly defined as waves with height H ≥ 2.2Hs, where Hs is the significant wave height (typically estimated from records that are several tens of minutes long). This definition of rogue waves is solely based on the wave height. We suggest that the "unexpectedness" of large waves is also of great concern to mariners and beachcombers, and define "unexpected waves" as waves being twice as large as any of the preceding 30 waves. Our simulations suggest that, even in a Gaussian sea, unexpected waves might be as common as rogue waves occurring within a longer wave group. The return period of unexpected waves decreases if modifications of the wave shape due to phase locked second harmonics are allowed for. In particular, shallow water effects significantly increase the probability of occurrence of unexpected waves. We analyze historical Canadian wave buoy records from the Pacific and Atlantic in terms of unexpected waves, and find our simulations to be in agreement with the occurrence rates of unexpected waves obtained from these records. This agreement suggests that extreme waves in the ocean occur largely due to linear superposition

  18. Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ.

    Science.gov (United States)

    Li, Yi; Chirgadze, Dimitri Y; Bolanos-Garcia, Victor M; Sibanda, Bancinyane L; Davies, Owen R; Ahnesorg, Peter; Jackson, Stephen P; Blundell, Tom L

    2008-01-01

    The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4-DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1-233) homodimer at 2.3 A resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex. PMID:18046455

  19. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules

    Energy Technology Data Exchange (ETDEWEB)

    Beerbaum, Monika; Ballaschk, Martin; Erdmann, Natalja [Leibniz-Institut fuer Molekulare Pharmakologie (FMP) (Germany); Schnick, Christina [Freie Universitaet Berlin, Institut fuer Immungenetik, Charite-Universitaetsmedizin Berlin (Germany); Diehl, Anne [Leibniz-Institut fuer Molekulare Pharmakologie (FMP) (Germany); Uchanska-Ziegler, Barbara; Ziegler, Andreas [Freie Universitaet Berlin, Institut fuer Immungenetik, Charite-Universitaetsmedizin Berlin (Germany); Schmieder, Peter, E-mail: schmieder@fmp-berlin.de [Leibniz-Institut fuer Molekulare Pharmakologie (FMP) (Germany)

    2013-10-15

    {beta}{sub 2}-Microglobulin ({beta}{sub 2}m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of {beta}{sub 2}m in various MHC molecules as shown by X-ray crystallography, {beta}{sub 2}m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether {beta}{sub 2}m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human {beta}{sub 2}m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled {beta}{sub 2}m bound to the HLA-B*27:09 HC to examine the {beta}{sub 2}m-HC interface. We then proceed to compare the resonances of {beta}{sub 2}m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the {beta}{sub 2}m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables {beta}{sub 2}m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.

  20. Unexpected high 35S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia

    Science.gov (United States)

    Lin, Mang; Zhang, Zhisheng; Su, Lin; Su, Binbin; Liu, Lanzhong; Tao, Jun; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-03-01

    October is the monsoon transitional period in East Asia (EA) involving a series of synoptic activities that may enhance the downward transport of stratospheric air to the planetary boundary layer (PBL). Here we use cosmogenic 35S in sulfate aerosols (35SO42-) as a tracer for air masses originating from the stratosphere and transported downward to quantify these mixing processes. From 1 year 35SO42- measurements (March 2014 to February 2015) at a background station in EA we find remarkably enhanced 35SO42- concentration (3150 atoms m-3) in October, the highest value ever reported for natural sulfate aerosols. A four-box 1-D model and meteorological analysis reveal that strong downward transport from the free troposphere is a vital process entraining aged stratospheric air masses to the PBL. The aged stratospheric masses are accumulated in the PBL, accelerating the SO2 transformation to SO42-. Implications for the tropospheric O3 budget and the CO2 biogeochemical cycle are discussed.

  1. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.).

    Science.gov (United States)

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  2. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.

    Science.gov (United States)

    Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada

    2010-08-01

    Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity. PMID:20518025

  3. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    Science.gov (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  4. Tumour-like thallium-201 accumulation in brain infarcts, an unexpected finding on single-photon emission tomography

    International Nuclear Information System (INIS)

    In the present study our purpose was to investigate whether or not foci of 201Tl accumulation occur in reperfused areas with sustained morphological integrity indicated by computed tomography (CT) scans not showing hypodensity in the acute or sub-acute period. In 16 stroke patients with possible cortical embolic infarction, dual 201Tl and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) SPET was performed in both the acute and the subacute period. 99mTc-HMPAO SPET was performed to detect reperfusion. Follow-up CT scans from the same period were also available. In five cases 99mTc-HMPAO SPET ruled out reperfusion and 201Tl SPET was also negative. In four cases 99mTc-HMPAO studies indicated reperfusion early in the acute phase (24-72 h), and comparative CT, without showing hypodensity in the acute or subacute period, also favoured the possibility of sustained metabolic activity. In these cases 201Tl SPET was negative in both the acute and the subacute period. In seven cases CT already showed necrosis in 99mTc-HMPAO hypoperfused areas in the acute period, with negative results on corresponding 201Tl SPET. Later reperfusion occurred in the subacute period (8-14 days) as indicated by 99mTc-HMPAO SPET, at which time an unexpected focal accumulation of 201Tl was detected. (orig./MG)

  5. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Directory of Open Access Journals (Sweden)

    Oláh G

    2013-09-01

    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  6. Large-Scale Networks in the Human Brain revealed by Functional Connectivity MRI

    OpenAIRE

    Krienen, Fenna Marie

    2013-01-01

    The human brain is composed of distributed networks that connect a disproportionately large neocortex to the brainstem, cerebellum and other subcortical structures. New methods for analyzing non-invasive imaging data have begun to reveal new insights into human brain organization. These methods permit characterization of functional interactions within and across brain networks, and allow us to appreciate points of departure between the human brain and non-human primates.

  7. The Structure of Plasmodium falciparum Blood-Stage 6-Cys Protein Pf41 Reveals an Unexpected Intra-Domain Insertion Required for Pf12 Coordination.

    Directory of Open Access Journals (Sweden)

    Michelle L Parker

    Full Text Available Plasmodium falciparum is an apicomplexan parasite and the etiological agent of severe human malaria. The complex P. falciparum life cycle is supported by a diverse repertoire of surface proteins including the family of 6-Cys s48/45 antigens. Of these, Pf41 is localized to the surface of the blood-stage merozoite through its interaction with the glycophosphatidylinositol-anchored Pf12. Our recent structural characterization of Pf12 revealed two juxtaposed 6-Cys domains (D1 and D2. Pf41, however, contains an additional segment of 120 residues predicted to form a large spacer separating its two 6-Cys domains. To gain insight into the assembly mechanism and overall architecture of the Pf12-Pf41 complex, we first determined the 2.45 Å resolution crystal structure of Pf41 using zinc single-wavelength anomalous dispersion. Structural analysis revealed an unexpected domain organization where the Pf41 6-Cys domains are, in fact, intimately associated and the additional residues instead map predominately to an inserted domain-like region (ID located between two β-strands in D1. Notably, the ID is largely proteolyzed in the final structure suggesting inherent flexibility. To assess the contribution of the ID to complex formation, we engineered a form of Pf41 where the ID was replaced by a short glycine-serine linker and showed by isothermal titration calorimetry that binding to Pf12 was abrogated. Finally, protease protection assays showed that the proteolytic susceptibility of the ID was significantly reduced in the complex, consistent with the Pf41 ID directly engaging Pf12. Collectively, these data establish the architectural organization of Pf41 and define an essential role for the Pf41 ID in promoting assembly of the Pf12-Pf41 heterodimeric complex.

  8. Study Reveals Brain Biology behind Self-Control

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  9. What Brain Sciences Reveal about Integrating Theory and Practice

    Science.gov (United States)

    Patton, Michael Quinn

    2014-01-01

    Theory and practice are integrated in the human brain. Situation recognition and response are key to this integration. Scholars of decision making and expertise have found that people with great expertise are more adept at situational recognition and intentional about their decision-making processes. Several interdisciplinary fields of inquiry…

  10. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D2 (D2)/Serotonin 2A (5-HT2A) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11C-N-methylspiperone (11C-NMSP) to assess the availability of D2/5-HT2A receptors and with 18F-fluoro-D-glucose (18F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11C-NMSP and 18F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D2/5-HT2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  11. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  12. The brain's functional network architecture reveals human motives.

    Science.gov (United States)

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-01

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. PMID:26941317

  13. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    Directory of Open Access Journals (Sweden)

    Thien Thanh Dang-Vu

    Full Text Available Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT with 99mTc-Ethylene Cysteinate Dimer (ECD, during wakefulness and after sleep deprivation.Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF were performed to characterize brain activity patterns during wakefulness in sleepwalkers.During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls.Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  14. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    Science.gov (United States)

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. PMID:27129758

  15. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of...... emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and...

  16. Developmentally-Dynamic Murine Brain Proteomes and Phosphoproteomes Revealed by Quantitative Proteomics

    Directory of Open Access Journals (Sweden)

    Peter F. Doubleday

    2014-04-01

    Full Text Available Developmental processes are governed by a diverse suite of signaling pathways employing reversible phosphorylation. Recent advances in large-scale phosphoproteomic methodologies have made possible the identification and quantification of hundreds to thousands of phosphorylation sites from primary tissues. Towards a global characterization of proteomic changes across brain development, we present the results of a large-scale quantitative mass spectrometry study comparing embryonic, newborn and adult murine brain. Using anti-phosphotyrosine immuno-affinity chromatography and strong cation exchange (SCX chromatography, coupled to immobilized metal affinity chromatography (IMAC, we identified and quantified over 1,750 phosphorylation sites and over 1,300 proteins between three developmental states. Bioinformatic analyses highlight functions associated with the identified proteins and phosphoproteins and their enrichment at distinct developmental stages. These results serve as a primary reference resource and reveal dynamic developmental profiles of proteins and phosphoproteins from the developing murine brain.

  17. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain.

    Science.gov (United States)

    Lake, Blue B; Ai, Rizi; Kaeser, Gwendolyn E; Salathia, Neeraj S; Yung, Yun C; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-06-24

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain. PMID:27339989

  18. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  19. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  20. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  1. The Biology Of Physics: What The Brain Reveals About Our Understanding Of The Physical World

    Science.gov (United States)

    Dunbar, Kevin Niall

    2009-11-01

    Fundamental concepts in physics such as Newtonian mechanics are surprisingly difficult to learn and discover. Over the past decade have been using an educational neuroscience approach to science education using a combination of ecologically naturalistic situations, classroom settings, and neuroimaging methodologies to investigate the different ways that scientific concepts are invoked or activated in different contexts. In particular, we have sought to determine how networks of brain regions that are highly sensitive to features of the context in which they are used are involved in the use of scientific concepts. We have found that some concepts in physics that are highly tuned to perception are often inhibited in experts (with increased activations in error detection and inhibitory networks of the prefrontal cortex) rather than having undergone a wholesale conceptual reorganization. Other, concepts, such as those involved in perceptual causality can activate highly diverse brain regions, depending on task instructions. For example, when students are shown movies of balls colliding, we find increased activation in the right parietal lobe, yet when the students see the exact same movies and are told that these are positively charged particles repulsing we find increased activations in the temporal lobe that is consistent with the students retrieving semantic information. We also see similar see similar changes in activation patterns in students learning about phase shifts in chemistry classes. A key component of both students and scientists' discourse and reasoning is analogical thinking. Our recent fMRI work indicates that categorization is a key component of this type of reasoning that helps bind superficially different concepts together in the service of reasoning about the causes of unexpected findings. Taken together, these results are allowing us to make insights into the contextually relevant networks of knowledge that are activated during learning. This work

  2. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    Science.gov (United States)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  3. Novel aspects of brain metabolism as revealed by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Full text: The techniques of Magnetic Resonance Spectroscopy (MRS) and Imaging (MRI) are outlined, and compared with Positron Emission Tomography (PET). Invasive PET techniques using 19F-fluorodeoxyglucose (FDG) and 18O2 form the main basis of brain activation studies, and with 19F-fluoroDOPA, make major contributions to studies on neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease. However the technique has no chemical specificity so can provide no knowledge of intermediary metabolism. Non-invasive MRI is also being applied to brain activation studies but also has no chemical specificity. On the other hand MRS has superb chemical specificity, although it suffers from low sensitivity. A most interesting example of this is the use of 13C-MRS. If glucose is labelled on the no. 1 or no. 2 positions with 13C, the passage of the label through different neuronal and glial metabolic pathways can be followed. If acetate is similarly labelled, metabolic routes through specifically glial pathways can be monitored, since acetate is taken up only by glia. These studies contributed to knowledge on metabolic trafficking, in that glia produce alanine, citrate and lactate in addition to the previously characterised production of glutamine. Studies on the hypoxic brain revealed increased production of alanine, lactate and glycerol 3-phosphate, providing further understanding of the role of the NADH redox state. 'Isotopomer analysis' of 13C resonances provides more information on metabolic pathways, because the chemical shift of a 13C atom is specifically affected by a neighbouring 13C within the same molecule. This approach was used to demonstrate that neurotransmitter γ-aminobutyrate (GABA) is partly derived from glial glutamine. Analogous 13C MRS studies are now providing novel information on metabolic flux rates within the human brain, and the most exciting developments are to follow changes in these rates on brain activation which can be

  4. From Amazonia to the Atlantic forest: molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges.

    Science.gov (United States)

    Fouquet, Antoine; Loebmann, Daniel; Castroviejo-Fisher, Santiago; Padial, José M; Orrico, Victor G D; Lyra, Mariana L; Roberto, Igor Joventino; Kok, Philippe J R; Haddad, Célio F B; Rodrigues, Miguel T

    2012-11-01

    Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with

  5. BRAIN DYSFUNCTION OF PATIENTS WITH QIGONG INDUCED MENTAL DISORDER REVEALED BY EVOKED POTENTIALS RECORDING

    Institute of Scientific and Technical Information of China (English)

    LU Yingzhi; ZONG Wenbin; CHEN Xingshi

    2003-01-01

    Objective: In order to investigate the brain function of patients with Qigong induced mental disorder (QIMD), this study was carried out. Methods: Four kinds of evoked potentials, including contingent negative variation (CNV), auditory evoked potentials (AEP), visual evoked potentials (VEP), and somatosensory evoked potentials (SEP), were recorded from 12 patients with Qigong induced mental disorder.Comparison of their evoked potentials with the data from some normal controls was made. Results: The results revealed that there were 3 kinds of abnormal changes in evoked potentials of patients with QIMD that is latency prolongation, amplitude increase and amplitude decrease, as compared with normal controls. Conclusion: Brain dysfunction of patients with QIMD was confirmed. Its biological mechanism needs further studying.

  6. Risk factors for small-vessel disease revealed by magnetic resonance imaging of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tatsuo; Yamaguchi, Shinya; Yamamura, Yasuhiro; Nakamura, Shigenobu [Hiroshima Univ. (Japan). School of Medicine; Tanaka, Eiji

    1996-02-01

    In total, 133 patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study (64 males, 69 females). Among them 91 patients had a history of symptomatic cerebral infarction, 46 patients of hypertension, and 28 patients of diabetes mellitus. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The grade of periventricular lesions, and the number of small infarctions in the subcortical white matter, basal ganglia and brain stem increased significantly with advancing age. It was thus reconfirmed that age is an important risk for demonstrating small-vessel disease on brain MRI. In addition, the degree of small-vessel disease on brain MRI was more extensive in patients with symptomatic cerebral infarction than with asymptomatic cerebral infarction. The detailed results suggest that small-vessel disease on brain MRI in patients with asymptomatic cerebral infarction might represent preclinical lesions for symptomatic cerebral infarction. The numbers of small infarctions in both the subcortical white matter and basal ganglia associated with advancing age, and histories of cerebrovascular accident and hypertension, suggest that common underlying mechanisms may exist in small-vessel disease in both the medullary arteries, which arise from cortical arteries, and perforating arteries. In the subcortical white matter, the number of patchy lesions was more strongly correlated with histories of hypertension and diabetes mellitus than was the number of spotty lesions, suggesting that the risk factors differed depending on the size of the lesions. The present study revealed that the degree of small-vessel disease on brain MRI was not correlated with the serum concentration of total cholesterol, triglyceride or HDL-cholesterol. The data thus indicate that the risk factors for small-vessel disease are distinct from those for large-vessel disease. (J.P.N.)

  7. Risk factors for small-vessel disease revealed by magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    In total, 133 patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study (64 males, 69 females). Among them 91 patients had a history of symptomatic cerebral infarction, 46 patients of hypertension, and 28 patients of diabetes mellitus. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The grade of periventricular lesions, and the number of small infarctions in the subcortical white matter, basal ganglia and brain stem increased significantly with advancing age. It was thus reconfirmed that age is an important risk for demonstrating small-vessel disease on brain MRI. In addition, the degree of small-vessel disease on brain MRI was more extensive in patients with symptomatic cerebral infarction than with asymptomatic cerebral infarction. The detailed results suggest that small-vessel disease on brain MRI in patients with asymptomatic cerebral infarction might represent preclinical lesions for symptomatic cerebral infarction. The numbers of small infarctions in both the subcortical white matter and basal ganglia associated with advancing age, and histories of cerebrovascular accident and hypertension, suggest that common underlying mechanisms may exist in small-vessel disease in both the medullary arteries, which arise from cortical arteries, and perforating arteries. In the subcortical white matter, the number of patchy lesions was more strongly correlated with histories of hypertension and diabetes mellitus than was the number of spotty lesions, suggesting that the risk factors differed depending on the size of the lesions. The present study revealed that the degree of small-vessel disease on brain MRI was not correlated with the serum concentration of total cholesterol, triglyceride or HDL-cholesterol. The data thus indicate that the risk factors for small-vessel disease are distinct from those for large-vessel disease. (J.P.N.)

  8. Unexpected development of artistic talents.

    Science.gov (United States)

    Gordon, N

    2005-12-01

    The development of exceptional and unexpected artistic skills at any age must be a matter of curiosity. This can occur among young children with severe learning difficulties, especially if they are autistic. Some examples of these so called idiot-savants are given, and the way in which their brains may function. It is also true that elderly people who suffer from frontotemporal dementia can find that they are able to express themselves in remarkable art forms. This can occur in other types of dementia, but then more often it is the changes that result in the paintings of established artists, for example in the paintings of de Kooning. Possible links between these two phenomenon are discussed, and it is suggested that in both instances it may be that if the brain is relieved of a number of functions it can concentrate on the remaining ones. Ways in which this may operate in both groups are reviewed. PMID:16344297

  9. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    Directory of Open Access Journals (Sweden)

    Nina P. Hofmann

    2016-01-01

    Full Text Available Left ventricular (LV hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM, cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG, echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2, severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%, accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE by cardiac magnetic resonance (CMR. Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease.

  10. Brain slice invasion model reveals genes differentially regulated in glioma invasion

    International Nuclear Information System (INIS)

    Invasion of tumor cells into adjacent brain areas is one of the major problems in treatment of glioma patients. To identify genes that might contribute to invasion, fluorescent F98 glioma cells were allowed to invade an organotypic brain slice. Gene expression analysis revealed 5 up-regulated and 14 down-regulated genes in invasive glioma cells as compared to non-invasive glioma cells. Two gene products, ferritin and cyclin B1, were verified in human gliomas by immunohistochemistry. Ferritin exhibited high mRNA levels in migratory F98 cells and also showed higher protein expression in the infiltrating edge of human gliomas. Cyclin B1 with high mRNA expression levels in stationary F98 cells showed marked protein expression in the central portions of gliomas. These findings are compatible with the concept of tumor cells either proliferating or migrating. Our study is the first to apply brain slice cultures for the identification of differentially regulated genes in glioma invasion

  11. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    Science.gov (United States)

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation--dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input--both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  12. Dependency Network Analysis (DEPNA) Reveals Context Related Influence of Brain Network Nodes

    Science.gov (United States)

    Jacob, Yael; Winetraub, Yonatan; Raz, Gal; Ben-Simon, Eti; Okon-Singer, Hadas; Rosenberg-Katz, Keren; Hendler, Talma; Ben-Jacob, Eshel

    2016-01-01

    Communication between and within brain regions is essential for information processing within functional networks. The current methods to determine the influence of one region on another are either based on temporal resolution, or require a predefined model for the connectivity direction. However these requirements are not always achieved, especially in fMRI studies, which have poor temporal resolution. We thus propose a new graph theory approach that focuses on the correlation influence between selected brain regions, entitled Dependency Network Analysis (DEPNA). Partial correlations are used to quantify the level of influence of each node during task performance. As a proof of concept, we conducted the DEPNA on simulated datasets and on two empirical motor and working memory fMRI tasks. The simulations revealed that the DEPNA correctly captures the network’s hierarchy of influence. Applying DEPNA to the functional tasks reveals the dynamics between specific nodes as would be expected from prior knowledge. To conclude, we demonstrate that DEPNA can capture the most influencing nodes in the network, as they emerge during specific cognitive processes. This ability opens a new horizon for example in delineating critical nodes for specific clinical interventions. PMID:27271458

  13. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  14. K-shell decomposition reveals hierarchical cortical organization of the human brain

    Science.gov (United States)

    Lahav, Nir; Ksherim, Baruch; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven; Havlin, Shlomo

    2016-08-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI\\DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  15. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    Full Text Available BACKGROUND: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. METHODS AND FINDINGS: We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. CONCLUSIONS: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  16. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    Science.gov (United States)

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  17. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    International Nuclear Information System (INIS)

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS

  18. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Duan, Yunyun, E-mail: xiaoyun81.love@163.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); He, Yong, E-mail: yong.h.he@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Yu, Chunshui, E-mail: csyuster@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Wang, Jun, E-mail: jun_wang@bnu.edu.cn [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Huang, Jing, E-mail: sainthj@126.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Ye, Jing, E-mail: jingye.2007@yahoo.com.cn [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Parizel, Paul M., E-mail: paul.parizel@ua.ac.be [Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, 8 Belgium (Belgium); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shu, Ni, E-mail: nshu55@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China)

    2012-10-15

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS.

  19. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    Science.gov (United States)

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. PMID:27353480

  20. Unexpected high plasma cobalamin

    DEFF Research Database (Denmark)

    Arendt, Johan F B; Nexo, Ebba

    2013-01-01

    It is well-established that more than 8% of patients examined for vitamin B12 deficiency unexpectedly have increased plasma levels of the vitamin, but so far there are no guidelines for the clinical interpretation of such findings. In this review, we summarise known associations between high plasma...... cobalamin binding proteins, transcobalamin and haptocorrin. Based on current knowledge, we suggest a strategy for the clinical interpretation of unexpected high plasma cobalamin. Since a number of the associated diseases are critical and life-threatening, the strategy promotes the concept of 'think the...

  1. A 24-hour temporal profile of in vivo brain and heart pet imaging reveals a nocturnal peak in brain 18F-fluorodeoxyglucose uptake.

    Directory of Open Access Journals (Sweden)

    Daan R van der Veen

    Full Text Available Using positron emission tomography, we measured in vivo uptake of (18F-fluorodeoxyglucose (FDG in the brain and heart of C57Bl/6 mice at intervals across a 24-hour light-dark cycle. Our data describe a significant, high amplitude rhythm in FDG uptake throughout the whole brain, peaking at the mid-dark phase of the light-dark cycle, which is the active phase for nocturnal mice. Under these conditions, heart FDG uptake did not vary with time of day, but did show biological variation throughout the 24-hour period for measurements within the same mice. FDG uptake was scanned at different times of day within an individual mouse, and also compared to different times of day between individuals, showing both biological and technical reproducibility of the 24-hour pattern in FDG uptake. Regional analysis of brain FDG uptake revealed especially high amplitude rhythms in the olfactory bulb and cortex, while low amplitude rhythms were observed in the amygdala, brain stem and hypothalamus. Low amplitude 24-hour rhythms in regional FDG uptake may be due to multiple rhythms with different phases in a single brain structure, quenching some of the amplitude. Our data show that the whole brain exhibits significant, high amplitude daily variation in glucose uptake in living mice. Reports applying the 2-deoxy-D[(14C]-glucose method for the quantitative determination of the rates of local cerebral glucose utilization indicate only a small number of brain regions exhibiting a day versus night variation in glucose utilization. In contrast, our data show 24-hour patterns in glucose uptake in most of the brain regions examined, including several regions that do not show a difference in glucose utilization. Our data also emphasizes a methodological requirement of controlling for the time of day of scanning FDG uptake in the brain in both clinical and pre-clinical settings, and suggests waveform normalization of FDG measurements at different times of the day.

  2. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Science.gov (United States)

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H

    2016-01-01

    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  3. [Unexpected drug-interaction].

    Science.gov (United States)

    Tajima, Yutaka

    2002-02-01

    The case of a male patient suffering from chronic normal pressure hydrocephalus is outlined. Antidepressant and pravastatin were administered because of the patient's abulia and hypercholesterolemia, but neuroleptic malignant syndrome-like conditions developed. All physicians should suppose the occurrence of such an "unexpected drug-interaction" in any case. The author considered that a good sense of careful discernment and rapid reference system of medical information are "essential tools" for clinical management. PMID:11925849

  4. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  5. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Science.gov (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D

    2012-01-01

    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent. PMID:22860132

  6. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  7. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  8. ARTIFICIAL SELECTION ON RELATIVE BRAIN SIZE REVEALS A POSITIVE GENETIC CORRELATION BETWEEN BRAIN SIZE AND PROACTIVE PERSONALITY IN THE GUPPY

    OpenAIRE

    Kotrschal, Alexander; Lievens, Eva J.P.; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A.; Winberg, Svante; Panula, Pertti; Kolm, Niclas

    2014-01-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection li...

  9. Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2014-01-01

    Conclusions: The present study confirms that chronic tinnitus patients have aberrant ALFF in many brain regions, which is associated with specific clinical tinnitus characteristics. ALFF disturbance in specific brain regions might be used to identify the neuro-pathophysiological mechanisms in chronic tinnitus patients.

  10. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-01-01

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders. PMID:24619090

  11. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets

    Science.gov (United States)

    Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.

    2016-01-01

    Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082

  12. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  13. Brain classification reveals the right cerebellum as the best biomarker of dyslexia

    Directory of Open Access Journals (Sweden)

    Demonet Jean

    2009-06-01

    Full Text Available Abstract Background Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel, because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique. Results The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38 falling outside of the control group (N = 39 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD grey matter volumes than controls and subjects with higher cerebellar declive (HCD grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic

  14. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.

    Directory of Open Access Journals (Sweden)

    Balázs Szalkai

    Full Text Available Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google's PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections

  15. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.

    Science.gov (United States)

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google's PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard) quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections in the brain graph

  16. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.

    Science.gov (United States)

    Kumar, Abhilasha; Fung, S; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker

    2009-11-01

    The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropil structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropils. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropil formed by these neurons is still unclear. In this study we used genetic labeling techniques to characterize the neuropil innervation pattern of engrailed-expressing brain lineages of known neuromeric origin. We show that the neurons of these lineages project to and form most arborizations, in particular all of their proximal branches, in the same brain neuropil compartments in embryonic, larval and adult stages. Moreover, we show that engrailed-positive neurons of differing neuromeric origin respect boundaries between neuromere-specific compartments in the brain. This is confirmed by an analysis of the arborization pattern of empty spiracles-expressing lineages. These findings indicate that arborizations of lineages deriving from different brain neuromeres innervate a nonoverlapping set of neuropil compartments. This supports a model for neuromere-specific brain neuropil, in which a given lineage forms its proximal arborizations predominantly in the compartments that correspond to its neuromere of origin. PMID:19711412

  17. Brain imaging reveals neuronal circuitry underlying the crow’s perception of human faces

    OpenAIRE

    Marzluff, John M.; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J.

    2012-01-01

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal’s brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure...

  18. The function of histamine receptor H4R in the brain revealed by interaction partners.

    Science.gov (United States)

    Moya-Garcia, Aurelio A; Rodriguez, Carlos E; Morilla, Ian; Sanchez-Jimenez, Francisca; Ranea, Juan A G

    2011-01-01

    The histamine H4 receptor is mainly expressed in haematopoietic cells, hence is linked to inflammatory and immune system conditions. It has been recently discovered that the receptor is expressed also in the mammalian central nervous system (CNS), but its role in the brain remains unclear. We address the potential functions of the histamine H4 receptor in the human brain using a 'guilty by association' logic, by close examination of protein-protein functional associations networks in the human proteome. PMID:21622255

  19. Prion Infection of Mouse Brain Reveals Multiple New Upregulated Genes Involved in Neuroinflammation or Signal Transduction

    OpenAIRE

    Carroll, James A.; Striebel, James F.; Race, Brent; Phillips, Katie; Chesebro, Bruce

    2014-01-01

    Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre...

  20. A mu–delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks

    OpenAIRE

    Erbs, Eric; Faget, Lauren; Scherrer, Gregory; Matifas, Audrey; Filliol, Dominique; Vonesch, Jean-Luc; Koch, Marc; Kessler, Pascal; Hentsch, Didier; Birling, Marie-Christine; Koutsourakis, Manoussos; Vasseur, Laurent; Veinante, Pierre; Kieffer, Brigitte L.; Massotte, Dominique

    2014-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual recepto...

  1. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics

    OpenAIRE

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K.; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-01-01

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brai...

  2. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    OpenAIRE

    Wang, Chunmei; Zheng, Dong; Xu, Jie; Lam, Waiping; Yew, D. T.

    2013-01-01

    Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA) glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the fi...

  3. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  4. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    Science.gov (United States)

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  5. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  6. Intrinsic connectivity in the human brain does not reveal networks for 'basic' emotions.

    Science.gov (United States)

    Touroutoglou, Alexandra; Lindquist, Kristen A; Dickerson, Bradford C; Barrett, Lisa Feldman

    2015-09-01

    We tested two competing models for the brain basis of emotion, the basic emotion theory and the conceptual act theory of emotion, using resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). The basic emotion view hypothesizes that anger, sadness, fear, disgust and happiness each arise from a brain network that is innate, anatomically constrained and homologous in other animals. The conceptual act theory of emotion hypothesizes that an instance of emotion is a brain state constructed from the interaction of domain-general, core systems within the brain such as the salience, default mode and frontoparietal control networks. Using peak coordinates derived from a meta-analysis of task-evoked emotion fMRI studies, we generated a set of whole-brain rs-fcMRI 'discovery' maps for each emotion category and examined the spatial overlap in their conjunctions. Instead of discovering a specific network for each emotion category, variance in the discovery maps was accounted for by the known domain-general network. Furthermore, the salience network is observed as part of every emotion category. These results indicate that specific networks for each emotion do not exist within the intrinsic architecture of the human brain and instead support the conceptual act theory of emotion. PMID:25680990

  7. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain

    OpenAIRE

    Xie, Hong; Liu, Yu; Zhu, Youzhi; Ding, Xinlu; Yang, Yuhao; Guan, Ji-Song

    2014-01-01

    This study demonstrates how sensory information is represented and stored in cortical circuits during complex behavior in the mammalian brain. Using a newly established automatic algorithm for cell detection, we tracked the expression of immediate early genes from more than 20,000 neurons in each living mouse for 2 mo, revealing quantitative signal changes in each neuron within a local cortical circuit. A natural behavioral task induced sparse and task-specific neuronal activation in cortical...

  8. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

    OpenAIRE

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison

    2014-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analys...

  9. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  10. scMRI reveals large-scale brain network abnormalities in autism.

    Directory of Open Access Journals (Sweden)

    Brandon A Zielinski

    Full Text Available Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a 'posteriorization' of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.

  11. Clinical study on eating disorders. Brain atrophy revealed by cranial computed tomography scans

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Shinichi

    1988-06-01

    Cranial computed tomography (CT) scans were reviewed in 34 patients with anorexia nervosa (Group I) and 22 with bulimia (Group II) to elucidate the cause and pathological significance of morphological brain alterations. The findings were compared with those from 47 normal women. The incidence of brain atrophy was significantly higher in Group I (17/34, 50%) and Group II (11/22, 50%) than the control group (3/47, 6%). In Group I, there was a significant increase in the left septum-caudate distance, the maximum width of interhemispheric fissure, the width of the both-side Sylvian fissures adjacent to the skull, and the maximum width of the third ventricle. A significant increase in the maximum width of interhemispheric fissure and the width of the left-side Sylvian fissure adjacent to the skull were noted as well in Group II. Ventricular brain ratios were significantly higher in Groups I and II than the control group (6.76 and 7.29 vs 4.55). Brain atrophy did not correlate with age, body weight, malnutrition, eating behavior, depression, thyroid function, EEG findings, or intelligence scale. In Group I, serum cortisol levels after the administration of dexamethasone were correlated with ventricular brain ratio. (Namekawa, K) 51 refs.

  12. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Directory of Open Access Journals (Sweden)

    Catherine Kielar

    Full Text Available Complexins (Cplxs are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/- have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/- mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/- mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/- and Cplx1(+/+ mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/- mice when compared to Cplx1(+/+ animals. Our study is the first to describe pathological changes in Cplx1(-/- mouse brain. We suggest that the ataxia in Cplx1(-/- mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/- mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  13. Separation methods that are capable of revealing blood-brain barrier permeability.

    Science.gov (United States)

    Dash, Alekha K; Elmquist, William F

    2003-11-25

    The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the

  14. Seeing Things That are Not There: Illusions Reveal How Our Brain Constructs What We See

    OpenAIRE

    Herrmann, Christoph S.; Murray, Micah M

    2013-01-01

    What we perceive is not always what our eyes see. Vision, and perception more generally, should not be thought of as a webcam that just takes pictures of the world. This is not a fault in how our brains work, but rather is exemplary of how the brain constructs perception and takes advantage of its massive inter-connectedness in ways that are highly similar to social networks. The construction of perception is not only based on the information the eyes capture, but also based on the informatio...

  15. An unexpected tetanus case.

    Science.gov (United States)

    Ergonul, Onder; Egeli, Demet; Kahyaoglu, Bulent; Bahar, Mois; Etienne, Mill; Bleck, Thomas

    2016-06-01

    1 million cases of tetanus are estimated to occur worldwide each year, with more than 200 000 deaths. Tetanus is a life-threatening but preventable disease caused by a toxin produced by Clostridium tetani-a Gram-positive bacillus found in high concentrations in soil and animal excrement. Tetanus is almost completely preventable by active immunisation, but very rarely unexpected cases can occur in individuals who have been previously vaccinated. We report a case of generalised tetanus in a 22-year-old woman that arose despite the protective antitoxin antibody in her serum. The patient received all her vaccinations in the USA; her last vaccination was 6 years ago. The case was unusual because the patient had received all standard vaccinations, had no defined port of entry at disease onset, and had symptoms lasting for 6 months. Tetanus can present with unusual clinical forms; therefore, the diagnosis and management of this rare but difficult disease should be updated. In this Grand Round, we review the clinical features, epidemiology, treatment, and prognosis of C tetani infections. PMID:27301930

  16. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    International Nuclear Information System (INIS)

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  17. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  18. Event-Related Brain Potentials Reveal Anomalies in Temporal Processing of Faces in Autism Spectrum Disorder

    Science.gov (United States)

    McPartland, James; Dawson, Geraldine; Webb, Sara J.; Panagiotides, Heracles; Carver, Leslie J.

    2004-01-01

    Background: Individuals with autism exhibit impairments in face recognition, and neuroimaging studies have shown that individuals with autism exhibit abnormal patterns of brain activity during face processing. The current study examined the temporal characteristics of face processing in autism and their relation to behavior. Method: High-density…

  19. Perceptual Shift in Bilingualism: Brain Potentials Reveal Plasticity in Pre-Attentive Colour Perception

    Science.gov (United States)

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-01-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour…

  20. Widespread Brain Areas Engaged during a Classical Auditory Streaming Task Revealed by Intracranial EEG

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    2011-08-01

    Full Text Available The auditory system must constantly decompose the complex mixture of sound arriving at the ear into perceptually-independent streams constituting accurate representations of individual sources in the acoustic environment. How the brain accomplishes this task is not well understood. The present study combined a classic behavioral paradigm with direct cortical recordings from neurosurgical patients with epilepsy in order to further describe the neural correlates of auditory streaming. Participants listened to sequences of pure tones alternating in frequency and indicated whether they heard one or two “streams.” The intracranial EEG was simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal cortex. Like healthy subjects, patients heard one stream when the frequency separation between tones was small and two when it was large. Robust evoked-potential correlates of frequency separation were observed over widespread brain areas. Waveform morphology was highly variable across individual electrode sites both within and across gross brain regions. Surprisingly, few evoked-potential correlates of perceptual organization were observed after controlling for physical stimulus differences. The results indicate that the cortical areas engaged during the streaming task is more complex and widespread than has been demonstrated by previous work, and that, by-and-large, correlates of bi-stability during streaming are probably located on a spatial scale not assessed – or in a brain area not examined – by the present study.

  1. Multi-study integration of brain cancer transcriptomes reveals organ-level molecular signatures.

    Directory of Open Access Journals (Sweden)

    Jaeyun Sung

    Full Text Available We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein--Identification of Structured Signatures and Classifiers (ISSAC--that resulted in a brain cancer marker panel of 44 unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having known roles in cancer biology. Analyses on large-scale data from multiple sources must deal with significant challenges associated with heterogeneity between different published studies, for it was observed that the variation among individual studies often had a larger effect on the transcriptome than did phenotype differences, as is typical. For this reason, we restricted ourselves to studying only cases where we had at least two independent studies performed for each phenotype, and also reprocessed all the raw data from the studies using a unified pre-processing pipeline. We found that learning signatures across multiple datasets greatly enhanced reproducibility and accuracy in predictive performance on truly independent validation sets, even when keeping the size of the training set the same. This was most likely due to the meta-signature encompassing more of the heterogeneity across different sources and conditions, while amplifying signal from the repeated global characteristics of the phenotype. When molecular signatures of brain cancers were constructed from all currently available microarray data, 90% phenotype prediction accuracy, or the accuracy of identifying a particular brain cancer from the background of all phenotypes, was found. Looking forward, we discuss our approach in the context of the eventual development of organ-specific molecular signatures from peripheral fluids such as the blood.

  2. Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling

    OpenAIRE

    Brand Andrea H; Egger Boris; von Trotha Jakob W

    2009-01-01

    Abstract Background The production of new neurons during adulthood and their subsequent integration into a mature central nervous system have been shown to occur in all vertebrate species examined to date. However, the situation in insects is less clear and, in particular, it has been reported that there is no proliferation in the Drosophila adult brain. Results We report here, using clonal analysis and 5'-bromo-2'-deoxyuridine (BrdU) labelling, that cell proliferation does occur in the Droso...

  3. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography

    OpenAIRE

    Crowe, David A.; Leuthold, Arthur C.; Georgopoulos, Apostolos P.

    2010-01-01

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermor...

  4. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe

    OpenAIRE

    Berns, Gregory S.; Cook, Peter F.; Foxley, Sean; Jbabdi, Saad; Miller, Karla L.; Marino, Lori

    2015-01-01

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this...

  5. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  6. Statistical language learning in neonates revealed by event-related brain potentials

    Directory of Open Access Journals (Sweden)

    Näätänen Risto

    2009-03-01

    Full Text Available Abstract Background Statistical learning is a candidate for one of the basic prerequisites underlying the expeditious acquisition of spoken language. Infants from 8 months of age exhibit this form of learning to segment fluent speech into distinct words. To test the statistical learning skills at birth, we recorded event-related brain responses of sleeping neonates while they were listening to a stream of syllables containing statistical cues to word boundaries. Results We found evidence that sleeping neonates are able to automatically extract statistical properties of the speech input and thus detect the word boundaries in a continuous stream of syllables containing no morphological cues. Syllable-specific event-related brain responses found in two separate studies demonstrated that the neonatal brain treated the syllables differently according to their position within pseudowords. Conclusion These results demonstrate that neonates can efficiently learn transitional probabilities or frequencies of co-occurrence between different syllables, enabling them to detect word boundaries and in this way isolate single words out of fluent natural speech. The ability to adopt statistical structures from speech may play a fundamental role as one of the earliest prerequisites of language acquisition.

  7. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    Directory of Open Access Journals (Sweden)

    Rakib U Rayhan

    Full Text Available Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991 have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10. This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18 that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  8. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

    Science.gov (United States)

    Lipovich, Leonard; Hou, Zhuo-Cheng; Jia, Hui; Sinkler, Christopher; McGowen, Michael; Sterner, Kirstin N; Weckle, Amy; Sugalski, Amara B; Pipes, Lenore; Gatti, Domenico L; Mason, Christopher E; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Grossman, Lawrence I; Goodman, Morris; Wildman, Derek E

    2016-02-01

    The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes. PMID:26132897

  9. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  10. Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in Yellow Catfish (Pelteobagrus fulvidraco) Brain.

    Science.gov (United States)

    Lu, Jianguo; Zheng, Min; Zheng, Jiajia; Liu, Jian; Liu, Yongzhuang; Peng, Lina; Wang, Pingping; Zhang, Xiaofeng; Wang, Qiushi; Luan, Peixian; Mahbooband, Shahid; Sun, Xiaowen

    2015-10-01

    Yellow catfish (Pelteobagrus fulvidraco) is a pivotal freshwater aquaculture species in China. It shows sexual size dimorphism favoring male in growth. Whole transcriptome approach is required to get the overview of genetic toolkit for understanding the sex determination mechanism aiming at devising its monosex production. Beside gonads, the brain is also considered as a major organ for vertebrate reproduction. Transcriptomic analyses on the brain and of different developmental stages will provide the dynamic view necessary for better understanding its sex determination. In this regard, we have performed a de novo assembly of yellow catfish brain transcriptome by high throughput Illumina sequencing. A total number of 154,507 contigs were obtained with the lengths ranging from 201 to 27,822 bp and N50 of 2,101 bp, as well as 20,699 unigenes were identified. Of these unigenes, 13 and 54 unigenes were detected to be XY-specifically expressed genes (SEGs) for one and 2-year-old yellow catfish, while the corresponding numbers of XX-SEGs for those two stages were 19 and 13, respectively. Our work identifies a set of annotated genes that are candidate factors affecting sexual dimorphism as well as simple sequence repeat (SSR) and single nucleotide variation (SNV) in yellow catfish. To validate the expression patterns of the sex-related genes, we performed quantitative real-time PCR (qRT-PCR) indicating the reliability and accuracy of our analysis. The results in our study may enhance our understanding of yellow catfish sex determination and potentially help to improve the production of all-male yellow catfish for aquaculture. PMID:26242754

  11. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Jonathan Wirsich

    2016-01-01

    In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  12. Physics of brain dynamics: Fokker-Planck analysis reveals changes in EEG {delta}-{theta} interactions in anaesthesia

    Energy Technology Data Exchange (ETDEWEB)

    Bahraminasab, A; Stefanovska, A; McClintock, P V E [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Ghasemi, F; Friedrich, R [Institute of Theoretical Physics, Westfaelische Wilhelms-Universitaet Wilhelm-Klemm-Strasse 9, 48149 Muenster (Germany)], E-mail: aneta@lancaster.ac.uk

    2009-10-15

    We use drift and diffusion coefficients to reveal interactions between different oscillatory processes underlying a complex signal and apply the method to EEG {delta} and {theta} frequencies in the brain. By analysis of data recorded from rats during anaesthesia, we consider the stability and basins of attraction of fixed points in the phase portrait of the deterministic part of the retrieved stochastic process. We show that different classes of dynamics are associated with deep and light anaesthesia, and we demonstrate that the predominant directionality of the interaction is such that {theta} drives {delta}.

  13. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis.

    Science.gov (United States)

    Burgaleta, Miguel; Sanjuán, Ana; Ventura-Campos, Noelia; Sebastian-Galles, Núria; Ávila, César

    2016-01-15

    Naturally acquiring a language shapes the human brain through a long-lasting learning and practice process. This is supported by previous studies showing that managing more than one language from early childhood has an impact on brain structure and function. However, to what extent bilingual individuals present neuroanatomical peculiarities at the subcortical level with respect to monolinguals is yet not well understood, despite the key role of subcortical gray matter for a number of language functions, including monitoring of speech production and language control - two processes especially solicited by bilinguals. Here we addressed this issue by performing a subcortical surface-based analysis in a sample of monolinguals and simultaneous bilinguals (N=88) that only differed in their language experience from birth. This analysis allowed us to study with great anatomical precision the potential differences in morphology of key subcortical structures, namely, the caudate, accumbens, putamen, globus pallidus and thalamus. Vertexwise analyses revealed significantly expanded subcortical structures for bilinguals compared to monolinguals, localized in bilateral putamen and thalamus, as well as in the left globus pallidus and right caudate nucleus. A topographical interpretation of our results suggests that a more complex phonological system in bilinguals may lead to a greater development of a subcortical brain network involved in monitoring articulatory processes. PMID:26505300

  14. Mining Unexpected Web Usage Behaviors

    OpenAIRE

    Li, Haoyuan; Laurent, Anne; Poncelet, Pascal

    2009-01-01

    Recently, the applications ofWeb usage mining are more and more concentrated on finding valuable user behaviors from Web navigation record data, where the sequential pattern model has been well adapted. However with the growth of the explored user behaviors, the decision makers will be more and more interested in unexpected behaviors, but not only in those already confirmed. In this paper, we present our approach USER, that finds unexpected sequences and implication rules from sequential data...

  15. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe.

    Science.gov (United States)

    Berns, Gregory S; Cook, Peter F; Foxley, Sean; Jbabdi, Saad; Miller, Karla L; Marino, Lori

    2015-07-22

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of 'associative' regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  16. Gene Regulatory Network Analysis Reveals Differences in Site-specific Cell Fate Determination in Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Gokhan eErtaylan

    2014-12-01

    Full Text Available Neurogenesis - the generation of new neurons - is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ lining the walls of the lateral ventricles; and the subgranular zone (SGZ of the dentate gyrus of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a and Nr3c1.We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report thirty-one candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar - Pax6 in SVZ and Sox2 - Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact.Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.

  17. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    Directory of Open Access Journals (Sweden)

    Putta Srikrishna

    2010-06-01

    Full Text Available Abstract Background The Mexican axolotl (Ambystoma mexicanum is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs were identified as unique to the axolotl (n = 76 and tiger salamander (n = 292 than were identified as shared (n = 108. All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome

  18. Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Helen L Hellmich

    Full Text Available Developing new pharmacotherapies for traumatic brain injury (TBI requires elucidation of the neuroprotective mechanisms of many structurally and functionally diverse compounds. To test our hypothesis that diverse neuroprotective drugs similarly affect common gene targets after TBI, we compared the effects of two drugs, metyrapone (MT and carbenoxolone (CB, which, though used clinically for noncognitive conditions, improved learning and memory in rats and humans. Although structurally different, both MT and CB inhibit a common molecular target, 11β hydroxysteroid dehydrogenase type 1, which converts inactive cortisone to cortisol, thereby effectively reducing glucocorticoid levels. We examined injury-induced signaling pathways to determine how the effects of these two compounds correlate with pro-survival effects in surviving neurons of the injured rat hippocampus. We found that treatment of TBI rats with MT or CB acutely induced in hippocampal neurons transcriptional profiles that were remarkably similar (i.e., a coordinated attenuation of gene expression across multiple injury-induced cell signaling networks. We also found, to a lesser extent, a coordinated increase in cell survival signals. Analysis of injury-induced gene expression altered by MT and CB provided additional insight into the protective effects of each. Both drugs attenuated expression of genes in the apoptosis, death receptor and stress signaling pathways, as well as multiple genes in the oxidative phosphorylation pathway such as subunits of NADH dehydrogenase (Complex1, cytochrome c oxidase (Complex IV and ATP synthase (Complex V. This suggests an overall inhibition of mitochondrial function. Complex 1 is the primary source of reactive oxygen species in the mitochondrial oxidative phosphorylation pathway, thus linking the protective effects of these drugs to a reduction in oxidative stress. The net effect of the drug-induced transcriptional changes observed here indicates that

  19. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  20. Managing the Unexpected in Decommissioning

    International Nuclear Information System (INIS)

    This publication explores the implications of decommissioning in the light of unexpected events and the trade-off between activities to reduce them and factors militating against any such extra work. It classifies and sets out some instances where unexpected findings in a decommissioning programme led to a need to either stop, or reconsider the work, re-think the options, or move forward on a different path. It provides practical guidance in planning and management of decommissioning taking into account unexpected events. This guidance includes an evaluation of the experience and lessons learned in tackling decommissioning that is often neglected. Thus it will enable future decommissioning teams to adopt the relevant lessons to reduce additional costs, time delays and radiation exposures

  1. Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of Drosophila melanogaster.

    Science.gov (United States)

    Niehoff, Ann-Christin; Schulz, Jacqueline; Soltwisch, Jens; Meyer, Sören; Kettling, Hans; Sperling, Michael; Jeibmann, Astrid; Dreisewerd, Klaus; Francesconi, Kevin A; Schwerdtle, Tanja; Karst, Uwe

    2016-05-17

    Arsenic-containing lipids (arsenolipids) are natural products of marine organisms such as fish, invertebrates, and algae, many of which are important seafoods. A major group of arsenolipids, namely, the arsenic-containing hydrocarbons (AsHC), have recently been shown to be cytotoxic to human liver and bladder cells, a result that has stimulated interest in the chemistry and toxicology of these compounds. In this study, elemental laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) and molecular matrix-assisted laser desorption/ionization (MALDI-)MS were used to image and quantify the uptake of an AsHC in the model organism Drosophila melanogaster. Using these two complementary methods, both an enrichment of arsenic and the presence of the AsHC in the brain were revealed, indicating that the intact arsenolipid had crossed the blood-brain barrier. Simultaneous acquisition of quantitative elemental concentrations and molecular distributions could allow new insight into organ-specific enrichment and possible transportation processes of arsenic-containing bioactive compounds in living organisms. PMID:27098356

  2. Tantalizing Thanatos: unexpected links in death pathways.

    Science.gov (United States)

    Cohen, Isabelle; Castedo, Maria; Kroemer, Guido

    2002-07-01

    Cell death is most frequently the result of apoptosis, an event that is often controlled by mitochondrial membrane permeabilization (MMP). Recent data reveal unexpected functional links between apoptosis and autophagic cell death, in the sense that MMP can trigger autophagy of damaged mitochondria. Conversely, one of the major signal-transducing molecules involved in the activation of autophagy during apoptosis--the so-called DAP kinase--can induce cell death through MMP. Connections are also emerging between apoptosis, autophagy, replicative senescence and cancer-specific metabolic changes. PMID:12185842

  3. Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy.

    Science.gov (United States)

    Liang, Wei-Kuang; Lo, Men-Tzung; Yang, Albert C; Peng, Chung-Kang; Cheng, Shih-Kuen; Tseng, Philip; Juan, Chi-Hung

    2014-04-15

    The abilities to inhibit impulses and withdraw certain responses are critical for human's survival in a fast-changing environment. These processes happen fast, in a complex manner, and sometimes are difficult to capture with fMRI or mean electrophysiological brain signal alone. Therefore, an alternative measure that can reveal the efficiency of the neural mechanism across multiple timescales is needed for the investigation of these brain functions. The present study employs a new approach to analyzing electroencephalography (EEG) signal: the multiscale entropy (MSE), which groups data points with different timescales to reveal any occurrence of repeated patterns, in order to theoretically quantify the complexity (indicating adaptability and efficiency) of neural systems during the process of inhibitory control. From this MSE perspective, EEG signals of successful stop trials are more complex and information rich than that of unsuccessful stop trials. We further applied transcranial direct current stimulation (tDCS), with anodal electrode over presupplementary motor area (preSMA), to test the relationship between behavioral modification with the complexity of EEG signals. We found that tDCS can further increase the EEG complexity of the frontal lobe. Furthermore, the MSE pattern was found to be different between high and low performers (divided by their stop-signal reaction time), where the high-performing group had higher complexity in smaller scales and less complexity in larger scales in comparison to the low-performing group. In addition, this between-group MSE difference was found to interact with the anodal tDCS, where the increase of MSE in low performers benefitted more from the anodal tDCS. Together, the current study demonstrates that participants who suffer from poor inhibitory control can efficiently improve their performance with 10min of electrical stimulation, and such cognitive improvement can be effectively traced back to the complexity within the

  4. Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibodies against tubulin from porcine brain

    OpenAIRE

    Weber, Klaus; Osborn, Mary; Franke, Werner W.; Seib, Erinita; Scheer, Ulrich; Herth, Werner

    2010-01-01

    Antibody against tubulin from porcine brain was used to evaluate the immunological cross reactivity of tubulin from a variety of animal and plant cells. Indirect immunofluorescence microscopy revealed microtubule-containing structures including cytoplasmic microtubules, spindle microtubules, cilia and fIagella. Thus tubulin from diverse species of both mammals and plants show immunological cross-reactivity with tubulin from porcine brain. Results obtained by immunofluorescence microscopy are ...

  5. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  6. Transcriptomic gene-network analysis of exposure to silver nanoparticle reveals potentially neurodegenerative progression in mouse brain neural cells.

    Science.gov (United States)

    Lin, Ho-Chen; Huang, Chin-Lin; Huang, Yuh-Jeen; Hsiao, I-Lun; Yang, Chung-Wei; Chuang, Chun-Yu

    2016-08-01

    Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder. PMID:27131904

  7. Training to handle unexpected events

    International Nuclear Information System (INIS)

    The importance of conducting hands-on training to deal with complex situations is well recognized. Since most utilities now own or have ordered their own control room simulators, access to simulator training facilities has improved greatly. Most utilities now have a control room shift rotation that includes a dedicated training shift. The opportunities for practicing operational control over unexpected and off-normal events are just beginning to be recognized. Areas that are being enhanced include teamwork training, diagnostics training, expanded simulator training programs, improvements in simulator instructor training, emergency procedures training, and training on the use of probabilistic risk assessment studies. All these efforts are aimed at the goal of improving the plant staff's ability to cope with unexpected and off-normal events

  8. Three-dimensional brain atlas of pygmy squid, Idiosepius paradoxus, revealing the largest relative vertical lobe system volume among the cephalopods.

    Science.gov (United States)

    Koizumi, Motoki; Shigeno, Shuichi; Mizunami, Makoto; Tanaka, Nobuaki K

    2016-07-01

    Cephalopods have the largest and most complex nervous system of all invertebrates, and the brain-to-body weight ratio exceeds those of most fish and reptiles. The brain is composed of lobe units, the functions of which have been studied through surgical manipulation and electrical stimulation. However, how information is processed in each lobe for the animal to make a behavioral decision has rarely been investigated. To perform such functional analyses, it is necessary to precisely describe how brain lobes are spatially organized and mutually interconnected as a whole. We thus made three-dimensional digital brain atlases of both hatchling and juvenile pygmy squid, Idiosepius paradoxus. I. paradoxus is the smallest squid and has a brain small enough to scan as a whole region in the field-of-view of a low-magnification laser scan microscope objective. Precise analyses of the confocal images of the brains revealed one newly identified lobe and also that the relative volume of the vertical lobe system, the higher association center, in the pygmy squid represents the largest portion compared with the cephalopod species reported previously. In addition, principal component analyses of relative volumes of lobe complexes revealed that the organization of I. paradoxus brain is comparable to those of Decapodiformes species commonly used to analyze complex behaviors such as Sepia officinalis and Sepioteuthis sepioidea. These results suggest that the pygmy squid can be a good model to investigate the brain functions of coleoids utilizing physiological methods. J. Comp. Neurol. 524:2142-2157, 2016. © 2016 Wiley Periodicals, Inc. PMID:26663197

  9. Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As{sub 1−x}Bi{sub x})/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A. W.; Babcock, S. E. [Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Guan, Y.; Forghani, K.; Anand, A.; Kuech, T. F. [Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-03-01

    A set of GaAs{sub 1−x}Bi{sub x}/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs{sub 1−x}Bi{sub x} well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast”) scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs{sub 1−x}Bi{sub x} alloys as they currently are grown.

  10. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  11. Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information.

    Directory of Open Access Journals (Sweden)

    Natalie M Trumpp

    Full Text Available Previous neuroimaging studies suggested an involvement of sensory-motor brain systems during conceptual processing in support of grounded cognition theories of conceptual memory. However, in these studies with visible stimuli, contributions of strategic imagery or semantic elaboration processes to observed sensory-motor activity cannot be entirely excluded. In the present study, we therefore investigated the electrophysiological correlates of unconscious feature-specific priming of action- and sound-related concepts within a novel feature-priming paradigm to specifically probe automatic processing of conceptual features without the contribution of possibly confounding factors such as orthographic similarity or response congruency. Participants were presented with a masked subliminal prime word and a subsequent visible target word. In the feature-priming conditions primes as well as targets belonged to the same conceptual feature dimension (action or sound, e.g., typewriter or radio whereas in the two non-priming conditions, either the primes or the targets consisted of matched control words with low feature relevance (e.g., butterfly or candle. Event-related potential analyses revealed unconscious feature-specific priming effects at fronto-central electrodes within 100 to 180 ms after target stimulus onset that differed with regard to topography and underlying neural generators. In congruency with previous findings under visible stimulation conditions, these differential subliminal ERP feature-priming effects demonstrate an unconscious automatic access to action versus sound features of concepts. The present results therefore support grounded cognition theory suggesting that activity in sensory and motor areas during conceptual processing can also occur unconsciously and is not mandatorily accompanied by a vivid conscious experience of the conceptual content such as in imagery.

  12. Coagulation and fibrinolytic parameters as predictors for small-vessel disease revealed by magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    We correlated coagulation and fibrinolytic parameters with small-vessel disease revealed by magnetic resonance imaging (MRI) of the brain. One hundred and eleven patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study; 57 males and 54 females with an average age of 66.6±9.6, age range 40 to 85, years old. Among them, 76 patients had a history of symptomatic cerebral infarction; 38 patients hypertension; and 24 patients diabetes mellitus. Patients with large cortical infarction, cerebral hemorrhage, demyelinating disease or mass lesions were excluded from the present study. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The small infarction was defined as a lesion less than 10 mm in diameter. The activity of von Willebrand factor (vWF) correlated significantly with the grade of caps at the anterior and posterior horns of the lateral ventricle, and the number of small infarctions in the subcortical white matter and basal ganglia, suggesting vWF could be a predictor for these small-vessel disease. The grade of caps at posterior horn of the lateral ventricle and the number of small infarctions in the subcortical white matter were associated significantly with the concentration of plasma fibrinogen and reversely with the activity of antithrombin III, an inhibitory factor in coagulation system. These results indicate that hypercoagulable state may causatively relate with small-vessel disease in the territory of medullary artery branching from cortical artery. On the contrary, these coagulation parameters did not correlate significantly with small ischemic lesions in the territory of perforating artery. No correlation was observed between the level of marker proteins for platelet activation and the degree of small-vessel disease, indicating the activation of platelet could not associate with the etiology of small-vessel disease. (author)

  13. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  14. Are rogue waves really unexpected?

    CERN Document Server

    Fedele, Francesco

    2015-01-01

    We present a third-order nonlinear model for the statistics of unexpected waves drawing on the work of Gemmrich & Garrett (2008). The model is verified by way of Monte Carlo simulations of Gaussian seas and comparisons to oceanic measurements. In particular, the analysis of oceanic data suggests that both skewness and kurtosis effects must be accounted for to obtain accurate predictions. As a specific application, the unexpectedness of the Andrea and WACSIS rogue wave events is examined in detail. Observations indicate that the crests of these waves have nearly the same amplitude ratio $h/H_s\\sim1.6$, where $H_s$ is the significant wave height. Both waves appeared without warning and they were nearly two-times larger than the surrounding $O(10)$ waves, and thus unexpected. The model developed here predicts that the two rogue waves are stochastically similar as they occur on average once every $10^{4}$ waves. Further, the maximum crest height actually observed is nearly the same as the threshold $h_{10^{6}...

  15. The arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropile

    Science.gov (United States)

    Kumar, Abhilasha; Fung, S.; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropile structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropiles. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropile formed by these neurons is still unclear. In this report, we use genetic labeling techniques to characterize the neuropile innervation pattern of engrailed-expressing brain lineages of known neuromeric origin. We show that the neurons of these lineages project to and form most arborizations, in particular all of their proximal branches, in the same brain neuropile compartments in embryonic, larval and adult stages. Moreover, we show that engrailed-positive neurons of differing neuromeric origin respect boundaries between neuromere-specific compartments in the brain. This is confirmed by an analysis of the arborization pattern of empty spiracles-expressing lineages. These findings indicate that arborizations of lineages deriving from different brain neuromeres innervate a non-overlapping set of neuropile compartments. This supports a model for neuromere-specific brain neuropile, in which a given lineage forms its proximal arborizations predominantly in the compartments that correspond to its neuromere of origin. PMID:19711412

  16. Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism

    Science.gov (United States)

    Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Mukai, David; Patterson, Steven E.; Boss, Gerry R.; Tromberg, Bruce J.; Brenner, Matthew

    2012-10-01

    Noninvasive near infrared spectroscopy measurements were performed to monitor cyanide (CN) poisoning and recovery in the brain region and in foreleg muscle simultaneously, and the effects of a novel CN antidote, sulfanegen sodium, on tissue hemoglobin oxygenation changes were compared using a sub-lethal rabbit model. The results demonstrated that the brain region is more susceptible to CN poisoning and slower in endogenous CN detoxification following exposure than peripheral muscles. However, sulfanegen sodium rapidly reversed CN toxicity, with brain region effects reversing more quickly than muscle. In vivo monitoring of multiple organs may provide important clinical information regarding the extent of CN toxicity and subsequent recovery, and facilitate antidote drug development.

  17. The arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropile

    OpenAIRE

    Kumar, Abhilasha; S Fung; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker

    2009-01-01

    The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropile structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropiles. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropile formed by these neu...

  18. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception

    OpenAIRE

    Juha Marko Lahnakoski; Enrico eGlerean; Juha eSalmi; Jääskeläinen, Iiro P.; Mikko eSams; Riitta eHari; Lauri eNummenmaa

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selecte...

  19. Abnormalities in the brain of streptozotocin-induced type 1 diabetic rats revealed by diffusion tensor imaging ☆

    OpenAIRE

    Huang, Mingming; Gao, Lifeng; Yang, Liqin; Lin, Fuchun; Lei, Hao

    2012-01-01

    Diabetes mellitus affects the brain. Both type 1 and type 2 diabetic patients are associated with white matter (WM) damage observable to diffusion tensor imaging (DTI). The underlying histopathological mechanisms, however, are poorly understood. The objectives of this study are 1) to determine whether streptozotocin (STZ)-induced type 1 diabetes is associated with WM damage observable to DTI; and 2) to understand the pathophysiological aspects underlying STZ-induced brain injuries. Male Sprag...

  20. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S;

    2015-01-01

    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional a...

  1. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings

    Science.gov (United States)

    Bralten, Janita; Greven, Corina U.; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P.; Rommelse, Nanda N.J.; Hartman, Catharina; van der Meer, Dennis; O’Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J.; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K.

    2016-01-01

    Background Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. Methods We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Results Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8–30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Limitations Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Conclusion Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research. PMID:26679925

  2. Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal miracle in sheep.

    Science.gov (United States)

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2015-03-01

    In underwater diving, decompression schedules are based on compartmental models of nitrogen and helium tissue kinetics. However, these models are not based on direct measurements of nitrogen and helium kinetics. In isoflurane-anesthetized sheep, nitrogen and helium kinetics in the hind limb (n = 5) and brain (n = 5) were determined during helium-oxygen breathing and after return to nitrogen-oxygen breathing. Nitrogen and helium concentrations in arterial, femoral vein, and sagittal sinus blood samples were determined using headspace gas chromatography, and venous blood flows were monitored continuously using ultrasonic Doppler. The experiment was repeated at different states of hind limb blood flow and cerebral blood flow. Using arterial blood gas concentrations and blood flows as input, parameters and model selection criteria of various compartmental models of hind limb and brain were estimated by fitting to the observed venous gas concentrations. In both the hind limb and brain, nitrogen and helium kinetics were best fit by models with multiexponential kinetics. In the brain, there were no differences in nitrogen and helium kinetics. Hind limb models fit separately to the two gases indicated that nitrogen kinetics were slightly faster than helium, but models with the same kinetics for both gases fit the data well. In the hind limb and brain, the blood:tissue exchange of nitrogen is similar to that of helium. On the basis of these results, it is inappropriate to assign substantially different time constants for nitrogen and helium in all compartments in decompression algorithms. PMID:25525213

  3. The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method.

    Science.gov (United States)

    Kimura, Taeko; Hatsuta, Hiroyuki; Masuda-Suzukake, Masami; Hosokawa, Masato; Ishiguro, Koichi; Akiyama, Haruhiko; Murayama, Shigeo; Hasegawa, Masato; Hisanaga, Shin-ichi

    2016-02-01

    Tauopathies are neurodegenerative diseases characterized by aggregates of hyperphosphorylated tau. Previous studies have identified many disease-related phosphorylation sites on tau. However, it is not understood how tau is hyperphosphorylated and what extent these sites are phosphorylated in both diseased and normal brains. Most previous studies have used phospho-specific antibodies to analyze tau phosphorylation. These results are useful but do not provide information about nonphosphorylated tau. Here, we applied the method of Phos-tag SDS-PAGE, in which phosphorylated tau was separated from nonphosphorylated tau in vivo. Among heterogeneously phosphorylated tau species in adult mouse brains, the nonphosphorylated 0N4R isoform was detected most abundantly. In contrast, perinatal tau and tau in cold water-stressed mice were all phosphorylated with a similar extent of phosphorylation. In normal elderly human brains, nonphosphorylated 0N3R and 0N4R tau were most abundant. A slightly higher phosphorylation of tau, which may represent the early step of hyperphosphorylation, was increased in Alzheimer disease patients at Braak stage V. Tau with this phosphorylation state was pelleted by centrifugation, and sarkosyl-soluble tau in either Alzheimer disease or corticobasal degeneration brains showed phosphorylation profiles similar to tau in normal human brain, suggesting that hyperphosphorylation occurs in aggregated tau. These results indicate that tau molecules are present in multiple phosphorylation states in vivo, and nonphosphorylated forms are highly expressed among them. PMID:26687814

  4. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Science.gov (United States)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  5. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  6. Potassium-selective microelectrode revealed difference in threshold potassium concentration for cortical spreading depression in female and male rat brain

    Czech Academy of Sciences Publication Activity Database

    Adámek, S.; Vyskočil, František

    2011-01-01

    Roč. 1370, - (2011), s. 215-219. ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA500110905 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cortex * potassium in brain Subject RIV: ED - Physiology Impact factor: 2.728, year: 2011

  7. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration.

    Science.gov (United States)

    Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo

    2015-05-01

    The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception. PMID:25495216

  8. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  9. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-01-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects. PMID:27032815

  10. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    Science.gov (United States)

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. PMID:26855192

  11. Spinal Hemangiopericytoma Which Needed Intraoperative Embolization due to Unexpected Bleeding

    OpenAIRE

    Lee, Chang-Hyun; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2013-01-01

    Spinal intradural hemangiopericytoma is a very rare tumor and can be characterized by massive bleeding during surgeries, frequent recurrence, and metastasis. However, definite radiologic differential points of hemangiopericytoma are not known. We describe an unexpected hemangiopericytoma case with large bleeding and management of the tumor. A 21-year-old man visited complaining of progressive neck pain and tingling sensation in both hands. Magnetic resonance imaging of his spine revealed C1-2...

  12. Prohibitin: an unexpected role in sex dimorphic functions

    OpenAIRE

    Nguyen, K. Hoa; Ande, Sudharsana R.; Mishra, Suresh

    2016-01-01

    Sex differences are known to exist in adipose and immune functions in the body, and sex steroid hormones are known to be involved in sexually dimorphic biological and pathological processes related to adipose-immune interaction. However, our knowledge of proteins that mediate such differences is poor. Two novel obese mice models, Mito-Ob and m-Mito-Ob, that have been reported recently have revealed an unexpected role of a pleiotropic protein, prohibitin (PHB), in sex differences in adipose an...

  13. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain.

    Science.gov (United States)

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-01-01

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. PMID:26485032

  14. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression

    OpenAIRE

    Labadorf, Adam; Hoss, Andrew G.; Lagomarsino, Valentina; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Bregu, Joli; MacDonald, Marcy E.; Gusella, James F.; Chen, Jiang-Fan; Akbarian, Schahram; Weng, Zhiping; Myers, Richard H

    2015-01-01

    Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confident...

  15. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme

    OpenAIRE

    Yu, Xuexin; Feng, Lin; Liu, Dianming; Zhang, Lianfeng; Wu, Bo; Jiang, Wei; Han, Zujing; Cheng, Shujun

    2016-01-01

    Although several researches have explored the similarity across development and tumorigenesis in cellular behavior and underlying molecular mechanisms, not many have investigated the developmental characteristics at proteomic level and further extended to cancer clinical outcome. In this study, we used iTRAQ to quantify the protein expression changes during macaque rhesus brain development from fetuses at gestation 70 days to after born 5 years. Then, we performed weighted gene co-expression ...

  16. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    Science.gov (United States)

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  17. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    Directory of Open Access Journals (Sweden)

    Shahabeddin Vahdat

    2015-06-01

    Full Text Available The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  18. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme.

    Science.gov (United States)

    Yu, Xuexin; Feng, Lin; Liu, Dianming; Zhang, Lianfeng; Wu, Bo; Jiang, Wei; Han, Zujing; Cheng, Shujun

    2016-03-22

    Although several researches have explored the similarity across development and tumorigenesis in cellular behavior and underlying molecular mechanisms, not many have investigated the developmental characteristics at proteomic level and further extended to cancer clinical outcome. In this study, we used iTRAQ to quantify the protein expression changes during macaque rhesus brain development from fetuses at gestation 70 days to after born 5 years. Then, we performed weighted gene co-expression network analysis (WGCNA) on protein expression data of brain development to identify co-expressed modules that highly expressed on distinct development stages, including early stage, middle stage and late stage. Moreover, we used the univariate cox regression model to evaluate the prognostic potentials of these genes in two independent glioblastoma multiforme (GBM) datasets. The results showed that the modules highly expressed on early stage contained more reproducible prognostic genes, including ILF2, CCT7, CCT4, RPL10A, MSN, PRPS1, TFRC and APEX1. These genes were not only associated with clinical outcome, but also tended to influence chemoresponse. These signatures identified from embryonic brain development might contribute to precise prediction of GBM prognosis and identification of novel drug targets in GBM therapies. Thus, the development could become a viable reference model for researching cancers, including identifying novel prognostic markers and promoting new therapies. PMID:26895104

  19. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats.

    Science.gov (United States)

    Bastle, Ryan M; Peartree, Natalie A; Goenaga, Julianna; Hatch, Kayla N; Henricks, Angela; Scott, Samantha; Hood, Lauren E; Neisewander, Janet L

    2016-10-15

    Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects. PMID:27435419

  20. Diffusion Tensor Imaging Reveals White Matter Injury in a Rat Model of Repetitive Blast-Induced Traumatic Brain Injury

    OpenAIRE

    Calabrese, Evan; Du, Fu; Garman, Robert H.; Johnson, G. Allan; Riccio, Cory; Tong, Lawrence C.; Joseph B. Long

    2014-01-01

    Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but exis...

  1. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    International Nuclear Information System (INIS)

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization

  2. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A.

    Science.gov (United States)

    Hubert, Christopher G; Bradley, Robert K; Ding, Yu; Toledo, Chad M; Herman, Jacob; Skutt-Kakaria, Kyobi; Girard, Emily J; Davison, Jerry; Berndt, Jason; Corrin, Philip; Hardcastle, Justin; Basom, Ryan; Delrow, Jeffery J; Webb, Thomas; Pollard, Steven M; Lee, Jeongwu; Olson, James M; Paddison, Patrick J

    2013-05-01

    To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3' splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies. PMID:23651857

  3. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  4. Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees

    Directory of Open Access Journals (Sweden)

    Štefan Albert

    2014-03-01

    Full Text Available Royal jelly proteins (MRJPs of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs, the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL, represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual gland-brain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function.

  5. Circadian variation in unexpected postoperative death

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H; Ramsing, T;

    1992-01-01

    Unexpected deaths still occur following major surgical procedures. The cause is often unknown but may be cardiac or thromboembolic in nature. Postoperative ischaemia, infarction and sudden cardiac death may be triggered by episodic or constant arterial hypoxaemia, which increases during the night....... This study examined the circadian variation of sudden unexpected death following abdominal surgery between 1985 and 1989 inclusive. Deaths were divided into those occurring during the day (08.00-16.00 hours), evening (16.00-24.00 hours) and night (24.00-08.00 hours). Twenty-three deaths were considered...... to have been totally unexpected. Of 16 such patients undergoing autopsy, pulmonary embolism was the cause of death in five. In the remaining 11 patients, death occurred at night in eight (P < 0.005). Five of the seven patients without an autopsy died at night (P < 0.04); overall, 13 of 18 unexpected...

  6. Amish Lifestyle Brings Unexpected Benefit: Less Asthma

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160228.html Amish Lifestyle Brings Unexpected Benefit: Less Asthma Finding suggests exposing ... are very similar genetically. They also share many lifestyle factors: low rates of childhood obesity, large family ...

  7. Unexpected strong attraction in the presence of continuum bound state

    International Nuclear Information System (INIS)

    The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

  8. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception

    Directory of Open Access Journals (Sweden)

    Juha Marko Lahnakoski

    2012-08-01

    Full Text Available Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-tesla functional magnetic imaging (fMRI, a set of 137 short (~16 s each, total 27 min audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action and non-human sounds lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: 1 a fronto-temporal network responding to multiple social categories, 2 a fronto-parietal network preferentially activated to bodies, motion and pain, 3 a temporo-amygdalar network responding to faces, social interaction and speech, and 4 a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the posterior STS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  9. Pediatric Sudden Unexpected Death in Epilepsy: What Have we Learned from Animal and Human Studies, and Can we Prevent it?

    Science.gov (United States)

    Holt, Rebecca L; Arehart, Eric; Hunanyan, Arsen; Fainberg, Nina A; Mikati, Mohamad A

    2016-05-01

    Several factors, such as epilepsy syndrome, poor compliance, and increased seizure frequency increase the risks of sudden unexpected death in epilepsy (SUDEP). Animal models have revealed that the mechanisms of SUDEP involve initially a primary event, often a seizure of sufficient type and severity, that occurs in a brain, which is vulnerable to SUDEP due to either genetic or antecedent factors. This primary event initiates a cascade of secondary events starting, as some models indicate, with cortical spreading depolarization that propagates to the brainstem where it results in autonomic dysfunction. Intrinsic abnormalities in brainstem serotonin, adenosine, sodium-postassium ATPase, and respiratory-control systems are also important. The tertiary event, which results from the above dysfunction, consists of either lethal central apnea, pulmonary edema, or arrhythmia. Currently, it is necessary to (1) continue researching SUDEP mechanisms, (2) work on reducing SUDEP risk factors, and (3) address the major need to counsel families about SUDEP. PMID:27544469

  10. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  11. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication

    Science.gov (United States)

    Liu, Ning; Mok, Charis; Witt, Emily E.; Pradhan, Anjali H.; Chen, Jingyuan E.; Reiss, Allan L.

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research. PMID:27014019

  12. The distribution and morphological characteristics of cholinergic cells in the brain of monotremes as revealed by ChAT immunohistochemistry.

    Science.gov (United States)

    Manger, P R; Fahringer, H M; Pettigrew, J D; Siegel, J M

    2002-01-01

    The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. PMID:12476054

  13. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication.

    Science.gov (United States)

    Liu, Ning; Mok, Charis; Witt, Emily E; Pradhan, Anjali H; Chen, Jingyuan E; Reiss, Allan L

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research. PMID:27014019

  14. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    Science.gov (United States)

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-01-01

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species. PMID:27571066

  15. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.

    Science.gov (United States)

    Gondré-Lewis, Marjorie C; Gboluaje, Temitayo; Reid, Shaina N; Lin, Stephen; Wang, Paul; Green, William; Diogo, Rui; Fidélia-Lambert, Marie N; Herman, Mary M

    2015-09-01

    The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain

  16. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Directory of Open Access Journals (Sweden)

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  17. Brain microstructural abnormalities revealed by diffusion tensor images in patients with treatment-resistant depression compared with major depressive disorder before treatment

    International Nuclear Information System (INIS)

    Treatment-resistant depression (TRD) is a therapeutic challenge for clinicians. Despite a growing interest in this area, an understanding of the pathophysiology of depression, particularly TRD, remains lacking. This study aims to detect the white matter abnormalities of whole brain fractional anisotropy (FA) in patients with TRD compared with major depressive disorder (MDD) before treatment by voxel-based analysis using diffusion tensor imaging. A total of 100 patients first diagnosed with untreated MDD underwent diffusion tensor imaging scans. 8 weeks after the first treatment, 54 patients showed response to the medication, whereas 46 did not. Finally, 20 patients were diagnosed with TRD after undergoing another treatment. A total of 20 patients with TRD and another 20 with MDD before treatment matched in gender, age, and education was enrolled in the research. For every subject, an FA map was generated and analyzed using SPM5. Subsequently, t-test was conducted to compare the FA values voxel to voxel between the two groups (p 7.57, voxel size > 30). Voxel-based morphometric (VBM) analysis was performed using T1W images. Significant reductions in FA were found in the white matter located in the bilateral of the hippocampus (left hippocampus: t = 7.63, voxel size = 50; right hippocampus: t = 7.82, voxel size = 48). VBM analysis revealed no morphological abnormalities between the two groups. Investigation of brain anisotropy revealed significantly decreased FA in both sides of the hippocampus. Although preliminary, our findings suggest that microstructural abnormalities in the hippocampus indicate vulnerability to treatment resistance.

  18. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.

    Science.gov (United States)

    Marini, Francesco; Demeter, Elise; Roberts, Kenneth C; Chelazzi, Leonardo; Woldorff, Marty G

    2016-01-20

    Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction

  19. Exploiting Unexpected Situations in the Mathematics Classroom

    Science.gov (United States)

    Foster, Colin

    2015-01-01

    The professional development of mathematics teachers needs to support teachers in orchestrating the mathematics classroom in ways that enable them to respond flexibly and productively to the unexpected. When a situation arises in the classroom which is not connected in an obvious way to the mathematical learning intentions of the lesson, it can be…

  20. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  1. Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease.

    Science.gov (United States)

    Gatto, Rodolfo G; Chu, Yaping; Ye, Allen Q; Price, Steven D; Tavassoli, Ehsan; Buenaventura, Andrea; Brady, Scott T; Magin, Richard L; Kordower, Jeffrey H; Morfini, Gerardo A

    2015-09-15

    Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo, we bred transgenic YFP(J16) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP(J16) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity. PMID:26123489

  2. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    Science.gov (United States)

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  3. Dysregulated Mitochondrial Genes and Networks with Drug Targets in Postmortem Brain of Patients with Posttraumatic Stress Disorder (PTSD Revealed by Human Mitochondria-Focused cDNA Microarrays

    Directory of Open Access Journals (Sweden)

    Yan A. Su, Jun Wu, Lei Zhang, Qiuyang Zhang, David M. Su, Ping He, Bi-Dar Wang, He Li, Maree J. Webster, Traumatic Stress Brain Study Group, Owen M. Rennert, Robert J. Ursano

    2008-01-01

    Full Text Available Posttraumatic stress disorder (PTSD is associated with decreased activity in the dorsolateral prefrontal cortex (DLPFC, the brain region that regulates working memory and preparation and selection of fear responses. We investigated gene expression profiles in DLPFC Brodmann area (BA 46 of postmortem patients with (n=6 and without PTSD (n=6 using human mitochondria-focused cDNA microarrays. Our study revealed PTSD-specific expression fingerprints of 800 informative mitochondria-focused genes across all of these 12 BA46 samples, and 119 (±>1.25, p<0.05 and 42 (±>1.60, p<0.05 dysregulated genes between the PTSD and control samples. Quantitative RT-PCR validated the microarray results. These fingerprints can essentially distinguish the PTSD DLPFC BA46 brains from controls. Of the 119 dysregulated genes (±≥125%, p<0.05, the highest percentages were associated with mitochondrial dysfunction (4.8%, p=6.61x10-6, oxidative phosphorylation (3.8%, p=9.04x10-4, cell survival-apoptosis (25.2%, p<0.05 and neurological diseases (23.5%, p<0.05. Fifty (50 dysregulated genes were present in the molecular networks that are known to be involved in neuronal function-survival and contain 7 targets for neuropsychiatric drugs. Thirty (30 of the dysregulated genes are associated with a number of neuropsychiatric disorders. Our results indicate mitochondrial dysfunction in the PTSD DLPFC BA46 and provide the expression fingerprints that may ultimately serve as biomarkers for PTSD diagnosis and the drugs and molecular targets that may prove useful for development of remedies for prevention and treatment of PTSD.

  4. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  5. Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia.

    Science.gov (United States)

    Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K

    2016-07-01

    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states. PMID:26708106

  6. Sudden unexpected death in infancy in Denmark

    DEFF Research Database (Denmark)

    Winkel, Bo Gregers; Holst, Anders Gaarsdal; Theilade, Juliane;

    2011-01-01

    Abstract Background. Incidence of sudden unexpected death in infancy (SUDI) and sudden infant death syndrome (SIDS) differs among studies and non-autopsied cases are difficult to assess. Objectives. To investigate causes of sudden death in infancy in a nationwide setting. Validate the use of the ...... are SUDI, and the majority of these are caused by cardiac disease or SIDS. Autopsy is not always performed and valuable information is subsequently lost. Cause of Death registry data is not accurate in describing SIDS....

  7. Endometriosis: A Highly Unexpected Skin Lesion

    OpenAIRE

    Tolga Dinc

    2016-01-01

    Endometriosis: A highly unexpected skin lesion Endometriosis is the presence of functional endometrium in anywhere outside of uterin cavity. This clinical entity is relatively common, that 10-15% of fertile women and 6% of post-menopausal women are affected [1,2] . Cutaneous endometriosis is a form of endometriosis and it usually occurs in the incision scar, after gynecological surgeries, cesarean sections and episiotomies [3]. Cutaneous endometriosis is characterized with painful, bluish ...

  8. Hepatic encephalopathy: effects of liver failure on brain function.

    Science.gov (United States)

    Felipo, Vicente

    2013-12-01

    Liver failure affects brain function, leading to neurological and psychiatric alterations; such alterations are referred to as hepatic encephalopathy (HE). Early diagnosis of minimal HE reveals an unexpectedly high incidence of mild cognitive impairment and psychomotor slowing in patients with liver cirrhosis - conditions that have serious health, social and economic consequences. The mechanisms responsible for the neurological alterations in HE are beginning to emerge. New therapeutic strategies acting on specific targets in the brain (phosphodiesterase 5, type A GABA receptors, cyclooxygenase and mitogen-activated protein kinase p38) have been shown to restore cognitive and motor function in animal models of chronic HE, and NMDA receptor antagonists have been shown to increase survival in acute liver failure. This article reviews the latest studies aimed at understanding how liver failure affects brain function and potential ways to ameliorate these effects. PMID:24149188

  9. Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody.

    Science.gov (United States)

    Shashidharan, P; Huntley, G W; Murray, J M; Buku, A; Moran, T; Walsh, M J; Morrison, J H; Plaitakis, A

    1997-10-31

    Neuronal regulation of glutamate homeostasis is mediated by high-affinity sodium-dependent and highly hydrophobic plasma membrane glycoproteins which maintain low levels of glutamate at central synapses. To further elucidate the molecular mechanisms that regulate glutamate metabolism and glutamate flux at central synapses, a monoclonal antibody was produced to a synthetic peptide corresponding to amino acid residues 161-177 of the deduced sequence of the human neuron-specific glutamate transporter III (EAAC1). Immunoblot analysis of human and rat brain total homogenates and isolated synaptosomes from frontal cortex revealed that the antibody immunoreacted with a protein band of apparent Mr approximately 70 kDa. Deglycosylation of immunoprecipitates obtained using the monoclonal antibody yielded a protein with a lower apparent Mr (approximately 65 kDa). These results are consistent with the molecular size of the human EAAC1 predicted from the cloned cDNA. Analysis of the transfected COS-1 cells by immunocytochemistry confirmed that the monoclonal antibody is specific for the neuron-specific glutamate transporter. Immunocytochemical studies of rat cerebral cortex, hippocampus, cerebellum, substantia nigra and spinal cord revealed intense labeling of neuronal somata, dendrites, fine-caliber fibers and puncta. Double-label immunofluorescence using antibody to glial fibrillary acidic protein as a marker for astrocytes demonstrated that astrocytes were not co-labeled for EAAC1. The localization of EAAC1 immunoreactivity in dendrites and particularly in cell somata suggests that this transporter may function in the regulation of other aspects of glutamate metabolism in addition to terminating the action of synaptically released glutamate at central synapses. PMID:9409715

  10. Stretched peer-review on unexpected results (GMOs).

    Science.gov (United States)

    Myhr, A I

    2005-01-01

    Science is the basis for governance of risk from genetically modified organisms (GMO), and it is also a primary source of legitimacy for policy decision. However, recently the publication of unexpected results has caused controversies and challenged the way in which science should be performed, be published in scientific journals, and how preliminary results should be communicated. These studies have subsequently, after being accepted for publication within the peer-review process of leading scientific journals, been thoroughly re-examined by many actors active within the GMO debate and thereby drawn extensive media coverage. The publicized charges that the research involved does not constitute significant evidence or represent bad science have in fact deflected attention away from the important questions related to ecological and health risks raised by the research. In this paper, I will argue that unexpected findings may represent "early warnings." Although early warnings may not represent reality, such reports are necessary to inform other scientists and regulators, and should be followed up by further research to reveal the validity of the warnings. Furthermore, science that embraces robust, participatory and transparent approaches will be imperative in the future to reduce the present controversy surrounding GMO use and release. PMID:16304941

  11. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  12. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Chu Shuilian; Xiao Dan; Wang Shuangkun; Peng Peng; Xie Teng; He Yong; Wang Chen

    2014-01-01

    Background Nicotine is primarily rsponsible for the highly addictive properties of cigarettes.Similar to other substances,nicotine dependence is related to many important brain regions,particular in mesolimbic reward circuit.This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI),in order to provide the evidence of neurobiological mechanism of smoking.Methods This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement.Sociodemographic,smoking related characteristics and fMRI images were collected and the data analyzed.Results Compared with nonsmokers,smokers showed fALFF increased significantly in the left middle occipital gyrus,left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus,right superior temporal gyrus,right extra nuclear,left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels).Compared with light smokers (pack years ≤20),heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus,right precentral gyrus,and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus,right/left frontal lobe/sub gyral,right/left cerebellum posterior lobe (cluster size >50 voxels).Compared with nonsevere nicotine dependent smokers (Fagerstr(o)m test for nicotine dependence,score ≤6),severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus,right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (duster size >25 voxels).Conclusions In smokers during rest,the activity of addiction related regions were increased and the activity of smoking feeling,memory,related regions were

  13. Spectrometric mixture analysis: An unexpected wrinkle

    Indian Academy of Sciences (India)

    Robert De Levie

    2009-09-01

    The spectrometric analysis of a mixture of two chemically and spectroscopically similar compounds is illustrated for the simultaneous spectrometric determination of caffeine and theobromine, the primary stimulants in coffee and tea, based on their ultraviolet absorbances. Their analysis indicates that such measurements may need an unexpectedly high precision to yield accurate answers, because of an artifact of inverse cancellation, in which a small noise or drift signal is misinterpreted in terms of a concentration difference. The computed sum of the concentrations is not affected.

  14. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  15. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Science.gov (United States)

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  16. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  17. An unexpected diagnosis of adenomyosis in the subfertile woman.

    Science.gov (United States)

    Hunjan, Tia; Davidson, Andrew

    2015-01-01

    A 38-year-old nulliparous female presented to an assisted conception clinic with subfertility and a long-standing history of dysmenorrhoea. Transvaginal ultrasound revealed two lesions in the body of the uterus, which were presumed to be fibroids. A decision was made to remove these lesions prior to attempting in vitro fertilisation (IVF). However, on laparotomy, deeply penetrating adenomyosis was discovered, resulting in an unexpected hysterectomy and significant blood loss. Based on our experience, we highlight the importance of suspecting a diagnosis of adenomyosis preoperatively and the methods by which this diagnosis can be made, in order to avoid potential unforeseen outcomes as described in this case. We discuss conservative management options for this condition, particularly in women wishing to preserve fertility. PMID:25725032

  18. The Consequential Problems of Unexpected Events for Human Element and Construction Organizations

    Directory of Open Access Journals (Sweden)

    Amir Khosravi

    2013-03-01

    Full Text Available Unexpected events are unpredictable or beyond the control of human. The aim of this study was to identify the consequential problems of unexpected events faced by construction managers and project managers. In undertaking this investigation, we used an exploratory semi-structured interview and a questionnaire survey method. The results of this research showed that the consequential problems of unexpected events were frequently wicked, wicked messes and messes types of problems. These wicked, wicked messes and messes problems grew rapidly by high behavioral complexity of human affected environment and high dynamic complexity of interdependent systems in construction projects. We discovered human behavioral problems as wicked kind of problems for human element could lead to noticeable effects on project manager, such as irresponsibility and making a bizarre decision. Also, we identified wicked messes and messes problems, including loss of reputation and litigation, for construction organizations could terminate the viability of organizations and projects. Furthermore, we found out that three most important factors for responding successfully to the consequential problems of unexpected events were: 1 organizations’ structure and support, 2 competent project manager and 3 immediate actions. The findings of the study revealed that leadership, communication skills and hard-working were essential attributes of the competent project manager in responding to the consequential problems of unexpected events. Lastly, this research suggests the development of managerial reactive skills and control of behavioral responses through learning practice as key components of the required approach that need further investigations in future researches.

  19. In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice

    OpenAIRE

    Yamada, Kaoru; Cirrito, John R.; Stewart, Floy R; Jiang, Hong; Finn, Mary Beth; Holmes, Brandon B.; Binder, Lester I.; Mandelkow, Eva-Maria; Diamond, Marc I.; Lee, Virginia M.-Y.; Holtzman, David M.

    2011-01-01

    Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we develo...

  20. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis.

    Science.gov (United States)

    Palmieri, Diane; Fitzgerald, Daniel; Shreeve, S Martin; Hua, Emily; Bronder, Julie L; Weil, Robert J; Davis, Sean; Stark, Andreas M; Merino, Maria J; Kurek, Raffael; Mehdorn, H Maximilian; Davis, Gary; Steinberg, Seth M; Meltzer, Paul S; Aldape, Kenneth; Steeg, Patricia S

    2009-09-01

    Brain metastases of breast cancer seem to be increasingin incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of breast cancer compared with unlinked primary breast tumors. The tumors were matched for histology, tumor-node-metastasis stage, and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases, which included, surprisingly, many genes associated with metastasis. Quantitative real-time PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMgamma3, SIAH, STHMN3, and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P) in vitro. Knockdown of HK2 expression in 231-BR cells using short hairpin RNA reduced cell proliferation when cultures were maintained in glucose-limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival after craniotomy (P = 0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. PMID:19723875

  1. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations

    OpenAIRE

    Lovell, Peter V; Carleton, Julia B; MELLO, CLAUDIO V.

    2013-01-01

    Background A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, ...

  2. Postnatal pattern of ornithine decarboxylase activity reveals a disparity of rat brain regeneration capacity after prenatal X-ray or 5-azacytidine treatment

    International Nuclear Information System (INIS)

    Pregnant Wistar rats were treated on the 15th day of gestation either with 1.4 Gy X-radiation, or with 2 X 2.5 mg 5-azacytidine per kg body weight. X-irradiation caused negligible mortality among the offspring, despite of a 35% reduction of brain weights. The course of brain ornithine decarboxylase activity exhibited two breaches within 5 days after birth, each followed by recovery to control levels. After 5-azacytidine treatment brain weights were reduced by 16% only, but two thirds of the young died within a short time after birth. During three days following birth, the activity of ornithine decarboxylase in the brains of the young animals split into two ranges, a high one at control level and a low one at about one fifth of control level. As the ratio of brains with low to those with high enzyme activities correlated with the rate of postnatal mortality, the splitting of early postnatal enzyme activities was interpreted in terms of a nothing-or-all-law: beyond a certain amount of 5-azacytidine incorporated into brain DNA, gene expression was impaired to an extent not compatible with the survival of the animals

  3. Postnatal pattern of ornithine decarboxylase activity reveals a disparity of rat brain regeneration capacity after prenatal X-ray or 5-azacytidine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.W.; Schmahl, W.G.

    1987-05-01

    Pregnant Wistar rats were treated on the 15th day of gestation either with 1.4 Gy X-radiation, or with 2 X 2.5 mg 5-azacytidine per kg body weight. X-irradiation caused negligible mortality among the offspring, despite of a 35% reduction of brain weights. The course of brain ornithine decarboxylase activity exhibited two breaches within 5 days after birth, each followed by recovery to control levels. After 5-azacytidine treatment brain weights were reduced by 16% only, but two thirds of the young died within a short time after birth. During three days following birth, the activity of ornithine decarboxylase in the brains of the young animals split into two ranges, a high one at control level and a low one at about one fifth of control level. As the ratio of brains with low to those with high enzyme activities correlated with the rate of postnatal mortality, the splitting of early postnatal enzyme activities was interpreted in terms of a nothing-or-all-law: beyond a certain amount of 5-azacytidine incorporated into brain DNA, gene expression was impaired to an extent not compatible with the survival of the animals.

  4. Fetal Alcohol Syndrome in Sudden Unexpected Death in Infancy: A Case Report in Medicolegal Autopsy.

    Science.gov (United States)

    Tangsermkijsakul, Aphinan

    2016-03-01

    Fetal alcohol spectrum disorder is a range of birth defects associated with prenatal alcohol exposure. Fetal alcohol syndrome (FAS) is the most serious form of fetal alcohol spectrum disorder. Infants with FAS are prone to death because of various physical abnormalities. Consequently, infants with FAS may be presented in the medicolegal investigation as a form of sudden unexpected death in infancy. The author reported a 6-month-old male infant who was found dead at home. The history of maternal ethanol consumption during pregnancy was obtained. The infant was diagnosed with FAS at the autopsy because he was presented with postnatal growth retardation, multiple facial abnormalities, and abnormal brain structures, which met the criteria of FAS. The cause of death was severe aspiration pneumonia. The purposes of this case report are to show an uncommon manifestation of sudden unexpected death in infancy case for the forensic pathologists and to emphasize on the national healthcare problem. PMID:26730801

  5. Unexpectedly ease surgery for a worrisome abdominal mass: Pedunculated GISTs☆

    Science.gov (United States)

    Baskiran, Adil; Otan, Emrah; Aydin, Cemalettin; Kayaalp, Cuneyt

    2013-01-01

    INTRODUCTION Discovery of abdominal masses often poses significant diagnostic difficulties. GISTs are mesenchymal masses, with specific histological features. Dimensions may vary from millimeters to giant tumours. We would like to present our case, which had an unexpectedly easy operative course which was easily handled with a simple surgical excision with a short operative duration. PRESENTATION OF CASE A 38 years old female patient was diagnosed to have an abdominal heterogen mass of 15 cm × 12 cm × 10 cm in dimension. Abdominal computed tomography revealed the solid mass between the stomach and pancreas corpus and tail, possibly orginating from the pancreas. With the preoperative diagnosis of locally invasive distal pancreas cancer the patient underwent laparotomy, following the dissection, the mass was observed to be originating from the posterior gastric Wall, extending exophytically with a peduncle of 5 cm in width, without any visual evidence for peritoneal invasion and metastasis. The tumour and the peduncle was resected with stapler device. Total operation time was 30 min. Postoperative course was uneventful. Pathologic diagnosis was gastrointestinal stromal tumour (GIST). DISCUSSION Pedunculated large GISTs are not frequent and they can enlarge as 15 cm in diameter and compress the neighbouring organs. When they were huge, it is difficult to differentiate the origin of the masses. GISTs should be considered in differential diagnosis of giant abdominal masses. CONCLUSION When GISTs are huge and pedunculated, it can be difficult to differentiate the origin of the masses. This case report presents unexpectedly ease surgery for a worrysome abdominal mass. PMID:23999120

  6. Unexpected MRI findings in clinically suspected Legg-Calve-Perthes disease

    International Nuclear Information System (INIS)

    In the setting of clinically suspected Legg-Calve-Perthes (LCP) disease and negative/equivocal radiographs, contrast-enhanced MRI can be performed to confirm the diagnosis. To determine the frequency of unexpected causes of hip pain as identified by MRI in children with clinically suspected LCP disease and negative/equivocal radiographs. All pediatric contrast-enhanced MRI examinations of the pelvis and hips performed between January 2000 and February 2009 to evaluate for possible LCP disease in the setting of negative/equivocal radiographs were identified. MRI examinations performed to evaluate for secondary avascular necrosis were excluded. Imaging reports were retrospectively reviewed for unexpected clinically important causes of hip pain. Thirty-six pediatric patients underwent contrast-enhanced MRI examinations for clinically suspected LCP disease in the setting of negative/equivocal radiographs. Twenty-two (61%) imaging studies were normal, while four (11%) imaging studies demonstrated findings consistent with LCP disease. Ten (28%) imaging studies revealed unexpected clinically important causes of hip pain, including nonspecific unilateral joint effusion and synovitis (n = 7, juvenile chronic arthritis was eventually diagnosed in 3 patients), sacral fracture (n = 1), apophyseal injury (n = 1), and femoral head subluxation (n = 1). MRI frequently reveals unexpected clinically important causes of hip pain in children with suspected LCP disease and negative/equivocal radiographs. (orig.)

  7. Unexpected MRI findings in clinically suspected Legg-Calve-Perthes disease

    Energy Technology Data Exchange (ETDEWEB)

    Lobert, Philip F.; Dillman, Jonathan R.; Strouse, Peter J.; Hernandez, Ramiro J. [University of Michigan Health System, Department of Radiology, Section of Pediatric Radiology, C.S. Mott Children' s Hospital/F3503, Ann Arbor, MI (United States)

    2011-03-15

    In the setting of clinically suspected Legg-Calve-Perthes (LCP) disease and negative/equivocal radiographs, contrast-enhanced MRI can be performed to confirm the diagnosis. To determine the frequency of unexpected causes of hip pain as identified by MRI in children with clinically suspected LCP disease and negative/equivocal radiographs. All pediatric contrast-enhanced MRI examinations of the pelvis and hips performed between January 2000 and February 2009 to evaluate for possible LCP disease in the setting of negative/equivocal radiographs were identified. MRI examinations performed to evaluate for secondary avascular necrosis were excluded. Imaging reports were retrospectively reviewed for unexpected clinically important causes of hip pain. Thirty-six pediatric patients underwent contrast-enhanced MRI examinations for clinically suspected LCP disease in the setting of negative/equivocal radiographs. Twenty-two (61%) imaging studies were normal, while four (11%) imaging studies demonstrated findings consistent with LCP disease. Ten (28%) imaging studies revealed unexpected clinically important causes of hip pain, including nonspecific unilateral joint effusion and synovitis (n = 7, juvenile chronic arthritis was eventually diagnosed in 3 patients), sacral fracture (n = 1), apophyseal injury (n = 1), and femoral head subluxation (n = 1). MRI frequently reveals unexpected clinically important causes of hip pain in children with suspected LCP disease and negative/equivocal radiographs. (orig.)

  8. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza;

    2015-01-01

    , the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin...... have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS...... mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in...

  9. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    Science.gov (United States)

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction. PMID:25678360

  10. Sudden, unexpected death of a 15-year-old boy due to pancarditis

    Science.gov (United States)

    Osculati, Antonio; Visonà, Silvia Damiana; Ventura, Francesco; Castelli, Francesca; Andrello, Luisa

    2016-01-01

    Abstract Background: Generally, rheumatic heart disease is, today, sporadic in developed countries, even though it continues to be a major health hazard in the developing ones. It is also a very rare cause of sudden unexpected death. We report a case of a 15-year-old boy who suddenly died at home. Since 3 days he had presented fever and chest pain. The family physician had diagnosed bronchitis and treated the boy with amoxicillin. Methods: Seven hours after death, a forensic autopsy were performed . Before the autopsy, anamnesis and some circumstantial data were collected from the boy's parents. During the autopsy, samples for histological, toxicological and molecular examinations were collected. The samples for the histology (brain, hypophysis, heart and pericardium, lungs, spleen, liver, kidney, adrenal glands) were formalin fixed and paraffin embedded. Each section was stained with Hematoxylin-Eosin. Immunostaining was also performed, with anti-CD 68, anti-CD3, anti-CD 20, anti-myeloperoxidase. Microbiological cultures were performed on cardiac blood, myocardium, pericardial effusion and cerebrospinal fluid samples collected during autopsy. Blood specimens were also processed through PCR, in order to reveal the presence of Enteroviruses, Chickenpox virus, Epstein Barr virus. Also chemical-toxicological examinations for the detection of the main medications and drugs were performed on blood samples. Results: The anamnesis, collected before the autopsy, revealed an acute pharyngitis few weeks before. The autopsy, and the following histological and immunochemical examinations suggested an immunological etiology. The immunohistochemistry, showing a strong positivity of antiCD68 antibodies, integrated with clinical-anamnestic information, leads to hypothesize a rheumatic carditis. Conclusion: In light of this case, at least 3 main messages of great importance for the clinician can be deduced. First, an accurate anamnesis collected by the family physician could have

  11. Sudden unexpected death due to severe pulmonary and cardiac sarcoidosis.

    Science.gov (United States)

    Ginelliová, Alžbeta; Farkaš, Daniel; Farkašová Iannaccone, Silvia; Vyhnálková, Vlasta

    2016-09-01

    In this paper we report the autopsy findings of a 57 year old woman who died unexpectedly at home. She had been complaining of shortness of breath, episodes of dry coughing, and nausea. Her past medical and social history was unremarkable. She had no previous history of any viral or bacterial disease and no history of oncological disorders. Autopsy revealed multiple grayish-white nodular lesions in the pleura and epicardial fat and areas resembling fibrosis on the cut surface of the anterior and posterior wall of the left ventricle and interventricular septum. Histological examination of the lungs and heart revealed multiple well-formed noncaseating epithelioid cell granulomas with multinucleated giant cells. Death was attributed to myocardial ischemia due to vasculitis of intramural coronary artery branches associated with sarcoidosis. Sarcoidosis is a multisystemic disease of unknown etiology characterized by the formation of noncaseating epithelioid cell granulomas in the affected organs and tissues. The diagnosis of sarcoidosis in this case was established when other causes of granulomatous disease such as tuberculosis, berylliosis, hypersensitivity pneumonitis, and giant cell myocarditis had been reasonably excluded. PMID:27379608

  12. Brain MRI of diabetes Mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Yutaka; Tanaka, Hisashi; Ohtani, Masatoshi; Yamamoto, Hiroshi; Yamamoto, Tadashi; Tsukaguchi, Isao (Osaka Rosai Hospital, Sakai (Japan))

    1993-11-01

    One hundred and fifty-nine patients with diabetes mellitus (DM) and 2,566 patients without DM were studied on brain MRI. The results taught us that the incidence of cerebral atrophy was significantly higher in DM patients than in controls. Unexpectedly, the incidence of cerebral infarction showed no significant difference between the two groups. (author).

  13. Brain MRI of diabetes Mellitus

    International Nuclear Information System (INIS)

    One hundred and fifty-nine patients with diabetes mellitus (DM) and 2,566 patients without DM were studied on brain MRI. The results taught us that the incidence of cerebral atrophy was significantly higher in DM patients than in controls. Unexpectedly, the incidence of cerebral infarction showed no significant difference between the two groups. (author)

  14. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari; Schratt, Gerhard

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  15. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus

    DEFF Research Database (Denmark)

    Justinussen, Jessica; Holm, A; Kornum, B R

    2015-01-01

    as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas....

  16. Ombud's Corner: unexpected turn in the conversation?

    CERN Document Server

    Sudeshna Datta-Cockerill

    2014-01-01

    Regular informal conversations with colleagues play a very important part in weaving the fabric of team spirit. They allow us to build the working relationships that are vital to the success of our projects and to create an environment of good will that is instrumental in averting potential conflict or crises. However, sometimes they can come with unexpected surprises…   Eric and his colleagues always meet on Monday mornings to have coffee together, before starting the working week. This is a very privileged moment for the team when there are no formal barriers or professional concerns: Mary may talk about a film that she saw at the weekend, Eric often goes hiking in the Jura with his friend Stefan, Hans has always got a story about his son’s prowess on the school football team and occasionally there is a bit of special news such as Louisa’s recent marriage, Pierre’s baby’s christening or Claude’s daughter’s graduation&...

  17. The Unexpected 2012 Draconid Meteor Storm

    CERN Document Server

    Ye, Quanzhi; Brown, Peter G; Campbell-Brown, Margaret D; Weryk, Robert J

    2013-01-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar (CMOR) on October 8, 2012. The peak flux occurred at ~16:40 UT on October 8 with a maximum of 2.4 +/- 0.3 hr-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax = 9000 +/- 1000 using 5-minute intervals, using a mass distribution index of s = 1.88 +/- 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the out- burst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19h UT, Oct 8, 2012 was {\\alpha}g = 262.4 +/- 0.1 deg, {\\delta}g = 55.7 +/- 0.1 deg (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR 200), suggesting that the magnitude-cumulative num- ber r...

  18. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  19. 42 CFR 493.861 - Standard; Unexpected antibody detection.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Unexpected antibody detection. 493.861 Section 493.861 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN..., Or Any Combination of These Tests § 493.861 Standard; Unexpected antibody detection. (a) Failure...

  20. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.

    Science.gov (United States)

    Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L

    2016-03-11

    Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish

  1. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  2. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  3. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat

    OpenAIRE

    Geoffrey van der Plasse; Regina Schrama; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.; Westenberg, Herman G. M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  4. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    OpenAIRE

    van der Plasse, G.; Schrama, R.; van Seters, S.; Vanderschuren, L. J. M. J.; Westenberg, H.G.M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  5. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  6. Alteration of Cortical Functional Connectivity as a Result of Traumatic Brain Injury Revealed by Graph Theory, ICA, and sLORETA Analyses of EEG Signals

    OpenAIRE

    Cao, C.; Slobounov, S.

    2009-01-01

    In this paper, a novel approach to examine the cortical functional connectivity using multichannel electroen-cephalographic (EEG) signals is proposed. First we utilized independent component analysis (ICA) to transform multichannel EEG recordings into independent processes and then applied source reconstruction algorithm [i.e., standardize low resolution brain electromagnetic (sLORETA)] to identify the cortical regions of interest (ROIs). Second, we performed a graph theory analysis of the bi...

  7. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    OpenAIRE

    Ryan James C; Morey Jeanine S; Bottein Marie-Yasmine; Ramsdell John S; Van Dolah Frances M

    2010-01-01

    Abstract Background Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from li...

  8. Dynamic changes in glucose metabolism of living rat brain slices induced by hypoxia and neurotoxic chemical-loading revealed by positron autoradiography

    International Nuclear Information System (INIS)

    Fresh rat brain slices were incubated with 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) in oxygenated Krebs-Ringer solution at 36 degree C, and serial two-dimensional time-resolved images of [18F]FDG uptake were obtained from these specimens on imaging plates. The fractional rate constant (= k3*) of [18F]FDG proportional to the cerebral glucose metabolic rate (CMRglc) was evaluated by applying the Gjedde-Patlak graphical method to the image data. With hypoxia loading (oxygen deprivation) or glucose metabolism inhibitors acting on oxidative phosphorylation, the k3* value increased dramatically suggesting enhanced glycolysis. After relieving hypoxia ≤10-min, the k3* value returned to the pre-loading level. In contrast, with ≥20-min hypoxia only partial or no recovery was observed, indicating that irreversible neuronal damage had been induced. However, after loading with tetrodotoxin (TTX), the k3* value also decreased but returned to the pre-loading level even after 70-min TTX-loading, reflecting a transient inhibition of neuronal activity. This technique provides a new means of quantifying dynamic changes in the regional CMRglc in living brain slices in response to various interventions such as hypoxia and neurotoxic chemical-loading as well as determining the viability and prognosis of brain tissues. (author)

  9. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals.

    Science.gov (United States)

    Cao, C; Slobounov, S

    2010-02-01

    In this paper, a novel approach to examine the cortical functional connectivity using multichannel electroencephalographic (EEG) signals is proposed. First we utilized independent component analysis (ICA) to transform multichannel EEG recordings into independent processes and then applied source reconstruction algorithm [i.e., standardize low resolution brain electromagnetic (sLORETA)] to identify the cortical regions of interest (ROIs). Second, we performed a graph theory analysis of the bipartite network composite of ROIs and independent processes to assess the connectivity between ROIs. We applied this proposed algorithm and compared the functional connectivity network properties under resting state condition using 29 student-athletes prior to and shortly after sport-related mild traumatic brain injury (MTBI). The major findings of interest are the following. There was 1) alterations in vertex degree at frontal and occipital regions in subjects suffering from MTBI, ( p world network configuration in MTBI subjects. These major findings are discussed in relation to current debates regarding the brain functional connectivity within and between local and distal regions both in normal controls in pathological subjects. PMID:20064767

  10. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb.

    Science.gov (United States)

    Hoffmann, Angelika; Kunze, Reiner; Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin; Pham, Mirko; Marti, Hugo H

    2016-01-01

    Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema. PMID:26863147

  11. Role of organic cation transporters (OCTs) in the brain.

    Science.gov (United States)

    Couroussé, Thomas; Gautron, Sophie

    2015-02-01

    Organic cation transporters (OCTs) are polyspecific facilitated diffusion transporters that contribute to the absorption and clearance of various physiological compounds and xenobiotics in mammals, by mediating their vectorial transport in kidney, liver or placenta cells. Unexpectedly, a corpus of studies within the last decade has revealed that these transporters also fulfill important functions within the brain. The high-affinity monoamine reuptake transporters (SERT, NET and DAT) exert a crucial role in the control of aminergic transmission by ensuring the rapid clearance of the released transmitters from the synaptic cleft and their recycling into the nerve endings. Substantiated evidence indicate that OCTs may serve in the brain as a compensatory clearance system in case of monoamine spillover after high-affinity transporter blockade by antidepressants or psychostimulants, and in areas of lower high-affinity transporter density at distance from the aminergic varicosities. In spite of similar anatomical profiles, the two brain OCTs, OCT2 and OCT3, show subtle differences in their distribution in the brain and their functional properties. These transporters contribute to shape a variety of central functions related to mood such as anxiety, response to stress and antidepressant efficacy, but are also implicated in other processes like osmoregulation and neurotoxicity. In this review, we discuss the recent knowledge and emerging concepts on the role of OCTs in the uptake of aminergic neurotransmitters in the brain and in these various physiological functions, focusing on the implications for mental health. PMID:25251364

  12. Bah humbug: Unexpected Christmas cards and the reciprocity norm.

    Science.gov (United States)

    Meier, Brian P

    2016-01-01

    The reciprocity norm refers to the expectation that people will help those who helped them. A well-known study revealed that the norm is strong with Christmas cards, with 20% of people reciprocating a Christmas card received from a stranger. I attempted to conceptually replicate and extend this effect. In Study 1, 755 participants received a Christmas card supposedly from a more- versus less-similar stranger. The reciprocation rate was unexpectedly low (2%), which did not allow for a test of a similarity effect. Two potential reasons for this low rate were examined in Study 2 in which 494 participants reported their likelihood of reciprocating a Christmas card from a stranger as well as their felt suspicions/threat about the card and their frequency of e-mail use. Reciprocation likelihood was negatively correlated with perceived threat/suspicion and e-mail use. It appears that reciprocating a gift from a stranger in offline settings may be less likely than expected. PMID:26666577

  13. Computed tomography angiography reveals the crime instrument - case report

    International Nuclear Information System (INIS)

    Background: The development of multislice CT technology enabled imaging of post-traumatic brain lesions with isotropic resolution, which led to unexpected results in the presented case Case Report: An unconscious, 49-year-old male with a suspected trauma underwent a routine CT examination of the head, which revealed an unusual intracerebral bleeding and therefore was followed by CT angiography (CTA). The thorough analysis of CTA source scans led to the detection of the bleeding cause. Conclusions: The presented case showed that a careful analysis of a CT scan allows not only to define the extent of pathological lesions in the intracranial space but it also helps to detect the crime instrument, which is of medico-legal significance. (authors)

  14. The unexpected 2012 Draconid meteor storm

    Science.gov (United States)

    Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.

    2014-02-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.

  15. Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: Potential role of transferrin in cadmium toxicity

    International Nuclear Information System (INIS)

    An analytical approach using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separated proteins from the brain tissue of the fish Paralichthys olivaceus. Approximately 600 protein spots were detected from the brain sample when applying 600 μg protein to a 2D-PAGE gel in the pH range 3.5-10.0. Compared to a control sample, significant changes of 24 protein spots were observed in the fish tissue exposed to acute toxicity of seawater cadmium (SCAT) at 10 ppm for 24 h. Among these spots, nine were down-regulated, nine were up-regulated, two showed high expression, and four showed low expression. The collected spots were identified by peptide mass fingerprinting (PMF) and database search, and they were further classified by LOCtree, a hierarchical system of support vector machines which predict their sub-cellular localization. The amount of transferrin expression in brain cells decreased linearly with the increase of SCAT concentration in seawater. Among the 24 proteins identified on a 2D-PAGE gel, 9 demonstrated a synchronous response to acute cadmium, suggesting that they might represent a biomarker profile. Based on their variable levels and trends on the 2D-PAGE gel this protein (likely to be transferrin) suggesting they might be utilized as biomarkers to investigate cadmium pollution levels in seawater and halobios survival, as well as to evaluate the degree of risk of human fatalities. The results indicate that the application of multiple biomarkers has an advantage over a single biomarker for monitoring levels of environmental contamination

  16. Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: Potential role of transferrin in cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinyong [Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005 (China); Huang Heqing [Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005 (China) and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China) and State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005 (China)]. E-mail: hqhuang@xmu.edu.cn; Bao Xiaodong [Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Lin Qingmei [Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cai Zongwei [Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Department of Chemistry, Hong Kong Baptist University, Hong Kong (China)

    2006-06-15

    An analytical approach using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separated proteins from the brain tissue of the fish Paralichthys olivaceus. Approximately 600 protein spots were detected from the brain sample when applying 600 {mu}g protein to a 2D-PAGE gel in the pH range 3.5-10.0. Compared to a control sample, significant changes of 24 protein spots were observed in the fish tissue exposed to acute toxicity of seawater cadmium (SCAT) at 10 ppm for 24 h. Among these spots, nine were down-regulated, nine were up-regulated, two showed high expression, and four showed low expression. The collected spots were identified by peptide mass fingerprinting (PMF) and database search, and they were further classified by LOCtree, a hierarchical system of support vector machines which predict their sub-cellular localization. The amount of transferrin expression in brain cells decreased linearly with the increase of SCAT concentration in seawater. Among the 24 proteins identified on a 2D-PAGE gel, 9 demonstrated a synchronous response to acute cadmium, suggesting that they might represent a biomarker profile. Based on their variable levels and trends on the 2D-PAGE gel this protein (likely to be transferrin) suggesting they might be utilized as biomarkers to investigate cadmium pollution levels in seawater and halobios survival, as well as to evaluate the degree of risk of human fatalities. The results indicate that the application of multiple biomarkers has an advantage over a single biomarker for monitoring levels of environmental contamination.

  17. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation.

    Science.gov (United States)

    Ridgway, S H; Moore, P W; Carder, D A; Romano, T A

    2014-08-15

    For many years, we heard sounds associated with reward from dolphins and belugas. We named these pulsed sounds victory squeals (VS), as they remind us of a child's squeal of delight. Here we put these sounds in context with natural and learned behavior. Like bats, echolocating cetaceans produce feeding buzzes as they approach and catch prey. Unlike bats, cetaceans continue their feeding buzzes after prey capture and the after portion is what we call the VS. Prior to training (or conditioning), the VS comes after the fish reward; with repeated trials it moves to before the reward. During training, we use a whistle or other sound to signal a correct response by the animal. This sound signal, named a secondary reinforcer (SR), leads to the primary reinforcer, fish. Trainers usually name their whistle or other SR a bridge, as it bridges the time gap between the correct response and reward delivery. During learning, the SR becomes associated with reward and the VS comes after the SR rather than after the fish. By following the SR, the VS confirms that the animal expects a reward. Results of early brain stimulation work suggest to us that SR stimulates brain dopamine release, which leads to the VS. Although there are no direct studies of dopamine release in cetaceans, we found that the timing of our VS is consistent with a response after dopamine release. We compared trained vocal responses to auditory stimuli with VS responses to SR sounds. Auditory stimuli that did not signal reward resulted in faster responses by a mean of 151 ms for dolphins and 250 ms for belugas. In laboratory animals, there is a 100 to 200 ms delay for dopamine release. VS delay in our animals is similar and consistent with vocalization after dopamine release. Our novel observation suggests that the dopamine reward system is active in cetacean brains. PMID:25122919

  18. Cross-sectional analysis of data from the U.S. clinical trials database reveals poor translational clinical trial effort for traumatic brain injury, compared with stroke.

    Directory of Open Access Journals (Sweden)

    Lucia M Li

    Full Text Available Traumatic brain injury (TBI is an important public health problem, comparable to stroke in incidence and prevalence. Few interventions have proven efficacy in TBI, and clinical trials are, therefore, necessary to advance management in TBI. We describe the current clinical trial landscape in traumatic brain injury and compare it with the trial efforts for stroke. For this, we analysed all stroke and TBI studies registered on the US Clinical Trials (www.clinicaltrials.gov database over a 10-year period (01/01/2000 to 01/31/2013. This methodology has been previously used to analyse clinical trial efforts in other specialties. We describe the research profile in each area: total number of studies, total number of participants and change in number of research studies over time. We also analysed key study characteristics, such as enrolment number and scope of recruitment. We found a mismatch between relative public health burden and relative research effort in each disease. Despite TBI having comparable prevalence and higher incidence than stroke, it has around one fifth of the number of clinical trials and participant recruitment. Both stroke and TBI have experienced an increase in the number of studies over the examined time period, but the rate of growth for TBI is one third that for stroke. Small-scale (<1000 participants per trial and single centre studies form the majority of clinical trials in both stroke and TBI, with TBI having significantly fewer studies with international recruitment. We discuss the consequences of these findings and how the situation might be improved. A sustained research effort, entailing increased international collaboration and rethinking the methodology of running clinical trials, is required in order to improve outcomes after traumatic brain injury.

  19. Unexpected relationships of substructured populations in Chinese Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Ji Ya-Jie

    2009-06-01

    Uvarov in 1930s needs to be revised. The three groups of locusts probably have separate evolutionary histories that were most likely linked to Quaternary glaciations events, and derived from different ancestral refugial populations following postglacial expansions. Conclusion The migratory locust populations in China have differentiated into three genetically distinct groups despite high dispersal capability. While this clarified long-standing suspicions on the subspecific diversification of this species in China, it also revealed that the locusts in the vast area of East China are not the oriental subspecies but the Asiatic subspecies, an unexpected substructuring pattern. The distribution pattern of the three locust groups in China may be primarily defined by adaptive differentiation coupled to Quaternary glaciations events. Our results are of general significance both for locust research and for phylogeographical study of flora and fauna in China, illustrating the potential importance of phylogeographical history in shaping the divergence and distribution patterns of widespread species with strong dispersal ability.

  20. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki;

    2015-01-01

    analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and...... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  1. Triazolam-induced modulation of muscarinic acetylcholine receptor in living brain slices as revealed by a new positron-based imaging technique

    International Nuclear Information System (INIS)

    The effect of triazolam, a potent benzodiazepine (BZ) agonist, on muscarinic acetylcholinergic receptor (mAChR) binding was investigated in living brain slices by use of a novel positron-based imaging technique. Fresh rat brain slices were incubated with [11C]N-methyl-4-piperidylbenzilate ([11C]NMPB), a mAChR antagonist, in oxygenated Krebs-Ringer solution at 37 degree C. During incubation, time-resolved imaging of [11C]NMPB binding in the slices was constructed on the storage phosphor screens. Addition of triazolam (1 μM) plus muscimol (30 μM), a GABAA receptor agonist, to the incubation mixture decreased the specific binding of [11C]NMPB. Ro15-1788, a BZ receptor antagonist, prevented this effect, indicating that the effect was exerted through the GABAA/BZ receptor complex. These results demonstrated that stimulation of the GABAA/BZ receptor lowers the affinity of the mAChR for its ligand, which may underlie the BZ-induced amnesia, a serious clinical side effect of BZ. No such effect in the P2-fraction instead implies that the integrity of the neuronal cells and/or their environment is prerequisite for the modulation of mAChR by GABAA/BZ stimulation. (author)

  2. Alterations of the intracellular water and ion concentrations in brain and liver cells during aging as revealed by energy dispersive X-ray microanalysis of bulk specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lustyik, G.; Nagy, I.

    1985-01-01

    Age dependence of the intracellular concentrations of monovalent ions (Na+, K+ and Cl-) was examined in 1, 11 and 25-month-old rat brain and liver cells by using energy dispersive X-ray microanalysis. The in vivo concentrations of Na+, K+ and Cl- ions were calculated from two different measurements: The elemental concentrations were measured in freeze-dried tissue pieces, and the intracellular water content was determined by means of a recently developed X-ray microanalytic method, using frozen-hydrated and fractured bulk specimens as well as subsequent freeze-drying. All the single monovalent ion concentrations and consequently, also the total monovalent ion content showed statistically significant increases during aging in brain cortical neurons. A 3-6% loss of the intracellular water content was accompanied by a 25-45% increase of the monovalent ionic strengths by the age of 25 months. A membrane protective OH radical scavenger (centrophenoxine) reversed the dehydration in the nerve cells of old animals, resulting in a decrease of the intracellular ion concentrations. Aging has a less prominent effect on the water and ion contents of the hepatocytes. The degree of water loss of cytoplasm exceeds that of the nuclei in the liver, suggesting that dominantly the translational steps can be involved in the general age altered slowing down of the protein synthetic machinery, predicted by the membrane hypothesis of aging.

  3. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  4. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Science.gov (United States)

    2010-01-01

    Background Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  5. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  6. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  8. vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain.

    Science.gov (United States)

    Filippi, Alida; Mueller, Thomas; Driever, Wolfgang

    2014-06-15

    Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafish brains to determine which dopaminergic and noradrenergic groups may use GABA or glutamate as a second transmitter. Our results show that most dopaminergic neurons also express GABAergic markers, including the dopaminergic groups of the olfactory bulb (homologous to mammalian A16) and the subpallium, the hypothalamic groups (A12, A14), the prethalamic zona incerta group (A13), the preoptic groups (A15), and the pretectal group. Thus, the majority of catecholaminergic neurons are gad1b/2-positive and coexpress GABA. A very few gad1/2-negative dopaminergic groups, however, express vglut2 instead and use glutamate as a second transmitter. These glutamatergic dual transmitter phenotypes are the Orthopedia transcription factor-dependent, A11-type dopaminergic neurons of the posterior tuberculum. All together, our results demonstrate that all catecholaminergic groups in zebrafish are either GABAergic or glutamatergic. Thus, cotransmission of dopamine and noradrenaline with either GABA or glutamate appears to be a regular feature of zebrafish catecholaminergic systems. We compare our results with those that have been described for mammalian systems, discuss the phenomenon of transmitter dualism in the context of developmental specification of GABAergic and glutamatergic regions in the brain, and put this phenomenon in an evolutionary perspective. PMID:24374659

  9. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Chun-Xia Wang

    Full Text Available To investigate correlations between altered spontaneous brain activity, diabetic vascular disease, and cognitive function for patients with type 2 diabetes mellitus (T2DM using resting-state functional magnetic resonance imaging (rs-fMRI.Rs-fMRI was performed for T2DM patients (n = 26 and age-, gender-, and education-matched non-diabetic control subjects (n = 26. Amplitude of low frequency fluctuations (ALFF were computed from fMRI signals to measure spontaneous neuronal activity. Differences in the ALFF patterns between patients and controls, as well as their correlations with clinical variables, were evaluated.Compared with healthy controls, T2DM patients exhibited significantly decreased ALFF values mainly in the frontal and parietal lobes, the bilateral thalumi, the posterior lobe of the cerebellum, and increased ALFF values mainly in the visual cortices. Furthermore, lower ALFF values in the left subcallosal gyrus correlated with lower ankle-brachial index values (r = 0.481, p = 0.020, while lower ALFF values in the bilateral medial prefrontal gyri correlated with higher urinary albumin-creatinine ratio (r =  -0.418, p = 0.047. In addition, most of the regions with increased ALFF values in the visual cortices were found to negatively correlate with MoCA scores.These results confirm that ALFF are altered in many brain regions in T2DM patients, and this is associated with the presence of diabetic vascular disease and poor cognitive performance. These findings may provide additional insight into the neurophysiological mechanisms that mediate T2DM-related cognitive dysfunction, and may also serve as a reference for future research.

  10. (Un)Expected Retirement and the Consumption Puzzle

    OpenAIRE

    Margherita Borella; Flavia Coda Moscarola; Mariacristina Rossi

    2011-01-01

    In this work we revisit the retirement consumption puzzle using Italian panel data. As emphasized in the literature, the observed consumption drop might be due to unexpected wealth shocks at retirement, which modify optimal consumption plans. Using an Euler equation approach, we test the impact of unexpected retirement on the consumption patterns of individuals around the age of retirement by using the panel component of the Survey of Household Income and Wealth (SHIW). This data set contains...

  11. Brains studying brains: look before you think in vision

    Science.gov (United States)

    Zhaoping, Li

    2016-06-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its ‘conscious’ part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many ‘subconscious’ brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.

  12. Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals.

    Science.gov (United States)

    Wang, Wei; Wang, Bitian; Bu, Lingguo; Xu, Liwei; Li, Zengyong; Fan, Yubo

    2016-01-01

    This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6-2 Hz (I), 0.145-0.6 Hz (II), 0.052-0.145 Hz (III), 0.021-0.052 Hz (IV), and 0.0095-0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6-2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity. PMID:27547182

  13. Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals

    Science.gov (United States)

    Wang, Wei; Wang, Bitian; Bu, Lingguo; Xu, Liwei; Li, Zengyong; Fan, Yubo

    2016-01-01

    This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6–2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity. PMID:27547182

  14. Unexpectedly high burden of rotavirus gastroenteritis in very young infants

    Directory of Open Access Journals (Sweden)

    Reilly Megan

    2010-06-01

    Full Text Available Abstract Background The highest incidence of rotavirus gastroenteritis has generally been reported in children 6-24 months of age. Young infants are thought to be partially protected by maternal antibodies acquired transplacentally or via breast milk. The purpose of our study was to assess the age distribution of children with confirmed community-acquired rotavirus gastroenteritis presenting to an urban referral hospital. Methods Children presenting to The Children's Hospital of Philadelphia with acute gastroenteritis have been monitored for the presence of rotavirus antigen in the stool by ELISA (followed by genotyping if ELISA-positive since the 1994-95 epidemic season. Results Over the last 12 rotavirus seasons prior to the introduction of the pentavalent rotavirus vaccine in 2006, stool specimens from 1646 patients tested positive for community-acquired rotavirus infection. Gender or age was not recorded in 6 and 5 cases, respectively. Overall, 58% of the cases occurred in boys. G1 was the predominant VP7 serotype, accounting for 72% of cases. The median (IQR age was 11 (5-21 months. A total of 790 (48% cases occurred in children outside the commonly quoted peak age range, with 27% in infants 24 months of age. A total of 220 (13% cases occurred during the first 3 months of life, and the highest number of episodes per month of age [97 (6%] was observed during the second month of life. Conclusions The incidence of community-acquired rotavirus gastroenteritis monitored over 12 seasons in the prevaccine era at a major university hospital was nearly constant for each month of age during the first year of life, revealing an unexpectedly high incidence of symptomatic rotavirus disease in infants

  15. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Li HJ

    2015-01-01

    Full Text Available Hai-Jun Li,1,* Xi-Jian Dai,1,2,* Hong-Han Gong,1 Xiao Nie,1 Wei Zhang,3 De-Chang Peng1 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People’s Republic of China; 3Department of Pneumology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Background: The majority of previous neuroimaging studies have demonstrated both structural and functional abnormalities in obstructive sleep apnea (OSA. However, few studies have focused on the regional intensity of spontaneous fluctuations during the resting state and the relationship between the abnormal properties and the behavioral performances. In the present study, we employed the amplitude of low-frequency fluctuation (ALFF method to explore the local features of spontaneous brain activity in OSA patients (OSAs.Methods: Twenty-five untreated male severe OSAs and 25 age-matched and years-of-education-matched male good sleepers (GSs were included in this study. The ALFF method was used to assess the local features of spontaneous brain activity. The mean signal values of the altered ALFF areas were analyzed with receiver operating characteristic curve. Partial correlation analysis was used to explore the relationship between the observed mean ALFF values of the different areas and the behavioral performances.Results: Compared with GSs, OSAs had significantly higher scores for body mass index, apnea–hypopnea index, arterial oxygen saturation <90%, arousal index, and Epworth Sleepiness Scale (ESS score; furthermore, OSAs had significantly lower scores for rapid eye movement sleep and in the Montreal Cognitive Assessment (MoCA. Compared with GSs

  16. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials.

    Science.gov (United States)

    Pawela, Christopher P; Hudetz, Anthony G; Ward, B Douglas; Schulte, Marie L; Li, Rupeng; Kao, Dennis S; Mauck, Matthew C; Cho, Younghoon R; Neitz, Jay; Hyde, James S

    2008-06-01

    The response of the rat visual system to flashes of blue light has been studied by blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The BOLD temporal response is dependent on the number of flashes presented and demonstrates a refractory period that depends on flash frequency. Activated brain regions included the primary and secondary visual cortex, superior colliculus (SC), dorsal lateral geniculate (DLG), and lateral posterior nucleus (LP), which were found to exhibit differing temporal responses. To explain these differences, the BOLD neurovascular response function was modeled. A second-order differential equation was developed and solved numerically to arrive at region-specific response functions. Included in the model are the light input from the diode (duty cycle), a refractory period, a transient response following onset and cessation of stimulus, and a slow adjustment to changes in the average level of the signal. Constants in the differential equation were evaluated for each region by fitting the model to the experimental BOLD response from a single flash, and the equation was then solved for multiple flashes. The simulation mimics the major features of the data; however, remaining differences in the frequency dependence of the response between the cortical and subcortical regions were unexplained. We hypothesized that these discrepancies were due to regional-specific differences in neuronal response to flash frequency. To test this hypothesis, cortical visual evoked potentials (VEPs) were recorded using the same stimulation protocol as the fMRI. Cortical VEPs were more suppressed than subcortical VEPs as flash frequency increased, supporting our hypothesis. This is the first report that regional differences in neuronal activation to the same stimulus lead to differential BOLD activation. PMID:18406628

  17. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  18. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  19. The thermal properties of beeswaxes: unexpected findings.

    Science.gov (United States)

    Buchwald, Robert; Breed, Michael D; Greenberg, Alan R

    2008-01-01

    Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials. PMID:18083740

  20. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  1. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. PMID:26874256

  2. Sudden unexpected death due to strangulated inguinal hernia.

    Science.gov (United States)

    Menezes, Ritesh G; Padubidri, Jagadish Rao; Raghavendra Babu, Y P; Naik, Ramadas; Kanchan, Tanuj; Senthilkumaran, Subramanian; Chawla, Khushboo

    2016-06-01

    Sudden unwitnessed, unexpected deaths when the bodies are found in public places require a complete and meticulous medicolegal autopsy to ascertain the cause and manner of death to avoid further unnecessary investigations by the legal authorities. Such deaths attributed to gastrointestinal causes at autopsy are relatively uncommon. We report a case of sudden unexpected death due to strangulated inguinal hernia in a 60-year-old man. The body was discovered in a public area near a place of worship. The present case illustrates a potentially preventable sudden unexpected death due to a surgically correctable gastrointestinal condition. In the present case, the individual feared being hospitalised for treatment of his scrotal swelling with potential surgery and the eventual loss of daily income. In our opinion, such apprehensions may have delayed the potentially life-saving hospital surgical intervention in the individual. PMID:26837567

  3. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism ...

  4. Attentional gain and processing capacity limits predict the propensity to neglect unexpected visual stimuli.

    Science.gov (United States)

    Papera, Massimiliano; Richards, Anne

    2016-05-01

    Exogenous allocation of attentional resources allows the visual system to encode and maintain representations of stimuli in visual working memory (VWM). However, limits in the processing capacity to allocate resources can prevent unexpected visual stimuli from gaining access to VWM and thereby to consciousness. Using a novel approach to create unbiased stimuli of increasing saliency, we investigated visual processing during a visual search task in individuals who show a high or low propensity to neglect unexpected stimuli. When propensity to inattention is high, ERP recordings show a diminished amplification concomitantly with a decrease in theta band power during the N1 latency, followed by a poor target enhancement during the N2 latency. Furthermore, a later modulation in the P3 latency was also found in individuals showing propensity to visual neglect, suggesting that more effort is required for conscious maintenance of visual information in VWM. Effects during early stages of processing (N80 and P1) were also observed suggesting that sensitivity to contrasts and medium-to-high spatial frequencies may be modulated by low-level saliency (albeit no statistical group differences were found). In accordance with the Global Workplace Model, our data indicate that a lack of resources in low-level processors and visual attention may be responsible for the failure to "ignite" a state of high-level activity spread across several brain areas that is necessary for stimuli to access awareness. These findings may aid in the development of diagnostic tests and intervention to detect/reduce inattention propensity to visual neglect of unexpected stimuli. PMID:26849023

  5. Unexpected Coexisting Myocardial Infarction Detected by Delayed Enhancement MRI

    Directory of Open Access Journals (Sweden)

    Edouard Gerbaud

    2009-01-01

    Full Text Available We report a case of an unexpected coexisting anterior myocardial infarction detected by delayed enhancement MRI in a 41-year-old man following a presentation with a first episode of chest pain during inferior acute myocardial infarction. This second necrotic area was not initially suspected because there were no ECG changes in the anterior leads and the left descending coronary artery did not present any significant stenoses on emergency coronary angiography. Unrecognised myocardial infarction may carry important prognostic implications. CMR is currently the best imaging technique to detect unexpected infarcts.

  6. Unexpected pattern of beta-globin mutations in beta-thalassaemia patients from northern Portugal

    OpenAIRE

    Cabeda, J.; Correia, C.; Estevinho, A.; Simões, C.; Amorim, M; L. Pinho; Justiça, B

    1999-01-01

    We characterized the genetic nature of beta-thalassaemia in northern Portugal. Of the 164 patients studied three were beta-thalassaemia major cases (one IVS-1-6/beta degrees 39 and two homozygous IVS-1-110). The analysis of the frequency of each mutation in the families revealed that the codon 6(-A) mutation was unexpectedly frequent (40%) and associated with the beta-globin haplotype E, and not with the usual European and North African CD6(-A) haplotypes. In contrast, the frequency of IVS-1-...

  7. Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7

    OpenAIRE

    Menachem J. Gunzburg; Ketav Kulkarni; Gabrielle M. Watson; Ambaye, Nigus D.; Del Borgo, Mark P.; Rebecca Brandt; Stephanie C. Pero; Patrick Perlmutter; Wilce, Matthew C. J.; Wilce, Jacqueline A

    2016-01-01

    The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms a...

  8. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity.

    Science.gov (United States)

    Shimelash, Daniel; Hussien, Temam; Fininsa, Chemeda; Forbes, Greg; Yuen, Jonathan

    2016-08-01

    Mitochondrial DNA (mtDNA) haplotypes were determined using restriction fragment length polymorphism (RFLP) for P. infestans sampled from 513 foliar lesions of late blight found on potato and tomato in different regions of Ethiopia. Among the four reported mitochondrial haplotypes of Phytophthora infestans, Ia, Ib and IIb were detected in 93 % of the samples analyzed but the vast majority of these were Ia. The remaining 7 % represented a previously unreported haplotype. DNA sequencing of this new haplotype also confirmed a single base nucleotide substitution that resulted in loss of EcoRI restriction site and gain of two additional MspI sites in cox1 and atp1 genes, respectively. There were 28 polymorphic sites among all nucleotide sequences including five reference isolates. Sites with alignment gaps were observed in P4 with one nucleotide deletion in 11 Ethiopian isolates. None of the reference sequence produced frame-shifts, with the exception of the 3-nucleotide deletion in the P4 region by Phytophthora andina, a feature that can be used to distinguish the new Ethiopian isolates from P. andina. While a distinguishing molecular data presented here clearly separated them from P. infestans, 7 % of the isolates that share this feature formed an important component of the late blight pathogen causing disease on Solanum tuberosum in Ethiopia. Thus, these Ethiopian isolates could represent a novel Phytophthora species reported for the first time here. PMID:26873223

  9. Wheat modeling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits

    OpenAIRE

    R. Confalonieri; Bregaglio , S.; Cappelli, G.; Francone, C.; Carpani, M; Acutis, M.; M. El Aydam; Niemeyer, S.; Balaghi, R.; Q. Dong

    2013-01-01

    Wheat is the staple food of 1.5 billion people worldwide and projected trends in global demand and productivity warn against food security risks over the next decades. Large-area crop monitoring and yield forecasting represent key issues to support agricultural policies, especially in developing countries. Among the existing monitoring systems, the most sophisticated are based on crop simulation models. Published reports of sensitivity analyses performed on different crop models show that par...

  10. Molecular phylogeny of the Astrophorida (Porifera, Demospongiae) reveals an unexpected high level of spicule homoplasy

    OpenAIRE

    Paco Cárdenas; Xavier, Joana R.; Julie Reveillaud; Christoffer Schander; Hans Tore Rapp

    2011-01-01

    BackgroundThe Astrophorida (Porifera, Demospongiaep) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. ...

  11. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry

    OpenAIRE

    O'Neill, EC; Trick, M.; L. Hill; Rejzek, M.; Dusi, RG; Hamilton, CJ; Zimba, PV; Henrissat, B; Field, RA

    2015-01-01

    Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molec...

  12. TEMPORARY REMOVAL: Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells

    OpenAIRE

    Dingxiao Zhang; Daechan Park; Yue Lu; Jianjun Shen; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

  13. Revealing unexpected effects of rescue robots’ team-membership in a virtual environment

    NARCIS (Netherlands)

    Horsch, C.H.G.; Smets, N.J.J.M.; Neerincx, M.A.; Cuijpers, R.H.

    2013-01-01

    In urban search and rescue (USAR) situations resources are limited and workload is high. Robots that act as team players instead of tools could help in these situations. A Virtual Reality (VR) experiment was set up to test if team performance of a human-robot team increases when the robot act as suc

  14. Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy

    Science.gov (United States)

    Cárdenas, Paco; Xavier, Joana R.; Reveillaud, Julie; Schander, Christoffer; Rapp, Hans Tore

    2011-01-01

    Background The Astrophorida (Porifera, Demospongiaep) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5′ end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification can be explained by the banality of convergent evolution and secondary loss in spicule evolution. These processes have taken place many times, in all the major clades, for megascleres and microscleres. PMID:21494664

  15. Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption

    CERN Document Server

    Rest, A; Walborn, N R; Smith, N; Bianco, F B; Chornock, R; Welch, D L; Howell, D A; Huber, M E; Foley, R J; Fong, W; Sinnott, B; Bond, H E; Smith, R C; Toledo, I; Minniti, D; Mandel, K

    2011-01-01

    Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky Way. It became the second-brightest star in the sky during its mid-19th century "Great Eruption," but then faded from view (with only naked-eye estimates of brightness). Its eruption is unique among known astronomical transients in that it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3 kpc away, spatially resolved studies of the nebula have constrained the ejected mass and velocity, indicating that in its 19th century eruption, Eta Car ejected more than 10 M_solar in an event that had 10% of the energy of a typical core-collapse supernova without destroying the star. Here we report the discovery of light echoes of Eta Carinae which appear to be from the 1838-1858 Great Eruption. Spectra of these light echoes show only absorption lines, which are blueshifted by -210 km/s, in good agreement with predicted expansion speeds. The light-echo spectra correlate best with those of G2-G5 supergiant spectra, which ha...

  16. Unexpected Maternal Convulsion: An Idiopathic Case of Posterior Reversible Encephalopathy Syndrome after Delivery

    Directory of Open Access Journals (Sweden)

    Jila Agah

    2016-01-01

    Full Text Available Posterior reversible encephalopathy syndrome (PRES is associated with various clinical manifestations such as headache, blurred vision, confusion and tonic-clonic convulsion. Some of the predisposing factors for PRES include hypertensive encephalopathy, preeclampsia and eclampsia, lupus erythematosus, thrombotic thrombocytopenic purpura and long-term use of immunosuppressive drugs. This condition rarely occurs after normotensive and uneventful pregnancies. Several theories have been proposed on the etiology of PRES. For instance, endothelial injury and brain edema have been reported as possible causes of PRES. Although PRES is a temporary condition, proper and timely management of the disorder in the acute phase is critical for the prevention of permanent neurological complications. During pregnancy, PRES is normally accompanied with hypertension. In this paper, we present a rare case of PRES in a normotensive pregnancy in a 25-year-old parturient woman (Gravida 2, Ab 1. The patient unexpectedly manifested symptoms of tonic-clonic convulsion one hour after an uneventful vaginal delivery, which were successfully managed. According to our observations, PRES has various clinical manifestations with unexpected occurrence in some cases. Therefore, it is recommended that maternity centers be well-equipped with resuscitation tools, emergency drugs and expert staff so as to manage unforeseen PRES efficiently and prevent permanent maternal neurological complications and mortality.

  17. Amygdala activity can be modulated by unexpected chord functions during music listening.

    Science.gov (United States)

    Koelsch, Stefan; Fritz, Thomas; Schlaug, Gottfried

    2008-12-01

    Numerous earlier studies have investigated the cognitive processing of musical syntax with regular and irregular chord sequences. However, irregular sequences may also be perceived as unexpected, and therefore have a different emotional valence than regular sequences. We provide behavioral data showing that irregular chord functions presented in chord sequence paradigms are perceived as less pleasant than regular sequences. A reanalysis of functional MRI data showed increased blood oxygen level-dependent signal changes bilaterally in the amygdala in response to music-syntactically irregular (compared with regular) chord functions. The combined data indicate that music-syntactically irregular events elicit brain activity related to emotional processes, and that, in addition to intensely pleasurable music or highly unpleasant music, single chord functions can also modulate amygdala activity. PMID:19050462

  18. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles

    Directory of Open Access Journals (Sweden)

    Marçal eVilar

    2016-02-01

    Full Text Available The subventricular zone (SVZ of the anterolateral ventricle and the subgranular zone (SGZ of the hippocampal dentate gyrus are the two main regions of the adult mammalian brain in which neurogenesis is maintained throughout life. Because alterations in adult neurogenesis appear to be a common hallmark of different neurodegenerative diseases, understanding the molecular mechanisms controlling adult neurogenesis is a focus of active research. Neurotrophic factors are a family of molecules that play critical roles in the survival and differentiation of neurons during development and in the control of neural plasticity in the adult. Several neurotrophins and neurotrophin receptors have been implicated in the regulation of adult neurogenesis at different levels. Here we review the current understanding of neurotrophin modulation of adult neurogenesis in both the SVZ and SGZ. We compile data supporting a variety of roles for neurotrophins/neurotrophin receptors in different scenarios, including both expected and unexpected functions.

  19. Regulation of Neurogenesis by Neurotrophins during Adulthood: Expected and Unexpected Roles.

    Science.gov (United States)

    Vilar, Marçal; Mira, Helena

    2016-01-01

    The subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus are the two main regions of the adult mammalian brain in which neurogenesis is maintained throughout life. Because alterations in adult neurogenesis appear to be a common hallmark of different neurodegenerative diseases, understanding the molecular mechanisms controlling adult neurogenesis is a focus of active research. Neurotrophic factors are a family of molecules that play critical roles in the survival and differentiation of neurons during development and in the control of neural plasticity in the adult. Several neurotrophins and neurotrophin receptors have been implicated in the regulation of adult neurogenesis at different levels. Here, we review the current understanding of neurotrophin modulation of adult neurogenesis in both the SVZ and SGZ. We compile data supporting a variety of roles for neurotrophins/neurotrophin receptors in different scenarios, including both expected and unexpected functions. PMID:26903794

  20. Liver Transplant From Unexpected Donation After Circulatory Determination of Death Donors: A Challenge in Perioperative Management.

    Science.gov (United States)

    Blasi, A; Hessheimer, A J; Beltrán, J; Pereira, A; Fernández, J; Balust, J; Martínez-Palli, G; Fuster, J; Navasa, M; García-Valdecasas, J C; Taurá, P; Fondevila, C

    2016-06-01

    Unexpected donation after circulatory determination of death (uDCD) liver transplantation is a complex procedure, in particular when it comes to perioperative recipient management. However, very little has been published to date regarding intraoperative and immediate postoperative care in this setting. Herein, we compare perioperative events in uDCD liver recipients with those of a matched group of donation after brain death liver recipients. We demonstrate that the former group of recipients suffers significantly greater hemodynamic instability and derangements in coagulation following graft reperfusion. Based on our experience, we recommend a proactive recipient management strategy in uDCD liver transplantation that involves early use of vasopressor support; maintaining adequate intraoperative levels of red cells, platelets, and fibrinogen; and routinely administering tranexamic acid before graft reperfusion. PMID:26601629

  1. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  2. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  3. Sudden unexpected death in an undiagnosed sickle disease

    OpenAIRE

    Pillai Lalitha; Husainy Saifuddin; Gosavi Sameer; Vaidya Narendra

    2005-01-01

    We present a rare case of unexpected sudden death in a young woman with undiagnosed sickle disease. The provocative factors for the terminal events were excessive exercise in the form of trekking, urinary infection, and emotional stress .the sudden cardiovascular collapse could have resulted from acute pulmonary hypertension resulting from severe hemolysis or acute chest syndrome .

  4. Sudden unexpected death in an undiagnosed sickle disease

    Directory of Open Access Journals (Sweden)

    Pillai Lalitha

    2005-01-01

    Full Text Available We present a rare case of unexpected sudden death in a young woman with undiagnosed sickle disease. The provocative factors for the terminal events were excessive exercise in the form of trekking, urinary infection, and emotional stress .the sudden cardiovascular collapse could have resulted from acute pulmonary hypertension resulting from severe hemolysis or acute chest syndrome .

  5. Analysis of the Unexpected HANARO Trip History(1996 - 2005)

    International Nuclear Information System (INIS)

    Since its first criticality in February 1995, the HANARO has been utilized for nuclear fuel and material irradiation tests, radioisotope production, neutron beam applications, neutron activation analyses, and a neutron transmutation doping, etc. In the early HANARO operations, the unexpected reactor trip occurred frequently during a power ascension test which was one of the reactor performance tests. They were most due to a system problem and an operator's error. Some cases originated from an experimenter error and the failure of an electric power supply. To reduce the unexpected reactor trips due to system problems, the neutron power measuring system was improved. A retraining of the operators was performed to reduce the human errors. When the reactor power increases, the reactor is tripped in the case that the difference of the neutron and thermal power is larger than 3 MW. To prevent a reactor trip by the thermal and neutron power mismatch, the neutron power is calibrated during an increasing power when the neutron power and thermal power differences are above 1.5MW. In this paper, the cases of unexpected reactor trips are analyzed from 1996 to 2005 and the efforts to reduce the unexpected reactor trips and their effects are described

  6. Thallium-201 accumulation in cerebral candidiasis: Unexpected finding on SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Tonami, N.; Matsuda, H.; Ooba, H.; Yokoyama, K.; Hisada, K.; Ikeda, K.; Yamashita, J. (Kanazawa Univ. (Japan))

    1990-06-01

    The authors present an unexpected finding of Tl-201 uptake in the intracerebral lesions due to candidiasis. SPECT demonstrated the extent of the lesions and a high target-to-background ratio. The regions where abnormal Tl-201 accumulation was seen were nearly consistent with CT scans of those enhanced by a contrast agent. After treatment, most of the abnormal Tl-201 accumulation disappeared.

  7. Thallium-201 accumulation in cerebral candidiasis: Unexpected finding on SPECT

    International Nuclear Information System (INIS)

    The authors present an unexpected finding of Tl-201 uptake in the intracerebral lesions due to candidiasis. SPECT demonstrated the extent of the lesions and a high target-to-background ratio. The regions where abnormal Tl-201 accumulation was seen were nearly consistent with CT scans of those enhanced by a contrast agent. After treatment, most of the abnormal Tl-201 accumulation disappeared

  8. Aquaporin 9 in rat brain after severe traumatic brain injury

    OpenAIRE

    Hui Liu; Mei Yang; Guo-ping Qiu; Fei Zhuo; Wei-hua Yu; Shan-quan Sun; Yun Xiu

    2012-01-01

    OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9) in rat brain, after severe traumatic brain injury (TBI). METHODS: Brain water content (BWC), tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest) peaks at 6 and 72 hours, and the blood brain barrier (BBB) was severely destroyed at six hours after ...

  9. Revealing latent value of clinically acquired CTs of traumatic brain injury through multi-atlas segmentation in a retrospective study of 1,003 with external cross-validation

    Science.gov (United States)

    Plassard, Andrew J.; Kelly, Patrick D.; Asman, Andrew J.; Kang, Hakmook; Patel, Mayur B.; Landman, Bennett A.

    2015-03-01

    Medical imaging plays a key role in guiding treatment of traumatic brain injury (TBI) and for diagnosing intracranial hemorrhage; most commonly rapid computed tomography (CT) imaging is performed. Outcomes for patients with TBI are variable and difficult to predict upon hospital admission. Quantitative outcome scales (e.g., the Marshall classification) have been proposed to grade TBI severity on CT, but such measures have had relatively low value in staging patients by prognosis. Herein, we examine a cohort of 1,003 subjects admitted for TBI and imaged clinically to identify potential prognostic metrics using a "big data" paradigm. For all patients, a brain scan was segmented with multi-atlas labeling, and intensity/volume/texture features were computed in a localized manner. In a 10-fold crossvalidation approach, the explanatory value of the image-derived features is assessed for length of hospital stay (days), discharge disposition (five point scale from death to return home), and the Rancho Los Amigos functional outcome score (Rancho Score). Image-derived features increased the predictive R2 to 0.38 (from 0.18) for length of stay, to 0.51 (from 0.4) for discharge disposition, and to 0.31 (from 0.16) for Rancho Score (over models consisting only of non-imaging admission metrics, but including positive/negative radiological CT findings). This study demonstrates that high volume retrospective analysis of clinical imaging data can reveal imaging signatures with prognostic value. These targets are suited for follow-up validation and represent targets for future feature selection efforts. Moreover, the increase in prognostic value would improve staging for intervention assessment and provide more reliable guidance for patients.

  10. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla;

    2006-01-01

    In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion followi...

  11. Understanding brain networks and brain organization

    Science.gov (United States)

    Pessoa, Luiz

    2014-09-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal "true" subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different "slices" of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.

  12. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, or ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are metastatic, ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  14. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  15. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  16. Origin of Unexpected Isotopic Trends in Synthesis of Superheavy Nuclei

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAO Jing-Dong

    2007-01-01

    We investigate the dependence of the yield of superheavy nuclei with Z = 110, 112, 114 on the neutron excess of the projectile nucleus with a two-parameter Smoluchowski equation. It is confirmed that in some cases, the cold fusion reactions with less neutron excess are more favourable than those with more neutron excess. In order to probe the origin of these unexpected isotopic trends, we also investigate the probabilities of capture, fusion and survival in the cold fusion reactions in detail. It is found that the maximal ER cross sections of the superheavy nuclei exponentially increase as a function of Bf - Sn with Bf being the fission barrier and Sn being the neutron separation energy. Although the probabilities of capture and fusion have some influences, the unexpected isotopic trends mainly due to the dependence of the ER cross sections on the Bf - Sn value. Therefore, the reactions with larger Bf - Sn values should be more favourable for synthesis of superheavy nuclei.

  17. Iatrogenic injury and unexpected hospital death in the newborn.

    Science.gov (United States)

    Reed, Robyn C

    2015-02-01

    Neonates are unusually vulnerable to iatrogenic injury due to small body size, delicate tissues, and immature immune systems. Investigation of an unexpected neonatal death in the hospital should begin with a review of the medical record and discussion with medical staff involved in the patient׳s care. Postmortem investigation should include a complete and well-documented autopsy. Additional investigations, such as microbiological studies and chemical and toxicological studies of postmortem and antemortem fluid samples, may be crucial in arriving at a diagnosis. Causes of iatrogenic injury include birth trauma, medication errors and adverse drug effects, hospital-acquired infection, and medical device malfunction, incorrect placement, and misuse. Autopsy is an important tool for understanding the cause of an unexpected death, improving the quality of care, and providing closure to parents and family. PMID:25444418

  18. Responding to Rapid and Unexpected Retail Innovations: Planning Retail Resilience

    Science.gov (United States)

    Rao, Fujie

    Retail areas within cities have traditionally not only satisfied the demands for various goods and services, but also promoted community sustainability and healthy lifestyles. Since the end of World War II (WWII), retail innovations have occurred rapidly and unexpectedly. In retail development, economic efficiency is highly prioritized over other functions, in opposition to sustainable development. In retail planning, a communicative approach frequently results in the public responses by "Not In My Back Yard" sentiments, contradicting the projected cooperation between different stakeholders. This research implements the resilience theory to tackle the shocks created by these rapid and unexpected retail changes, based on a comparative case of Edmonton (Alberta, Canada) and Portland (Oregon, USA). Primarily through interviews with senior planners in both cities, it is found that adaptive retail management, polycentric retail planning, a well-informed public, and the use of consensus building could better stimulates resilient retail outcomes.

  19. Brain Basics

    Medline Plus

    Full Text Available ... The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the ... distant nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... others live with symptoms of mental illness every day. They can be moderate, or serious and cause ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... helps Sarah to better cope with her feelings. Brain Research Modern research tools and techniques are giving scientists ... the treatment for a person's specific conditions. Such brain research help increase the understanding of how the brain ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  5. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  10. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  11. Significance of the site of injection in unexpected right-to-left shunting

    International Nuclear Information System (INIS)

    Lung perfusion scintigraphy, with Tc-99m MAA injected into a left antecubital vein, revealed extensive uptake in the myocardium, kidneys, spleen, thyroid, and brain. After a right antecubital injection, a normal pulmonary perfusion pattern was found. This finding is specific for right-to-left shunting due to anomalous systemic venous drainage into the left atrium

  12. Rats answer an unexpected question after incidental encoding

    OpenAIRE

    Zhou, Wenyi; Hohmann, Andrea G.; Crysta, Jonathon D.

    2012-01-01

    A fundamental aspect of episodic memory is that retrieval of information can occur when encoding is incidental and memory assessment is unexpected [1–4]. These features are difficult to model in animals because behavioral training likely gives rise to well-learned expectations about the sequence of events. Thus, the possibility remains that animals may solve an episodic-memory test by using well-learned semantic rules without remembering the episode at memory assessment. Here we show that rat...

  13. Using Event Studies to Assess the Impact of Unexpected Events

    OpenAIRE

    James V Koch; Robert N Fenili

    2013-01-01

    The quantitative assessment of the financial impact of unexpected events is the realm of the “event study.” We examine how CEOs, boards, and public policymakers can utilize event studies to inform and improve their decision making. The breadth of application of event studies is surprisingly broad and ranges from situations involving the death of a CEO to emergency product recalls. We present illustrative event studies for two Steve Jobs-related announcements concerning his health in order to ...

  14. Clinical, pathological and sonographic characteristics of unexpected gallbladder carcinoma

    OpenAIRE

    Jin-huan WANG; Liu, Bo-Ji; Xu, Hui-Xiong; Sun, Li-ping; Li, Dan-Dan; Guo, Le-Hang; Liu, Lin-Na; Xu, Xiao-Hong

    2015-01-01

    Objectives: To investigate the clinical, pathological, and sonographic characteristics of unexpected gallbladder carcinoma (UGC). Methods: Of 5424 patients who had undergone cholecystectomy from December 2006 to October 2013, 54 patients with primary gallbladder carcinomas confirmed by pathological diagnosis were identified. The patients were divided into two groups: diagnosed before operation (n=34) and UGC groups (n=20), of whom the clinical, pathological, and sonographic characteristics we...

  15. Brain mapping

    OpenAIRE

    Blaž Koritnik

    2004-01-01

    Cartography of the brain ("brain mapping") aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1) acquiring data about brain structure and function, (2) transformation of data into a common reference, (3) visualization and interpretation of results, and (4) databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prere...

  16. Tbx1 regulates brain vascularization.

    Science.gov (United States)

    Cioffi, Sara; Martucciello, Stefania; Fulcoli, Filomena Gabriella; Bilio, Marchesa; Ferrentino, Rosa; Nusco, Edoardo; Illingworth, Elizabeth

    2014-01-01

    The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin. PMID:23945394

  17. Who Needs to Fit in? Who Gets to Stand out? Communication Technologies Including Brain-Machine Interfaces Revealed from the Perspectives of Special Education School Teachers Through an Ableism Lens

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2013-02-01

    Full Text Available Some new and envisioned technologies such as brain machine interfaces (BMI that are being developed initially for people with disabilities, but whose use can also be expanded to the general public have the potential to change body ability expectations of disabled and non-disabled people beyond the species-typical. The ways in which this dynamic will impact students with disabilities in the domain of special education is explored. Data was drawn from six special education school teachers from one school in Calgary, Alberta. Five sub-themes (social acceptance, not adding to the impairment, fear of judgement by society, pursuing “normality” and meeting the demands of society were identified that fit under the main identified theme of “fitting in by not standing out”. Findings demonstrate a dichotomy in participant views of non- or socially acceptable communication devices. The perception of BMI technology was also explored among special education school teachers, revealing benefits and challenges with the uptake of this technology for students with disabilities. Perceptions of people with disabilities and ableism are presented as conceptual frameworks to interpret the influence and impact of the findings.

  18. Attention Sharpens the Distinction between Expected and Unexpected Percepts in the Visual Brain

    OpenAIRE

    Jiang, J; Summerfield, C.; Egner, T.

    2013-01-01

    Attention, the prioritization of goal-relevant stimuli, and expectation, the modulation of stimulus processing by probabilistic context, represent the two main endogenous determinants of visual cognition. Neural selectivity in visual cortex is enhanced for both attended and expected stimuli, but the functional relationship between these mechanisms is poorly understood. Here, we adjudicated between two current hypotheses of how attention relates to predictive processing, namely, that attention...

  19. Unexpected findings at imaging: Predicting frequency in various types of studies

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, Blanca [Public Health Department, Miguel Hernandez University (Spain); CIBER en Epidemiologia y Salud Publica (Spain)], E-mail: blumbreras@umh.es; Gonzalez-Alvarez, Isabel [Radiodiagnostic Department, San Juan Hospital, 03550 Alicante (Spain)], E-mail: gonzalez_isa@gva.es; Lorente, Ma Fernanda [Radiodiagnostic Department, San Juan Hospital, 03550 Alicante (Spain)], E-mail: MARFERLORENTE@telefonica.net; Calbo, Jorge [Radiodiagnostic Department, San Juan Hospital, 03550 Alicante (Spain)], E-mail: jocalma@hotmail.com; Aranaz, Jesus [Preventive Medicine Department, San Juan Hospital, 03550 Alicante (Spain)], E-mail: aranaz_jes@gva.es; Hernandez-Aguado, Ildefonso [Public Health Department, Miguel Hernandez University (Spain); CIBER en Epidemiologia y Salud Publica (Spain)], E-mail: ihernandez@umh.es

    2010-04-15

    Objective: The objective was to evaluate the prevalence and associated variables of unsuspected findings from imaging tests in clinical practice. Material and Methods: Cross-sectional study of patients referred for an imaging test in 2006. Two independent radiologists classified the imaging tests according to the presence or absence of an unexpected finding in relation with the causes that prompted the test (kappa = 0.95). A thorough chart review of these patients was carried out as a quality control. Results: Out of 3259 patients in the study, 488 revealed unsuspected findings (15.0%). The prevalence of abnormal findings varied according to age: from 20.4% (150/734) in the over 74-group to 9.0% (76/847) in the under 43-group. The largest prevalence was in the category of infectious diseases (14/49, 28.6%) and in CT (260/901, 28.9%) and ultrasound (138/668, 20.7%). Studies showing moderate clinical information on the referral form were less likely to show unexpected findings than those with null or minor information (OR 0.51; 95% CI 0.36-0.73). Conclusion: Clinicians should expect the frequency of diseases detectable by imaging to increase in the future. Further research with follow-up of these findings is needed to estimate the effect of imaging technologies on final health outcomes.

  20. Unexpected findings at imaging: Predicting frequency in various types of studies

    International Nuclear Information System (INIS)

    Objective: The objective was to evaluate the prevalence and associated variables of unsuspected findings from imaging tests in clinical practice. Material and Methods: Cross-sectional study of patients referred for an imaging test in 2006. Two independent radiologists classified the imaging tests according to the presence or absence of an unexpected finding in relation with the causes that prompted the test (kappa = 0.95). A thorough chart review of these patients was carried out as a quality control. Results: Out of 3259 patients in the study, 488 revealed unsuspected findings (15.0%). The prevalence of abnormal findings varied according to age: from 20.4% (150/734) in the over 74-group to 9.0% (76/847) in the under 43-group. The largest prevalence was in the category of infectious diseases (14/49, 28.6%) and in CT (260/901, 28.9%) and ultrasound (138/668, 20.7%). Studies showing moderate clinical information on the referral form were less likely to show unexpected findings than those with null or minor information (OR 0.51; 95% CI 0.36-0.73). Conclusion: Clinicians should expect the frequency of diseases detectable by imaging to increase in the future. Further research with follow-up of these findings is needed to estimate the effect of imaging technologies on final health outcomes.

  1. Fenofibrate unexpectedly induces cardiac hypertrophy in mice lacking MuRF1.

    Science.gov (United States)

    Parry, Traci L; Desai, Gopal; Schisler, Jonathan C; Li, Luge; Quintana, Megan T; Stanley, Natalie; Lockyer, Pamela; Patterson, Cam; Willis, Monte S

    2016-01-01

    The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1-/- mice have an estimated fivefold increase in PPARα activity, we sought to determine how challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type (MuRF1+/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. In addition to pathological hypertrophy, MuRF1-/- mice had an unexpected differential expression in genes associated with the pleiotropic effects of fenofibrate involved in the extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of fenofibrate treatment, the differentially expressed MuRF1-/- genes most commonly had SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, respectively, of the 111 of the genes >4 and bridges, for the first time, MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis. PMID:26764147

  2. Brain Basics

    Medline Plus

    Full Text Available ... in Real Life Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video ... early brain development, and may also assist in learning and memory. ... rise to disabilities or diseases. neural circuit —A network of neurons ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... Welcome. Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ...

  6. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains that let ... the disease over time destroys memory and thinking skills. Scientific research has revealed some of the brain ...

  7. Brain mapping

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available Cartography of the brain ("brain mapping" aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1 acquiring data about brain structure and function, (2 transformation of data into a common reference, (3 visualization and interpretation of results, and (4 databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prerequisite for multisubject, multidimensional and multimodal mapping is transformation of individual images to match a standard brain template. To produce brain maps, color, contours, and other visual cues are used to differentiate metabolic rates, electrical field potentials, receptor densities, and other attributes of structure or function. Databases are used to organize and archive data records. By relating the maps to cognitive functions and psychological models, brain mapping offers a prerequisite for the understanding of organizational principles of the human brain.

  8. Unexpected death holograms: Animitas urban appeal in Chile

    Directory of Open Access Journals (Sweden)

    Lautaro Ojeda Ledesma

    2011-01-01

    Full Text Available This paper aims at performing an integral analysis of the relation between popular religiousness and urban space in Chilean animitas [little shrines] practices. In order to do this, we propose a multipurpose analysis scheme, holding the concept of "unexpected death hologram". This scheme puts forward three supplementary classifications: animita as a holographic subject, as a holographic object and as a holographic place. Finally, these three classifications supplemented by interviews and topologic analyses show almost all the sociospatial factors present in this practice, accounting for the urban importance that this type of popular practice has

  9. Cutaneous anthrax on an unexpected area of body

    OpenAIRE

    Ertuğrul Güçlü; Nazan Tuna; Oğuz Karabay

    2012-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis. Cutaneous anthrax is the most commonly seen form of anthrax.Skin lesions usually occur on the most exposed areas of the body, such as the face, neck, hand or upper extremity.The aim of this paper is to report a case of cutaneous anthrax form which was occurred on an unexpected area of thebody of a slaughter-house worker. J Microbiol Infect Dis 2012;2(4): 163-164Key words: Anthrax, Bacillus anthracis, cutaneous

  10. Alopecia associated with unexpected leakage from electron cone

    International Nuclear Information System (INIS)

    Excessive irradiation due to unexpected leakage was found on a patient receiving electron beam therapy. The cause of this leakage was analyzed and the amount of leakage was measured for different electron beam energies. The highest leakage occurred with a 6 x 6 cm cone using a 12 MeV electron beam. The leakage dose measured along the side of the cone could be as great as 40%. Until the cones are modified or redesigned, it is advised that all patient setups be carefully reviewed to assure that no significant patient areas are in the side scatter region

  11. Alopecia associated with unexpected leakage from electron cone

    Energy Technology Data Exchange (ETDEWEB)

    Wen, B.C.; Pennington, E.C.; Hussey, D.H.; Jani, S.K.

    1989-06-01

    Excessive irradiation due to unexpected leakage was found on a patient receiving electron beam therapy. The cause of this leakage was analyzed and the amount of leakage was measured for different electron beam energies. The highest leakage occurred with a 6 x 6 cm cone using a 12 MeV electron beam. The leakage dose measured along the side of the cone could be as great as 40%. Until the cones are modified or redesigned, it is advised that all patient setups be carefully reviewed to assure that no significant patient areas are in the side scatter region.

  12. Traditional punishment and unexpected death in Central Australia.

    Science.gov (United States)

    Byard, R W; Gilbert, J D; James, R A

    2001-03-01

    Three cases of traditional punishment in Central Australian Aboriginal men are presented in which the thighs were speared or stabbed as part of a "payback" system. In two cases, an unexpected effect of the stabbing or spearing was death due to severing of major leg vessels. The relationship between customary Aboriginal law and general law in Australia has not been clearly defined; however, these cases demonstrate that significant and untoward effects may result from traditional punishments. Pathologists working near traditional Australian Aboriginal communities may still encounter such injuries at autopsy. PMID:11444672

  13. Emergent Molecular Recognition through Self-Assembly: Unexpected Selectivity for Hyaluronic Acid among Glycosaminoglycans.

    Science.gov (United States)

    Noguchi, Takao; Roy, Bappaditya; Yoshihara, Daisuke; Sakamoto, Junji; Yamamoto, Tatsuhiro; Shinkai, Seiji

    2016-05-01

    Oligophenylenevinylene (OPV)-based fluorescent (FL) chemosensors exhibiting linear FL responses toward polyanions were designed. Their application to FL sensing of glycosaminoglycans (heparin: HEP, chondroitin 4-sulfate: ChS, and hyaluronic acid: HA) revealed that the charge density encoded as the unit structure directs the mode of OPV self-assembly: H-type aggregate for HEP with 16-times FL increase and J-type aggregate for HA with 93-times FL increase, thus unexpectedly achieving the preferential selectivity for HA in contrast to the conventional HEP selective systems. We have found that the integral magnitude of three factors consisting of binding mechanism, self-assembly, and FL response can amplify the structural information on the target input into the characteristic FL output. This emergent property has been used for a novel molecular recognition system that realizes unconventional FL sensing of HA, potentially applicable to the clinical diagnosis of cancer-related diseases. PMID:27060601

  14. Sudden unexpected death due to Chiari type I malformation in a road accident case.

    Science.gov (United States)

    Zhang, Jianhua; Shao, Yu; Qin, Zhiqiang; Liu, Ningguo; Zou, Donghua; Huang, Ping; Chen, Yijiu

    2013-03-01

    This case concerns a sudden death of a patient with Chiari I malformation. A 17-year-old female was seen unconscious then fell off a motorbike during the vehicle acceleration. The girl was confirmed dead on the way to hospital, being previously asymptomatic and with a clean medical record. Autopsy findings showed an extremely extra-long cerebellar tonsillar herniation in the left side and unexplained multiple small cavities in cerebral hemispheres. Microscopic findings revealed loss and abnormal migration of the Purkinje cells, as well as capillary congestion in the herniated tonsil. The cause and mechanisms of this sudden death are considered as the cardiopulmonary dysfunction and arrest resulted from compression of the medulla and cervical cord, which was induced by both the positional insult and minor head trauma. In addition, this study stresses the importance of cervical cord examination in the case of unexpected sudden death following road accidents. PMID:23278920

  15. Two Distinct Dynamic Modes Subtend the Detection of Unexpected Sounds

    OpenAIRE

    King, Jean-Rémi; Gramfort, Alexandre; Schurger, Aaron; Naccache, Lionel; Dehaene, Stanislas

    2014-01-01

    The brain response to auditory novelty comprises two main EEG components: an early mismatch negativity and a late P300. Whereas the former has been proposed to reflect a prediction error, the latter is often associated with working memory updating. Interestingly, these two proposals predict fundamentally different dynamics: prediction errors are thought to propagate serially through several distinct brain areas, while working memory supposes that activity is sustained over time within a stabl...

  16. Biopersistence and brain translocation of aluminum adjuvants of vaccines

    Directory of Open Access Journals (Sweden)

    Romain Kroum Gherardi

    2015-02-01

    Full Text Available Aluminum oxyhydroxide (alum is a crystaline compound widely used as an immunologic adjuvant of vaccines. Concerns linked to the use of alum particles emerged following recognition of their causative role in the so-called macrophagic myofasciitis (MMF lesion detected in patients with myalgic encephalomyelitis/chronic fatigue/syndrome. MMF revealed an unexpectedly long-lasting biopersistence of alum within immune cells in presumably susceptible individuals, stressing the previous fundamental misconception of its biodisposition. We previously showed that poorly biodegradable aluminum-coated particles injected into muscle are promptly phagocytozed in muscle and the draining lymph nodes, and can disseminate within phagocytic cells throughout the body and slowly accumulate in brain. This strongly suggests that long-term adjuvant biopersistence within phagocytic cells is a prerequisite for slow brain translocation and delayed neurotoxicity. The understanding of basic mechanisms of particle biopersistence and brain translocation represents a major health challenge, since it could help to define susceptibility factors to develop chronic neurotoxic damage. Biopersistence of alum may be linked to its lysosome-destabilizing effect, which is likely due to direct crystal-induced rupture of phagolysosomal membranes. Macrophages that continuously perceive foreign particles in their cytosol will likely reiterate, with variable interindividual efficiency, a dedicated form of autophagy (xenophagy until they dispose of alien materials. Successful compartmentalization of particles within double membrane autophagosomes and subsequent fusion with repaired and re-acidified lysosomes will expose alum to lysosomal acidic pH, the sole factor that can solubilize alum particles. Brain translocation of alum particles is linked to a Trojan horse mechanism previously described for infectious particles (HIV, HCV, that obeys to CCL2 signaling the major inflammatory monocyte

  17. In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy

    Directory of Open Access Journals (Sweden)

    Yu Ma

    2008-04-01

    Full Text Available In this study, a 3D digital atlas of the live mouse brain based on magnetic resonance microscopy (MRM is presented. C57BL/6J adult mouse brains were imaged in vivo on a 9.4 Tesla MR instrument at an isotropic spatial resolution of 100 μm. With sufficient signal-to-noise (SNR and contrast-to-noise ratio (CNR, 20 brain regions were identified. Several atlases were constructed including 12 individual brain atlases, an average atlas, a probabilistic atlas and average geometrical deformation maps. We also investigated the feasibility of using lower spatial resolution images to improve time efficiency for future morphological phenotyping. All of the new in vivo data were compared to previous published in vitro C57BL/6J mouse brain atlases and the morphological differences were characterized. Our analyses revealed significant volumetric as well as unexpected geometrical differences between the in vivo and in vitro brain groups which in some instances were predictable (e.g. collapsed and smaller ventricles in vitro but not in other instances. Based on these findings we conclude that although in vitro datasets, compared to in vivo images, offer higher spatial resolutions, superior SNR and CNR, leading to improved image segmentation, in vivo atlases are likely to be an overall better geometric match for in vivo studies, which are necessary for longitudinal examinations of the same animals and for functional brain activation studies. Thus the new in vivo mouse brain atlas dataset presented here is a valuable complement to the current mouse brain atlas collection and will be accessible to the neuroscience community on our public domain mouse brain atlas website.

  18. Leaning in and holding on: team support with unexpected death.

    Science.gov (United States)

    Kobler, Kathie

    2014-01-01

    Integral to the care of medically fragile infants and children is the sobering reality that not all will survive. Supporting children and families through the dying process requires knowledge, skill, compassion, and a willingness to be present to the suffering of others. As healthcare professionals journey with a dying child, they experience an ongoing dual nature of their own grief, shifting between focusing on the loss at hand or avoiding the loss and refocusing their attention elsewhere. This internal conflict may be potentiated with the sudden, unexpected death of a patient, which affords little time for caregivers to process their own experience of the loss. When an unanticipated death occurs, a palpable grief ripples through the entire unit, impacting caregivers, the bereaved parents, and other patients and families. Such an event holds the potential for either team disorganization or growth. This article presents a case study of one unit's response to the unexpected death of a long-term patient, which caused caregivers to lean in to support each other. Using a case study approach, the author identifies strategies to best guide teams when death arrives without warning, and provides ideas for cocreating ritual to honor relationship in the midst of tragedy. PMID:24445436

  19. Brain foods: the effects of nutrients on brain function

    OpenAIRE

    Gómez-Pinilla, Fernando

    2008-01-01

    It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators o...

  20. Astroglial Contribution to Brain Energy Metabolism in Humans Revealed by 13C Nuclear Magnetic Resonance Spectroscopy: Elucidation of the Dominant Pathway for Neurotransmitter Glutamate Repletion and Measurement of Astrocytic Oxidative Metabolism

    OpenAIRE

    Lebon, Vincent; Petersen, Kitt F.; Cline, Gary W.; Shen, Jun; Mason, Graeme F.; Dufour, Sylvie; Behar, Kevin L.; Shulman, Gerald I.; Rothman, Douglas L.

    2002-01-01

    Increasing evidence supports a crucial role for glial metabolism in maintaining proper synaptic function and in the etiology of neurological disease. However, the study of glial metabolism in humans has been hampered by the lack of noninvasive methods. To specifically measure the contribution of astroglia to brain energy metabolism in humans, we used a novel noninvasive nuclear magnetic resonance spectroscopic approach. We measured carbon 13 incorporation into brain glutamate and glutamine in...

  1. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... Neurons & Neural Circuits Neurons are the basic working unit of the brain and nervous system. These cells ... A nerve cell that is the basic, working unit of the brain and nervous system, which processes ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Trials — Participants Statistics Help for Mental Illnesses Outreach Research Priorities Funding Labs at NIMH News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ... mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... medical professionals who can diagnose mental disorders are psychologists or clinical social workers. The psychiatrist asked Sarah ... important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, or ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ... of DNA. Sometimes this copying process is imperfect, leading to a gene mutation that causes the gene ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... and epigenetic changes can be passed on to future generations. Further understanding of genes and epigenetics may ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... problems using dopamine in the thinking and feeling regions of the brain may play a role in ... obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons working together form a ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... medications could reduce the amount of trial and error and frustration that many people with depression experience ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics will introduce you to some of this science, such as: How the brain develops How ... cell, and responds to signals from the environment; this all helps the cell maintain its balance with ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... However, recent research points to a possible new class of antidepressants that can relieve symptoms of the ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development ...

  18. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... working unit of the brain and nervous system. These cells are highly specialized for the function of ... nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as sleep ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... mainly involved in controlling movement and aiding the flow of information to the front of the brain, ... the neuron will fire. This enhances the electrical flow among brain cells required for normal function and ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... speech. The brain continues maturing well into a person's early 20s. Knowing how the brain is wired ... in Parkinson's disease, a disorder that affects a person's ability to move as they want to, resulting ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... of brain scan called magnetoencephalography, or MEG, can capture split-second changes in the brain. Using MEG, ... The study of how environmental factors like diet, stress and post-natal care can change gene expression ( ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... neurons, the most highly specialized cells of all, conduct messages. Every cell in our bodies contains a ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... volunteers PubMed Central: An archive of life sciences journals NIH Research Fact Sheets NIH Office of Science ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... How the brain develops How genes and the environment affect the brain The basic structure of the ... inside contents of the cell from its surrounding environment and controls what enters and leaves the cell, ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... all. She was happily married and successful in business. Then, after a serious setback at work, she ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... and the environment affect the brain The basic structure of the brain How different parts of the ... for the cell to work properly including small structures called cell organelles. Dendrites branch off from the ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  13. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model.

    Science.gov (United States)

    Corre, Christina; Friedel, Miriam; Vousden, Dulcie A; Metcalf, Ariane; Spring, Shoshana; Qiu, Lily R; Lerch, Jason P; Palmert, Mark R

    2016-03-01

    Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders. PMID:25445841

  14. Expectation modulates neural representations of valence throughout the human brain.

    Science.gov (United States)

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  15. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... having trouble coping with the stresses in her life. She began to think of suicide because she ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman ... new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ... stress. impulse —An electrical communication signal sent between neurons ...

  17. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other and with distant nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. The brain continues ...

  19. Expected and unexpected features of protein-binding RNA aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils; Andreasen, Peter A; Dupont, Daniel M

    2016-01-01

    RNA molecules with high affinity to specific proteins can be isolated from libraries of up to 10(16) different RNA sequences by systematic evolution of ligands by exponential enrichment (SELEX). These so-called protein-binding RNA aptamers are often interesting, e.g., as modulators of protein...... function for therapeutic use, for probing the conformations of proteins, for studies of basic aspects of nucleic acid-protein interactions, etc. Studies on the interactions between RNA aptamers and proteins display a number of expected and unexpected features, including the chemical nature of the...... interacting RNA-protein surfaces, the conformation of protein-bound aptamer versus free aptamer, the conformation of aptamer-bound protein versus free protein, and the effects of aptamers on protein function. Here, we review current insights into the details of RNA aptamer-protein interactions. For further...

  20. Unexpected radionuclide uptake due to calcification in muscles

    International Nuclear Information System (INIS)

    Full text: A male patient aged 27 years was injected with 1000 MBq of 99Tcm-MDP. The patient was an active man indulging in contact sport. He presented with lower back and pelvic pain. Spot pictures were made of the pelvis, lumbar spine and femurs. Unexpected active radionuclide uptake in the muscles was seen. In the delayed static images, there was focal accumulation of tracer uptake in the muscles overlying the mid-shaft of the left femur consistent with myositis ossificans. Myositis ossificans is a benign ossifying process that is generally solitary and well circumscribed. It is most commonly found in the muscles but it may occur in other connective tissues, especially tendons and subcutaneous fat. This was presumably associated with chronic muscular injuries contracted during sports activity

  1. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A. (Harvard-Med)

    2012-10-09

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an '{alpha}TSR' domain. The {alpha}TSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but {alpha}TSR does not. Interestingly, polymorphic T-cell epitopes map to specialized {alpha}TSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.

  2. Unexpected water flow through Nafion-tube punctures

    Science.gov (United States)

    O'Rourke, Colin; Klyuzhin, Ivan; Park, Ji Sun; Pollack, Gerald H.

    2011-05-01

    When a Nafion tube is immersed in water and a small hole is punched in the tube's wall, an unexpected phenomenon occurs: Water flows continuously into the tube through the hole. The phenomenon has proved repeatable, and dynamic aspects were therefore explored, including the effects of altered pH and introduction of a second hole. It appears that the flow is closely tied to the recently discovered “exclusion zone” that forms as an annulus inside the Nafion tube. These zones generate protons in the core of the tube, which exert pressure on the menisci; once a hole is punched, the pressure is relieved by sucking water through the hole. This hypothesis is consistent with the observed experimental evidence and may be relevant to the mechanism of water transport in trees.

  3. Unexpected Metabolic Reactions and Secondary Targets of Pesticide Action.

    Science.gov (United States)

    Casida, John E

    2016-06-01

    Pesticides provide a fascinating combination of substituents not present in other environmental chemicals, leading to unexpected metabolites and toxicological effects in pests, mammals, and other organisms. The parent compound and/or metabolites of some pesticides have multiple targets, requiring identification of the causal agents and their modes of action. This review considers a few of the author's observations in the past six decades, some solved and others still puzzling. It illustrates that a new substituent combination not only confers specific chemical and physical properties to a class of compounds but often yields metabolites with a surprising variety of biological activities. Examples considered include proinsecticides, procyclic phosphates, CYP inhibitors as synergists, thiocarbamate sulfoxides, promutagens, carcinogens, and hepatotoxins, and stress tolerance inducers in plants. Although the discoveries considered are based on pesticide toxicology, they are broadly applicable to environmental toxicology and xenobiotics in animals, plants, and microorganisms. PMID:27192487

  4. Preparing for the unexpected - A psychologist's case for improved training

    Science.gov (United States)

    Foushee, H. C.

    1984-01-01

    In the procedures designed to minimize human errors that lead to aircraft incidents, the improved human factor engineering and automation approaches must be supplemented by new training methods. Changes are suggested in the preprogrammed training principles which are currently based almost exclusively on the procedures-oriented environment, with insufficient training for cognitive processing and awareness. Use of the Line-Oriented Flight Training procedure, in which a training simulator is supplemented by a highly structured script or scenario to simulate the total line operational environment for the purpose of simultaneously training the entire flight crew, offers one way of providing pilots and other crewmembers with the experience of dealing with unexpected or stressful events. Of primary importance is maximal coordination between the aircraft captain and other crewmembers during the flight, which puts emphasis on the importance of teamwork and personal relations among all other crewmembers. The current FARs governing training and proficiency will have to be modified to accommodate new training appoaches.

  5. Unexpected ST segment changes in children--a case report.

    Science.gov (United States)

    Alfirevic, Andrej; Mossad, Emad; Niezgoda, Julie

    2005-01-01

    In children, myocardial ischemic changes during anesthesia are a rare event unless there is underlying pathology. The patient in this case report was an apparently healthy child scheduled for adenoidectomy and bilateral tympanostomy. Occurrence of significant ST changes as well as intraoperative and postoperative hypoxemia required further diagnostic work-up. Postoperative echocardiographic findings were suspicious of intrapulmonary right to left shunting. The pulmonary arteriovenous fistula is probably the major pathophysiological factor for the development of hypoxemia and paradoxical air embolism especially during positive pressure ventilation in our patient. Unexpected ST segment changes might also occur in patients with anomalous origin of coronary arteries. Although diagnostic work-up was inconclusive, it is necessary to rule out any underlying pathological process. Further follow-up is also important in order to learn more about these disease states that often have subclinical, but potentially fatal presentation. PMID:15649167

  6. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  7. A search for unexpected bound states in 15B

    Science.gov (United States)

    Hoffman, Calem R.

    2014-09-01

    Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound states in 15B and ii) to assign total angular momenta to known excited states for the first time. At present only two bound states have been observed in 15B, neither with firm spin or parity assignments. The present work to be discussed is aimed at determining whether an excited 3 /2- state, a state with identical spin-parity as the ground state, resides below the neutron separation energy in 15B. Such an excited 3 /2- state is not predicted to appear below the 15B Sn by shell-model calculations using various p- sd interactions. However, a robust systematic, probably related to the s-wave trends found in the single-neutron states in this region, has been observed for neutron-rich N=10 nuclei and it suggests that the state may appear lower in excitation energy than expected. Providing some measure of validation for the N=10 prediction is a similar trend noticed in the energy differences between ground (p)2 neutron states and excited (sd)2 neutron states in the N=8 neutron-rich isotones. In addition to a search for this unexpected state, additional spectroscopic information on 15B will better aid in the understanding of the N=10 isotones when transitioning from 16C into sparsely probed 14Be. Details of the experimental procedures and motivation will be presented and discussed. Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound

  8. Thalidomide and misoprostol: Ophthalmologic manifestations and associations both expected and unexpected.

    Science.gov (United States)

    Miller, Marilyn T; Ventura, Liana; Strömland, Kerstin

    2009-08-01

    Thalidomide is a very potent teratogen capable of causing severe systemic malformations if the fetus is exposed during the sensitive period. Although structural anomalies of the eye can occur from thalidomide exposure, the most frequent eye complication is secondary to damage to the cranial nuclei in the brain stem, resulting in aberrant neurologic connections causing a condition of abnormal ocular movement, Duane syndrome. A less frequent anomalous neurologic complication is tearing when eating (paradoxical gustolacrimal tearing or "crocodile tears") or lack of emotional tearing. The involvement of the 6th and 7th cranial nerves, often seen together in the thalidomide-affected individual, is also characteristic of Möbius syndrome/sequence. This syndrome usually occurs sporadically, but characteristic findings of this condition have also been observed in South American children who were born after an unsuccessful attempt to induce abortion with the prostaglandin drug misoprostol (Cytotec). Aberrant tearing also occurs in some individuals with Möbius syndrome. Autism spectrum disorder (ASD), an unexpected associated finding in a Swedish thalidomide study, is now also noted in Möbius studies, in patients both with and without exposure to misoprostol. PMID:19639653

  9. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  10. Hematogenous Pasteurella multocida brain abscess

    International Nuclear Information System (INIS)

    A case of hematogenously acquired brain abscess caused by Pasteurella multocida is described. CT scans of the head revealed the lesions in a 67 year old man with mild alcoholic liver disease and severe chronic obstructive pulmonary disease. Ultrasound examinations of the abdomen and chest and an echocardiogram failed to reveal a source for the abscess. On autopsy examination three encapsulated brain abscesses were found. 34 references, 2 figures, 1 table

  11. Seroprevalence of unexpected red blood cell antibodies among pregnant women in Uganda.

    Science.gov (United States)

    Eipl, K; Nakabiito, C; Bwogi, K; Motevalli, M; Roots, A; Blagg, L; Jackson, J B

    2012-01-01

    We conducted a population-based, cross-sectional study among pregnant women in Kampala, Uganda, to determine ABO and D blood types and to determine the percentage who have unexpected red blood cell (RBC) antibodies and their specificities. De-identified blood samples from routine testing of 1001 pregnant women at the Mulago Hospital antenatal clinics in Kampala were typed for ABO and D and screened for the presence of unexpected RBC antibodies with confirmation and subsequent antibody identification. Of the 1001 blood samples tested, 48.9 percent, 26.4 percent, 21.0 percent, and 3.8 percent tested positive for blood groups 0, A, B, and AB, respectively. Of these samples, 23 (2.3%)were negative forD, and 55 (5.5%) showed initial reactivity with at least one screening RBC. The RBC antibody screen was repeated on these 55 samples, and antibody identification was performed at the Johns Hopkins Hospital Blood Bank in Baltimore, Maryland. Twenty-one of the 55 samples were confirmed to have evidence of agglutination. Nine of the 21 samples demonstrated the presence of clinically significant RBC antibodies with anti-S being the most common, 8 samples demonstrated the presence of benign or naturally occurring antibodies, and 4 had only inconclusive reactivity. This study revealed a relatively high frequency of D and a low frequency of demonstrable clinically significant alloantibodies that may cause hemolytic disease of the newborn or hemolytic transfusion reactions among pregnant women in Kampala, with anti-S being the most frequent antibody specificity. PMID:23421539

  12. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    Science.gov (United States)

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  13. The accrual anomaly - focus on changes in specific unexpected accruals results in new evidence

    DEFF Research Database (Denmark)

    Schøler, Finn

    specifically analyzed, namely the unexpected inventory accrual component and the unexpected accounts receivable accrual component, i.e. changes in accruals not motivated by corresponding changes in company activity-level. Additionally and for comparison, the accounting accruals are split into expected and...... unexpected accruals, estimated by the extended Jones model like in both some US-analyses and some international studies of the accrual anomaly phenomenon. It is found that the persistence of earnings is decreasing in the magnitude of the unexpected accrual components of earnings and that the persistence of...

  14. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  15. Revealed Attention

    OpenAIRE

    Masatlioglu, Yusufcan; NAKAJIMA, Daisuke; Ozbay, Erkut Y

    2012-01-01

    The standard revealed preference argument relies on an implicit assumption that a decision maker considers all feasible alternatives. The marketing and psychology literatures, however, provide wellestablished evidence that consumers do not consider all brands in a given market before making a purchase (Limited Attention). In this paper, we illustrate how one can deduce both the decision maker's preference and the alternatives to which she pays attention and inattention from the observed behav...

  16. Revealed Attention

    OpenAIRE

    Yusufcan Masatlioglu; Daisuke Nakajima; Ozbay, Erkut Y

    2012-01-01

    The standard revealed preference argument relies on an implicit assumption that a decision maker considers all feasible alternatives. The marketing and psychology literatures, however, provide well-established evidence that consumers do not consider all brands in a given market before making a purchase (Limited Attention). In this paper, we illustrate how one can deduce both the decision maker's preference and the alternatives to which she pays attention and inattention from the observed beha...

  17. An unexpected evolution of symptomatic mild middle cerebral artery (MCA stenosis: asymptomatic occlusion

    Directory of Open Access Journals (Sweden)

    Malferrari Giovanni

    2011-12-01

    occlusion. Neuroradiological imaging did not identify new lesions of the brain parenchyma and a repeated selective cerebral angiography confirmed the left M1 MCA occlusion. Conclusions Regardless of the role of metabolic and/or inflammatory factors on the aetiology of the intracranial stenosis in this case, the course of the vessel disease was unexpected and previously unreported in the literature at our knowledge.

  18. Asymptomatic brain tumor detected at brain check-up

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya [Sankoukai Miyazaki Hospital, Isahaya, Nagasaki (Japan)

    2001-09-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  19. Radiography after unexpected death in infants and children compared to autopsy

    International Nuclear Information System (INIS)

    Postmortem radiography may reveal skeletal and soft-tissue abnormalities of importance for the diagnosis of cause of death. To review the radiographs of children under 3 years of age who had died suddenly and unexpectedly. To compare the radiological and autopsy findings evaluating possible differences in children dying of SIDS and of an explainable cause. A total of 110 consecutive skeletal surveys performed between 1998 and 2002 were reviewed. All but one were performed before autopsy and comprised AP views of the appendicular and axial skeleton and thorax/abdomen, lateral views of the axial skeleton and thorax, and two oblique views of the ribs. Radiography and autopsy findings were compared. Causes of death were classified as SIDS/borderline SIDS (n = 52) and non-SIDS (n = 58), with one case of abuse. In 102 infants there were 150 pathological findings, 88 involving the chest, 24 skeletal, and 38 miscellaneous findings. The radiological-pathological agreement was poor concerning pulmonary findings. Skeletal findings were sometimes important for the final diagnosis. Radiography revealed many skeletal and soft-tissue findings. Pulmonary pathology was most frequently found, but showed poor agreement with autopsy findings. Recognizing skeletal findings related to abuse is important, as these may escape recognition at autopsy. (orig.)

  20. Sinking Brain: Unusual Cause of Orthostatic Headache

    Directory of Open Access Journals (Sweden)

    Raina R

    2015-04-01

    Full Text Available We report a case presenting with an orthostatic headache. Brain magnetic resonance imaging (MRI revealed typical pachymeningeal enhancement. CT myelography revealed leakage at the thoracic level. Patient was successfully treated by lumbar epidural blood patch (EBP.

  1. Effects of tank color on melanin-concentrating hormone levels in the brain, pituitary gland, and plasma of the barfin flounder as revealed by a newly developed time-resolved fluoroimmunoassay.

    Science.gov (United States)

    Amiya, Noriko; Amano, Masafumi; Takahashi, Akiyoshi; Yamanome, Takeshi; Kawauchi, Hiroshi; Yamamori, Kunio

    2005-09-15

    A pleuronectiform fish, the barfin flounder Verasper moseri, reared in a white tank had a smaller ratio of pigmented area of the skin on non-eyed side, grew faster, and had greater melanin-concentrating hormone (MCH)-immunoreactive cell bodies and MCH gene expression in the brain than in the black tank, indicating that synthesis and release of MCH are higher in fish from a white tank. In the present study, a time-resolved fluoroimmunoassay for MCH was developed. MCH levels were assessed in the brain, pituitary gland, and plasma of barfin flounders reared in a white or black tank. A competitive assay using two antibodies was performed among secondary antibodies in the solid phase, MCH antibodies, samples, and europium-labeled MCH. Displacement curves of serially diluted extracts (brain, pituitary gland, and plasma) of the barfin flounder paralleled that of the MCH standard. MCH levels in the brain and plasma were higher in fish reared in the white tank for 5 months than in the black tank. These results suggest that synthesis and secretion of MCH are enhanced with the white background and that MCH is involved in both somatic growth and the skin pigmentation in the barfin flounder. PMID:15979616

  2. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B;

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  3. Brain fat embolism

    International Nuclear Information System (INIS)

    Recently CT and MR imaging have demonstrated that cerebral edema is present in cases of fat embolism syndrome. To simulate this we have made a model of brain-fat embolism in rats under MR imaging. In 20 rats, we did intravenous injection of heparinized blood, 1.5 ml·kg-1 taken from femoral bone marrow cavity. Twenty four hours after the injection, we examined the MR images (1.5 tesla, spin-echo method) of brains and histologic findings of brains and lungs were obtained. In 5 of 20 rats, high signal intensity on T2-weighted images and low signal intensity on T1-weighted images were observed in the area of the unilateral cerebral cortex or hippocampus. These findings showed edema of the brains. They disappeared, however, one week later. Histologic examinations showed massive micro-fat emboli in capillaries of the deep cerebral cortex and substantia nigra, but no edematous findings of the brain were revealed in HE staining. In pulmonary arteries, we also found large fat emboli. We conclude that our model is a useful one for the study of brain fat embolism. (author)

  4. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    OpenAIRE

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relations...

  5. Unexpectedly large charge radii of neutron-rich calcium isotopes

    Science.gov (United States)

    Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; Ekström, A.; Frömmgen, N.; Hagen, G.; Hammen, M.; Hebeler, K.; Holt, J. D.; Jansen, G. R.; Kowalska, M.; Kreim, K.; Nazarewicz, W.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papenbrock, T.; Papuga, J.; Schwenk, A.; Simonis, J.; Wendt, K. A.; Yordanov, D. T.

    2016-06-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain `magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.

  6. Unexpected levels and movement of radon in a large warehouse

    International Nuclear Information System (INIS)

    Alpha-track detectors, used in screening for radon, identified a large warehouse with levels of radon as high as 20 p Ci/l. This circumstance was unexpected because large bay doors were left open for much of the day to admit 1 8-wheeler trucks, and exhaust fans in the roof produced good ventilation. More detailed temporal and spatial investigations of radon and air-flow patterns were made with electret chambers, Lucas-cell flow chambers, tracer gas, smoke pencils and pressure sensing micrometers. An oval-dome shaped zone of radon (>4 p Ci/L) persisted in the central region of each of four separate bays composing the warehouse. Detailed studies of air movement in the bay with the highest levels of radon showed clockwise rotation of air near the outer walls with a central dead zone. Sub slab, radon-laden air ingresses the building through expansion joints between the floor slabs to produce the measured radon. The likely source of radon is air within porous, karst bedrock that underlies much of north-central Tennessee where the warehouse is situated

  7. Unexpected demography in the recovery of an endangered primate population.

    Directory of Open Access Journals (Sweden)

    Karen B Strier

    Full Text Available Assessments of the status of endangered species have focused on population sizes, often without knowledge of demographic and behavioral processes underlying population recovery. We analyzed demographic data from a 28-year study of a critically endangered primate, the northern muriqui, to investigate possible changes in demographic rates as this population recovered from near extirpation. As the population increased from 60 to nearly 300 individuals, its growth rate declined due to increased mortality and male-biased birth sex ratios; the increased mortality was not uniform across ages and sexes, and there has been a recent increase in mortality of prime-aged males. If not for a concurrent increase in fertility rates, the population would have stabilized at 200 individuals instead of continuing to grow. The unexpected increase in fertility rates and in adult male mortality can be attributed to the muriquis' expansion of their habitat by spending more time on the ground. The demographic consequences of this behavioral shift must be incorporated into management tactics for this population and emphasize the importance of understanding demographic rates in the recovery of endangered species.

  8. Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts

    Science.gov (United States)

    McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.

    2016-01-01

    Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.

  9. An unexpected near term pregnancy in a rudimentary uterine horn.

    Science.gov (United States)

    Gonçalves, Elisabete; Prata, João Pedro; Ferreira, Sandra; Abreu, Rita; Mesquita, Jorge; Carvalho, Agostinho; Pinheiro, Paula

    2013-01-01

    Unicornuate uterus occurs due to a complete or partial nondevelopment of one Mullerian duct; sometimes it is associated with a rudimentary horn, which can communicate or not with uterine cavity or contain functional endometrium. Pregnancy in a rudimentary horn is rare and the outcome almost always unfavorable, usually ending in rupture during the first or second trimester with significant morbidity and mortality. Despite the availability and advances on imagiologic procedures, recognition of this ectopic pregnancy is frequently made at laparotomy after abdominal pain and collapse. The authors describe a case of a primigravida with 34 weeks of gestation admitted with a preeclampsia with severity criteria. A cesarean for fetal malpresentation was done and, unexpectedly, a rudimentary horn pregnancy was found with a live newborn. In the literature, few reports of a horn pregnancy reaching the viability with a live newborn are described, enhancing the clinical importance of this case. A review of literature concerning the epidemics, clinical presentation, and appropriate management of uterine horn pregnancies is made. PMID:23710390

  10. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention.

    Science.gov (United States)

    Devinsky, Orrin; Hesdorffer, Dale C; Thurman, David J; Lhatoo, Samden; Richerson, George

    2016-09-01

    Sudden unexpected death in epilepsy (SUDEP) can affect individuals of any age, but is most common in younger adults (aged 20-45 years). Generalised tonic-clonic seizures are the greatest risk factor for SUDEP; most often, SUDEP occurs after this type of seizure in bed during sleep hours and the person is found in a prone position. SUDEP excludes other forms of seizure-related sudden death that might be mechanistically related (eg, death after single febrile, unprovoked seizures, or status epilepticus). Typically, postictal apnoea and bradycardia progress to asystole and death. A crucial element of SUDEP is brainstem dysfunction, for which postictal generalised EEG suppression might be a biomarker. Dysfunction in serotonin and adenosine signalling systems, as well as genetic disorders affecting cardiac conduction and neuronal excitability, might also contribute. Because generalised tonic-clonic seizures precede most cases of SUDEP, patients must be better educated about prevention. The value of nocturnal monitoring to detect seizures and postictal stimulation is unproven but warrants further study. PMID:27571159

  11. Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

    KAUST Repository

    Zhang, Chen

    2012-08-16

    We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C 4H 10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C 4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C 4H 8/iso-C 4H 10 of 180 and n-C 4H 10/iso-C 4H 10 of 2.5 × 10 6. These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites. © 2012 American Chemical Society.

  12. Unexpected diagnosis for preauricular swelling - two case reports

    International Nuclear Information System (INIS)

    Background. Preauricular swelling in children may be associated with a wide range of pathology. The history, clinical presentation and imaging features of such swellings may be non-specific. Sometimes it can be caused by underlying bone lesion. Case reports. We report about two children who were admitted to the hospital with swelling in the preauricular region and an unexpected final diagnosis. We found aneurismal bone cyst and central giant cell granuloma, respectively. Conclusions. Awareness of such lesions is important to avoid diagnostic errors and a potential mismanagement. These lesions are often difficult to differentiate on the basis of their radiographic features alone. A high-resolution US enables an accurate analysis of soft tissue and helps in the differential diagnosis. It also enables an accurate location of the lesion, which helps to avoid a wrong interpretation based on the clinical finding only. The CT-scan performed afterwards provides necessary information for the assessment of location, structure and size of the lesion. (author)

  13. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  14. Male or female? Brains are intersex

    OpenAIRE

    Daphna eJoel

    2011-01-01

    The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms male or female, and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in utero a...

  15. Male or Female? Brains are Intersex

    OpenAIRE

    Joel, Daphna

    2011-01-01

    The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms “male” or “female,” and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion, and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in ut...

  16. Neurobehavioral presentations of brain neoplasms.

    Science.gov (United States)

    Filley, C M; Kleinschmidt-DeMasters, B K

    1995-07-01

    We studied 8 patients with frontal or temporolimbic neoplasms who had psychiatric presentations to clarify diagnostic criteria for distinguishing psychiatric disease from structural brain lesions and to examine brain-behavior relationships associated with cerebral neoplasms using modern neuroimaging techniques. Medical records were retrospectively reviewed for evidence of neurobehavioral and neurologic manifestations, tumor histologic features, and the results of treatment. Clinical presentations were correlated with tumor location as determined by computed tomography and magnetic resonance imaging. Patients with frontal lobe tumors presented with abulia, personality change, or depression, whereas those with temporolimbic tumors had auditory and visual hallucinations, mania, panic attacks, or amnesia. After treatment, neurobehavioral syndromes abated or resolved in 7 of 8 patients. We recommend that any patient 40 years of age or older with a change in mental state, cognitive or emotional, should have neuroimaging of the brain. Any patient with a psychiatric presentation who has specific neurobehavioral or neurologic findings or an unexpectedly poor response to psychopharmacologic treatment should also have brain imaging. These case reports extend and update observations on the importance of frontal and temporolimbic systems in the pathogenesis of neurobehavioral disorders. PMID:7667978

  17. 3 CFR - Unexpected Urgent Refugee and Migration Needs Related to the Continuing Conflict in Pakistan

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Unexpected Urgent Refugee and Migration Needs... Presidential Determination No. 2009-16 of March 11, 2009 Unexpected Urgent Refugee and Migration Needs Related... Migration and Refugee Assistance Act of 1962 (the “Act”), as amended (22 U.S.C. 2601), I hereby...

  18. 3 CFR - Unexpected Urgent Refugee and Migration Needs Related to Gaza

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Unexpected Urgent Refugee and Migration Needs... of January 27, 2009 Unexpected Urgent Refugee and Migration Needs Related to Gaza Memorandum for the..., including section 2(c)(1) of the Migration and Refugee Assistance Act of 1962 (the “Act”), as amended (22...

  19. 78 FR 9569 - Unexpected Urgent Refugee and Migration Needs Relating to Syria

    Science.gov (United States)

    2013-02-08

    ... Register. (Presidential Sig.) THE WHITE HOUSE, Washington, January 29, 2013. [FR Doc. 2013-03108 Filed 2-7...--Unexpected Urgent Refugee and Migration Needs Relating to Syria Memorandum of January 31, 2013--Delegation of... Determination No. 2013-04 of January 29, 2013 Unexpected Urgent Refugee and Migration Needs Relating to...

  20. Unexpected degradation of the bisphosphonate P-C-P bridge under mild conditions

    Directory of Open Access Journals (Sweden)

    Vepsäläinen Jouko J

    2008-01-01

    Full Text Available Abstract Unexpected degradation of the P-C-P bridge from novel bisphosphonate derivative 1a and known etidronate trimethyl ester (1b has been observed under mild reaction conditions. A proposed reaction mechanism for the unexpected degradation of 1a and 1b is also reported.

  1. Learning from the unexpected in life and DNA self-assembly

    OpenAIRE

    Heemstra, Jennifer M.

    2015-01-01

    The greatest lessons in life and science often arise from the unexpected. Thus, rather than viewing these experiences as hindering our progress, they should be embraced and appreciated for their ability to lead to new discoveries. In this perspective, I will discuss the unexpected events that have shaped my career path and the early stages of my independent research program.

  2. Learning from the unexpected in life and DNA self-assembly.

    Science.gov (United States)

    Heemstra, Jennifer M

    2015-01-01

    The greatest lessons in life and science often arise from the unexpected. Thus, rather than viewing these experiences as hindering our progress, they should be embraced and appreciated for their ability to lead to new discoveries. In this perspective, I will discuss the unexpected events that have shaped my career path and the early stages of my independent research program. PMID:26877793

  3. Learning from the unexpected in life and DNA self-assembly

    Directory of Open Access Journals (Sweden)

    Jennifer M. Heemstra

    2015-12-01

    Full Text Available The greatest lessons in life and science often arise from the unexpected. Thus, rather than viewing these experiences as hindering our progress, they should be embraced and appreciated for their ability to lead to new discoveries. In this perspective, I will discuss the unexpected events that have shaped my career path and the early stages of my independent research program.

  4. Learning from the unexpected in life and DNA self-assembly

    Science.gov (United States)

    2015-01-01

    Summary The greatest lessons in life and science often arise from the unexpected. Thus, rather than viewing these experiences as hindering our progress, they should be embraced and appreciated for their ability to lead to new discoveries. In this perspective, I will discuss the unexpected events that have shaped my career path and the early stages of my independent research program. PMID:26877793

  5. Communication of Unexpected and Significant Findings on Chest Radiographs With an Automated PACS Alert System.

    LENUS (Irish Health Repository)

    Hayes, Sara A

    2014-08-01

    An integral part of realizing the enormous potential of imaging in patient care is close communication between radiologists and referring physicians. One key element of this process is the communication of unexpected significant findings. The authors examined the performance of a PACS-based alert system in the appropriate communication of reports containing unexpected significant findings to referring physicians.

  6. Unexpected Fatal Hypernatremia after Successful Cardiopulmonary Resuscitation with Therapeutic Hypothermia: A Case Report

    OpenAIRE

    Choi, Sang-Sik; Kim, Won Young; Kim, Won; Lim, Kyung-Su

    2012-01-01

    Central diabetes insipidus (DI), characterized by unexpected fatal hypernatremia, is a rare complication after successful cardiopulmonary resuscitation with therapeutic hypothermia, but may be potentially fatal if recognition is delayed. We describe here a patient who experienced cardiac arrest due to a pulmonary embolism, followed by successful resuscitation after induction of therapeutic hypothermia. The patient, however, suddenly developed unexpected hypernatremia with increased urine outp...

  7. Brain Basics

    Medline Plus

    Full Text Available ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... PTSD) . Prefrontal cortex (PFC) —Seat of the brain's executive functions, such as judgment, decision making, and problem solving. ... brain that, in humans, plays a role in executive functions such as judgment, decision making and problem solving, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where mental disorders begin and perhaps how to slow or stop ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues both help to direct ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... her symptoms were not caused by a stroke, brain tumor, or similar conditions, Sarah's doctor referred her to a psychiatrist, a type of medical doctor who is an expert on mental ... of serotonin in the brain and help reduce symptoms of depression. Sarah also ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability to move as they want to, resulting ...

  14. Brain imaging

    International Nuclear Information System (INIS)

    The techniques of brain imaging and results in perfusion studies and delayed images are outlined. An analysis of the advantages and disadvantages of the brain scan in a variety of common problems is discussed, especially as compared with other available procedures. Both nonneoplastic and neoplastic lesions are considered. (Auth/C.F.)

  15. Brain Basics

    Medline Plus

    Full Text Available ... will fire. This enhances the electrical flow among brain cells required for normal function and plays an important ... of neurons and their interconnections. neuron —A nerve cell that is the basic, working unit of the brain and nervous system, which processes and transmits information. ...

  16. Brain surgery

    Science.gov (United States)

    ... piece of tumor for a biopsy Remove abnormal brain tissue Drain blood or an infection Free a nerve The bone flap is usually replaced after surgery, using small metal ... or if the brain was swollen. (This is called a craniectomy.) The ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... axis —A brain-body circuit which plays a critical role in the body's response to stress. impulse — ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. She was happily married and successful in business. Then, after a serious setback at work, she lost interest ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... medical history. Epigenetic changes from stress or early-life experiences ... In contrast, major depression is a serious disorder that lasts for weeks. ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... her feelings. Brain Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ... a person responds to a certain medication. This information may someday ... is allowing scientists to make important discoveries that could change the ...

  2. Brain Diseases

    Science.gov (United States)

    ... know what causes some brain diseases, such as Alzheimer's disease. The symptoms of brain diseases vary widely depending on the specific problem. In some cases, damage is permanent. In other cases, treatments such as surgery, medicines, or physical therapy can correct the source of the problem or ...

  3. Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee ( Apis mellifera)

    Science.gov (United States)

    Katzav-Gozansky, Tamar; Hefetz, Abraham; Soroker, Victoria

    2007-05-01

    Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour’s gland pheromone revealed that, in vivo, workers’ gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour’s glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers’ Dufour’s gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour’s gland is under dual, negative positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become “false queens” as part of the reproductive competition.

  4. Unexpected Variation in Neuroanatomy among Diverse Nematode Species

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E.

    2016-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  5. Unexpected variation in neuroanatomy among diverse nematode species

    Directory of Open Access Journals (Sweden)

    Ziduan eHan

    2016-01-01

    Full Text Available Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and Ascaris suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research, had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapse, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent

  6. Unexpected Variation in Neuroanatomy among Diverse Nematode Species.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2015-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  7. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    Science.gov (United States)

    Alifano, P.; Nassisi, V.; Siciliano, M. V.; Talà, A.; Tredici, S. M.

    2011-05-01

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  8. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    International Nuclear Information System (INIS)

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  9. Aspects of unexpected events in nuclear power plants

    International Nuclear Information System (INIS)

    Unexpected events in nuclear power plants (NPP) may lead to upset conditions or even accidents. Events such as these affect not only safety, but also the economic viability of NPP operation. Another facet of such events, virtually irrespective of their degree of severity, is the generally negative impact on public acceptance of nuclear power, such as was seen as a direct result of the Three Mile Island (USA - 1979) and Chernobyl (Ukraine - 1986) accidents. The operators of NPPs are responsible for their safe operation, whilst regulators ensure that NPP operating practices (e.g. start-up, shut-down procedures, inspections, monitoring, and compliance with technical specifications (TS)) are such that the highest possible levels of safety are a priori present at all times. As a matter of engineering principles, designs of NPPs feature safety margins and they are based on conservative assumptions, mostly to allow for material response to the operating conditions and environment (e.g. neutron embrittlement, fatigue usage). Inspections and monitoring have the purpose to check whether systems structures and components (SSC) are behaving according to the design with regard to compliance with safety requirements even when 'aged'. The paper examines aspects concerning events or accidents in NPPs, despite generally high levels of SSC monitoring and inspection and regulatory oversight. The importance of materials selection at the design stage, and the need for vigilance and questioning attitudes is stressed. The necessity to learn from accidents or events that have occurred in other NPPs is shown to be an important tool and source of information for NPP designers, manufacturers, operators and regulators. (author)

  10. Telomere end processing: unexpected complexity at the end game

    OpenAIRE

    Lundblad, Victoria

    2012-01-01

    Lundblad provides perspective on the recent work by Wright and colleagues (this issue) that reveals a tightly choreographed sequence of events that occur during telomere replication and end processing.

  11. Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system.

    Directory of Open Access Journals (Sweden)

    Vanessa Matos-Cruz

    Full Text Available Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x, is expressed in a small subset of retinal ganglion cells (RGCs in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4, zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.

  12. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Rawad, E-mail: rawad.saad@cea.fr [CEA, DEN, DPC, SEARS, LANIE, 91191 Gif-sur-Yvette (France); L' Hermite, Daniel, E-mail: daniel.lhermite@cea.fr [CEA, DEN, DPC, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Bousquet, Bruno, E-mail: bruno.bousquet@u-bordeaux1.fr [LOMA, Université de Bordeaux, CNRS, 351 Cours de la Libération, 33405 Talence Cedex (France)

    2014-11-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm{sup −1} energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation.

  13. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    International Nuclear Information System (INIS)

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm−1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation

  14. Crude oil as a microbial seed bank with unexpected functional potentials

    Science.gov (United States)

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-11-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.

  15. Costly hide and seek pays: unexpected consequences of deceit in a social dilemma

    International Nuclear Information System (INIS)

    Deliberate deceptiveness intended to gain an advantage is commonplace in human and animal societies. In a social dilemma, an individual may only pretend to be a cooperator to elicit cooperation from others, while in reality he is a defector. With this as motivation, we study a simple variant of the evolutionary prisoner's dilemma game entailing deceitful defectors and conditional cooperators that lifts the veil on the impact of such two-faced behavior. Defectors are able to hide their true intentions at a personal cost, while conditional cooperators are probabilistically successful at identifying defectors and act accordingly. By focusing on the evolutionary outcomes in structured populations, we observe a number of unexpected and counterintuitive phenomena. We show that deceitful behavior may fare better if it is costly, and that a higher success rate of identifying defectors does not necessarily favor cooperative behavior. These results are rooted in the spontaneous emergence of cycling dominance and spatial patterns that give rise to fascinating phase transitions, which in turn reveal the hidden complexity behind the evolution of deception. (paper)

  16. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo.

    Science.gov (United States)

    Elliott, Michael R; Zheng, Shuqiu; Park, Daeho; Woodson, Robin I; Reardon, Michael A; Juncadella, Ignacio J; Kinchen, Jason M; Zhang, Jun; Lysiak, Jeffrey J; Ravichandran, Kodi S

    2010-09-16

    Apoptosis and the subsequent clearance of dying cells occurs throughout development and adult life in many tissues. Failure to promptly clear apoptotic cells has been linked to many diseases. ELMO1 is an evolutionarily conserved cytoplasmic engulfment protein that functions downstream of the phosphatidylserine receptor BAI1, and, along with DOCK1 and the GTPase RAC1, promotes internalization of the dying cells. Here we report the generation of ELMO1-deficient mice, which we found to be unexpectedly viable and grossly normal. However, they had a striking testicular pathology, with disrupted seminiferous epithelium, multinucleated giant cells, uncleared apoptotic germ cells and decreased sperm output. Subsequent in vitro and in vivo analyses revealed a crucial role for ELMO1 in the phagocytic clearance of apoptotic germ cells by Sertoli cells lining the seminiferous epithelium. The engulfment receptor BAI1 and RAC1 (upstream and downstream of ELMO1, respectively) were also important for Sertoli-cell-mediated engulfment. Collectively, these findings uncover a selective requirement for ELMO1 in Sertoli-cell-mediated removal of apoptotic germ cells and make a compelling case for a relationship between engulfment and tissue homeostasis in vivo. PMID:20844538

  17. The vital few meet the trivial many: unexpected use patterns in a monographs collection.

    Science.gov (United States)

    Eldredge, J D

    1998-01-01

    PURPOSE: To test three related hypotheses about monographs circulation at academic health sciences libraries: (1) Juran's "Vital Few" Principle, sometimes incorrectly referred to as the "Pareto Principle"; (2) most (> 30%) new monographs will not circulate within four years; and, (3) Trueswell's 20/80 rule concerning intensity of monographs circulation. METHODS: Retrospective circulation study conducted at a major academic health sciences library in November 1997 on monographs acquired during 1993, utilizing an online review file. RESULTS: Unexpectedly, most monographs (84%) had circulated at least once in the four years following acquisition. Combining circulation and in-house data revealed that 90.7% of the monographs acquired in 1993 had been used at least once. Small percentages of these monographs produced disproportionately high circulation levels. CONCLUSION: Monographs circulation rates confirm Juran's Vital Few principle. Most monographs circulated at least once in contrast to results reported by the Pittsburgh Study or other studies reported by Hardesty and Fenske. The results do not comply with Trueswell's 20/80 ratio rule. Further research needs to investigate the effects of low students to books ratios and problem-based learning (PBL) curricula upon monographs utilization. PMID:9803291

  18. Brain tumor

    International Nuclear Information System (INIS)

    BNCT in the past was not widely accepted because of poor usability of a nuclear reactor as a neutron source. Recently, technical advancements in the accelerator field have made accelerator-based BNCT feasible. Consequently, clinical trials of intractable brain tumors have started using it since 2012. In this review, our clinical results obtained from conventional reactor-based BNCT for treatment of brain tumors are introduced. It is strong hope that accelerator-based BNCT becomes a standard therapy for current intractable brain tumors. (author)

  19. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: revealed with the New Marburg cerebrospinal-fluid model in healthy humans.

    Science.gov (United States)

    Kleine, Tilmann O

    2015-03-01

    In healthy human brain/spinal cord, blood capillaries and venules are locked differently with junctions and basement membrane (blood-brain barrier, blood-venule barrier). In choroid plexus, epithelial tight junctions and basement membrane lock blood-cerebrospinal-fluid (CSF) barrier. Lymphocytic cell data, quantified with multicolour flow-cytometry or immuno-cytochemical methods in sample pairs of lumbar CSF, ventrictricular CSF and peripheral venous blood, are taken from references; similarly, data of thoracic duct chyle and blood sample pairs. Through three circumventricular organs (median eminence, organum vasculosum lamina terminalis, area postrema), 15-30 μl blood are pressed by blood pressure through fenestrated capillaries, matrix/basement membrane spaces and ependyma cell lacks into ventricular/suboccipital CSF to generate CD3(+) , CD4(+) , CD8(+) , CD3(+) HLA-DR(+) , CD16(+) 56(+) 3(-) NK, CD19(+) 3(-) B subsets; some B, few NK cells adhere in circumventricular organs. Into lumbar CSF, 10-15 μl thoracic chyle with five lymphocyte subsets (without CD3(+) HLA-DR(+) cells) reflux, when CSF drains out with to-and-fro movements of chyle/CSF along nerve roots. Lymphocytes in lumbar CSF represent a mixture of blood and lymph lymphocytic cells with similar HLA-DR(+) CD3(+) cell counts in ventricular and lumbar CSF, higher CD3(+) , CD4(+) , CD8(+) subsets in lumbar CSF, and few NK and B cells due to absorption in circumventricular organs. The Marburg CSF Model reflects origin and turnover of lymphatic cells in CSF realistically; the model differs from ligand-multistep processes of activated lymphocytes through blood-brain-, blood-venule-, and blood-CSF-barriers; because transfer of inactivated native lymphocytes through the barriers is not found with healthy humans, although described so in literature. PMID:25641944

  20. Malaria's contribution to World War One - the unexpected adversary.

    Science.gov (United States)

    Brabin, Bernard J

    2014-01-01

    Malaria in the First World War was an unexpected adversary. In 1914, the scientific community had access to new knowledge on transmission of malaria parasites and their control, but the military were unprepared, and underestimated the nature, magnitude and dispersion of this enemy. In summarizing available information for allied and axis military forces, this review contextualizes the challenge posed by malaria, because although data exist across historical, medical and military documents, descriptions are fragmented, often addressing context specific issues. Military malaria surveillance statistics have, therefore, been summarized for all theatres of the War, where available. These indicated that at least 1.5 million solders were infected, with case fatality ranging from 0.2 -5.0%. As more countries became engaged in the War, the problem grew in size, leading to major epidemics in Macedonia, Palestine, Mesopotamia and Italy. Trans-continental passages of parasites and human reservoirs of infection created ideal circumstances for parasite evolution. Details of these epidemics are reviewed, including major epidemics in England and Italy, which developed following home troop evacuations, and disruption of malaria control activities in Italy. Elsewhere, in sub-Saharan Africa many casualties resulted from high malaria exposure combined with minimal control efforts for soldiers considered semi-immune. Prevention activities eventually started but were initially poorly organized and dependent on local enthusiasm and initiative. Nets had to be designed for field use and were fundamental for personal protection. Multiple prevention approaches adopted in different settings and their relative utility are described. Clinical treatment primarily depended on quinine, although efficacy was poor as relapsing Plasmodium vivax and recrudescent Plasmodium falciparum infections were not distinguished and managed appropriately. Reasons for this are discussed and the clinical trial data

  1. The unexpected force of acute stroke leading to patients' sudden death as described by nurses.

    Science.gov (United States)

    Rejnö, Åsa; Danielson, Ella; von Post, Iréne

    2013-03-01

    Stroke occurs suddenly and unexpectedly and its consequences can mean the difference between life and death. Research into stroke is extensive but largely focused on patients who survive. The aim of the study was to describe how nurses experience the patient's death and dying, when patients are afflicted by acute stroke and whose lives cannot be saved. The study had a descriptive design with a hermeneutical approach. Interviews were carried out with ten nurses in stroke units at three hospitals. Data were interpreted using hermeneutic textual interpretation based on Gadamer's philosophy. The study shows that sudden death, when unexpected forces intervene in the lives of patients afflicted by acute stroke, was described by the main theme sudden death - the unexpected force and the following three sub-themes: death comes unexpectedly and without warning to the patient; the relatives are at the mercy of the unexpected and the nurses find themselves in demanding situations. The new understanding emphasizes that the unexpected and demanding situations the nurses are put in can be understood as ethical dilemmas and value conflicts because they are not free to give their time to preserving the dying patient's dignity and are not able to give the good care they wish to. A more flexible organization could support the nurses in making use of the creative forces in the unexpected event which an acute stroke that leads to death constitutes. PMID:22612457

  2. Brain and Addiction

    Science.gov (United States)

    ... Teens / Drug Facts / Brain and Addiction Brain and Addiction Print Your Brain Your brain is who you ... is taken over and over. What Is Drug Addiction? Addiction is a chronic brain disease that causes ...

  3. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  4. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  5. Brain Basics

    Medline Plus

    Full Text Available ... begun to chart how the brain develops over time in healthy people and are working to compare ... listless, and had no appetite most of the time. Weeks later, Sarah realized she was having trouble ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ... normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the flow of information to the ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... in controlling movement, managing the release of various hormones, and aiding the flow of information to the ... at the front of the brain that, in humans, plays a role in executive functions such as ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... or serious and cause severe disability. Through research, we know that mental disorders are brain disorders. Evidence ... many different types of cells in the body. We say that cells differentiate as the embryo develops, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... bind onto, leading to more normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the ... reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Statistics Help for Mental Illnesses Outreach Outreach Home Public Involvement Outreach Partners Alliance for Research Progress Coalition ... also linked to reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early-life experiences ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... to another. Share Science News Connectome Re-Maps Human Cortex ECT Lifts Depression, Sustains Remission in Older ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... stay focused on a task, and managing proper emotional reactions. Reduced ACC activity or damage to this ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... but can still remember past events and learned skills, and carry on a conversation, all which rely ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... and plays an important role during early brain development. It may also assist in learning and memory. ... but can still remember past events and learned skills, and carry on a conversation, all which rely ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on neurons ... depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... for the function of conducting messages. A neuron has three basic parts: Cell body which includes the ... disorder (ADHD) . Glutamate —the most common neurotransmitter, glutamate has many roles throughout the brain and nervous system. ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... he saw, Sarah's husband took her to the doctor, who ran some tests. After deciding her symptoms ... a stroke, brain tumor, or similar conditions, Sarah's doctor referred her to a psychiatrist, a type of ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability to move as they want ... the brain. The hippocampus may be involved in mood disorders through its control of a major mood circuit ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... of the brain's executive functions, such as judgment, decision making, and problem solving. Different parts of the PFC ... a role in executive functions such as judgment, decision making and problem solving, as well as emotional control ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... NIMH Strategic Plan in 2016 August 31, 2016, 2:00-3:00 PM ET General Health Information ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... sends impulses and extends from cell bodies to meet and deliver impulses to another nerve cell. Axons ... in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Alliance for Research Progress Coalition for Research Progress Legislative Activities Research Priorities Research Priorities Home Research Areas ... of the brain's executive functions, such as judgment, decision making, and problem solving. Different parts of the ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... each other How changes in the brain can lead to mental disorders, such as depression. The Growing ... understanding of genes and epigenetics may one day lead to genetic testing for people at risk for ...

  7. Brain Health

    Science.gov (United States)

    ... Love Your Brain Stay Physically Active Adopt a Healthy Diet Stay Mentally and Socially Active We Can Help ... of any wellness plan. Learn More Adopt a Healthy Diet > Eat a heart-healthy diet that benefits both ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting to NIMH National Institutes of ... electrical signals. The brain begins as a small group of cells in the outer layer of a ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... illnesses, such as depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... they can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as ... brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... magnetic fields to take pictures of the brain's structure. mutation —A change in the code for a gene, which may be harmless or even helpful, but sometimes give rise to disabilities or diseases. neural ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... as sleep and speech. The brain continues maturing well into a person's early 20s. Knowing how the ... as judgment, decision making and problem solving, as well as emotional control and memory. serotonin —A neurotransmitter ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... mental disorder, or perhaps you have experienced one yourself at some point. Such disorders include depression , anxiety ... control specific body functions such as sleep and speech. The brain continues maturing well into a person's ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... some point. Such disorders include depression , anxiety disorders , bipolar disorder , attention deficit hyperactivity disorder (ADHD) , and many others. ... differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... can diagnose mental disorders are psychologists or clinical social workers. The psychiatrist asked Sarah and her husband ... the understanding of how the brain grows and works and the effects of genes and environment on ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a friend, colleague, or relative with a mental disorder, or ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... they can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, the results can affect many aspects of life. ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... of the brain's executive functions, such as judgment, decision making, and problem solving. Different parts of the ... a role in executive functions such as judgment, decision making and problem solving, as well as emotional ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... genes and epigenetics may one day lead to genetic testing for people at risk for mental disorders. ... brain. DNA —The "recipe of life," containing inherited genetic information that helps to define physical and some ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... These factors may act alone or together in complex ways, to change the way a gene is ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ...