WorldWideScience

Sample records for brain receptors mitogenesis

  1. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    Energy Technology Data Exchange (ETDEWEB)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1990-03-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C{sub 6} glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C{sub 6} glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion.

  2. Heterologous desensitization of bombesin-induced mitogenesis by prolonged exposure to vasopressin: a post-receptor signal transduction block.

    OpenAIRE

    Millar, J B; Rozengurt, E

    1989-01-01

    Prolonged exposure of quiescent Swiss 3T3 cells to vasopressin prevents mitogenic stimulation on subsequent addition of bombesin. This heterologous desensitization is selective and can be mimicked by vasopressin agonists, including [Lys8]vasopressin and oxytocin but not by the V1-type-specific vasopressin receptor antagonist [Pmp1,O-Me-Tyr2,Arg8]vasopressin [where Pmp is 1-(beta-mercapto-beta,beta-cyclopenthamethylene propionic acid)]. Furthermore, vasopressin-induced loss of responsiveness t...

  3. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    International Nuclear Information System (INIS)

    It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma

  4. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  5. NMDA receptor function, memory, and brain aging

    OpenAIRE

    Newcomer, John W.; Farber, Nuri B.; Olney, John W.

    2000-01-01

    An increasing level of N-methyl-D-aspartate (NMDA) receptor hypofunction within the brain is associated with memory and learning impairments, with psychosis, and ultimately with excitotoxic brain injury. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, contributing to decreases in memory and learning performance. In those individuals destined to develop Alzheimer's disease, other abnormalities (eg, amyloidopathy and oxidative stress) interact to increase the N...

  6. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  7. Enhanced mitogenesis in stromal vascular cells derived from subcutaneous adipose tissue of Wagyu compared with those of Angus cattle.

    Science.gov (United States)

    Wei, S; Fu, X; Liang, X; Zhu, M J; Jiang, Z; Parish, S M; Dodson, M V; Zan, L; Du, M

    2015-03-01

    Japanese Wagyu cattle are well known for their extremely high marbling and lower subcutaneous adipose tissue compared with Angus cattle. However, mechanisms for differences in adipose deposition are unknown. The objective of this paper was to evaluate breed differences in the structure of subcutaneous adipose tissue, adipogenesis, and mitogenesis of stromal vascular (SV) cells between Wagyu and Angus cattle. Subcutaneous biopsy samples were obtained from 5 Wagyu (BW = 302 ± 9 kg) and 5 Angus (BW = 398 ± 12 kg) heifers at 12 mo of age, and samples were divided into 3 pieces for histological examination, biochemical analysis, and harvest of SV cells. Adipogenesis of SV cells was assessed by the expression of adipogenic markers and Oil Red-O staining, while mitogenesis was evaluated by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium dromide) test, phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB; AKT). Based on histological analysis, Wagyu had larger adipocytes compared with Angus. At the tissue level, protein expression of peroxisome proliferator-activated receptor γ (PPARG) in Wagyu was much lower compared with that of Angus. Similarly, a lower mRNA expression of PPARG was found in Wagyu SV cells. No significant difference was observed for the zinc finger protein 423 (ZNF423) expression between Wagyu and Angus. As assessed by Oil Red-O staining, Wagyu SV cells possessed a notable trend of lower adipogenic capability. Interestingly, higher mitogenic ability was discovered in Wagyu SV cells, which was associated with an elevated phosphorylation of ERK1/2. There was no difference in AKT phosphorylation of SV cells between Wagyu and Angus. Moreover, exogenous fibroblast growth factor 2 (FGF2) enhanced mitogenesis and ERK1/2 phosphorylation of SV cells to a greater degree in Angus compared with that in Wagyu. Expression of transforming growth factor β 3 (TGFB3) and bone morphogenetic protein 2 (BMP2) in Wagyu SV

  8. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michelle Roche

    2010-08-01

    Full Text Available Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.

  9. GABAA receptor downregulation in brains of subjects with autism

    OpenAIRE

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2008-01-01

    Gamma-aminobutyric acid A (GABAA) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABAA receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40(BA40)), whil...

  10. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte;

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  11. Cysteinyl leukotriene receptor 1 partially mediates brain cryoinjury in mice

    Institute of Scientific and Technical Information of China (English)

    Qian DING; San-hua FANG; Yu ZHOU; Li-hui ZHANG; Wei-ping ZHANG; Zhong CHEN; Er-qing WEI

    2007-01-01

    Aim: To determine whether the cysteinyl leukotriene receptor 1 (CysLT1 receptor) modulates brain cryoinjury and whether the CysLT1 receptor antagonist pranlukast exerts a time-dependent protective effect on cryoinjury in mice. Methods: Brain cryoinjury was induced by applying a liquid nitrogen-cooled metal probe to the surface of the skull for 30 s. Brain lesion, neuron density, and endogenous IgG exudation were observed 24 h after cryoinjury. Transcription and the expression of the CysLT1 receptor were detected by RT-PCR and immunoblotting, and the localization of the receptor protein by double immunofluorescence. Results: The mRNA and protein expressions of the CysLT1 receptor were upregulated in the brain 6-24 h after cryoinjury, and the CysLT1 receptor protein was primarily local-ized in the neurons, not in the astrocytes or microglia. Pre-injury treatments with multi-doses and a single dose of pranlukast (0.1 mg/kg) attenuated cryoinjury; postinjury single dose (0.1 mg/kg) at 30 min (not 1 h) after cryoinjury was also effective. Conclusion: The CysLT1 receptor modulates cryoinjury in mice at least partly, and postinjury treatment with its antagonist pranlukast exerts the protec-tive effect with a therapeutic window of 30 min.

  12. Prolactin transport into mouse brain is independent of prolactin receptor.

    Science.gov (United States)

    Brown, Rosemary S E; Wyatt, Amanda K; Herbison, Ryan E; Knowles, Penelope J; Ladyman, Sharon R; Binart, Nadine; Banks, William A; Grattan, David R

    2016-02-01

    The anterior pituitary hormone prolactin exerts important physiologic actions in the brain. However, the mechanism by which prolactin crosses the blood-brain barrier and enters the brain is not completely understood. On the basis of high expression of the prolactin receptor in the choroid plexus, it has been hypothesized that the receptor may bind to prolactin in the blood and translocate it into the cerebrospinal fluid (CSF). This study aimed to test this hypothesis by investigating transport of (125)I-labeled prolactin ((125)I-prolactin) into the brain of female mice in the presence and absence of the prolactin receptor (PRLR(-/-)). Peripherally administered prolactin rapidly activates brain neurons, as evidenced by prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) in neurons within 30 min of administration. The transport of prolactin into the brain was saturable, with transport effectively blocked only by a very high dose of unlabeled ovine prolactin. Transport was regulated, as in lactating mice with chronically elevated levels of prolactin, the rate of (125)I-prolactin transport into the brain was significantly increased compared to nonlactating controls. There was no change in the rate of (125)I-prolactin transport into the brain in PRLR(-/-) mice lacking functional prolactin receptors compared to control mice, indicating transport is independent of the prolactin receptor. These data suggest that prolactin transport into the brain involves another as yet unidentified transporter molecule. Because CSF levels of (125)I-prolactin were very low, even up to 90 min after administration, the data suggest that CSF is not the major route by which blood prolactin gains access to neurons in the brain.

  13. Kappa-opioid receptor signaling and brain reward function

    OpenAIRE

    Bruijnzeel, Adrie W.

    2009-01-01

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administrati...

  14. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  15. Liver fatty acid-binding protein: specific mediator of the mitogenesis induced by two classes of carcinogenic peroxisome proliferators.

    OpenAIRE

    S H Khan; Sorof, S

    1994-01-01

    Peroxisome proliferators (PP) are a diverse group of chemicals that induce dramatic increases in peroxisomes in rodent hepatocytes, followed by hypertrophy, hepatomegaly, alterations in lipid metabolism, mitogenesis, and finally hepatocarcinomas. Termed nongenotoxic carcinogens, they do not interact with DNA, are not mutagenic in bacterial assays, and fail to elicit many of the phenotypes associated with classic genotoxic carcinogens. We report here that the mitogenesis induced by the major P...

  16. Characteristics of muscarinic acetylcholine receptors in rat brain.

    Directory of Open Access Journals (Sweden)

    Nukina,Itaru

    1983-06-01

    Full Text Available Characteristics of muscarinic acetylcholine (ACh receptors were studied in the rat central nervous system (CNS using 3H-quinuclidinyl benzilate (QNB, an antagonist of muscarinic ACh receptors. Scatchard analysis indicated that the rat CNS had a single 3H-QNB binding site with an apparent dissociation constant (Kd of 5.0 X 10(-10 M. Li+, Zn++ and Cu++ had strong effects on 3H-QNB binding which indicates that these metal ions might play important roles at muscarinic ACh receptor sites in the brain. Since antidepressants and antischizophrenic drugs displaced the binding of 3H-QNB, the anticholinergic effects of these drugs need to be taken into account when they are applied clinically. The muscarinic ACh receptor was successfully solubilized with lysophosphatidylcholine. By gel chromatography, with a Sepharose 6B column, the solubilized muscarinic ACh receptor molecule eluted at the fraction corresponding to a Stokes' radius of 6.1 nm. With the use of sucrose-density-gradient centrifugation, the molecular weight of the solubilized muscarinic ACh receptor was determined to be about 90,000 daltons. The regional distribution of 3H-QNB binding in rat brain was examined, and the highest level of 3H-QNB binding was found to be in the striatum followed by cerebral cortex and hippocampus, indicating that muscarinic ACh mechanisms affect CNS function mainly through these areas.

  17. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  18. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [3H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  19. In vivo study of drug interaction with brain benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, O.; Shinotoh, H.; Ito, T.; Suzuki, K.; Hashimoto, K.; Yamasaki, T.

    1985-05-01

    The possibility of direct estimation of in vivo Bz receptor occupancy in brain was evaluated using C-11, or H-3-flumazepil (Ro15-1788). In animal experiments, 1 ..mu..Ci of H-3-Ro15-1788 was injected at 0.5 or 20 hr after i.v. injection of various dosage of clonazepam. Then radioactivity in cerebral cortex, cerebellum and blood at 5 min. after injection of the tracer was compared. Competitive inhibition of in vivo binding was clearly observed when clonazepam was pretreated at 0.5 hr before injection of the tracer. On the other hand, brain radioactivity was increased when clonazepam was administered at 20 hr before injection of the tracer. This increase in binding of H-3-Ro15-1788 might be caused by rebound of Bz receptor function by treatment with Bz agonist, and this rebound may have an important role in physiological function. Clinical investigation concerning drug interaction with brain Bz receptor was performed in normal volunteer and patients with neurological disorders. The distribution of C-11-Ro15-1788 in the brain of patients chronically treated with clonazepam were significantly heterogeneous. However, cerebral blood flow estimated with N-13 NH3 of these patients were normal.

  20. In vivo study of drug interaction with brain benzodiazepine receptor

    International Nuclear Information System (INIS)

    The possibility of direct estimation of in vivo Bz receptor occupancy in brain was evaluated using C-11, or H-3-flumazepil (Ro15-1788). In animal experiments, 1 μCi of H-3-Ro15-1788 was injected at 0.5 or 20 hr after i.v. injection of various dosage of clonazepam. Then radioactivity in cerebral cortex, cerebellum and blood at 5 min. after injection of the tracer was compared. Competitive inhibition of in vivo binding was clearly observed when clonazepam was pretreated at 0.5 hr before injection of the tracer. On the other hand, brain radioactivity was increased when clonazepam was administered at 20 hr before injection of the tracer. This increase in binding of H-3-Ro15-1788 might be caused by rebound of Bz receptor function by treatment with Bz agonist, and this rebound may have an important role in physiological function. Clinical investigation concerning drug interaction with brain Bz receptor was performed in normal volunteer and patients with neurological disorders. The distribution of C-11-Ro15-1788 in the brain of patients chronically treated with clonazepam were significantly heterogeneous. However, cerebral blood flow estimated with N-13 NH3 of these patients were normal

  1. Brain dopamine D-2 receptors in senile dementia

    International Nuclear Information System (INIS)

    Brain dopamine D-2 receptors were analysed in the caudate nucleus, putamen and nucleus accumbens in 49 patients with different types of neuropathologically verified dementia and in 39 controls by the binding of 3H-spiroperidol. The binding was significantly decreased in all brain areas in patients with Alzheimer's disease (AD), while the changes in patients with multi-infarct dementia (MID) or combined dementia (CD) were non-significant. According to a Scatchard analysis, this decrease in binding was due to the reduced number of receptors. On the other hand, the binding of 3H-spiroperidol was significantly increased in those patients who had received neuroleptic drugs. Significant correlations between 3H-spiroperidol binding and neuropathological changes were seen only in AD patients in the nucleus accumbens. The nucleus accumbens was also the only brain area in which there was a significant correlation between dopamine D-2 and the number of muscarinic receptors in AD patients. The findings of this study on dopamine D-2 receptors suggest the involvement of the nigrostriatal dopaminergic system in AD but not in the other two major types of dementia. (Author)

  2. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake

    OpenAIRE

    Yoon, Ye Ran; Baik, Ja-Hyun

    2015-01-01

    Background The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. Methods We examined the expression leve...

  3. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    OpenAIRE

    Saavedra, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurod...

  4. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  5. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  6. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    Directory of Open Access Journals (Sweden)

    Alexandra eAcevedo-Rodriguez

    2015-10-01

    Full Text Available Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social recognition and fear conditioning. In addition to these functions, oxytocin decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter oxytocin receptor expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase oxytocin peptide transcription, suggesting a role for oxytocin in this estrogen receptor β mediated anxiolytic effect. Further research is needed to identify modulators of oxytocin signaling and the pathways utilized and to elucidate molecular mechanisms controlling oxytocin expression to allow better therapeutic manipulations of this system in patient populations.

  7. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  8. Quantitative autoradiography of (/sup 3/H)corticosterone receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA)); Rainbow, T.C. (Pennsylvania Univ., Philadelphia (USA). School of Medicine)

    1983-07-25

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 ..mu..Ci (/sup 3/H)corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradiographic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue.

  9. Aromatase, estrogen receptors and brain development in fish and amphibians.

    Science.gov (United States)

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  10. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  11. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  12. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  13. Staphylococcal enterotoxin induced mitogenesis: toxin binding and cell-cell interactions.

    Science.gov (United States)

    Buxser, E S; Bonventre, P F; Archer, D L

    1983-07-01

    The binding characteristics of 125I-labelled staphylococcal enterotoxin A (125I-SEA), a T-cell mitogen, to murine lymphoid cell subpopulations were analyzed. Both T- and B-lymphocytes from murine spleens possess specific binding sites for SEA, as do T-lymphocytes from thymus. B-lymphocytes appear to have a greater capacity for binding of 125-SEA than do T-lymphocytes from either thymus or spleen. Enterotoxin did not specifically bind to thioglycollate-induced peritoneal exudate cells (PECs), used as a source of macrophages. Adherent PECs however, incorporated 125-ISEA by fluid phase endocytosis. When exposed to SEA and thoroughly washed, macrophages stimulate lymphocyte mitogenesis in spleen or thymus cell cultures not directly exposed to toxin. Maximum mitogenic stimulation took place only when both PECs and lymphocytes were exposed to SEA. The presence of splenic B-lymphocytes enhanced the mitogenic response of thymus derived T-cells to SEA. Thus, B-lymphocytes appear to contribute to SEA mitogenesis. These data suggest that mitogenic stimulation and possibly other immunological phenomena associated with SEA occur as a result of complex interactions between cellular components of the immune system. PMID:6605472

  14. Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors.

    Science.gov (United States)

    Hay, Meredith

    2016-01-01

    Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.

  15. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  16. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications.

    Science.gov (United States)

    Saavedra, Juan M; Sánchez-Lemus, Enrique; Benicky, Julius

    2011-01-01

    Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of major importance. Recently, attention has been focused on the role of a brain regulatory peptide, Angiotensin II, and in the translational value of the blockade of its physiological AT(1) receptors. In addition to its well-known cardiovascular effects, Angiotensin II, through AT(1) receptor stimulation, is a pleiotropic brain modulatory factor involved in the control of the reaction to stress, in the regulation of cerebrovascular flow and the response to inflammation. Excessive brain AT(1) receptor activity is associated with exaggerated sympathetic and hormonal response to stress, vulnerability to cerebrovascular ischemia and brain inflammation, processes leading to neuronal injury. In animal models, inhibition of brain AT(1) receptor activity with systemically administered Angiotensin II receptor blockers is neuroprotective; it reduces exaggerated stress responses and anxiety, prevents stress-induced gastric ulcerations, decreases vulnerability to ischemia and stroke, reverses chronic cerebrovascular inflammation, and reduces acute inflammatory responses produced by bacterial endotoxin. These effects protect neurons from injury and contribute to increase the lifespan. Angiotensin II receptor blockers are compounds with a good margin of safety widely used in the treatment of hypertension and their anti-inflammatory and vascular protective effects contribute to reduce renal and cardiovascular failure. Inhibition of brain AT(1) receptors in humans is also neuroprotective

  17. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    International Nuclear Information System (INIS)

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 [( 125I]IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, [125I]IL-1 alpha showed significantly higher specific binding than [125I]IL-1 beta. Thus, [125I]IL-1 alpha was used in all subsequent assays. The binding of [125I]IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited [125I]IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on [125I]IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of [125I]IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the [125I]IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons

  18. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    Science.gov (United States)

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  19. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  20. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  1. A mu–delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks

    OpenAIRE

    Erbs, Eric; Faget, Lauren; Scherrer, Gregory; Matifas, Audrey; Filliol, Dominique; Vonesch, Jean-Luc; Koch, Marc; Kessler, Pascal; Hentsch, Didier; Birling, Marie-Christine; Koutsourakis, Manoussos; Vasseur, Laurent; Veinante, Pierre; Kieffer, Brigitte L.; Massotte, Dominique

    2014-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual recepto...

  2. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    Science.gov (United States)

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.

  3. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  4. Brain-specific interleukin-1 receptor accessory protein in sleep regulation

    OpenAIRE

    Taishi, Ping; Davis, Christopher J.; Bayomy, Omar; Zielinski, Mark R.; Liao, Fan; Clinton, James M.; Smith, Dirk E.; Krueger, James M.

    2011-01-01

    Interleukin (IL)-1β is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1β/IL-1 receptor complex signaling requires adaptor proteins, e.g., the IL-1 receptor brain-specific accessory protein (AcPb). We have cloned and characterized rat AcPb, which shares substantial homologies with mouse AcPb and, compared with AcP, is preferentially expressed in the brain. Furthermore, rat somatosensory cortex Ac...

  5. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    International Nuclear Information System (INIS)

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography

  6. Nonneural Androgen Receptors Affect Sexual Differentiation of Brain and Behavior.

    Science.gov (United States)

    Swift-Gallant, Ashlyn; Coome, Lindsay A; Ramzan, Firyal; Monks, D Ashley

    2016-02-01

    Testosterone, acting via estrogenic and androgenic pathways, is the major endocrine mechanism promoting sexual differentiation of the mammalian nervous system and behavior, but we have an incomplete knowledge of which cells and tissues mediate these effects. To distinguish between neural and nonneural actions of androgens in sexual differentiation of brain and behavior, we generated a loxP-based transgenic mouse, which overexpresses androgen receptors (ARs) when activated by Cre. We used this transgene to overexpress AR globally in all tissues using a cytomegalovirus (CMV)-Cre driver (CMV-AR), and we used a Nestin-Cre driver to overexpress AR only in neural tissue (Nes-AR). We then examined whether neural or global AR overexpression can affect socio-sexual behaviors using a resident-intruder paradigm. We found that both neural and global AR overexpression resulted in decreased aggressive behaviors and increased thrusting during mounting of intruders, consistent with a neural site of action. Global, but not neural, AR overexpression in males led to an increase in same-sex anogenital investigation. Together, these results suggest novel roles for nonneural AR in sexual differentiation of mice, and indicate that excess AR can lead to a paradoxical reduction of male-typical behavior. PMID:26636184

  7. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  8. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Directory of Open Access Journals (Sweden)

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  9. Scaffolding of Fyn Kinase to the NMDA Receptor Determines Brain Region Sensitivity to Ethanol

    OpenAIRE

    Yaka, Rami; Phamluong, Khanhky; Ron, Dorit

    2003-01-01

    Alcohol (ethanol) abuse is a major societal problem. Although ethanol is a structurally simple, diffusible molecule, its sites of action are surprisingly selective, and the molecular mechanisms underlying specificity in ethanol actions are not understood. The NMDA receptor channel is one of the main targets for ethanol in the brain. We report here that the brain region-specific compartmentalization of Fyn kinase determines NMDA receptor sensitivity to ethanol. We demonstrate that, in the hipp...

  10. Eph Receptor and Ephrin Signaling in Developing and Adult Brain of the Honeybee (Apis mellifera)

    OpenAIRE

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-01-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ h...

  11. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias;

    2011-01-01

    in an enriched environment for two weeks after permanent middle cerebral artery occlusion, we found increased sigma-1 receptor expression in peri-infarct areas. Treatment of rats subjected to permanent or transient middle cerebral artery occlusion with 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  12. 123I-iomazenil brain receptor SPECT in focal epilepsy. In comparison with 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring

    International Nuclear Information System (INIS)

    Purpose: To evaluate the clinical value of 123I-Iomazenil brain receptor SPECT in diagnosis of focal epilepsy in comparison with 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Methods 123I-Iomazenil brain receptor SPECT was performed on 40 patients with focal epilepsy. The results were compared with those obtained by 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Results: In 40 patients, the sensitivity of Video/EEG monitoring for localization of epileptogenic area was 95% (38/40). The sensitivity of 123I-iomazenil brain receptor SPECT, 99mTc-HMPAO brain SPECT and MRI for localization of epileptogenic area compared with Video/EEG monitoring ('gold standard') was 65.8%(25/38), 55.3%(21/38) and 47.4%(18/38), respectively. The localization of epileptogenic area with 123I-Iomazenil brain receptor SPECT was in concordance with Video/EEG monitoring in 20 patients, 99mTc-HMPAO brain SPECT in 15 patients and MRI in 16 patients, respectively. The sensitivity of 123I-Iomazenil brain receptor SPECT combined with MRI for localization of epileptogenic area was 84.2%(32/38). Conclusions: 123I-Iomazenil brain receptor SPECT is a useful method in detecting and localizing epileptogenic area. The combination of 123I-Iomazenil brain receptor SPECT and MRI has a high sensitivity for detecting epileptogenic area

  13. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  14. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders.

    Science.gov (United States)

    Saavedra, Juan M

    2012-11-01

    The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  15. Ethanol, not metabolized in brain, significantly reduces brain metabolism, probably via specific GABA(A) receptors

    Science.gov (United States)

    Rae, Caroline D.; Davidson, Joanne E.; Maher, Anthony D.; Rowlands, Benjamin D.; Kashem, Mohammed A.; Nasrallah, Fatima A.; Rallapalli, Sundari K.; Cook, James M; Balcar, Vladimir J.

    2014-01-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we used an indirect approach, measuring the effect of alcohol on metabolism of [3-13C]pyruvate in the adult Guinea pig brain cortical tissue slice and comparing the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-13C]ethanol. Ethanol (10, 30 and 60 mM) significantly reduced metabolic flux into all measured isotopomers and reduced all metabolic pool sizes. The metabolic profiles of these three concentrations of ethanol were similar and clustered with that of the α4β3δ positive allosteric modulator DS2 (4-Chloro-N-[2-(2-thienyl)imidazo[1,2a]-pyridin-3-yl]benzamide). Ethanol at a very low concentration (0.1 mM) produced a metabolic profile which clustered with those from inhibitors of GABA uptake, and ligands showing affinity for α5, and to a lesser extent, α1-containing GABA(A)R. There was no measureable metabolism of [1,2-13C]ethanol with no significant incorporation of 13C from [1,2-13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabeled ethanol. The reduction in metabolism seen in the presence of ethanol is therefore likely to be due to its actions at neurotransmitter receptors, particularly α4β3δ receptors, and not because ethanol is substituting as a substrate or because of the effects of ethanol catabolites acetaldehyde or acetate. We suggest that the stimulatory effects of very low concentrations of ethanol are due to release of GABA via GAT1 and the subsequent interaction of this GABA with local α5-containing, and to a lesser extent, α1-containing GABA(A)R. PMID:24313287

  16. Development of the glucocorticoid receptor system in the rat limbic brain. 2. An autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Meaney, M.J.; Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA))

    1985-02-01

    The authors report the results of an autoradiographic analysis of the postnatal development of the hippocampal glucocorticoid receptor system in the rat brain. Quantitative analysis of the autoradiograms revealed a varied pattern of gradual development towards adult receptor concentrations during the second week of life. Receptor concentrations in the dentate gyrus increased dramatically between Days 9 and 15, while the changes during this period in the pyramidal layers of Ammon's horn seemed to reflect both structural changes in these regions as well as increases in receptor concentrations.

  17. GABA(A) receptor downregulation in brains of subjects with autism.

    Science.gov (United States)

    Fatemi, S Hossein; Reutiman, Teri J; Folsom, Timothy D; Thuras, Paul D

    2009-02-01

    Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism. PMID:18821008

  18. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  19. Repeated stressful experiences differently affect brain dopamine receptor subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi-Allegra, S.; Cabib, S. (Istituto di Psicobiologia e Psicofarmacologia (CNR), Roma (Italy)); Kempf, E.; Schleef, C. (Centre de Neurochimi, Strasbourg (Italy))

    1991-01-01

    The binding of tritiated spiperone (D2 antagonist) and tritiated SCH 23390 (D1 antagonist), in vivo, was investigated in the caudatus putamen (CP) and nucleus accumbens septi (NAS) of mice submitted to ten daily restraint stress sessions. Mice sacrificed 24 hr after the last stressful experience presented a 64% decrease of D2 receptor density (Bmax) but no changes in D1 receptor density in the NAS. In the CP a much smaller (11%) reduction of D2 receptor density was accompanied by a 10% increase of D1 receptors. These results show that the two types of dopamine (DA) receptors adapt in different or even opposite ways to environmental pressure, leading to imbalance between them.

  20. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice.

    Directory of Open Access Journals (Sweden)

    Emil Zeynalov

    Full Text Available Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB disruption, and is often accompanied by increased release of arginine-vasopressin (AVP. AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2 and tolvaptan (V2 are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke.Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan or orally (tolvaptan for 48 hours. Physiological variables, neurological deficit scores (NDS, plasma and urine sodium and osmolality were recorded. Brain water content (BWC and Evans Blue (EB extravasation index were evaluated at the end point.Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle. Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05.Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke.

  1. Localization and characterization of brain somatostatin receptors as studied with somatostatin-14 and somatostatin-28 receptor radioautography

    International Nuclear Information System (INIS)

    The localization and characterization of receptors for somatostatin-14 (S-14) and somatostatin-28 (S-28) were studied in the rat brain using the iodinated agonists [Tyr0,D-Trp8]S-14 and [Leu8,D-Trp22,Tyr25]S-28 as tracers. By radioautography, the distribution of receptors for both S-14 and S-28 appeared very similar with high levels of binding in the deep layers of the cortex, the cingulate cortex, the claustrum, the locus coeruleus and most structures of the limbic system. Generally, there was a correlation between the localization of somatostatin receptors and that of immunoreactive somatostatin, as evaluated by immunocytochemistry. However, in some areas, an inverse correlation between receptor and peptide concentrations was observed. (Auth.)

  2. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress.

    Science.gov (United States)

    Mayorov, Dmitry N

    2011-02-01

    1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.

  3. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions.

    Science.gov (United States)

    Mahfouz, Ahmed; Lelieveldt, Boudewijn P F; Grefhorst, Aldo; van Weert, Lisa T C M; Mol, Isabel M; Sips, Hetty C M; van den Heuvel, José K; Datson, Nicole A; Visser, Jenny A; Reinders, Marcel J T; Meijer, Onno C

    2016-03-01

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. PMID:26811448

  4. Endothelin receptors as novel targets in tumor therapy

    Directory of Open Access Journals (Sweden)

    Bagnato Anna

    2004-05-01

    Full Text Available Abstract The endotelin (ET axis, that includes ET-1, ET-2, ET-3, and the ET receptors, ETA and ETB, plays an important physiological role, as modulator of vasomotor tone, tissue differentiation and development, cell proliferation, and hormone production. Recently, investigations into the role of the ET axis in mitogenesis, apoptosis inhibition, invasiveness, angiogenesis and bone remodeling have provided evidence of the importance of the ET-1 axis in cancer. Data suggest that ET-1 participates in the growth and progression of a variety of tumors such as prostatic, ovarian, renal, pulmonary, colorectal, cervical, breast carcinoma, Kaposi's sarcoma, brain tumors, melanoma, and bone metastases. ET-1 receptor antagonists beside providing ideal tools for dissecting the ET axis at molecular level have demonstrated their potential in developing novel therapeutic opportunity. The major relevance of ETA receptor in tumor development has led to an extensive search of highly selective antagonists. Atrasentan, one of such antagonists, is orally bioavailable, has suitable pharmacokinetic and toxicity profiles for clinical use. Preliminary data from clinical trials investigating atrasentan in patients with prostate cancer are encouraging. This large body of evidence demonstrates the antitumor activity of endothelin receptor antagonists and provides a rationale for the clinical evaluation of these molecules alone and in combination with cytotoxic drugs or molecular inhibitors leading to a new generation of anticancer therapies targeting endothelin receptors.

  5. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine;

    2010-01-01

    Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy subje......-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders.......Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given...

  6. Brain regional differences in CB1 receptor adaptation and regulation of transcription

    OpenAIRE

    Lazenka, M.F.; Selley, D.E.; Sim-Selley, L.J.

    2012-01-01

    Cannabinoid CB1 receptors (CB1Rs) are expressed throughout the brain and mediate the central effects of cannabinoids, including Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana. Repeated THC administration produces tolerance to cannabinoid-mediated effects, although the magnitude of tolerance varies by effect. Consistent with this observation, CB1R desensitization and downregulation, as well induction of immediate early genes (IEGs), varies by brain region. Zif268...

  7. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    International Nuclear Information System (INIS)

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of [3H]T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Binding activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish

  8. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general. PMID:17267053

  9. The SH3 domain, but not the catalytic domain, is required for phospholipase C-γ1 to mediate epidermal growth factor-induced mitogenesis

    OpenAIRE

    Xie, Zhongjian; Chen, Ying; Pennypacker, Sally D.; Zhou, Zhiguang; PENG, DAN

    2010-01-01

    Phospholipase C-γ1 (PLC-γ1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-γ1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-γ1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-γ1 possesses mitogenic activity. In the pres...

  10. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication.

    Science.gov (United States)

    Fuxe, Kjell; Borroto-Escuela, Dasiel O

    2016-08-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  11. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Science.gov (United States)

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses. PMID:27651759

  12. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication.

    Science.gov (United States)

    Fuxe, Kjell; Borroto-Escuela, Dasiel O

    2016-08-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses. PMID:27651759

  13. Volume transmission and receptor-receptor interactions in heteroreceptor complexes:understanding the role of new concepts for brain communication

    Institute of Scientific and Technical Information of China (English)

    Kjell Fuxe; Dasiel O Borroto-Escuela

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neu-rons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular lfuid and the cerebral spinal lfuid through diffusion and lfow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume trans-mission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  14. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  15. Somatostatin-receptor positive brain stem glioma visualized by octreoscan.

    Science.gov (United States)

    Pichler, Robert; Pichler, Josef; Mustafa, Hamdy; Nussbaumer, Karin; Zaunmüller, Thomas; Topakian, Raffi

    2007-06-01

    In diffuse brainstem gliomas often surgical biopsies cannot be obtained. The diagnosis relies upon imaging criteria, first line being MRI. Gliomas generally express somatostatin receptors (SSTR), which might enable receptor imaging. We present the case of a female adolescent with acute onset of hallucinations, dysphagia and diplopia. MRI detected a suggestive large pontine glioma. This lesion presented with marked In-111-pentreotide tracer uptake. SSTR-scan provided information about SSTR-expression, tumour viability and extension. Radiopeptide therapy for selected patients might be discussed. PMID:17627256

  16. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  17. Distribution of androgen receptor in microdissected brain areas of the female baboon (Papio cynocephalus).

    Science.gov (United States)

    Handa, R J; Roselli, C E; Resko, J A

    1988-03-29

    We measured androgen receptors in the brain and pituitary of 4 female baboons (Papio cynocephalus) by the in vitro binding of methyltrienolone (R1881) to cytosols from 17 brain subregions as well as anterior and posterior pituitaries. High levels of AR were detected in anterior (22.1 +/- 7.1 (S.E.M.) fmol/mg protein) and posterior pituitary (12.6 +/- 3.3 fmol/mg protein). In brain tissue, the highest androgen receptor levels were found in the infundibular nucleus/median eminence (9.4 +/- 2.3 fmol/mg protein), ventromedial nucleus (6.3 +/- 1.7 fmol/mg protein) and periventricular area (4.9 +/- 1.3 fmol/mg protein). Saturation analysis of anterior pituitary and brain tissue (pool of hypothalamic, preoptic area, amygdala and septum remaining after microdissection of brain nuclei) showed that [3H]R1881 binds to the androgen receptor with high specificity and affinity (Kd = 1.25 x 10(-10) M, 0.45 x 10(-10) M, in anterior pituitary and HPA cytosol, respectively). Serum testosterone levels were low in all animals (0.59 +/- 0.26 ng/ml). With these data we described the quantitative distribution of androgen receptor in the pituitary and in specific brain nuclei in a species of nonhuman primate. The distribution is similar in many respects to that described in the male rat and the data suggest a conservation of androgen receptor distribution across species. PMID:3259151

  18. Brain mineralocorticoid receptors as resilience factor under adverse life conditions?

    NARCIS (Netherlands)

    Kanatsou, S.

    2016-01-01

    Studies in human cohorts have underlined the importance of gene-environment interactions for brain structure and function during development and in adulthood. Such interactions can make the difference between staying healthy or succumbing to disease, e.g. depression or posttraumatic stress disorder.

  19. Brain dopamine receptors in relation to clinical PET-studies

    International Nuclear Information System (INIS)

    A number of published PET Models are discussed with regard to their structure and some of the underlying assumptions. Results of experiments with spiperone and N-methylspiperone in the rat and human brain, which challenge some of these assumptions, are summarized. (author). 37 refs.; 6 figs.; 1 tab

  20. Toll-like receptors in brain development and homeostasis

    DEFF Research Database (Denmark)

    Larsen, Peter H; Holm, Thomas Hellesøe; Owens, Trevor

    2007-01-01

    Toll-like receptors (TLRs) are best known as initiators of the innate immune response to pathogens. Recent reports now reveal intriguing roles for TLRs in the central nervous system (CNS). These include the regulation of neuroinflammation and of neurite outgrowth. The archetypal Toll protein in...

  1. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    Science.gov (United States)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  2. The Prorenin and (Prorenin Receptor: New Players in the Brain Renin-Angiotensin System?

    Directory of Open Access Journals (Sweden)

    Wencheng Li

    2012-01-01

    Full Text Available It is well known that the brain renin-angiotensin (RAS system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (prorenin receptor (PRR, a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.

  3. Expression of a novel D4 dopamine receptor in the lamprey brain. Evolutionary considerations about dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Juan ePérez-Fernández

    2016-01-01

    Full Text Available Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.

  4. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs

    DEFF Research Database (Denmark)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea;

    2016-01-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by c...

  5. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  6. Quantitative autoradiography of angiotensin II receptors in the brain and kidney

    Energy Technology Data Exchange (ETDEWEB)

    Gehlert, D.R.

    1985-01-01

    The renin-angiotensin system is an important component in the regulation of systemic blood pressure. Angiotensin II is the principal effector peptide of this system. Interaction of angiotensin II with specific receptors can produce in several organic systems. When administered into the brain this octa-peptide produces a variety of responses including a stimulation of drinking, increased systemic blood pressure and several neuroendocrine responses. Its effects on the kidney include alterations in arteriolar resistance, mesangial cell contraction and a feedback inhibition of the release of renin. Since this peptide produces profound effects on homeostatis by an interaction with specific receptors, the quantitative technique of in vitro autoradiography was applied to localize receptor populations for angiotensin II. Specific binding sites for a radiolabeled form of angiotensin II were localized in various brain and kidney regions. In the rat brain high densities of angiotensin II receptors were observed in the paraventricular and suprachiasmatic nuclei of the hypothalamus, supraoptic nucleus and the posterior lobe of the pituitary, brain areas in which angiotensin II modified neuroendocrine functions.

  7. A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    NARCIS (Netherlands)

    Conzelmann, S; Levai, O; Bode, B; Eisel, U; Raming, K; Breer, H; Strotmann, J

    2000-01-01

    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a different

  8. Evidence that the EphA2 receptor exacerbates ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    John Thundyil

    Full Text Available Ephrin (Eph signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT and EphA2-deficient (EphA2(-/- mice by middle cerebral artery occlusion (MCAO; 60 min, followed by reperfusion (24 or 72 h. Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2(-/- mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2(-/- brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1-A3. Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2(-/- compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.

  9. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  10. The Transferrin Receptor at the Blood-Brain Barrier - exploring the possibilities for brain drug delivery

    NARCIS (Netherlands)

    Visser, Corine

    2005-01-01

    There are many diseases of the central nervous system (CNS), like Parkinson's disease, Alzheimer's disease, depression, schizophrenia, epilepsy, migraine headache, and HIV infection in the brain. However, treatment is difficult since many drugs cannot reach the brain in sufficient quantities due to

  11. Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism

    DEFF Research Database (Denmark)

    Lauritzen, Knut H; Morland, Cecilie; Puchades, Maja;

    2013-01-01

    on subplasmalemmal vesicular organelles, suggesting trafficking of the protein to and from the plasma membrane. The results indicate roles of lactate in brain signaling, including a neuronal glucose and glycogen saving response to the supply of lactate. We propose that lactate, through activation of GPR81 receptors......The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated...... by physiological concentrations of lactate and by the specific GPR81 agonist 3,5-dihydroxybenzoate to reduce cAMP. Cerebral GPR81 is concentrated on the synaptic membranes of excitatory synapses, with a postsynaptic predominance. GPR81 is also enriched at the blood-brain-barrier: the GPR81 densities at endothelial...

  12. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers

    DEFF Research Database (Denmark)

    Hersom, Maria; Helms, Hans Christian; Pretzer, Natasia;

    2016-01-01

    across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated...... in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe......]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin...

  13. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  14. Effects of imipramine treatment on delta-opioid receptors of the rat brain cortex and striatum.

    Science.gov (United States)

    Varona, Adolfo; Gil, Javier; Saracibar, Gonzalo; Maza, Jose Luis; Echevarria, Enrique; Irazusta, Jon

    2003-01-01

    Imipramine (CAS 113-52-0) is being utilized widely for the treatment of major depression. In recent years, there has been evidence of the involvement of the endogenous opioid system in major depression and its treatment. There is some evidence indicating that opioid receptors could be involved in the antidepressant mechanism of action. Regarding this topic, mood-related behavior of endogenous enkephalins seems to be mediated by delta-opioid receptors. In this work, the effects of subacute (5 day) and chronic (15 day) treatments of imipramine on the density and the affinity of the delta-receptors in the striatum and in the parietal and frontal cortices of the rat brain are described. Studied parameters (Bmax and Kd) were calculated by a saturation binding assay with the delta-opioid agonists [3H]-DPDPE (tyrosyl-2,6-3H(N)-(2-D-penicillamine-5-D-penicillamine)-enkephalin) as specific ligand and DSLET ([D-serine2]-D-leucine-enkephalin-threonine) as non-radioactive competing ligand. It was found that 15 days treatment significantly decreased the delta-opioid receptor density,without changing the affinity, in the frontal cortex of the rat brain. That decrease was confirmed by delta-opioid receptor immunostaining. These results suggest that delta-opioid receptors could play a role in the chronic action mechanism of imipramine. PMID:12608010

  15. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  16. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    International Nuclear Information System (INIS)

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, 3H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a 3H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of 3H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A4, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each

  17. Imaging dopamine and opiate receptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its nature. In 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spipeone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress

  18. BDNF modulates GABAA receptors microtransplanted from the human epileptic brain to Xenopus oocytes

    Science.gov (United States)

    Palma, E.; Torchia, G.; Limatola, C.; Trettel, F.; Arcella, A.; Cantore, G.; Di Gennaro, G.; Manfredi, M.; Esposito, V.; Quarato, P. P.; Miledi, R.; Eusebi, F.

    2005-01-01

    Cell membranes isolated from brain tissues, obtained surgically from six patients afflicted with drug-resistant temporal lobe epilepsy and from one nonepileptic patient afflicted with a cerebral oligodendroglioma, were injected into frog oocytes. By using this approach, the oocytes acquire human GABAA receptors, and we have shown previously that the “epileptic receptors” (receptors transplanted from epileptic brains) display a marked run-down during repetitive applications of GABA. It was found that exposure to the neurotrophin BDNF increased the amplitude of the “GABA currents” (currents elicited by GABA) generated by the epileptic receptors and decreased their run-down; both events being blocked by K252A, a neurotrophin tyrosine kinase receptor B inhibitor. These effects of BDNF were not mimicked by nerve growth factor. In contrast, the GABAA receptors transplanted from the nonepileptic human hippocampal uncus (obtained during surgical resection as part of the nontumoral tissue from the oligodendroglioma margins) or receptors expressed by injecting rat recombinant α1β2γ2 GABAA receptor subunit cDNAs generated GABA currents whose time-course and run-down were not altered by BDNF. Loading the oocytes with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate-acetoxymethyl ester (BAPTA-AM), or treating them with Rp-8-Br-cAMP, an inhibitor of the cAMP-dependent PKA, did not alter the GABA currents. However, staurosporine (a broad spectrum PK inhibitor), bisindolylmaleimide I (a PKC inhibitor), and U73122 (a phospholipase C inhibitor) blocked the BDNF-induced effects on the epileptic GABA currents. Our results indicate that BDNF potentiates the epileptic GABAA currents and antagonizes their use-dependent run-down, thus strengthening GABAergic inhibition, probably by means of activation of tyrosine kinase receptor B receptors and of both PLC and PKC. PMID:15665077

  19. The effect of ZMS on brain M receptor in aged rats

    International Nuclear Information System (INIS)

    Objective: The purpose of this work was to study the effect of ZMS, an active component of Yin tonic, Zhimu, on brain M2 receptor density of aged animals and its correlation with the effect on learning/memory ability. Methods: A dual-site competitive binding assay using 3H-quinuclidinyl benzilate (QNB) as non selective radioligand and unlabelled Methoctramine as selective competitive agent was established for measuring M2 receptor density in aged rats. Results: In addition to the change of total density of M receptors, the density of a subtype of M receptors, M2 receptor in brain was significantly decreased in aged rats [(231.8 +- 115.9) fmol·mg-1 (x-bar +- s) in young rats and (97.9 +- 46.3) fmol·mg-1 in aged rats]. When the aged rats were treated with ZMS for two months, in addition to the up-regulation of total M receptors, the M2 receptor was up-regulated significantly [being (213 +- 77) mg at a ZMS dose of 3.6 mg·kg-1·d-'1, and (212 +- 72) mg at a ZMS dose of 18 mg·kg-1·d-1]. When the correlation between M2 or total M receptor densities and the learning/memory ability measured by Y-maze performance was examined with linear regression, the correlation coefficient was remarkable (0.721 and 0.505, respectively). Conclusions: ZMS has the ability of up-regulating M2 receptor and this may be an important factor for the improvement of learning and memory by ZMS

  20. Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain.

    Science.gov (United States)

    Hiripi, L; Juhos, S; Downer, R G

    1994-01-01

    The kinetic and pharmacological properties of [3H]tyramine and [3H]octopamine binding to membrane preparations of locust (Locusta migratoria migratorioides) brain were studied to characterize the tyramine and octopamine receptors. [3H]Tyramine and [3H]octopamine bind specifically and reversibly to the locust brain membrane with equilibrium achieved after 20 min. The dissociation of [3H]tyramine is monophasic while that of the [3H]octopamine shows a biphasic tendency. Scatchard analysis of the saturation curves reveals a single high affinity binding site for each of tyramine and octopamine. The mean (+/- S.E.M.) values of Kd and Bmax are 6.11 +/- 0.71 nM and 21.45 +/- 3.0 fmol/mg tissue for tyramine and 5.65 +/- 0.91 nM and 15.0 +/- 2.4 fmol/mg tissue for octopamine, respectively. Pharmacological analysis of the binding suggests the presence of both tyramine and octopamine receptors in the locust brain. alpha-Adrenergic agonists and antagonists have a high affinity to the octopamine but not the tyramine receptor whereas dopaminergic drugs have a higher affinity to the tyramine receptor than the octopamine receptor. No highly effective inhibitors of tyramine binding were identified. The serotonergic blockers, mianserin, LSD, BOL are effective blockers for both tyramine and octopamine receptors, whereas the serotonergic antagonist gramine is more active against the octopamine than the serotonin receptor. The results suggest that a G-protein binding mechanism is involved in the expression of both the tyramine and octopamine effects. PMID:7907928

  1. Selective vulnerabilities of N-methyl-D-aspartate (NMDA receptors during brain aging

    Directory of Open Access Journals (Sweden)

    Brenna L Brim

    2010-03-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.

  2. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    Science.gov (United States)

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics. PMID:27429996

  3. Evidence for the presence of beta 3-adrenergic receptor mRNA in the human brain.

    Science.gov (United States)

    Rodriguez, M; Carillon, C; Coquerel, A; Le Fur, G; Ferrara, P; Caput, D; Shire, D

    1995-04-01

    The beta 3-adrenergic receptor (AR) is widely distributed in peripheral tissues, but up to now it has not been detected in the central nervous system. By using the polymerase chain reaction (PCR) technique, we found the beta 3-AR mRNA to be present in all the regions of the human brain we investigated. The quantities found were very low compared to those of the beta 1-AR and beta 2-AR mRNAs, being hardly detectable in adult brain. In contrast, the brain of very young infants contained about 100 times more beta 3-AR mRNA than the adult brain, whereas the amounts of beta 1-AR and beta 2-AR transcripts were essentially the same. In addition, using PCR we have cloned a central beta 3-AR coding region from a human frontal cortex cDNA library and have found it to be identical to the corresponding peripheral sequence. PMID:7609625

  4. Study on measurement of free ligand concentration in blood and quantitative analysis of brain benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Goromaru, Tsuyoshi; Inoue, Osamu; Itoh, Takashi; Yamasaki, Toshiro.

    1988-11-01

    We developed the method to determine rapidly the free ligand concentration in the blood as an input function for the purpose of quantitative analysis of binding potential (B/sub max//K/sub d/) of brain benzodiazepine receptor in vivo. It was found that the unmetabolized radioligand in the blood after intravenous administration of /sup 3/H-Ro 15 - 1788 could be extracted by chloroform, whereas the radioactive metabolites could not be extracted. And the plasma protein binding of /sup 3/H-Ro 15 - 1788 was determined using an ultrafiltration method. The biodistribution of /sup 3/H-Ro 15 - 1788 in the cerebral cortex, cerebellum and pons-medulla after intravenous administration of the radiotracer in the control and forced-swimmed mice was examined. And the time course of the free ligand concentration in the blood was determined as described above. Further, the binding potential of benzodiazepine receptor in the mouse brain was analyzed using a simple mathematical model. It was suggested that the binding potential of benzodiazepine receptor in the mouse brain was significantly decreased by forced-swimming. In conclusion, it was found that these methods would be useful for quantitative analysis of clinical data in the human brain using /sup 11/C-Ro 15 - 1788 and positron emission tomography (PET).

  5. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    Science.gov (United States)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  6. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine ☆

    OpenAIRE

    Savignac, Helene M.; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P.E.; Tzortzis, George; Burnet, Philip W. J.

    2013-01-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we exami...

  7. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125-I-IGF-II (10 pM) was incubated for 16 hrs at 40C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA1-CA2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  8. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  9. Photoperiod and testosterone regulate androgen receptor immunostaining in the Siberian hamster brain.

    Science.gov (United States)

    Bittman, Eric L; Ehrlich, David A; Ogdahl, Justyne L; Jetton, Amy E

    2003-09-01

    Day length regulates the effects of gonadal steroids on gonadotropin secretion and behavior in seasonal breeders. To determine whether this influence of photoperiod results from changes in androgen receptor expression in Siberian hamster brain regions that regulate neuroendocrine function, androgen receptor immunostaining was examined in castrated animals given either no androgen replacement or one of three doses of testosterone (T) resulting in physiological serum concentrations. Half of the animals were housed under inhibitory photoperiod conditions, and immunostaining was quantified 11 days later. Measurement of serum gonadotropin and prolactin concentrations confirmed that androgen exerted graded effects on pituitary function but that the animals were killed before photoperiodic influences had fully developed. T significantly increased the numbers of androgen receptor-immunoreactive cells in every brain region examined. Photoperiod exerted no significant influence on androgen receptor-immunoreactive cell number in the arcuate nucleus, bed nucleus of the stria terminalis (BNST), medial preoptic nucleus, or in medial amygdala. An interaction between T and photoperiod was observed in the BNST and in the rostral and middle portions of the arcuate nucleus. Although increasing concentrations of T resulted in more intense cellular immunostaining in the BNST and arcuate, this effect was not influenced by day length. These results indicate that relatively short-duration (11 days) exposure to inhibitory photoperiod triggers localized and regionally specific changes in androgen receptor expression.

  10. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    Science.gov (United States)

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family. PMID:21476267

  11. Changes in sensitivity of brain dopamine and serotonin receptors during long-term treatment with carbidine

    Energy Technology Data Exchange (ETDEWEB)

    Zharkovskii, A.M.; Allikmets, L.K.; Chereshka, K.S.; Zharkovskaya, T.A.

    1986-04-01

    The authors study the state of the dopamine and serotonin receptors of the brain during chronic administration of carbidine to animals. Parts of the brain from two rats were pooled and binding of tritium-spiperone and tritium-LSD was determined. Statistical analysis of the data for apomorphine sterotypy was carried out and the Student's test was used for analysis of the remaining data. It is shown that after discontinuation of carbidine binding of tritium-spiperone and tritium-LSD in the cortex was reduced.

  12. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven;

    2007-01-01

    variability in cortical 5-HT(2A) receptor binding as measured with [(18)F]altanserin PET imaging. The intraclass correlation coefficients were 0.67 for dizygotic and 0.87 for monozygotic twin pairs. For comparison, the intraclass correlation coefficient was 0.93 in a group of six male healthy subjects...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  13. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    OpenAIRE

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- ...

  14. Brain aromatase (Cyp19A2) and estrogen receptors, in larvae and adult pejerrey fish Odontesthes bonariensis: Neuroanatomical and functional relations

    Science.gov (United States)

    Strobl-Mazzulla, P. H.; Lethimonier, C.; Gueguen, M.M.; Karube, M.; Fernandino, J.I.; Yoshizaki, G.; Patino, R.; Strussmann, C.A.; Kah, O.; Somoza, G.M.

    2008-01-01

    Although estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, ?? and ??, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads. Also brain aromatase and estrogen receptors were up-regulated in the brain of estradiol-treated males. In situ hybridization was performed to study in more detail, the distribution of the two receptors in comparison with brain aromatase mRNA in the brain of adult pejerrey. The estrogen receptors' mRNAs exhibited distinct but partially overlapping patterns of expression in the preoptic area and the mediobasal hypothalamus, as well as in the pituitary gland. Moreover, the estrogen receptor ??, but not ??, were found to be expressed in cells lining the preoptic recess, similarly as observed for brain aromatase. Finally, it was shown that the onset expression of brain aromatase and both estrogen receptors in the head of larvae preceded the morphological differentiation of the gonads. Because pejerrey sex differentiation is strongly influenced by temperature, brain aromatase expression was measured during the temperature-sensitive window and was found to be significantly higher at male-promoting temperature. Taken together these results suggest close neuroanatomical and functional relationships between brain aromatase and estrogen receptors, probably involved in the sexual differentiation of the brain and raising interesting questions on the origin (central or peripheral) of the brain aromatase substrate. ?? 2008 Elsevier Inc.

  15. Radiochemical evaluation of a new brain receptor imaging agent

    International Nuclear Information System (INIS)

    We report about the radiochemical evaluation of a new serotonin-1A (5-HT1A) receptor imaging agent. The new derivative of WAY 100635, viz. C1-(2 methoxyphenyl)-(4- mercaptoethyl)-piperazine, was labelled with technetium-99m using thiocresol through 99mTc(V)-glucoheptonate precursor. The labelling was carried out at room temperature within 10 minutes using 370-740 MBq of 99mTc-pertechnetate. The specific activity of the '2+1+1' mixed ligand complex was about 40 GBq/ml. The labelling efficiency and the stability of the labelled compound were monitored by ITLC-SG, solvent extraction and reverse-phase HPLC. The labelling efficiency exceeded 95% and remained high about 4 hours if stored at room temperature or in a refrigerator at 4 deg C. The results give evidence of a high labelling efficiency and stability of the ligand used. The labelled ligand seems to hold promise within the family of existing radiopharmaceuticals

  16. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Charles eDucrot

    2013-10-01

    Full Text Available Previous studies have shown that blockade of ventral midbrain (VM glutamate N-Methyl-D-Aspartate (NMDA receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VM neurons, a fast and short lasting depolarisation mediated by a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VM neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VM neuronal activity, we studied the effects of VM AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for two hours after bilateral VM microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(fquinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5ul/side and of a single dose (0.825 nmol/0.5ul/side of the NMDA antagonist, PPPA (2R,4S-4-(3-Phosphonopropyl-2-piperidinecarboxylic acid. NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VM sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected respectively into the anterior and posterior VM. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VM neurons, to modulate

  17. Physiology and physiopathology of central type Benzodiazepine receptors: Study in the monkey and in human brain using positron emission tomography

    International Nuclear Information System (INIS)

    A new non-invasive technique that allows to study in a living subject central type benzodiazepine receptors is developed. A combined approach is applied using a specific positron-emitting radiotracer for the in vivo labelling of the receptors and positron emission tomography allowing, by external detection, a quantitative determination of tissue radioactivity. The radioligand used for the in vivo labelling of benzodiazepine receptors is the antagonist RO 15-1788 labelled with carbon 11. The various stages of the study are described: in vivo characterization in the monkey of central type benzodiazepine receptors; characterization of central type benzodiazepine receptors in human brain using selective molecules for the BZ1 benzodiazepine subclass; demonstration of the heterogeneity of central type benzodiazepine receptors in the brain; study of pathological alteration of benzodiazepine receptors in experimental epilepsy

  18. Quantitative Molecular Imaging of Neuronal Nicotinic Acetylcholine Receptors in the Human Brain with A-85380 Radiotracers

    OpenAIRE

    Lotfipour, Shahrdad; Mandelkern, Mark; Brody, Arthur L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated in a spectrum of cognitive functions as well as psychiatric and neurodegenerative disorders, including tobacco addiction and Alzheimer's Disease. The examination of neuronal nAChRs in living humans is a relatively new field. Researchers have developed brain-imaging radiotracers for nAChRs, with radiolabeled A-85380 compounds having the most widespread use. We provide a brief background on nAChRs, followed by a discussion...

  19. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    OpenAIRE

    Luiten, PGM; DEJONG, GI; VANDERZEE, EA; vanDijken, H; van Dijken, H.

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a general consensus as to the presence of nicotinic and muscarinic receptors in the domain of the capillary wall, their precise anatomical position is unknown. The subcellular localization of muscarinic re...

  20. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  1. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  2. Localization of receptors for bombesin-like peptides in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Moody, T.W.; Getz, R.; O' Donohue, T.L.; Rosenstein, J.M.

    1988-01-01

    BN-like peptides and receptors are present in discrete areas of the mammalian brain. By radioimmunoassay, endogenous BN/GRP, neuromedin B, and ranatensin-like peptides are present in the rat brain. High-to-moderate concentrations of BN/GRP are present in the rat hypothalamus and thalamus, whereas moderate-to-high densities of neuromedin B and ranatensin-like peptides are present in the olfactory bulb and hippocampus, as well as in the hypothalamus and thalamus. While the distribution of neuromedin B and ranatensin-like peptides appears similar, it is distinct from that of BN/GRP. When released from CNS neurons, these peptides may interact with receptors for BN-like peptides. BN, GRP, ranatensin, and neuromedin B inhibit specific (/sup 125/I-Tyr4)BN binding with high affinity. By use of in vitro autoradiographic techniques to detect binding of (/sup 125/I-Tyr4)BN to receptors for BN-like peptides, high grain densities were found in the olfactory bulb and tubercle, the nucleus accumbens, the suprachiasmatic and paraventricular nucleus of the hypothalamus, the central medial and paraventricular thalamic nuclei, the hippocampus, the dentate gyrus, and the amygdala of the rat brain. Some of these receptors may be biologically active and mediate the biological effects of BN-like peptides. For example, when BN is directly injected into the nucleus accumbens, pronounced grooming results and the effects caused by BN are reversed by spantide and (D-Phe12)BN. Thus, the putative BN receptor antagonists may serve as useful agents to investigate the biological significance of BN-like peptides in the CNS.

  3. The serotonin receptor 7 and the structural plasticity of brain circuits

    Science.gov (United States)

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  4. The serotonin receptor 7 and the structural plasticity of brain circuits

    Directory of Open Access Journals (Sweden)

    Floriana eVolpicelli

    2014-09-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT modulates numerous physiological processes in the nervous system. Together with its function as neurotrasmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.

  5. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  6. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    Science.gov (United States)

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  7. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery.

    Science.gov (United States)

    Wei, Xiaoli; Zhan, Changyou; Shen, Qing; Fu, Wei; Xie, Cao; Gao, Jie; Peng, Chunmei; Zheng, Ping; Lu, Weiyue

    2015-03-01

    Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)-mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D-peptide ligand of nAChRs (termed (D)CDX), which binds to nAChRs with an IC50 value of 84.5 nM, was developed by retro-inverso isomerization. (D)CDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood-brain barrier monolayer compared with the parent L-peptide. When modified on liposomal surface, (D)CDX facilitated significant brain-targeted delivery of liposomes. As a result, brain-targeted delivery of (D)CDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs-mediated transcytosis, and paves the way for developing stable brain-targeted entities.

  8. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice

    Directory of Open Access Journals (Sweden)

    Pinghui eJie

    2015-04-01

    Full Text Available Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4 causes an up-regulation of matrix metalloproteinases (MMPs in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein in hippocampus of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occluden-1 (ZO-1 and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  9. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains

    OpenAIRE

    Dunham, Jason S.; Deakin, J. F. William; Miyajima, Fabio; Payton, Tony; Toro, Carla Tatiana

    2009-01-01

    Several lines of evidence implicate BDNF in the pathophysiology of psychiatric illness. BDNF polymorphisms have also been associated with the risk of schizophrenia and mood disorders. We therefore investigated whether levels of (pro)BDNF and receptor proteins, TrkB and p75, are altered in hippocampus in schizophrenia and mood disorder and whether polymorphisms in each gene influenced protein expression. Formalin-fixed paraffin-embedded hippocampal sections from subjects with...

  10. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.

    Science.gov (United States)

    Lima, Leandro B; Metzger, Martin; Furigo, Isadora C; Donato, J

    2016-09-01

    Neurons that express the prohormone proopiomelanocortin (POMC) in the arcuate hypothalamic nucleus (Arc) are engaged in the regulation of energy balance and glucose homeostasis. Additionally, POMC neurons are considered key first-order cells regulated by leptin. Interestingly, in the Arc, POMC cells that express the leptin receptor (POMC/LepR+ cells) are found side by side with POMC cells not directly responsive to leptin (POMC/LepR- cells). However, it remains unknown whether these distinct populations innervate different target regions. Therefore, the objective of the present study was to compare the projections of POMC/LepR+ and POMC/LepR- neurons. Using genetically modified LepR-reporter mice to identify leptin receptor-expressing cells and immunohistochemistry to stain POMC-derived peptides (α-MSH or β-endorphin) we confirmed that approximately 80% of Arc β-endorphin-positive neurons co-expressed leptin receptors. POMC/LepR+ and POMC/LepR- axons were intermingled in all of their target regions. As revealed by confocal microscopy, we found an elevated degree of co-localization between α-MSH+ axons and the reporter protein (tdTomato) in all brain regions analyzed, with co-localization coefficients ranging from 0.889 to 0.701. Thus, these two populations of POMC neurons seem to project to the same set of brain structures, although one of the two subtypes of POMC axons was sometimes found to be more abundant than the other in distinct subregions of the same nucleus. Therefore, POMC/LepR+ and POMC/LepR- cells may target separate neuronal populations and consequently activate distinct neuronal circuits within some target nuclei. These findings contribute to unravel the neuronal circuits involved in the regulation of energy balance and glucose homeostasis. PMID:27321158

  11. Disruption of estrogen receptor beta in mice brain results in pathological alterations resembling Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Qing-hong ZHANG; Yan-hong HUANG; Yu-zhen HU; Geng-ze WEI; Xue-feng HAN; Shun-yan LU; Yu-feng ZHAO

    2004-01-01

    AIM: To study the pathological characteristics of the mice with estrogen receptor β (ERβ) disruption in brain.METHODS: Immunohistochemistry method was applied in the study. RESULTS: β-Amyloid peptide(Aβ42) and apolipoprotein E (ApoE) immunoreactive substances were accumulated notably in cortex and limbic structures such as the hippocampus and amygdala in brain, resembling the pathological changes of human Alzheimer disease (AD). Aβ formed cloudy-like deposits in parenchyma of brain, while apoE also deposited along or surrounding the blood vessels. CONCLUSIONS: ERβ is crucial to the development of neural degenerative disease, so modulation of Aβ metabolism via ERβ signal pathway might be beneficial for AD prevention or therapy.

  12. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  13. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B;

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...... and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...

  14. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  15. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    International Nuclear Information System (INIS)

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM [3H]naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-[3H]-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM [3H]-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-[3H]SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1

  16. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  17. In vivo occupancy of female rat brain estrogen receptors by 17beta-estradiol and tamoxifen.

    Science.gov (United States)

    Pareto, D; Alvarado, M; Hanrahan, S M; Biegon, A

    2004-11-01

    Estrogens or antiestrogens are currently used by millions of women, but the interaction of these hormonal agents with brain estrogen receptors (ER) in vivo has not been characterized to date. Our goal was to assess, in vivo, the extent and regional distribution of brain ER occupancy in rats chronically exposed to 17beta-estradiol (E(2)) or tamoxifen (TAM). For that purpose, female ovariectomized Sprague-Dawley rats were implanted with subcutaneous pellets containing either placebo (OVX), E(2), or TAM for 3 weeks. ER occupancy in grossly dissected regions was quantified with 16alpha-[(18)F]fluoroestradiol ([(18)F]FES). Both E(2) and TAM produced significant decreases in radioligand uptake in the brain although the effect of E(2) was larger and more widespread than the effect of TAM. Detailed regional analysis of the interaction was then undertaken using a radioiodinated ligand, 11beta-methoxy-16alpha-[(125)I]iodo-estradiol ([(125)I]MIE(2)), and quantitative ex vivo autoradiography. E(2) treatment resulted in near-complete (86.6 +/- 17.5%) inhibition of radioligand accumulation throughout the brain, while ER occupancy in the TAM group showed a marked regional distribution such that percentage inhibition ranged from 40.5 +/- 15.6 in the ventrolateral part of the ventromedial hypothalamic nucleus to 84.6 +/- 4.5 in the cortical amygdala. These results show that exposure to pharmacologically relevant levels of TAM produces a variable, region-specific pattern of brain ER occupancy, which may be influenced by the regional proportion of ER receptor subtypes. These findings may partially explain the highly variable and region-specific effects observed in neurochemical, metabolic, and functional studies of the effects of TAM in the brain of experimental animals as well as human subjects.

  18. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[18F]fluoro-5α-dihydrotestosterone ([18F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [18F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [18F]FDHT uptake in all brain regions, except pituitary. [18F]FDHT uptake in the surrounding cranial bones was high and increased over time. [18F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [18F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [18F]FDHT PET is not feasible. The low AR expression in the brain, the rapid metabolism of

  19. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Ryool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-03-15

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

  20. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  1. Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain.

    Science.gov (United States)

    Tetel, Marc J; Ungar, Todd C; Hassan, Brett; Bittman, Eric L

    2004-11-24

    Seasonal changes in the neuroendocrine actions of gonadal steroid hormones are triggered by fluctuations in daylength. The mechanisms responsible for photoperiodic influences upon the feedback and behavioral effects of testosterone in Siberian hamsters are poorly understood. We hypothesized that daylength regulates the expression of androgen receptor (AR) and/or steroid receptor coactivator-1 (SRC-1) in specific forebrain regions. Hamsters were castrated and implanted with either oil-filled capsules or low doses of testosterone; half of the animals remained in 16L/8D and the rest were kept in 10L/14D for the ensuing 70 days. The number of AR-immunoreactive (AR-ir) cells was regulated by testosterone in medial amygdala and caudal arcuate, and by photoperiod in the medial preoptic nucleus and the posterodorsal medial amygdala. A significant interaction between photoperiod and androgen treatment was found in medial preoptic nucleus and posterodorsal medial amygdala. The molecular weight and distribution of SRC-1 were similar to reports in other rodent species, and short days reduced the number of SRC-1-ir cells in posteromedial bed nucleus of the stria terminalis (BNST) and posterodorsal medial amygdala. A significant interaction between androgen treatment and daylength in regulation of SRC-1-ir was found in anterior medial amygdala. The present results indicate that daylength-induced fluctuations in SRC-1 and AR expression may contribute to seasonally changing effects of testosterone.

  2. Apo-ghrelin receptor (apo-GHSR1a Regulates Dopamine Signaling in the Brain

    Directory of Open Access Journals (Sweden)

    Andras eKern

    2014-08-01

    Full Text Available The orexigenic peptide hormone ghrelin is synthesized in the stomach and its receptor growth hormone secretagogue receptor (GHSR1a is expressed mainly in the central nervous system (CNS. In this review we confine our discussion to the physiological role of GHSR1a in the brain. Paradoxically, despite broad expression of GHSR1a in the CNS, other than trace amounts in the hypothalamus, ghrelin is undetectable in the brain. In our efforts to elucidate the function of the ligand-free ghrelin receptor (apo-GHSR1a we identified subsets of neurons that co-express GHSR1a and dopamine receptors. In this review we focus on interactions between apo-GHSR1a and dopamine-2 receptor (DRD2 and formation of GHSR1a:DRD2 heteromers in hypothalamic neurons that regulate appetite, and discuss implications for the treatment of Prader-Willi syndrome. GHSR1a antagonists of distinct chemical structures, a quinazolinone and a triazole, respectively enhance and inhibit dopamine signaling through GHSR1a:DRD2 heteromers by an allosteric mechanism. This finding illustrates a potential strategy for designing the next generation of drugs for treating eating disorders as well as psychiatric disorders caused by abnormal dopamine signaling. Treatment with a GHSR1a antagonist that enhances dopamine/DRD2 activity in GHSR1a:DRD2 expressing hypothalamic neurons has the potential to inhibit the uncontrollable hyperphagia associated with Prader-Willi syndrome. DRD2 antagonists are prescribed for treating schizophrenia, but these block dopamine signaling in all DRD2 expressing neurons and are associated with adverse side effects, including enhanced appetite and excessive weight gain. A GHSR1a antagonist of structural class that allosterically blocks dopamine/DRD2 action in GHSR1a:DRD2 expressing neurons would have no effect on neurons expressing DRD2 alone; therefore, the side effects of DRD2 antagonists would potentially be reduced thereby enhancing patient compliance.

  3. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  4. Radiochemical and biological evaluation of a new brain serotonin1A receptor imaging agent

    International Nuclear Information System (INIS)

    Radiochemical and biological evaluations are made of a new bidentate radioligand as a potential brain serotonin1A (5-HT1A) receptor imaging agent. The bidentate part of the complex was a derivative of the well known serotonin1A receptor antagonist molecule, namely WAY 100635; the monodentate parts were thiocresol, thiosalicylic acid and thio-2-naphthol. The labelling procedure was performed through the 99mTc(V)-glucoheptonate precursor. The bidentate + monodentate complex formed during the reaction in the case of thiocresol was identified as 99TcO(o-CH3-C6H4-N(CH2-CH2)2N-CH2CH2S)( p-C6H4CH3)2 (99mTc-1). Its labelling efficiency and stability were determined by thin layer chromatography, the organic solvent extraction method and high performance liquid chromagraphy. The biodistribution of the labelled compound was found by using male Wistar rats. On the basis of these data, kinetic curves were constructed for different organs and the dosimetry for humans was calculated. The brain uptake and pharmacokinetics were followed by planar and single photon emission computed tomography (SPECT) imaging in rats. Average brain count density was calculated and different regional count densities (counts/gram tissue) were obtained for the hippocampus and other receptor-rich regions. A detailed SPECT study was carried out after administration of 99mTc-1 to a cynomolgus monkey (Macaca cynomolgus). The results found show that, of three investigated aromatic thiol compounds, the labelling efficiency was the highest in the case of thiocresol as the monodentate part. Therefore all further studies were carried out using thiocresol. The labelling efficiency of this bidentate complex was about 80%, and the molecule was stable for up to one hour. The biodistribution data show that more than 0.1% of the injected dose is present in the rat brains a few minutes after administration, and the metabolic pathway is through the hepatobiliary system. From the results obtained with the study of the

  5. Characterization and localization of arginine vasotocin receptors in the brain and kidney of an amphibian

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, S.K.

    1987-01-01

    Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located in the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.

  6. Synthesis and in vivo brain distribution of carbon-11-labeled {delta}-opioid receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama, E-mail: rpichika@ucsd.ed [Department of Radiology, University of California, San Diego, CA (United States); Jewett, Douglas M.; Sherman, Philip S. [Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Traynor, John R. [Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Husbands, Stephen M. [Department of Pharmacy and Pharmacology, University of Bath, Bath (United Kingdom); Woods, James H. [Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Kilbourn, Michael R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States)

    2010-11-15

    Three new radiolabeled compounds, [{sup 11}C]SNC80 ((+)-4-[({alpha}R)-{alpha}-{l_brace}(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl{r_brace}-3-[{sup 11}C] methoxybenzyl-N,N-diethylbenzamide), N,N-diethyl-4-[3-methoxyphenyl-1-[{sup 11}C]methylpiperidin-4-ylidenemethyl) benzamide and N,N-diethyl-4-[(1-[{sup 11}C]methylpiperidin-4-ylidene)phenylmethyl]benzamide, were prepared as potential in vivo radiotracers for the {delta}-opioid receptor. Each compound was synthesized by alkylation of the appropriate desmethyl compounds using [{sup 11}C]methyl triflate. In vivo biodistribution studies in mice showed very low initial brain uptake of all three compounds and no regional specific binding for [{sup 11}C]SNC80. A monkey positron emission tomography study of [{sup 11}C]SNC80 confirmed low brain permeability and uniform regional distribution of this class of opioid agonists in a higher species. Opioid receptor ligands of this structural class are thus unlikely to succeed as in vivo radiotracers, likely due to efficient exclusion from the brain by the P-glycoprotein efflux transporter.

  7. Intact brain cells: a novel model system for studying opioid receptor binding

    International Nuclear Information System (INIS)

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using [3H]naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. [3H]Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date

  8. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    Science.gov (United States)

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p stress produces a decrease in BZD receptor binding sites. PMID:8385464

  9. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity.

    Science.gov (United States)

    Karlsson, H K; Tuulari, J J; Tuominen, L; Hirvonen, J; Honka, H; Parkkola, R; Helin, S; Salminen, P; Nuutila, P; Nummenmaa, L

    2016-08-01

    Positron emission tomography (PET) studies suggest opioidergic system dysfunction in morbid obesity, while evidence for the role of the dopaminergic system is less consistent. Whether opioid dysfunction represents a state or trait in obesity remains unresolved, but could be assessed in obese subjects undergoing weight loss. Here we measured brain μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) availability in 16 morbidly obese women twice-before and 6 months after bariatric surgery-using PET with [(11)C]carfentanil and [(11)C]raclopride. Data were compared with those from 14 lean control subjects. Receptor-binding potentials (BPND) were compared between the groups and between the pre- and postoperative scans among the obese subjects. Brain MOR availability was initially lower among obese subjects, but weight loss (mean=26.1 kg, s.d.=7.6 kg) reversed this and resulted in ~23% higher MOR availability in the postoperative versus preoperative scan. Changes were observed in areas implicated in reward processing, including ventral striatum, insula, amygdala and thalamus (P'ssystem plays an important role in the pathophysiology of human obesity. Because bariatric surgery and concomitant weight loss recover downregulated MOR availability, lowered MOR availability is associated with an obese phenotype and may mediate excessive energy uptake. Our results highlight that understanding the opioidergic contribution to overeating is critical for developing new treatments for obesity. PMID:26460230

  10. Autoradiographic localisation of D-3-dopamine receptors in the human brain using the selective D-3-dopamine receptor agonist (+)-[H-3]PD 128907

    NARCIS (Netherlands)

    Hall, H; Halldin, C; Dijkstra, D; Wikstrom, H; Wise, LD; Pugsley, TA; Sokoloff, P; Pauli, S; Farde, L; Sedvall, G

    1996-01-01

    The selective D-3-dopamine receptor agonist 4aR,10bR-(+)-trans-3,4,4a,10b-tetrahydro-4-[N-propyl-2,3- H-3]-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol ([H-3]PD 128907) was used to visualise D-3-dopamine receptors in whole hemisphere cryosections from post-mortem human brain. [H-3]PD 128907 has an 18

  11. CB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin

    Directory of Open Access Journals (Sweden)

    Parichehr Hassanzadeh

    2014-03-01

    Full Text Available Objective(s: Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s by which antipsychotics affect brain neurotensin neurotransmission have not been identified. Therefore, we aimed to investigate the effects of fluphenazine and amisulpride on brain regional contents of neurotensin considering the role of cannabinoid CB1 receptors which interact with neurotensin neurotransmission. Materials and Methods:Fluphenazine (0.5, 1, and 3 mg/kg or amisulpride (3, 5, and 10 mg/kg were administered intraperitoneally to male Wistar rats either for one day or 28 consecutive days.Twenty four hours after the last injection of drug or vehicle, neurotensin contents were determined in the mesocorticolimbic and nigrostriatal dopamine regions by radioimmunoassay. In the case of any significant change, the effect of pre-treatment with CB1 receptor antagonist, AM251 was investigated. Results:Chronic, but not acute, treatment with the highest dose of fluphenazine or amisulpride resulted in significant enhancement of neurotensin contents in the prefronatal cortex and nucleus accumbens. Fluphenazine also elevated neurotensin levels in the anterior and posterior caudate nuclei and substantia nigra. Neither amisulpride nor fluphenazine affected neurotensin contents in the amygdala or hippocampus. Pre-treatment with AM251 (3 mg/kg prevented the neuroleptic-induced elevation of neurotensin. AM251 showed no effect by itself. Conclusion:The brain neurotensin under the regulatory action of CB1 receptors is involved in[T1]  the effects of amisulpride and fluphenazine.

  12. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    Science.gov (United States)

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.

  13. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125I-IGF-1, 125I-IGF-2, and 125I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  14. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.;

    2012-01-01

    between body mass index and the 5-HT4R density bilaterally in the two reward ‘hot spots’ nucleus accumbens and ventral pallidum, and additionally in the left hippocampal region and orbitofrontal cortex.These findings suggest that the 5-HT4R is critically involved in reward circuits that regulate people......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved...... in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association...

  15. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    Science.gov (United States)

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively. PMID:25637390

  16. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain.

    Science.gov (United States)

    Kanodia, J S; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, R K; Luk, W; Hoyte, K; Lu, Y; Wildsmith, K R; Couch, J A; Watts, R J; Dennis, M S; Ernst, J A; Scearce-Levie, K; Atwal, J K; Ramanujan, S; Joseph, S

    2016-05-01

    Anti-transferrin receptor (TfR)-based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR-based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti-TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic-pharmacodynamic (PK-PD) model for bispecific anti-TfR/BACE1 antibodies that accounts for antibody-TfR interactions at the blood-brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti-BACE1 arm. The calibrated model correctly predicted the optimal anti-TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti-TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti-TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  17. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days...... ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate...

  18. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier

    DEFF Research Database (Denmark)

    Lou, Nanhong; Takano, Takahiro; Pei, Yong;

    2016-01-01

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G......-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed...

  19. 3,4-methylenedioxyamphetamine upregulates p75 neurotrophin receptor protein expression in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Chaomin Wang; Zugui Peng; Weihong Kuang; Hanyu Zheng; Jiang Long; Xue Wang

    2012-01-01

    The p75 neurotrophin receptor, which is a member of the tumor necrosis factor receptor superfamily, facilitates apoptosis during development and following central nervous system injury. Previous stu-dies have shown that programmed cell death is likely involved in the neurotoxic effects of 3, 4-methylenedioxy-N-methylamphetamine (MDMA), because MDMA induces apoptosis of immor-talized neurons through regulation of proteins belonging to the Bcl-2 family. In the present study, intraperitoneal injection of different doses of MDMA (20, 50, and 100 mg/kg) induced significant behavioral changes, such as increased excitability, increased activity, and irritability in rats. Moreover, changes exhibited dose-dependent adaptation. Following MDMA injection in rat brain tissue, the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex, cerebellum, and hippocampus. These findings confirmed that MDMA induced neuronal apoptosis, and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor.

  20. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  1. 3,4-methylenedioxyamphetamine upregulates p75 neurotrophin receptor protein expression in the rat brain.

    Science.gov (United States)

    Wang, Chaomin; Peng, Zugui; Kuang, Weihong; Zheng, Hanyu; Long, Jiang; Wang, Xue

    2012-04-25

    The p75 neurotrophin receptor, which is a member of the tumor necrosis factor receptor superfamily, facilitates apoptosis during development and following central nervous system injury. Previous studies have shown that programmed cell death is likely involved in the neurotoxic effects of 3, 4-methylenedioxy-N-methylamphetamine (MDMA), because MDMA induces apoptosis of immortalized neurons through regulation of proteins belonging to the Bcl-2 family. In the present study, intraperitoneal injection of different doses of MDMA (20, 50, and 100 mg/kg) induced significant behavioral changes, such as increased excitability, increased activity, and irritability in rats. Moreover, changes exhibited dose-dependent adaptation. Following MDMA injection in rat brain tissue, the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex, cerebellum, and hippocampus. These findings confirmed that MDMA induced neuronal apoptosis, and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor. PMID:25722682

  2. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Ansari, M.S.; de Paulis, T.; Schmidt, D.E.; Clanton, J.A.; Smith, H.E.; Manning, R.G.; Gillespie, D.; Ebert, M.H. (Vanderbilt University School of Medicine, Nashville, TN (USA))

    1991-08-01

    Five 125I-labeled substituted benzamides, which are close structural analogues of (S)-sulpiride, eticlopride, and isoremoxipride, were evaluated for their selective in vivo uptake into dopamine D2 receptor rich tissue of the rat brain. Iodopride (KD 0.88 nM), an iodine substituted benzamide structurally related to sulpiride, displayed a maximal striatum: cerebellar uptake ratio of 7.6. Demonstration of saturation of the receptor with (125I)iodopride in striatum required uptake in frontal cortex to be used, rather than cerebellar uptake, to define nonspecific binding. Two other ligands structurally related to eticlopride, iclopride (KD 0.23 nM) and itopride (KD 0.16 nM), displayed maximal striatal: cerebellar uptake ratios of 9.8 and 3.3, respectively. The most potent ligands, epidepride (KD 0.057 nM) and ioxipride (KD 0.070 nM) showed striatal:cerebellar uptake ratios of 234 and 65, respectively. The observed uptake ratios correlated poorly with the affinity constants for the dopamine D2 receptor alone, but were highly correlated (r = 0.92) with the product of the receptor dissociation constant (KD) and the apparent lipophilicity (kw), as determined by reverse-phase HPLC at pH 7.5. Total striatal uptake also appeared dependent on lipophilicity, with maximal uptake occurring for ligands having log kw 2.4-2.8.

  3. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides

    International Nuclear Information System (INIS)

    Five 125I-labeled substituted benzamides, which are close structural analogues of (S)-sulpiride, eticlopride, and isoremoxipride, were evaluated for their selective in vivo uptake into dopamine D2 receptor rich tissue of the rat brain. Iodopride (KD 0.88 nM), an iodine substituted benzamide structurally related to sulpiride, displayed a maximal striatum: cerebellar uptake ratio of 7.6. Demonstration of saturation of the receptor with [125I]iodopride in striatum required uptake in frontal cortex to be used, rather than cerebellar uptake, to define nonspecific binding. Two other ligands structurally related to eticlopride, iclopride (KD 0.23 nM) and itopride (KD 0.16 nM), displayed maximal striatal: cerebellar uptake ratios of 9.8 and 3.3, respectively. The most potent ligands, epidepride (KD 0.057 nM) and ioxipride (KD 0.070 nM) showed striatal:cerebellar uptake ratios of 234 and 65, respectively. The observed uptake ratios correlated poorly with the affinity constants for the dopamine D2 receptor alone, but were highly correlated (r = 0.92) with the product of the receptor dissociation constant (KD) and the apparent lipophilicity (kw), as determined by reverse-phase HPLC at pH 7.5. Total striatal uptake also appeared dependent on lipophilicity, with maximal uptake occurring for ligands having log kw 2.4-2.8

  4. Eph receptor and ephrin signaling in developing and adult brain of the honeybee (Apis mellifera).

    Science.gov (United States)

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-02-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, significantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  5. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    Science.gov (United States)

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  6. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling.

    Science.gov (United States)

    Lam, H R; Plenge, P; Jørgensen, O S

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, and subcellular levels. This study investigates the effects of two types of white spirit on 5-hydroxytryptamine (5-HT) transporters (5-HTT), 5-HT(2A) and 5-HT(4) receptor expression in forebrain, and on neural cell adhesion molecule (NCAM) and 25-kDa synaptosomal associated protein (SNAP-25) concentrations when applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days/week for 3 weeks. The 5-HTT B(max) and K(d) were not affected. Both types of white spirit at 800 ppm decreased B(max) for the 5-HT(2A) receptor. The aromatic type decreased the K(d) of the 5-HT(2A) and 5-HT(4) receptors at 800 ppm. Aromatic white spirit did not affect NCAM or SNAP-25 concentrations or NCAM/SNAP-25 ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate that inhalation exposure to high concentrations of white spirit may be neurotoxic to rats, especially the aromatic white spirit type. PMID:11792528

  7. Selective Estrogen Receptor Modulators regulate reactive microglia after penetrating brain injury

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2014-06-01

    Full Text Available Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: 1 young rats, ovariectomized at 2 months of age; and 2 aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which SERMs may exert a neuroprotective effect in the setting of a brain trauma.

  8. Characterization of GABA/sub A/ receptor-mediated 36chloride uptake in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    γ-Aminobutyric acid (GABA) receptor-mediated 36chloride (36Cl-) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36Cl- uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36Cl- uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36Cl- uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br->Cl-≥NO3->I-≥SCN->>C3H5OO-≥ClO4->F-, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl- channel. 43 references, 4 figures, 3 tables

  9. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    Science.gov (United States)

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT. PMID:18621911

  10. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    Science.gov (United States)

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  11. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R;

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...... receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding...

  12. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism.

    Directory of Open Access Journals (Sweden)

    Laurent Kappeler

    2008-10-01

    Full Text Available Mutations that decrease insulin-like growth factor (IGF and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.

  13. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  14. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    Science.gov (United States)

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  15. Region-specific alterations in the corticotropin-releasing factor and glucocorticoid receptors in the postmortem brain of suicide victims

    OpenAIRE

    Pandey, Ghanshyam N.

    2012-01-01

    Rationale : Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis in depression and suicide are among the most consistent findings in biological psychiatry. However, the specific molecular mechanism associated with HPA axis abnormality in the brain of depressed or suicidal subjects is not clear. It is believed that abnormal HPA axis is caused by increased levels of corticotropin-releasing factor (CRF) and decreased levels of glucocorticoid receptor (GR) in the brain of depr...

  16. Pet imaging of two monoaminergic neurotransmitter systems in brain : studies of the norepinephrine transporter and dopamine D©ü receptor

    OpenAIRE

    Seneca, Nicholas

    2006-01-01

    Positron emission tomography (PET) has been widely used to study non-invasively function of the brain, pathophysiology of disease and aid in the development of new drugs. PET and selective radiolabeled molecules allow imaging of certain critical components of neurotransmission, such as pre-synaptic transporters and post-synaptic receptors in living brain. The general aim of the present thesis was (i) to measure neuropharmacological interventions using PET (e.g., competition ...

  17. Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus

    OpenAIRE

    Höft, Simon; Griemsmann, Stephanie; Seifert, Gerald; Steinhäuser, Christian

    2014-01-01

    Astrocytes may express ionotropic glutamate and gamma-aminobutyric acid (GABA) receptors, which allow them to sense and to respond to neuronal activity. However, so far the properties of astrocytes have been studied only in a few brain regions. Here, we provide the first detailed receptor analysis of astrocytes in the murine ventrobasal thalamus and compare the properties with those in other regions. To improve voltage-clamp control and avoid indirect effects during drug applications, freshly...

  18. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors

    OpenAIRE

    Lazartigues, Eric; Sinnayah, Puspha; Augoyard, Ginette; Gharib, Claude; Johnson, Alan Kim; Davisson, Robin L.

    2008-01-01

    To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT1A) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT1A] with brain-restricted overexpression of AT1A receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to exami...

  19. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain.

    Science.gov (United States)

    Garcia-Esparcia, Paula; Schlüter, Agatha; Carmona, Margarita; Moreno, Jesús; Ansoleaga, Belen; Torrejón-Escribano, Benjamín; Gustincich, Stefano; Pujol, Aurora; Ferrer, Isidre

    2013-06-01

    Parkinson disease (PD) is no longer considered a complex motor disorder but rather a systemic disease with variable nonmotor deficits that may include impaired olfaction, depression, mood and sleep disorders, and altered cortical function. Increasing evidence indicates that multiple metabolic defects occur in regions outside the substantia nigra, including the cerebral cortex, even at premotor stages of the disease. We investigated changes in gene expression in the frontal cortex in PD patient brains using a transcriptomics approach. Functional genomics analysis indicated that cortical olfactory receptors (ORs) and taste receptors (TASRs) are altered in PD patients. Olfactory receptors OR2L13, OR1E1, OR2J3, OR52L1, and OR11H1 and taste receptors TAS2R5 and TAS2R50 were downregulated, but TAS2R10 and TAS2R13 were upregulated at premotor and parkinsonian stages in the frontal cortex area 8 in PD patient brains. Furthermore, we present novel evidence that, in addition to the ORs, obligate downstream components of OR function adenylyl cyclase 3 and olfactory G protein (Gαolf), OR transporters, receptor transporter proteins 1 and 2 and receptor expression enhancing protein 1, and OR xenobiotic removing UDP-glucuronosyltransferase 1 family polypeptide A6 are widely expressed in neurons of the cerebral cortex and other regions of the adult human brain. Together, these findings support the concept that ORs and TASRs in the cerebral cortex may have novel physiologic functions that are affected in PD patients.

  20. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  1. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; Veltman, D. J.; ten Kulve, J. S.; Groot, P. F. C.; Ruhe, H. G.; Barkhof, F.; Sloan, J. H.; Diamant, M.; Ijzerman, R. G.

    2015-01-01

    AimTo test the hypothesis that food intake reduction after glucagon-like peptide-1 (GLP-1) receptor activation is mediated through brain areas regulating anticipatory and consummatory food reward. MethodsAs part of a larger study, we determined the effects of GLP-1 receptor activation on brain respo

  2. Risperidone regulates Dopamine D2-like receptors expression in rat brain in a time-dependent manner

    Directory of Open Access Journals (Sweden)

    Ni Peiyan

    2015-03-01

    Full Text Available Background and Objectives: Antipsychotics can elicit dopamine super-sensitivity by up-regulation of D2-like receptors (DRD2, DRD3, and DRD4 expression. Nevertheless, the expression profile of dopamine D2-like receptors in different brain regions and peripheral blood mononuclear cells (PBMCs, and changes following risperidone administration were still unclear. In this study, we would investigate the expression of D2-like receptors mRNA in different brain regions and the peripheral blood mononuclear cells (PBMCs in rats after 2, 6 weeks risperidone administration. Methods: The experimental rats were given risperidone (0.25mg/kg/day, i.p., and the control rats were given 0.9% NaCl. The rats were sacrificed at 0 week, 2 weeks and 6 weeks after the drug administration. Expression of the dopamine D2-like receptors was quantified by Real-time PCR method. Results: Dopamine D2-like receptors expressed in all the examined regions of rat brain. Their expression significantly increased 2weeks after risperidone administration in different brain regions. However, the changed expression of DRD2 and DRD3 turned back to the basal level 6weeks later, while the increased DRD4 expression remained in left parietal cortex. Meanwhile, DRD2 and DRD3 but not DRD4 expressed in PBMCs, however, the risperidone could not affect their expression. Conclusions: The risperidone could change the dopamine D2-like receptors expression in a time-dependent manner in different brain regions, which might guide the clinical use in the near future.

  3. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  4. Characterization of opioid receptor types modulating acetylcholine release in septal regions of the rat brain.

    Science.gov (United States)

    Gazyakan, E; Hennegriff, M; Haaf, A; Landwehrmeyer, G B; Feuerstein, T J; Jackisch, R

    2000-07-01

    antibody-linked enzymatic staining procedure, whereas mRNAs for mu- or delta-opioid receptors were detected with radioactive probes. These experiments revealed that in the septal region mainly mu-opioid receptors were expressed by neurons positive for ChAT mRNA, whereas in the rat striatum the expression of delta-opioid receptors prevailed in those neurons. We conclude that in the septal area of the rat brain, in contrast to the rat striatum and hippocampus, both presynaptic mu- and delta-opioid receptors modulate the evoked release of ACh. Whether presynaptic mu- and delta-opioid receptors occur on the same or on different septal cells or axon terminals remains to be clarified. PMID:10935530

  5. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    International Nuclear Information System (INIS)

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons

  6. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Liu, Xiaochun [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y. [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Li, Shuisheng; Zhang, Yong [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Cheng, Christopher H.K., E-mail: chkcheng@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Lin, Haoran, E-mail: lsslhr@mail.sysu.edu.cn [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); College of Ocean, Hainan University, Haikou 570228, Hainan (China)

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  7. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  8. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Salvatore, Christopher A; Johansson, Sara;

    2015-01-01

    ) and related this to the expression of CGRP and its receptor in rhesus trigeminal ganglion. Pituitary adenylate cyclase-activating polypeptide (PACAP) and glutamate were examined and related to the CGRP system. Furthermore, we examined if the trigeminal ganglion is protected by the blood-brain barrier...

  9. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    Science.gov (United States)

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats.

  10. Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major.

    Directory of Open Access Journals (Sweden)

    Rebecca A Senft

    Full Text Available The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR and glucocorticoid receptor (GR-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major, creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN and the hippocampus (HP-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC, and moderate MR in robust nucleus of the arcopallium (RA. Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations

  11. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    OpenAIRE

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internali...

  12. The Vitamin D Receptor (VDR Gene Polymorphisms in Turkish Brain Cancer Patients

    Directory of Open Access Journals (Sweden)

    Bahar Toptaş

    2013-01-01

    Full Text Available Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP. Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9% compared with controls (2.5%, and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma.

  13. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  14. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  15. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  16. Construction of eukaryotic expression vector with brain-derived neurotrophic factor receptor trkB gene

    Institute of Scientific and Technical Information of China (English)

    HUANG Tao; JIANG Xiao-dan; XU Zhong; YUAN Jun; DING Lian-shu; ZOU Yu-xi; XU Ru-xiang

    2005-01-01

    Objective: To construct an eukaryotic expression vector carrying rat brain-derived neurotrophic factor receptor trkB gene. Methods: Using the total RNA isolated from rat brain as template, the trkB gene was amplified by reverse-transcription-polymerase chain reaction (RT-PCR) with a pair of specific primers which contained the restrictive sites of EcoR I and BamH I. The amplified fragment of trkB gene was digested with EcoR I and BamH I, and then subcloned into cloning vector pMD18-T and expression vector pEGFP-C2 respectively. The recombinant plasmids were identified by restriction endonuclease enzyme analysis and PCR. Results: The amplified DNA fragment was about 1461 bp in length. Enzyme digestion and PCR analysis showed that the gene of trkB had been successfully cloned into vector pMD18-T and pEGFP-C2. Conclusions: The trkB gene of rat has been amplified and cloned into the eukaryotic expression vector pEGFP-C2.

  17. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain.

    Science.gov (United States)

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2012-07-01

    The GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats. The data were analyzed and region of interest analyses were applied to validate the voxel-wise approach. We observed decreased [(11)C]-flumazenil binding in the aged rat brains in comparison with the young control group. More specifically, clusters of reduced radioligand uptake were detected in the bilateral hippocampus, cerebellum, midbrain, and bilateral frontal and parieto-occipital cortex. Our results support the pertinence of voxel-wise quantification in the analysis of microPET data. Moreover, these findings indicate that the aging process involves declines in neural BDZ recognition site availability, proposed to reflect alterations in GABA(A) receptor subunit polypeptide expression.

  18. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury.

    Science.gov (United States)

    Liu, Gaoxiang; Ni, Jie; Mao, Lei; Yan, Ming; Pang, Tao; Liao, Hong

    2015-11-19

    As the receptor of myelin associated inhibitory factors Nogo receptor 1 (NgR1) plays an important role in central nervous system (CNS) injury and regeneration. It is found that NgR1 complex acts in neurons to transduce the signals intracelluarly including induction of growth cone collapse, inhibition of axonal regeneration and regulation of nerve inflammation. In recent studies, NgR1 has also been found to be expressed in the microglia. However, NgR1 expressed in microglia in the developing nervous systems and following CNS injury have not been widely investigated. In this study, we detected the expression and cellular localization of NgR1 in microglia during development and following traumatic brain injury (TBI) in mice. The results showed that NgR1 was mainly expressed in microglia during embryonic and postnatal periods. The expression levels peaked at P4 and decreased thereafter into adulthood, while increased significantly with aging representatively at 17 mo. On the other hand, there was no significant difference in the number of double positive NgR1(+)Iba1(+) cells between normal and TBI group. In summary, we first detected the expression of NgR1 in microglia during development and found that NgR1 protein expression increased significantly in microglia with aging. These findings will contribute to make a foundation for subsequent study about the role of NgR1 expressed in microglia on the CNS disorders.

  19. Aluminum access to the brain: A role for transferrin and its receptor

    Energy Technology Data Exchange (ETDEWEB)

    Roskams, A.J.; Connor, J.R. (Pennsylvania State Univ., Hershey (United States))

    1990-11-01

    The toxicity of aluminum in plant and animal cell biology is well established, although poorly understood. Several recent studies have identified aluminum as a potential, although highly controversial, contributory factor in the pathology of Alzheimer's disease, amyotrophic lateral sclerosis, and dialysis dementia. For example, aluminum has been found in high concentrations in senile plaques and neurofibrillary tangles, which occur in the brains of subjects with Alzheimer's disease. However, a mechanism for the entry of aluminum (Al{sup 3+}) into the cells of the central nervous system (CNS) has yet to be found. Here the authors describe a possible route of entry for aluminum into the cells of the CNS via the same high-affinity receptor-ligand system that has been postulated for iron (Fe{sup 3}) aluminum is able to gain access to the central nervous system under normal physiological conditions. Furthermore, these data suggest that the interaction between transferrin and its receptor may function as a general metal ion regulatory system in the CNS, extending beyond its postulated role in iron regulation.

  20. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. PMID:27018328

  1. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

    Science.gov (United States)

    Onaivi, Emmanuel S

    2009-01-01

    Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the

  2. Increased expression of receptor for advanced glycation end-products worsens focal brain ischemia in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Jinting He; Weidong Yu; Lingling Hou; Jiajun Chen

    2012-01-01

    A rat model of diabetes mellitus was induced by a high fat diet, followed by focal brain ischemia induced using the thread method after 0.5 month. Immunohistochemistry showed that expression of receptor for advanced glycation end-products was higher in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Western blot assay revealed increased phosphorylated c-Jun N-terminal kinase expression, and unchanged phosphorylated extracellular signal-regulated protein kinase protein expression in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Additionally, phosphorylated p38 mitogen-activated protein kinase protein was not detected in any rats in the two groups. Severity of limb hemiplegia was worse in diabetic rats with brain ischemia compared with ischemia alone rats. The results suggest that increased expression of receptor for advanced glycation end-products can further activate the c-Jun N-terminal kinase pathway in mitogen-activated protein kinase, thereby worsening brain injury associated with focal brain ischemia in diabetic rats.

  3. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    Science.gov (United States)

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  4. Antibodies to the α1-adrenergic receptor cause vascular impairments in rat brain as demonstrated by magnetic resonance angiography.

    Directory of Open Access Journals (Sweden)

    Peter Karczewski

    Full Text Available BACKGROUND: Circulating agonistic autoantibodies acting at G protein-coupled receptors have been associated with numerous sever pathologies in humans. Antibodies directed predominantly against the α(1-adrenergig receptor were detected in patients suffering from widespread diseases such as hypertension and type 2 diabetes. Their deleterious action has been demonstrated for peripheral organs. We postulate that antibodies to the α(1-adrenergig receptor are relevant pathomolecules in diseases of the central nervous system associated with vascular impairments. METHODOLOGY/PRINCIPAL FINDINGS: Using a rat model we studied the long-term action of antibodies against the α(1-adrenergig receptor either induced by immunization with a receptor peptide or applied by intravenous injection. The vasculature in the rat brains was investigated by time-of-flight magnetic resonance angiography using a 9.4 Tesla small animal MR imaging system. Visual examination of maximum-intensity-projections (MIPs of brain angiographs revealed the development of vascular defects in antibody- exposed animals between three and eight months of treatment. Relative vascular areas were derived from representative MIP image sections by grayscale analysis and used to form an index of vascular circulation. Animals exposed to the action of α(1-adrenergig receptor antibodies showed significantly reduced vascular areas (p<0.05. Calculated index values indicated attenuated blood flow in both antibody-treated cohorts compared to their respective controls reaching with (relative units ± standard error, n = 10 0.839 ± 0.026 versus 0.919 ± 0.026 statistical significance (p<0.05 for peptide-immunized rats. CONCLUSION/SIGNIFICANCE: We present evidence that antibodies to the α(1-adrenergig receptor cause cerebrovascular impairments in the rat. Our findings suggest the pathological significance of these antibodies in pathologies of the human central nervous system linked to impairments of

  5. Metabolism of [123I]epidepride may affect brain dopamine D2 receptor imaging with single-photon emission tomography

    International Nuclear Information System (INIS)

    Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D2 receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [123I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D2 receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=-0.58, P2 receptors with SPET using [123I]epidepride. (orig.)

  6. Temporal expression of transporters and receptors in a rat primary co-culture blood-brain barrier model.

    Science.gov (United States)

    Liu, Houfu; Li, Yang; Lu, Sijie; Wu, Yiwen; Sahi, Jasminder

    2014-10-01

    1. The more relevant primary co-cultures of brain microvessel endothelial cells and astrocytes (BMEC) are less utilized for screening of potential CNS uptake when compared to intestinal and renal cell lines. 2. In this study, we characterized the temporal mRNA expression of major CNS transporters and receptors, including the transporter regulators Pxr, Ahr and Car in a rat BMEC co-cultured model. Permeability was compared with the Madin-Darby canine kidney (MDCKII)-MDR1 cell line and rat brain in situ perfusion model. 3. Our data demonstrated differential changes in expression of individual transporters and receptors over the culture period. Expression of ATP-binding cassette transporters was better retained than that of solute carrier transporters. The insulin receptor (IR) was best maintained among investigated receptors. AhR demonstrated high mRNA expression in rat brain capillaries and expression was better retained than Pxr or Car in culture. Mdr1b expression was up-regulated during primary culture, albeit Mdr1a mRNA levels were much higher. P-gp and Bcrp-1 were highly expressed and functional in this in vitro system. 4. Permeability measurements with 18 CNS marketed drugs demonstrated weak correlation between rBMEC model and rat in situ permeability and moderate correlation with MDCKII-MDR1 cells. 5. We have provided appropriate methodologies, as well as detailed and quantitative characterization data to facilitate improved understanding and rational use of this in vitro rat BBB model. PMID:24827375

  7. Prostaglandin E2 EP2 Receptor Deletion Attenuates Intracerebral Hemorrhage-Induced Brain Injury and Improves Functional Recovery

    Directory of Open Access Journals (Sweden)

    Jenna L. Leclerc

    2015-04-01

    Full Text Available Intracerebral hemorrhage (ICH is a devastating type of stroke characterized by bleeding into the brain parenchyma and secondary brain injury resulting from strong neuroinflammatory responses to blood components. Production of prostaglandin E2 (PGE2 is significantly upregulated following ICH and contributes to this inflammatory response in part through its E prostanoid receptor subtype 2 (EP2. Signaling through the EP2 receptor has been shown to affect outcomes of many acute and chronic neurological disorders; although, not yet explored in the context of ICH. Wildtype (WT and EP2 receptor knockout (EP2−/− mice were subjected to ICH, and various anatomical and functional outcomes were assessed by histology and neurobehavioral testing, respectively. When compared with age-matched WT controls, EP2−/− mice had 41.9 ± 4.7% smaller ICH-induced brain lesions and displayed significantly less ipsilateral hemispheric enlargement and incidence of intraventricular hemorrhage. Anatomical outcomes correlated with improved functional recovery as identified by neurological deficit scoring. Histological staining was performed to begin investigating the mechanisms involved in EP2-mediated neurotoxicity after ICH. EP2−/− mice exhibited 45.5 ± 5.8% and 41.4 ± 8.1% less blood and ferric iron accumulation, respectively. Furthermore, significantly less striatal and cortical microgliosis, striatal and cortical astrogliosis, blood–brain barrier breakdown, and peripheral neutrophil infiltration were seen in EP2−/− mice. This study is the first to suggest a deleterious role for the PGE2-EP2 signaling axis in modulating brain injury, inflammation, and functional recovery following ICH. Targeting the EP2 G protein-coupled receptor may represent a new therapeutic avenue for the treatment of hemorrhagic stroke.

  8. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2 and dopamine transporter (DAT densities in aged human brain.

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    Full Text Available The dopamine D(1, D(2, D(3 receptors, vesicular monoamine transporter type-2 (VMAT2, and dopamine transporter (DAT densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years by quantitative autoradiography. The density of D(1 receptors, VMAT2, and DAT was measured using [(3H]SCH23390, [(3H]dihydrotetrabenazine, and [(3H]WIN35428, respectively. The density of D(2 and D(3 receptors was calculated using the D(3-preferring radioligand, [(3H]WC-10 and the D(2-preferring radioligand [(3H]raclopride using a mathematical model developed previously by our group. Dopamine D(1, D(2, and D(3 receptors are extensively distributed throughout striatum; the highest density of D(3 receptors occurred in the nucleus accumbens (NAc. The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3 receptor density exceeded D(2 receptor densities in extrastriatal regions, and thalamus contained a high level of D(3 receptors with negligible D(2 receptors. The density of dopamine D(1 linearly correlated with D(3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1 and D(2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3 and D(2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2 or D(3 receptors.

  9. Androgen receptors in brain and pituitary of female rats: cyclic changes and comparisons with the male.

    Science.gov (United States)

    Handa, R J; Reid, D L; Resko, J A

    1986-03-01

    The in vitro binding of a synthetic androgen, methyltrienolone ([3H]-R1881), to brain and pituitary (PIT) cytosol and nuclear extracts was determined in male and female rats. Purified cytosol was prepared from PIT or hypothalamic-preoptic area-amygdala (HPA) and incubated in the presence of 0.1 to 10 nM [3H]-R1881. Scatchard analysis revealed the presence of a single, saturable, high-affinity binding site in PIT cytosol with a dissociation constant (Kd) of 0.42 X 10(-10) M in females and 0.95 X 10(-10) M in intact males. The Kd of HPA cytosol was much less in castrated males [0.47 +/- 0.05 (SEM) X 10(-10)M, n = 7] and females (0.63 +/- 0.1 X 10(-10) M, n = 4) than in intact males (5.8 +/- 1.1 X 10(-10) M, n = 8). Treatment of castrated males with dihydrotestosterone (DHT) for 24 h (250 micrograms/100 g of body weight) increased the Kd of HPA cytosol only slightly (1.6 X 10(-10) M, mean of two replicates). Scatchard analysis of salt-extracted nuclear androgen receptor (ARn) showed a single, high-affinity binding site with similar Kd values in PIT and HPA of intact and castrated, DHT-treated male rats (PIT Kd = 7.3 X 10(-10) M, 9.3 X 10(-10) M; HPA Kd = 1.5 X 10(-9) M, 1.3 X 10(-9) M, respectively). Competition studies involving a range of several radioinert steroids revealed that the binding of [3H]-R1881 to cytosol (ARc) and nuclear extract was specific for androgen receptor when triamcinolone acetonide (10 microM) was added. The ARc and ARn levels were quantified in PIT, preoptic area (POA), hypothalamus (HT), amygdala, hippocampus, and cortex by single point estimation. Significantly (p less than 0.01) greater amounts of ARc were detected in PIT of ovariectomized females (32.7 +/- 2.9 fmol/mg of protein) than in that of orchidectomized males (22.33 +/- 1.6 fmol/mg of protein). The highest levels in the brain were seen in HT and POA. Pituitary ARc in females varied throughout the estrous cycle. Significantly (p less than 0.01) greater amounts were detected on

  10. Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade.

    Directory of Open Access Journals (Sweden)

    Tomi Rantamäki

    Full Text Available BACKGROUND: Antidepressant drugs (ADs have been shown to activate BDNF (brain-derived neurotrophic factor receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. METHODOLOGY: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. PRINCIPAL FINDINGS: Using a chemical-genetic TrkB(F616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf⁻/⁻ knock-out mice (132.4±8.5% of control; P = 0.01, indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. CONCLUSIONS: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the

  11. Indices of brain beta-adrenergic receptor signal transduction in the learned helplessness animal model of depression.

    Science.gov (United States)

    Gurguis, G N; Kramer, G; Petty, F

    1996-01-01

    Both stress response and antidepressant drug action may be mediated by beta-adrenergic receptors (beta AR). Since learned helplessness is a stress-induced animal model of depression, beta AR are relevant to investigate in this model. To date, studies have measured changes in total receptor density (RT), but have not examined more detailed aspects of signal transduction mechanisms such as coupling of the receptor to GS protein. We have investigated brain beta AR coupling in the frontal cortex, hippocampus and hypothalamus of rats exposed to inescapable shock and then tested for learned helplessness, and in both tested and naive controls using [125I]-iodocyanopindolol (ICYP) as the ligand. Both antagonist-saturation and agonist-displacement experiments were conducted, and the specificity for the beta AR was optimized by excluding ICYP binding to 5HT1B receptors. The percentage receptor density in the high-conformational state (%RH) and the ratio of agonist (isoproterenol) dissociation constant from the receptor in the low-/high-conformational states (KL/KH) were used as indices of coupling to GS protein. No significant differences were found between rats developing learned helplessness and non-helpless rats after inescapable stress in any parameter measured in any brain region. In the frontal cortex, exposure to inescapable shock induced beta AR uncoupling from GS protein as suggested by a low KL/KH ratio both in helpless and non-helpless rats but not in either control group. In the hypothalamus, there were trends for higher RL, RT and KL/KH ratio in helpless rats and stressed controls compared to naive controls. These findings suggest that beta AR binding parameters in frontal cortex, hippocampus or hypothalamus did not differentiate between helpless and non-helpless rats. Changes in beta AR coupling observed in these brain regions may reflect effects of stress, which appeared to be region-specific, rather than stress-induced behavioral depression.

  12. Cysteamine-induced depletion of brain somatostatin is associated with up-regulation of cerebrocortical somatostatin receptors

    International Nuclear Information System (INIS)

    Cysteamine (CSH) administered as a single sc injection to rats produced rapid depletion of cerebrocortical Somatostatin-14 like immunoreactivity (S-14 LI) with a significant 48% reduction occurring within 5 min and maximum (72%) decrease at 4 h. The depletion of S-14 LI was associated with a 1.7 fold increase in Bmax of the cerebrocortical S-14 receptors 5 min after CSH administration and a concomitant but slower increase in the affinity of these receptors. Incubation of intact synaptosomes with 1 mM CSH at 37 C in vitro for 60 min also caused a rapid depletion of S-14 LI, but there was no change in the Bmax or Kd of the S-14 receptors for up to 30 min beyond which time a 2.8-fold decrease in the affinity of S-14 receptors was observed. Higher concentrations of CSH (greater than or equal to 10 mM) added during the incubation of synaptosomes in vitro completely abolished the specific binding of these receptors. The pituitary S-14 receptors were studied 30 min after CSH administration and unlike the cerebrocortical S-14 receptors at this time did not exhibit any change in Bmax or affinity. When added at the time of the binding assay CSH (1 mM) was without a direct effect on cerebrocortical as well as pituitary membrane S-14 receptors. Furthermore, addition of CSH at the time of binding assay did not destroy the integrity of [125I-Tyr11]S-14. It is concluded that administration of CSH to rats in vivo depletes brain S-14 LI and up-regulates synaptosomal S-14 receptors. Exposure of synaptosomes to CSH in vitro for 30 min also depletes S-14 LI but has no effect on S-14 receptors. CSH has a direct inhibitory effect on S-14 receptor binding after prolonged in vitro incubation. Pituitary S-14 receptors unlike those in the brain are unaffected by S-14 LI depletion at least acutely

  13. Technetium 99 m spiperone dithiocarbamate study as a potential agent for brain pathologies diagnosis related to D 2 dopamine receptors

    International Nuclear Information System (INIS)

    Psycho-pharmacology has been discovering much about the D 2 dopamine receptors and their interrelationship to brain pathologies such as Parkinson's Disease, Schizophrenia and Huntington Disease. Those biological receptors have got affinity with dopamine endogenous agent, so that they complex and, in non pathological individuals, the biological receptors contribute to bring the levels of dopamine and free acetylcholine into equilibrium. The D 2 antagonistic psychotropic agents because of having got strong affinity with those receptors, have been being transformed into radiopharmaceuticals to diagnose these pathological disease of Central Nervous System. The Spiperone Dithiocarbamate complex studied by us, is a potential diagnosis agent because of being highly lipo-soluble and having close relationship with D 2 receptors. Besides, it is a photon emitter, allowing the use of SPECT (Single Photon Emission Computed Tomography) technique which is economically less expensive if compared to the PET (Positron Emission Tomography) technique. The Spiperone Dithiocarbamate (SPDC) is synthesized from Spiperone and its complexation with Technetium-99 m has been prepared with its reaction parameters after being studied and improved. The SPDC-99m Tc complex biological distribution have made in Wistar rats and the uptake of spleen, heart, liver stomach, lung, kidney, blood, intestine and brain have been resolved. The plasmatic clearance curve has been based on Wistar rats data and the know-how of the kit (for label SPDC with Tc) has been achieved. (author). 5 figs, 4 tabs

  14. Protein kinase C inhibition attenuates vascular ETB receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Directory of Open Access Journals (Sweden)

    Vikman Petter

    2007-01-01

    Full Text Available Abstract Background Protein kinase C (PKC is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. Results At 24 hours after transient middle cerebral artery occlusion (MCAO, the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. Conclusion The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia.

  15. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  16. Widespread Expression of Erythropoietin Receptor in Brain and Its Induction by Injury

    Science.gov (United States)

    Ott, Christoph; Martens, Henrik; Hassouna, Imam; Oliveira, Bárbara; Erck, Christian; Zafeiriou, Maria-Patapia; Peteri, Ulla-Kaisa; Hesse, Dörte; Gerhart, Simone; Altas, Bekir; Kolbow, Tekla; Stadler, Herbert; Kawabe, Hiroshi; Zimmermann, Wolfram-Hubertus; Nave, Klaus-Armin; Schulz-Schaeffer, Walter; Jahn, Olaf; Ehrenreich, Hannelore

    2015-01-01

    Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury. PMID:26349059

  17. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse

    Directory of Open Access Journals (Sweden)

    Jeff Sanders

    2016-06-01

    Full Text Available The α2-adrenergic receptor (α2-AR is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C. In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1].

  18. Brain interleukin-1β and the intrinsic receptor antagonist control peripheral Toll-like receptor 3-mediated suppression of spontaneous activity in rats.

    Directory of Open Access Journals (Sweden)

    Masanori Yamato

    Full Text Available During acute viral infections such as influenza, humans often experience not only transient fever, but also prolonged fatigue or depressive feelings with a decrease in social activity for days or weeks. These feelings are thought to be due to neuroinflammation in the brain. Recent studies have suggested that chronic neuroinflammation is a precipitating event of various neurological disorders, but the mechanism determining the duration of neuroinflammation has not been elucidated. In this study, neuroinflammation was induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C, a Toll-like receptor-3 agonist that mimics viral infection in male Sprague-Dawley rats, and then investigated how the neuroinflammation shift from acute to the chronic state. The rats showed transient fever and prolonged suppression of spontaneous activity for several days following poly I:C injection. NS-398, a cyclooxygenase-2 inhibitor, completely prevented fever, but did not improve spontaneous activity, indicating that suppression of spontaneous activity was not induced by the arachidonate cascade that generated the fever. The animals overexpressed interleukin (IL-1β and IL-1 receptor antagonist (IL-1ra in the brain including the cerebral cortex. Blocking the IL-1 receptor in the brain by intracerebroventricular (i.c.v. infusion of recombinant IL-1ra completely blocked the poly I:C-induced suppression of spontaneous activity and attenuated amplification of brain interferon (IFN-α expression, which has been reported to produce fatigue-like behavior by suppressing the serotonergic system. Furthermore, i.c.v. infusion of neutralizing antibody for IL-1ra prolonged recovery from suppression of spontaneous activity. Our findings indicated that IL-1β is the key trigger of neuroinflammation and that IL-1ra prevents the neuroinflammation entering the chronic state.

  19. Altered expression of metabotropic glutamate receptor 1 alpha after acute diffuse brain injury Effect of the competitive antagonist 1-aminoindan-1, 5-dicarboxylic acid

    Institute of Scientific and Technical Information of China (English)

    Fei Cao; Mantao Chen; Gu Li; Ke Ye; Xin Huang; Xiujue Zheng

    2012-01-01

    The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor 1α mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor 1α, (RS)-1-aminoindan-1, 5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.

  20. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration

    Science.gov (United States)

    Burk, Raymond F.; Hill, Kristina E.; Motley, Amy K.; Winfrey, Virginia P.; Kurokawa, Suguru; Mitchell, Stuart L.; Zhang, Wanqi

    2014-01-01

    Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1−/− or apoER2−/− mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.—Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. PMID:24760755

  1. Localization of dopamine receptors in the tree shrew brain using [3H]-SCH23390 and [125I]-epidepride.

    Science.gov (United States)

    Mijnster, M J; Isovich, E; Flügge, G; Fuchs, E

    1999-09-11

    The tree shrew is a mammalian species, which is phylogenetically related to insectivores and primates. The aim of the present study was to investigate the distribution of dopamine receptor D1- and D2-like binding sites in the brain of this non-rodent, non-primate mammal. Using in vitro autoradiography and employing the radioligands [3H]-SCH23390 and [125I]-epidepride, dopamine receptors were mapped and quantified. Significant findings with regard to the D1-like binding pattern include the presence of a "patchy" binding in the striatum. In the cortex, D1-like binding sites were observed in both the superficial and the deep layers. In the hippocampal formation, D1-like binding sites were seen primarily in the CAI region and not in the dentate gyrus. These characteristics of the D1 pattern in the tree shrew brain are shared by cat and monkey and human brain, but not by rodent brain. Significant findings with regard to the D2-like binding pattern include the presence of D2-like binding in the claustrum. In addition, the striatum demonstrated "patchy" D2-like binding. These characteristics of the D2 pattern in the tree shrew brain are shared by cat and monkey and human brain, but not by rodent brain. On the other hand, the significant densities of D2-like binding sites in the glomerular layer of the tree shrew olfactory bulb is a finding that discriminates tree shrews from higher evolutionary species who lack such binding. Overall, the evidence coincides with the view that tree shrews are phylogenetically related to primates. PMID:10546993

  2. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.; Meyers, K.M.; Szot, P.; Miller, M.A.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /sup 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.

  3. Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: Effects of aging and prolonged depletion of ovarian hormones

    OpenAIRE

    Barreto, G.; Santos-Galindo, M.; Diz-Chaves, Yolanda; Pernía, Olga; Carrero, P; Azcoitia, I.; Garcia-Segura, Luis M.

    2009-01-01

    After brain injury, astrocytes acquire a reactive phenotype characterized by a series of morphological and molecular modifications, including the expression of the cytoskeletal protein vimentin. Previous studies have shown that estradiol down-regulates reactive astrogliosis. In this study we assessed whether raloxifene and tamoxifen, two selective estrogen receptor modulators, have effects similar to estradiol in astrocytes. We also assessed whether aging and the timing of estrogenic therapy ...

  4. A High Soy Diet Enhances Neurotropin Receptor and Bcl-XL Gene Expression in the Brains of Ovariectomized Female Rats

    OpenAIRE

    Lovekamp-Swan, Tara; Glendenning, Michele L.; Schreihofer, Derek A.

    2007-01-01

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen’s benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expre...

  5. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  6. BLOCKADE OF BRAIN ANGIOTENSIN II AT1 RECEPTORS AMELIORATES STRESS, ANXIETY, BRAIN INFLAMMATION AND ISCHEMIA: THERAPEUTIC IMPLICATIONS

    OpenAIRE

    Saavedra, Juan M.; Sánchez-Lemus, Enrique; BENICKY, Julius

    2010-01-01

    Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of...

  7. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Gee, K W; Paule, M G; Brown, R M; Slikker, W

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects. Results from these experiments suggest that chronic exposure to THC does not produce significant alterations in catecholamine or indoleamine neurotransmitter systems or in opiate or GABA receptor systems in the rat brain.

  8. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  9. SPECT imaging of dopamine receptors with [123I]epidepride: characterization of uptake in the human brain

    International Nuclear Information System (INIS)

    Summary. [123I]Epidepride is a new ligand for single photon emission computerized tomography (SPECT) that specifically labels D2-like dopamine receptors with very high affinity. Here, we report on the regional kinetic uptake of [123I]epidepride in the brain of 4 normal volunteers and 3 patients with choreatic movement disorders. In healthy subjects striatal activity peaked at 2.5 hours after injection of the tracer and decreased slowly thereafter. There were no significant differences between left and right brain hemispheres. Activity above background was also measurable in areas corresponding to the thalamus, temporal cortex and frontal cortex. The striatal to cerebellar ratio was about 14 after 2.5 hours and this ratio steadily increased with time. The striatal to cerebellar ratio was clearly reduced in all 3 patients with choreatic movement disorders (from about 14 in control subjects after 2.5 hours to about 7 in choreatic patients). [123I]Epidepride may be a useful SPECT ligand for studying D2 receptors in the living human brain because of its high target to background ratio, its high affinity and the possibility to investigate extrastriatal D2 receptors. (author)

  10. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    Science.gov (United States)

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  11. Immunorecognition of estrogen and androgen receptors in the brain and thoracic ganglion mass of mud crab, Scylla paramamosain

    Institute of Scientific and Technical Information of China (English)

    Haihui Ye; Huiyang Huang; Shaojing Li; Guizhong Wang

    2008-01-01

    The brain and the thoracic ganglion of a crustacean can synthesize and secrete gonad-stimulating hormone (GSH) which stimulates the maturation of gonad. In the previous experiments, sex steroid hormones (estradiol, testosterone, progesterone, etc.) have been detected from the crustacean. However, the feedback regulation of sex steroid hormones on the brain and the thoracic ganglion of the crustacean has not been reported so far. In the present experiment, monoclonal antibodies were applied to investigate the immunorecognition of estrogen receptor (ER) and androgen receptor (AR) in the brain and the thoracic ganglion mass of Scylla paramamosain. The results showed that the distribution of the immunopositive substances of ER and AR was extremely similar. They distributed in the protocerebrum, deutocerebrum and tritocerebrum of the brain, and mainly in protocerebrum. In the thoracic ganglion mass, immunopositive substances distributed in the subesophageal ganglion, thoracic ganglion and abdominal ganglion, and mostly in subesophageal ganglion. Immunopositive substances of ER and AR mostly existed in the cytoplasm of neurons. The present study will provide morphological evidence for the origin and the evolution of ER and AR. In addition, the immunoreactivities of ER and AR suggested that the estrogen and androgen may be involved in the feedback regulation of crustacean neuroendocrine.

  12. Expression and distribution of the glucocorticoid receptor DlGR1 in the teleost Dicentrarchus labrax brain

    Directory of Open Access Journals (Sweden)

    Nicolò Parrinello

    2010-01-01

    Full Text Available Cortisol is the main corticosteroid secreted by the interrenal cells of the head kidney and it exerts a role in mantaining the omeostatic status in fish. In teleosts its effects are mediated through intracellular receptors expressed in several tissues, that are ligand-dependent transcription factors by binding to specific tissue DNA sequences. In Dicentrarchus labrax we previously cloned and sequenced a glucocorticoid receptor, DlGR1, isolated from leukocytes of peritoneal cavity. In this work we showed mRNA expression and tissue immunohistochemical localization of brain DlGR1 by in situ hybridization assays, with a riboprobe with DlGR1 cDNA trascriptional activation domain, and by immunohistochemical methods, using a specific antibody for a selected sequence of the receptor tran- scriptional domain. The mRNA and the protein are expressed in pyramidal cells of the optic lobe and in the small globular neurons of the diencephalon.

  13. Metabolism of [123I]epidepride may affect brain dopamine D2 receptor imaging with single-photon emission tomography.

    Science.gov (United States)

    Bergström, K A; Yu, M; Kuikka, J T; Akerman, K K; Hiltunen, J; Lehtonen, J; Halldin, C; Tiihonen, J

    2000-02-01

    Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D2 receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [123I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D2 receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=-0.58, Pepidepride. PMID:10755727

  14. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules.

    Science.gov (United States)

    Stanić, Davor; Mulder, Jan; Watanabe, Masahiko; Hökfelt, Tomas

    2011-05-01

    Neuropeptide Y (NPY) is widely expressed in the brain and its biological effects are mediated through a variety of receptors. We examined, using immunohistochemistry, expression of the Y2 receptor (R) protein in the adult mouse brain and its association with NPY and the Y1R, as well as a range of additional neurotransmitters and signaling-related molecules, which previously have not been defined. Our main focus was on the hippocampal formation (HiFo), amygdaloid complex, and hypothalamus, considering the known functions of NPY and the wide expression of NPY, Y1R, and Y2R in these regions. Y2R-like immunoreactivity (-LI) was distributed in nerve fibers/terminal endings throughout the brain axis, without apparent colocalization with NPY or the Y1R. Occasional coexistence between NPY- and Y1R-LI was found in the HiFo. Following colchicine treatment, Y2R-LI accumulated in cell bodies that coexpressed γ-aminobutyric acid (GABA) in a population of cells in the amygdaloid complex and lateral septal nucleus, but not in the HiFo. Instead, Y2R-positive nerve terminals appeared to surround GABA-immunoreactive (ir) cells in the HiFo and other neuronal populations, e.g., NPY-ir cells in HiFo and tyrosine hydroxylase-ir cells in the hypothalamus. In the HiFo, Y2R-ir mossy fibers coexpressed GABA, glutamic acid decarboxylase 67 and calbindin, and Y2R-LI was found in the same fibers that contained the presynaptic metabotropic glutamate receptor 2, but not together with any of the three vesicular glutamate transporters. Our findings provide further support that Y2R is mostly presynaptic, and that Y2Rs thus have a modulatory role in mediating presynaptic neurotransmitter release.

  15. Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression

    Directory of Open Access Journals (Sweden)

    Madrigal José LM

    2011-11-01

    Full Text Available Abstract Background There is a pressing need to identify novel pathophysiological pathways relevant to depression that can help to reveal targets for the development of new medications. Toll-like receptor 4 (TLR-4 has a regulatory role in the brain's response to stress. Psychological stress may compromise the intestinal barrier, and increased gastrointestinal permeability with translocation of lipopolysaccharide (LPS from Gram-negative bacteria may play a role in the pathophysiology of major depression. Methods Adult male Sprague-Dawley rats were subjected to chronic mild stress (CMS or CMS+intestinal antibiotic decontamination (CMS+ATB protocols. Levels of components of the TLR-4 signaling pathway, of LPS and of different inflammatory, oxidative/nitrosative and anti-inflammatory mediators were measured by RT-PCR, western blot and/or ELISA in brain prefrontal cortex. Behavioral despair was studied using Porsolt's test. Results CMS increased levels of TLR-4 and its co-receptor MD-2 in brain as well as LPS and LPS-binding protein in plasma. In addition, CMS also increased interleukin (IL-1β, COX-2, PGE2 and lipid peroxidation levels and reduced levels of the anti-inflammatory prostaglandin 15d-PGJ2 in brain tissue. Intestinal decontamination reduced brain levels of the pro-inflammatory parameters and increased 15d-PGJ2, however this did not affect depressive-like behavior induced by CMS. Conclusions Our results suggest that LPS from bacterial translocation is responsible, at least in part, for the TLR-4 activation found in brain after CMS, which leads to release of inflammatory mediators in the CNS. The use of Gram-negative antibiotics offers a potential therapeutic approach for the adjuvant treatment of depression.

  16. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [¹¹C]GR205171.

    Science.gov (United States)

    Engman, Jonas; Åhs, Fredrik; Furmark, Tomas; Linnman, Clas; Pissiota, Anna; Appel, Lieuwe; Frans, Örjan; Långström, Bengt; Fredrikson, Mats

    2012-08-01

    The substance P/neurokinin 1 (SP/NK1) system has been implicated in the processing of negative affect. Its role seems complex and findings from animal studies have not been easily translated to humans. Brain imaging studies on NK1 receptor distribution in humans have revealed an abundance of receptors in cortical, striatal and subcortical areas, including the amygdala. A reduction in NK1 receptors with increasing age has been reported in frontal, temporal, and parietal cortices, as well as in hippocampal areas. Also, a previous study suggests sex differences in cortical and subcortical areas, with women displaying fewer NK1 receptors. The present PET study explored NK1 receptor availability in men (n=9) and women (n=9) matched for age varying between 20 and 50years using the highly specific NK1 receptor antagonist [¹¹C]GR205171 and a reference tissue model with cerebellum as the reference region. Age by sex interactions in the amygdala and the temporal cortex reflected a lower NK1 receptor availability with increasing age in men, but not in women. A general age-related decline in NK1 receptor availability was evident in the frontal, temporal, and occipital cortices, as well as in the brainstem, caudate nucleus, and thalamus. Women had lower NK1 receptor availability in the thalamus. The observed pattern of NK1 receptor distribution in the brain might have functional significance for brain-related disorders showing age- and sex-related differences in prevalence. PMID:22225860

  17. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine.

    Science.gov (United States)

    Savignac, Helene M; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P E; Tzortzis, George; Burnet, Philip W J

    2013-12-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and

  18. Prevention of Escherichia coli K1 Penetration of the Blood-Brain Barrier by Counteracting the Host Cell Receptor and Signaling Molecule Involved in E. coli Invasion of Human Brain Microvascular Endothelial Cells▿

    OpenAIRE

    Zhu, Longkun; Pearce, Donna; Kim, Kwang Sik

    2010-01-01

    Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interacti...

  19. Selective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging

    OpenAIRE

    Magnusson, Kathy R.; Brenna L Brim; Das, Siba R.

    2010-01-01

    N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within differe...

  20. Tumor necrosis factor receptor superfamily member 9 is upregulated in the endothelium and tumor cells in melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Patrick N Harter

    2014-12-01

    Full Text Available Aim: The cytokine receptor tumor necrosis factor receptor superfamily member 9 (TNFRSF9 is mainly considered to be a co-stimulatory activation marker in hematopoietic cells. Several preclinical models have shown a dramatic beneficial effect of treatment approaches targeting TNFRSF9 with agonistic antibodies. However, preliminary clinical phase I/II studies were stopped after the occurrence of several severe deleterious side effects. In a previous study, it was demonstrated that TNFRSF9 was strongly expressed by reactive astrocytes in primary central nervous system (CNS tumors, but was largely absent from tumor or inflammatory cells. The aim of the present study was to address the cellular source of TNFRSF9 expression in the setting of human melanoma brain metastasis, a highly immunogenic tumor with a prominent tropism to the CNS. Methods: Melanoma brain metastasis was analyzed in a cohort of 78 patients by immunohistochemistry for TNFRSF9 and its expression was correlated with clinicopathological parameters including sex, age, survival, tumor size, number of tumor spots, and BRAF V600E expression status. Results: Tumor necrosis factor receptor superfamily member 9 was frequently expressed independently on both melanoma and endothelial cells. In addition, TNFRSF9 was also present on smooth muscle cells of larger vessels and on a subset of lymphomonocytic tumor infiltrates. No association between TNFRSF9 expression and patient survival or other clinicopathological parameters was seen. Of note, several cases showed a gradual increase in TNFRSF9 expression on tumor cells with increasing distance from blood vessels, an observation that might be linked to hypoxia-driven TNFRSF9 expression in tumor cells. Conclusion: The findings indicate that the cellular source of TNFRSF9 in melanoma brain metastasis largely exceeds the lymphomonocytic pool, and therefore further careful (re- assessment of potential TNFRSF9 functions in cell types other than

  1. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia

    Science.gov (United States)

    Matsumoto, Mitsuyuki; Straub, Richard E.; Marenco, Stefano; Nicodemus, Kristin K.; Matsumoto, Shun-ichiro; Fujikawa, Akihiko; Miyoshi, Sosuke; Shobo, Miwako; Takahashi, Shinji; Yarimizu, Junko; Yuri, Masatoshi; Hiramoto, Masashi; Morita, Shuji; Yokota, Hiroyuki; Sasayama, Takeshi; Terai, Kazuhiro; Yoshino, Masayasu; Miyake, Akira; Callicott, Joseph H.; Egan, Michael F.; Meyer-Lindenberg, Andreas; Kempf, Lucas; Honea, Robyn; Vakkalanka, Radha Krishna; Takasaki, Jun; Kamohara, Masazumi; Soga, Takatoshi; Hiyama, Hideki; Ishii, Hiroyuki; Matsuo, Ayako; Nishimura, Shintaro; Matsuoka, Nobuya; Kobori, Masato; Matsushime, Hitoshi; Katoh, Masao; Furuichi, Kiyoshi; Weinberger, Daniel R.

    2008-01-01

    The G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3′ UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy. PMID:18413613

  2. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  3. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  4. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [{sup 18}F]FITM

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tomoteru [National Institute of Radiological Sciences, Molecular Imaging Centre, Chiba (Japan); Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai (Japan); Fujinaga, Masayuki; Maeda, Jun; Kawamura, Kazunori; Yui, Joji; Hatori, Akiko; Nagai, Yuji; Tokunaga, Masaki; Higuchi, Makoto; Suhara, Tetsuya; Fukumura, Toshimitsu [National Institute of Radiological Sciences, Molecular Imaging Centre, Chiba (Japan); Yoshida, Yuichiro [SHI Accelerator Service Co. Ltd., Tokyo (Japan); Zhang, Ming-Rong [National Institute of Radiological Sciences, Molecular Imaging Centre, Chiba (Japan); National Institute of Radiological Sciences, Department of Molecular Probes, Molecular Imaging Centre, Chiba (Japan)

    2012-04-15

    In this study, we evaluate the utility of 4-[{sup 18}F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([{sup 18}F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains. In vivo distribution of [{sup 18}F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling. In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V{sub T}) was detected in the cerebellum (V{sub T} = 11.5). [{sup 18}F ]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [{sup 18}F ]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains. (orig.)

  5. Radioiodinated tracers for the evaluation of dopamine receptors in the neonatal rat brain after hypoxic-ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Zouakia, A. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Chalon, S. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Kung, H.F. (Hospital of the Univ. of Pennsylvania, Dept. of Radiology, Philadelphia, PA (United States)); Dognon, A.M. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Saliba, E. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Besnard, J.C. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Guilloteau, D. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France))

    1994-06-01

    In order to evaluate in vivo SPET for assessing cerebral function after hypoxic-ischemic injury in human neonates, we studied D[sub 1] and D[sub 2] dopamine receptors in a rat model. Seven-day-old rats underwent permanent unilateral common carotid ligation followed by exposure to 8% O[sub 2]. Two weeks later, in brains with no visible loss of hemispheric volume, striatal dopaminergic receptors were studied, with [[sup 125]I]TISCH and [[sup 125]I]IBZM for the D[sub 1] and D[sub 2] dopamine receptors, respectively. Using [[sup 125]I]TISCH, we observed no modifications of D[sub 1] receptors, but in contrast, ex vivo and in vitro autoradiographic experiments showed a 40% decrease in the striatal binding of [[sup 125]I]IBZM on both the ipsilateral and the contralateral side to the carotid ligation. These alterations were detected with IBZM, a D[sub 2] dopamine receptor ligand usable for SPET imaging. (orig./MG)

  6. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    Science.gov (United States)

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  7. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    Science.gov (United States)

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals.

  8. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    Science.gov (United States)

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. PMID:26946106

  9. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain

    Directory of Open Access Journals (Sweden)

    Amanda Lorraine Wright

    2012-04-01

    Full Text Available AMPA receptors are comprised of different combinations of GluR1-GluR4 (also known as GluA1-GluA4 and GluR-A to GluR-D subunits. The GluR2 subunit is subject to Q/R site RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Q, present in the GluR2 gene, to a codon for arginine (R found in the mRNA. AMPA receptors are calcium (Ca2+-permeable if they contain the unedited GluR2(Q subunit or if they lack the GluR2 subunit. While most AMPA receptors in the brain contain the edited GluR2(R subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable GluR2-lacking AMPA receptors are important in synaptic plasticity and learning. However, the presence of Ca2+-permeable AMPA receptors containing unedited GluR2 leads to excitotoxic cell loss. Recent studies have indicated that RNA editing of GluR2 is deregulated in diseases, such as amyotrophic lateral sclerosis (ALS, as well in acute neurodegenerative conditions, such as ischemia. More recently, studies have investigated the regulation of RNA editing and possible causes for its deregulation during disease. In this review, we will explore the role of GluR2 RNA editing in the healthy and diseased brain and outline new insights into the mechanisms that control this process.

  10. Quantification of human brain benzodiazepine receptors using [{sup 18}F]fluoroethylflumazenil: a first report in volunteers and epileptic patients

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, Philippe [Unite de Tomographie par Positrons, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Unite de Chimie Pharmaceutique et de Radiopharmacie, CMFA/REMA, Universite Catholique de Louvain, 73-40 Avenue Mounier, 1200, Bruxelles (Belgium); Sanabria-Bohorquez, Sandra [Imaging Research, Merck Research Laboratories, West Point, Philadelphia (United States); Bol, Anne; Volder, Anne de; Labar, Daniel [Unite de Tomographie par Positrons, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Rijckevorsel, K. van [Service de Neurologie, Cliniques Universitaires Saint-Luc, Bruxelles (Belgium); Gallez, Bernard [Unite de Chimie Pharmaceutique et de Radiopharmacie, CMFA/REMA, Universite Catholique de Louvain, 73-40 Avenue Mounier, 1200, Bruxelles (Belgium); Unite de Resonance Magnetique Biomedicale, Universite Catholique de Louvain, Bruxelles (Belgium)

    2003-12-01

    Fluorine-18 fluoroethylflumazenil ([{sup 18}F]FEF) is a tracer for central benzodiazepine (BZ) receptors which is proposed as an alternative to carbon-11 flumazenil for in vivo imaging using positron emission tomography (PET) in humans. In this study, [{sup 18}F]FEF kinetic data were acquired using a 60-min two-injection protocol on three normal subjects and two patients suffering from mesiotemporal epilepsy as demonstrated by abnormal magnetic resonance imaging and [{sup 18}F]fluorodeoxyglucose positron emission tomography. First, a tracer bolus injection was performed and [{sup 18}F]FEF rapidly distributed in the brain according to the known BZ receptor distribution. Thirty minutes later a displacement injection of 0.01 mg/kg of unlabelled flumazenil was performed. Activity was rapidly displaced from all BZ receptor regions demonstrating the specific binding of [{sup 18}F]FEF. No displacement was observed in the pons. Plasma input function was obtained from arterial blood sampling, and metabolite analysis was performed by high-performance liquid chromatography. Metabolite quantification revealed a fast decrease in tracer plasma concentration, such that at 5 min post injection about 70% of the total radioactivity in plasma corresponded to [{sup 18}F]FEF, reaching 24% at 30 min post injection. The interactions between [{sup 18}F]FEF and BZ receptors were described using linear compartmental models with plasma input and reference tissue approaches. Binding potential values were in agreement with the known distribution of BZ receptors in human brain. Finally, in two patients with mesiotemporal sclerosis, reduced uptake of [{sup 18}F]FEF was clearly observed in the implicated left hippocampus. (orig.)

  11. [sup 123]I-SCH 23982 is not suitable for dopamine D1 receptor imaging in vivo in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeff, N.P.L.G.; Fennema, P.; Royen, E.A. van (Academic Medical Centre, Amsterdam (Netherlands). Dept. of Nuclear Medicine); Bekier, A. (Kantonsspital, St Gallen (Switzerland). Inst. for Nuclear Medicine); Beer, H.-F.; Schubiger, P.A. (Paul Scherrer Inst. (PSI), Villigen (Switzerland))

    1993-02-01

    The tracer [sup 123]I-SCH 23982 was tested with regard to its ability to image dopamine D1 receptor in the human brain in vivo with single photon emission computed tomography (SPECT). The tracer did not reach equilibrium with regard to its bindign to dopamine D1 receptors, presumably owing to fast metabolism to hydrophilic products and deiodination. It is concluded that [sup 123]I-SCH 23982 is not suitable for dopamine D1 receptor imaging with SPECT in the human brain. (author).

  12. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    OpenAIRE

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Raj P Kandpal; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants...

  13. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide

    International Nuclear Information System (INIS)

    The localization and quantitation of muscarinic cholinergic receptors (m-AChR) in the living human brain using a non-invasive method such as positron emission tomography (PET) may provide valuable information about receptor changes which have been observed post mortem in patients with Huntington's chorea and Alzheimer's dementia, as well as normal brain mechanisms mediated by the m-AChR. We chose to label dexetimide as a radiotracer for studying the m-AChR and levetimide as a radiotracer for assessing non-specific binding associated with the in vivo receptor binding studies. (author)

  14. Location and expression of neurotrophin-3 and its receptor in the brain of human embryos during early development

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Yongjie Mi; Dajun Ma

    2008-01-01

    BACKGROUND: Cell culture in vitro trials have demonstrated that neurotrophin-3 (NT-3) can enhance the survival of sensory neurons and sympathetic neurons, and can also support embryo-derived motor neurons.This effect is dependent on nerve growth factor on the surface of cells. Understanding the role of NT-3 and its receptor in the early development of human embryonic brains will help to investigate the correlation between early survival of nerve cells and the microenvironment of neural regeneration.OBJECTIVE: To observe the proliferation of cerebral neurons in the development of human embryonic brain, and to investigate the location, expression and distribution of NT-3 and its receptor TrkC during human brain development.DESIGN, TIME AND SETTING: An observation study on cells was performed in the Department of Human Anatomy, Histology and Embryology, Chengdu Medical College in September 2007.MATERIALS: Fifteen specimens of fresh human embryo, aged 6 weeks, were used in this study.METHODS: The proliferation of cerebral neurons was detected using proliferating cell nuclear antigen, and the immunocytochemistry ABC technique was applied to observe the location, expression and distribution of NT-3 and its receptor TrkC in the brain of the human embryo.MAIN OUTCOME MEASURES: Location, expression and distribution of NT-3 and its receptor in the brain of the human embryo.RESULTS: In the early period (aged 6 weeks) of human embryonic development, proliferating cell nuclear antigen-positive reactive substances were mainly observed in the nucleus of the forebrain ventricular zone and subventricular zone, and the intensity was stronger in the subventricular zone than the forebrain ventricle.NT-3 positive reactive substance was mainly distributed in the cytoblastema of the forebrain neuroepithelial layer and nerve cell process, while TrkC was mainly distributed in the cell membrane of the forebrain ventricular zone and subventricular zone. During embryonic development, NT-3 and

  15. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  16. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.

    2016-01-01

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  17. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Vicente Felipo

    2006-01-01

    Patients with liver disease may present hepatic encephalopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations,including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death.The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE.These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced,which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE.However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing,hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and

  18. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    Energy Technology Data Exchange (ETDEWEB)

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O' Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with (/sup 14/C)-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor.

  19. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  20. Live imaging reveals a new role for the sigma-1 (σ1) receptor in allowing microglia to leave brain injuries.

    Science.gov (United States)

    Moritz, Christian; Berardi, Francesco; Abate, Carmen; Peri, Francesca

    2015-03-30

    Microglial cells are responsible for clearing and maintaining the central nervous system (CNS) microenvironment. Upon brain damage, they move toward injuries to clear the area by engulfing dying neurons. However, in the context of many neurological disorders chronic microglial responses are responsible for neurodegeneration. Therefore, it is important to understand how these cells can be "switched-off" and regain their ramified state. Current research suggests that microglial inflammatory responses can be inhibited by sigma (σ) receptor activation. Here, we take advantage of the optical transparency of the zebrafish embryo to study the role of σ1 receptor in microglia in an intact living brain. By combining chemical approaches with real time imaging we found that treatment with PB190, a σ1 agonist, blocks microglial migration toward injuries leaving cellular baseline motility and the engulfment of apoptotic neurons unaffected. Most importantly, by taking a reverse genetic approach, we discovered that the role of σ1in vivo is to "switch-off" microglia after they responded to an injury allowing for these cells to leave the site of damage. This indicates that pharmacological manipulation of σ1 receptor modulates microglial responses providing new approaches to reduce the devastating impact that microglia have in neurodegenerative diseases.

  1. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  2. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    Science.gov (United States)

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  3. Adenosine receptors in the immature brain : with special reference to their role in hypoxic ischemia

    OpenAIRE

    Ådén, Ulrika

    2001-01-01

    Although the newborn brain tolerates a much longer period of oxygen deprivation and ischemia than does the adult brain, perinatal hypoxic ischemia probably is an important cause of neurological dysfunction, cerebral palsy and epilepsy later in life. Hence it is important to investigate the mechanisms that modulate the extent of perinatal ischernic brain damage. There is good evidence that endogenous adenosine acts as a neuroprotective agent in models of ischemia in the m...

  4. Classical androgen receptors in non-classical sites in the brain

    OpenAIRE

    Sarkey, Sara; Azcoitia, Iñigo; Garcia-Segura, Luis Miguel; Garcia-Ovejero, Daniel; Doncarlos, Lydia L.

    2008-01-01

    Androgen receptors are expressed in many different neuronal populations in the central nervous system where they often act as transcription factors in the cell nucleus. However, recent studies have detected androgen receptor immunoreactivity in neuronal and glial processes of the adult rat neocortex, hippocampal formation, and amygdala as well as in the telencephalon of Eastern Fence and green anole lizards. This review discusses previously published findings on extranuclear androgen receptor...

  5. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain.

    Science.gov (United States)

    Tu, Yi-Fang; Jiang, Si-Tse; Chow, Yen-Hung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2016-08-01

    This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates. PMID:26111627

  6. Autoradiographic comparison of [125I]epidepride and [125I]NCQ 298 binding to human brain extrastriated dopamine receptors.

    Science.gov (United States)

    Hall, H; Halldin, C; Jerning, E; Osterlund, M; Farde, L; Sedvall, G

    1997-07-01

    Extrastriatal D2-dopamine receptors can be visualised in the monkey and human brain using the benzamides [11C]- and [76Br]FLB 457 in PET and [123I]epidepride in SPECT but not with the salicylamide analogues [76Br]FLB 463 and [123I]NCQ 298. To clarify the background for the differences in binding seen in vivo, we have compared the in vitro binding of [125I]epidepride and [123I]NCQ 298, using human whole hemisphere autoradiography. The images obtained with any radioligand showed detailed distribution with very dense binding in the putamen and the caudate nucleus and with the same detailed extrastriatal distribution. Thus, the divergent results obtained in vivo cannot be explained by different binding properties of the extrastriatal receptors. PMID:9290072

  7. Autoradiographic comparison of [125I]epidepride and [125I]NCQ 298 binding to human brain extrastriated dopamine receptors

    International Nuclear Information System (INIS)

    Extrastriatal D2-dopamine receptors can be visualized in the monkey and human brain using the benzamides [11C]- and [76Br]FLB 457 in PET and [123I]epidepride in SPECT but not with the salicylamide analogues [76Br]FLB 463 and [123I]NCQ 298. To clarify the background for the differences in binding seen in vivo, we have compared the in vitro binding of [125I]epidepride and [125I]NCQ 298, using human whole hemisphere autoradiography. The images obtained with any radioligand showed detailed distribution with very dense binding in the putamen and the caudate nucleus and with the same detailed extrastriatal distribution. Thus, the divergent results obtained in vivo cannot be explained by different binding properties of the extrastriatal receptors

  8. Changes of metabotropic glutamate receptor subtype 1a in diffuse brain injury with secondary brain insults and the effects of 2-methyl-4-carboxyphenylglycine

    Institute of Scientific and Technical Information of China (English)

    FEI Zhou 费舟; ZHANG Xiang 章翔; LIU En-yu 刘恩渝

    2003-01-01

    Objective: To observe the changes of metabotropic glutamate receptor 1a in rat brain in a rodent model of diffuse head injury with secondary insults and the effects of 2-methyl-4-carboxyphenylglycine (MCPG).Methods: Based on Marmarous rodent model of diffuse brain injury (DBI), hypotension was made by blood withdrawal as secondary brain insults (SBI).105 male SD rats were randomized into A and B groups.The changes of mGluR1a in cerebral cortex were studied by immunohistochemistry and the effect of MCPG by HE.Each group was divided into different subgroups at different time after injury.Results: Compared with that of sham group, the number of mGluR1a positive neuron increased by 12.9±3.2 (P<0.05) 1 day after injury in the injured cerebral cortex in DBI group.However, in DBI and SBI group there was a more significant increase in the number of mGluR1a positive neuron at 4 hours after injury (15.6±3.0, P<0.05)and then the number of mGluR1a positive neuron gradually decreased.Administration of MCPG reduced total cortical necrotic neurons counts on the 7th day after injury (5.21±2.52, P<0.05).Conclusions: Brain injury can increase the gene expression of mGluR1a and the role of mGluR1a may be a key factor in the aggravation of head injury with SBI, and that MCPG may have therapeutic potential in head injury.

  9. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  10. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells

    OpenAIRE

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Abbott, N Joan; Couraud, Pierre-Olivier; Pan, Weihong

    2010-01-01

    Astrocytic leptin receptors (ObR) can be upregulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb overex...

  11. Expression of Astrocytic Type 2 Angiotensin Receptor in Central Nervous System Inflammation Correlates With Blood-Brain Barrier Breakdown

    DEFF Research Database (Denmark)

    Füchtbauer, Laila; Toft-Hansen, Henrik; Khorooshi, Reza;

    2010-01-01

    is involved during BBB breakdown. We studied the type 2 angiotensin receptor AT(2) because of its suggested neuroprotective role. Two models of brain inflammation were used to distinguish solute versus cellular barrier functions. Both leukocytes and horseradish peroxidase (HRP) accumulated in the perivascular...... space of transgenic mice expressing the chemokine CCL2 in the CNS, indicating selective endothelial effects. Cellular infiltration and HRP leakage across the glia limitans to the parenchyma were induced by pertussis toxin (PTx) treatment. By contrast, there was no detectable HRP leakage...

  12. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, Anders; Svarer, Claus; McMahon, Brenda;

    2016-01-01

    ]Cimbi-36 and the 5-HT2A receptor antagonist [(18)F]altanserin. METHODS: Sixteen healthy volunteers (mean age 23.9 ± 6.4years, 6 males) were scanned twice with a high resolution research tomography PET scanner. All subjects were scanned after a bolus of [(11)C]Cimbi-36; eight were scanned twice to determine...... BPNDs measured with [(11)C]Cimbi-36 and [(18)F]altanserin (mean Pearson's r: 0.95 ± 0.04) suggesting similar cortical binding of the radioligands. Relatively higher binding with [(11)C]Cimbi-36 as compared to [(18)F]altanserin was found in the choroid plexus and hippocampus in the human brain....... CONCLUSIONS: Excellent test-retest reproducibility highlights the potential of [(11)C]Cimbi-36 for PET imaging of 5-HT2A receptor agonist binding in vivo. Our data suggest that Cimbi-36 and altanserin both bind to 5-HT2A receptors, but in regions with high 5-HT2C receptor density, choroid plexus...

  13. HIV-1 Tat Regulates Occludin and Aβ Transfer Receptor Expression in Brain Endothelial Cells via Rho/ROCK Signaling Pathway

    Science.gov (United States)

    Chen, Yanlan; Jiang, Wenlin; Wu, Xianghong; Ye, Biao; Zhou, Xiaoting

    2016-01-01

    HIV-1 transactivator protein (Tat) has been shown to play an important role in HIV-associated neurocognitive disorders. The aim of the present study was to evaluate the relationship between occludin and amyloid-beta (Aβ) transfer receptors in human cerebral microvascular endothelial cells (hCMEC/D3) in the context of HIV-1-related pathology. The protein expressions of occludin, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in hCMEC/D3 cells were examined using western blotting and immunofluorescent staining. The mRNA levels of occludin, RAGE, and LRP1 were measured using quantitative real-time polymerase chain reaction. HIV-1 Tat at 1 µg/mL and the Rho inhibitor hydroxyfasudil (HF) at 30 µmol/L, with 24 h exposure, had no significant effect on hCMEC/D3 cell viability. Treatment with HIV-1 Tat protein decreased mRNA and protein levels of occludin and LRP1 and upregulated the expression of RAGE; however, these effects were attenuated by HF. These data suggest that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-mediated changes in occludin, RAGE, and LRP1 in hCMEC/D3 cells. HF may have a beneficial influence by protecting the integrity of the blood-brain barrier and the expression of Aβ transfer receptors.

  14. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr. (National Center for Toxicological Research, Jefferson, Arkansas (USA))

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the (35S)TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of (35S)TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects.

  15. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  16. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers;

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography...... cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT(4) receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration....

  17. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1 in the seizure-induced P-glycoprotein (P-gp overexpression and the underlying mechanism. Kainic acid (KA-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS group, KA-induced epileptic seizure (EP group, and EP group pretreated with HMGB1 (EP+HMGB1 group or BoxA (HMGB1 antagonist, EP+BoxA group. Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS [toll-like receptor 4 (TLR4 antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.

  18. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  19. Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain

    Science.gov (United States)

    Weiser, Michael J.; Goel, Nirupa; Sandau, Ursula S.; Bale, Tracy L.; Handa, Robert J.

    2008-01-01

    Stress-induced affective disorders, such as depression and anxiety, are more prevalent in females than in males. The reduced vulnerability to these disorders in males may be due to the presence of androgens, which are known to dampen the stress response and reduce anxiety-like behaviors. However, a neurobiological mechanism for this sex difference has yet to be elucidated. Corticotropin-releasing hormone receptor 2 (CRHR2) has been implicated in regulating anxiety-type behaviors and is expressed in stress-responsive brain regions that also contain androgen receptors (AR). We hypothesized that androgen may exert its effects through actions on CRHR2 and we therefore examined the regulation of CRHR2 mRNA and receptor binding in the male rat forebrain following androgen administration. Young adult male Sprague/Dawley rats were gonadectomized (GDX) and treated with the non-aromatizable androgen, dihydrotestosterone propionate (DHTP) using hormone filled Silastic capsules. Control animals received empty capsules. Using quantitative real time RT-PCR, CRHR2 mRNA levels were determined in block dissected brain regions. DHTP treatment significantly increased CRHR2 mRNA expression in the hippocampus, hypothalamus, and lateral septum (p < 0.01) when compared to vehicle-treated controls. A similar trend was observed in amygdala (p = 0.05). Furthermore, in vitro autoradiography revealed significantly higher CRHR2 binding in the lateral septum in androgen-treated males, with the highest difference observed in the ventral lateral region. Regulation of CRHR2 mRNA by AR was also examined using an in vitro approach. Hippocampal neurons, which contain high levels of AR, were harvested from E17–18 rat fetuses, and maintained in primary culture for 14 days. Neurons were then treated with dihydrotestosterone (DHT; 1 nM), DHT plus flutamide (an androgen receptor antagonist), or vehicle for 48 hours. CRHR2 mRNA levels were measured using quantitative real time RT-PCR. Consistent with in

  20. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  1. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    Directory of Open Access Journals (Sweden)

    Courtney Premer

    2013-01-01

    Full Text Available Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.

  2. Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743

    International Nuclear Information System (INIS)

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [18F]NS10743, a novel diazabicyclononane derivative targeting α7 nicotinic acetylcholine receptors (α7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [18F]NS10743 under baseline conditions (n = 3) and after blocking of the α7 nAChR with NS6740 (3 mg.kg-1 bolus + 1 mg.kg-1.h-1 continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [18F]NS10743 passed readily into the brain, with peak uptake occurring in α7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUVmax was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUVmax 1.53 ± 0.32). Administration of NS6740 significantly decreased [18F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BPND. The baseline BPND ranged from 0.39 ± 0.08 in the cerebellum to 0.76 ± 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BPND in regions with high [18F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BPND in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [18F]NS10743 as a target-specific radiotracer for the molecular imaging of central α7 nAChRs by PET. (orig.)

  3. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    Energy Technology Data Exchange (ETDEWEB)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.

  4. Muscarinic receptor plasticity in the brain of senescent rats: down-regulation after repeated administration of diisopropyl fluorophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Pintor, A.; Fortuna, S.; Volpe, M.T.; Michalek, H.

    1988-01-01

    Potential age-related differences in the response of Fischer 344 rats to subchronic treatment with diisopropylfluorophosphate (DFP) were evaluated in terms of brain cholinesterase (ChE) inhibition and muscarinic receptor sites. Male 3- and 24-month old rats were sc injected with sublethal doses of DFP for 2 weeks and killed 48 hrs after the last treatment. In the cerebral cortex, hippocampus and striatum of control rats a significant age-related reduction of ChE and of maximum number of /sup 3/H-QNB binding sites (Bmax) was observed. The administration of DFP to senescent rats resulted in more pronounced and longer lasting syndrome of cholinergic stimulation, with marked body weight loss and 60% mortality. The percentage inhibition of brain ChE induced by DFP did not differ between young and senescent rats. As expected, in young rats DFP caused a significant decrease of Bmax, which in the cerebral cortex reached about 40%. In the surviving senescent rats, the percentage decrease of Bmax due to DFP with respect to age-matched controls was very similar to that of young animals, especially in the cerebral cortex. Thus there is great variability in the response of aged rats to DFP treatment, from total failure of adaptive mechanisms resulting in death to considerable muscarinic receptor plasticity.

  5. Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain.

    Science.gov (United States)

    Yanai, Toshihiro; Kurosawa, Aya; Nikaido, Yoshiaki; Nakajima, Nozomi; Saito, Tamio; Osada, Hiroyuki; Konno, Ayumu; Hirai, Hirokazu; Takeda, Shigeki

    2016-07-01

    The identification of novel synthetic ligands for G protein-coupled receptors (GPCRs) is important not only for understanding human physiology, but also for the development of novel drugs, especially for orphan GPCRs for which endogenous ligands are unknown. One of the orphan GPCR subfamilies, Super conserved Receptor Expressed in Brain (SREB), consists of GPR27, GPR85 and GPR173 and is expressed in the central nervous system. We report herein the identification of inverse agonists for the SREB family without their agonists. We carried out an in vitro screening of 5472 chemical compounds from the RIKEN NPDepo chemical library. The binding of [(35) S]GTPγS to the GPR173-Gsα fusion protein expressed in Sf9 cells was measured and resulted in the identification of 8 novel GPR173 inverse agonists. The most potent compound showed an IC50 of approximately 8 μm. The identified compounds were also antagonists for other SREB members, GPR27 and GPR85. These results indicated that the SREB family could couple Gs-type G proteins, and SREB-Gsα fusion proteins showed significant constitutive activities. Moreover, a molecular model of GPR173 was constructed using the screening results. The combination of computational and biological methods will provide a unique approach to ligand identification for orphan GPCRs and brain research. PMID:27184081

  6. The Regulatory Action of Radix Astragali on M-Cholinergic Receptor of the Brain of Senile Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The changes in density of M-cholinergic receptors in different areas of senile rats and the regulatory action of Huang Qi (黄芪Radix Astragali, a drug for warming yang and replenishing qi) were observed by autoradiography. The results showed that the gray scale displayed in brain sections was clear and mainly distributed in the cortex, hippocampus and striate body, while that due to nonspecific combination was negligible. The gray scale in the cortex, hippocampus and striate body of the experimental group was markedly lower than that in the young control rats, decreased respectively by 24.87%, 14.12% and 12.76% (all P<0.05); but it was obviously higher than those in the senile control rats, increased respectively by 24.15%, 14.38% and 13.47% (P<0.05). The data indicate that Huang Qi (黄芪Radix Astragali) may up-regulate the decreased density of M-cholinergic receptors in the brain of senile rats.

  7. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide.

    Science.gov (United States)

    Zhen, Xia; Ng, Ethel Sau Kuen; Lam, Francis Fu Yuen

    2016-09-01

    Ischaemic stroke has become one of the leading causes of death and disability worldwide. The role of protease activated receptor-1 (PAR-1) in this disease is uncertain. In the present study, the actions of a protease activated receptor-1 activating peptide (PAR-1 AP) SFLLRN-NH2 were investigated in an in vivo rat model of ischaemic stroke induced by middle cerebral artery occlusion (MCAO) and in an in vitro model induced by oxygen and glucose deprivation (OGD) in primary cultured rat embryonic cortical neurones. Rats subjected to MCAO exhibited increased brain infarct volume, oedema, and neurological deficit. Rat cortical neurones subjected to OGD showed increased lactate dehydrogenase, caspase-3 activity and TUNEL positive cells, whereas, mitochondrial membrane potential and cell viability were decreased. Furthermore, both models had elevated levels of reactive oxygen species, nitrite, and malondialdehyde, while anti-oxidant enzymes and bcl-2/bax ratio were decreased. These detrimental changes were suppressed by SFLLRN-NH2, and its protective actions were inhibited by a PAR-1 antagonist (BMS-200261). In summary, SFLLRN-NH2 was found to possess anti-oxidant and anti-apoptotic properties, and it produced marked inhibition on the detrimental effects of ischaemia in in vivo and in vitro models of ischaemic stroke. The present findings suggest PAR-1 is a promising target for development of novel treatments of ischaemic brain disease. PMID:27238976

  8. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain.

    OpenAIRE

    Erlander, M G; Lovenberg, T W; Baron, B M; de Lecea, L; Danielson, P E; Racke, M; Slone, A L; Siegel, B W; Foye, P. E.; Cannon, K

    1993-01-01

    We report two serotonin (5-hydroxytryptamine, 5-HT) receptors, MR22 and REC17, that belong to the G-protein-associated receptor superfamily. MR22 and REC17 are 371 and 357 amino acids long, respectively, as deduced from nucleotide sequence and share 68% mutual amino acid identity and 30-35% identity with known catecholamine and 5-HT receptors. Saturable binding of 125I-labeled (+)-lysergic acid diethylamide to transiently expressed MR22 in COS-M6 cells was inhibited by ergotamine > methiothep...

  9. The brain-uterus connection: brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus.

    Science.gov (United States)

    Wessels, Jocelyn M; Wu, Liang; Leyland, Nicholas A; Wang, Hongmei; Foster, Warren G

    2014-01-01

    The neurotrophins are neuropeptides that are potent regulators of neurite growth and survival. Although mainly studied in the brain and nervous system, recent reports have shown that neurotrophins are expressed in multiple target tissues and cell types throughout the body. Additionally, dysregulation of neurotrophins has been linked to several disease conditions including Alzheimer's, Parkinson's, Huntington's, psychiatric disorders, and cancer. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that elicits its actions through the neurotrophic tyrosine receptor kinase type 2 (Ntrk2). Together BDNF and Ntrk2 are capable of activating the adhesion, angiogenesis, apoptosis, and proliferation pathways. These pathways are prominently involved in reproductive physiology, yet a cross-species examination of BDNF and Ntrk2 expression in the mammalian uterus is lacking. Herein we demonstrated the conserved nature of BDNF and Ntrk2 across several mammalian species by mRNA and protein sequence alignment, isolated BDNF and Ntrk2 transcripts in the uterus by Real-Time PCR, localized both proteins to the glandular and luminal epithelium, vascular smooth muscle, and myometrium of the uterus, determined that the major isoforms expressed in the human endometrium were pro-BDNF, and truncated Ntrk2, and finally demonstrated antibody specificity. Our findings suggest that BDNF and Ntrk2 are transcribed, translated, and conserved across mammalian species including human, mouse, rat, pig, horse, and the bat.

  10. Novel Humanized Recombinant T Cell Receptor Ligands Protect the Female Brain After Experimental Stroke

    OpenAIRE

    Pan, Jie; Palmateer, Julie; Schallert, Timothy; Hart, Madison; Pandya, Arushi; Vandenbark, Arthur A.; Offner, Halina; Hurn, Patricia D.

    2014-01-01

    Transmigration of peripheral leukocytes to the brain is a major contributor to cerebral ischemic cell death mechanisms. Humanized partial major histocompatibility complex class II constructs (pMHC), covalently linked to myelin peptides, are effective for treating experimental stroke in males, but new evidence suggests that some inflammatory cell death mechanisms after brain injury are sex-specific. We here demonstrate that treatment with pMHC constructs also improves outcomes in female mice w...

  11. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain

    OpenAIRE

    Galea, Ian; Palin, Karine; Newman, Tracey A; van Rooijen, Nico; Perry, V. Hugh; Boche, Delphine

    2005-01-01

    Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen-associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co-stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microg...

  12. Progesterone receptor expression in the brain of the socially monogamous and paternal male prairie vole

    OpenAIRE

    Williams, Brittany; Northcutt, Katharine V.; Rusanowsky, Rebecca D.; Mennella, Thomas A.; Lonstein, Joseph S.; Quadros-Mennella, Princy S.

    2013-01-01

    Differences in the social organization and behavior of male mammals are attributable to species differences in neurochemistry, including differential expression of steroid hormone receptors. However, the distribution of progestin receptors (PR) in a socially monogamous and spontaneously parental male rodent has never been examined. Here we determined if PR exists and is regulated by testicular hormones in forebrain sites traditionally influencing socioreproductive behaviors in male prairie vo...

  13. Expression of pronociceptin and its receptor is downregulated in the brain of human alcoholics

    OpenAIRE

    Kuzmin, Alexander; Bazov, Igor; Sheedy, Donna; Garrick, Therese; Harper, Clive; Bakalkin, Georgy

    2009-01-01

    Animal studies demonstrated a role of neuropeptide nociceptin (NC) and its receptor (opiate receptor like-1, OPRL1) in ethanol-induced reward; activation of the OPRL1 by natural or synthetic ligands reduced ethanol self-administration and prevented relapse to ethanol drinking. The endogenous NC may function in neuronal circuits involved in reinforcing or conditioning effects of ethanol as a “brake” to limit ethanol intake (Roberto, M., Siggins, G.R. 2006. Nociceptin/orphanin FQ presynapticall...

  14. CM156, a Sigma Receptor Ligand, Reverses Cocaine-Induced Place Conditioning and Transcriptional Responses in the Brain

    Science.gov (United States)

    Xu, Yan-Tong; Robson, Matthew J.; Szeszel-Fedorowicz, Wioletta; Patel, Divyen; Rooney, Robert; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Repeated exposure to cocaine induces neuroadaptations which contribute to the rewarding properties of cocaine. Using cocaine-induced conditioned place preference (CPP) as an animal model of reward, earlier studies have shown that sigma (σ) receptor ligands can attenuate the acquisition, expression and reactivation of CPP. However, the underlying molecular mechanisms that are associated with these changes are not yet understood. In the present study, CM156, a novel antagonist with high selectivity and affinity for σ receptors was used to attenuate the expression of cocaine-induced CPP in mice. Immediately following the behavioral evaluations, mouse brain tissues were collected and alterations in gene expression in half brain samples were profiled by cDNA microarray analysis. Microarray data was analyzed by three distinct normalization methods and four genes were consistently found to be upregulated by cocaine when compared to saline controls. Each of these gene changes were found by more than one normalization method to be reversed by at least one dose of CM156. Quantitative real time PCR confirmed that a single administration of CM156 was able to reverse the cocaine-induced increases in three of these four genes: metastasis associated lung adenocarcinoma transcript 1 (malat1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (ywhaz), and transthyretin (ttr). These genes are involved in processes related to neuroplasticity and RNA editing. The data presented herein provides evidence that pharmacological intervention with a putative σ receptor antagonist reverses alterations in gene expression that are associated with cocaine-induced reward. PMID:22234290

  15. Opioid receptor imaging and displacement studies with [6-O-[{sup 11}C]methyl]buprenorphine in baboon brain

    Energy Technology Data Exchange (ETDEWEB)

    Galynker, Igor; Schlyer, David J.; Dewey, Stephen L.; Fowler, Joanna S.; Logan, Jean; Gatley, S. John; MacGregor, Robert R.; Ferrieri, Richard A.; Holland, M. J.; Brodie, Jonathan; Simon, Eric; Wolf, Alfred P

    1996-04-01

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[{sup 11}C]methyl]buprenorphine ([{sup 11}C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% {+-} 2.2% and 43% {+-} 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [{sup 11}C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal (< 15%) effects on cerebellum. Naloxone treatment significantly reduced the slope of the Patlak plot in receptor-containing regions. These results demonstrate that [{sup 11}C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi.

  16. Effects of Rhizoma Acori Tatarinowii extracts on gamma-aminobutyric acid type A receptor alpha 1 subunit brain expression during development in a recurrent seizure rat model

    Institute of Scientific and Technical Information of China (English)

    Liqun Liu; Ding'an Mao; Keqiang Chi; Xingfang Li; Tao Bo; Jinming Guo; Zhuwen Yi

    2011-01-01

    Extracts from Rhizoma Acori Tatarinowii (Grassleaf Sweetflag Rhizome, Shichangpu) have been shown to improve learning and memory, reduce anxiety, allay excitement, and suppress seizures. Rhizoma Acori Tatarinowii extracts interact with γ-aminobutyric acid and activate the γ-aminobutyric acid type A receptor, although few studies have addressed the precise effects of γ-aminobutyric acid type A receptor α1 subunit. In the present study, γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus, and pathological scores of brain injury, were significantly greater following recurrent seizures, but significantly decreased following treatment with Rhizoma Acori Tatarinowii extracts. These results indicated that Rhizoma Acori Tatarinowii extracts down-regulated γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus and protected seizure-induced brain injury during development.

  17. Cyclopentadienyl tricarbonyl complexes of 99mTc for the in vivo imaging of the serotonin 5-HT 1a receptor in the brain

    International Nuclear Information System (INIS)

    The present interest in the 5-HT 1a receptor is due to its implicated role in several major neuropsychiatric disorders such as depression, eating disorders and anxiety. For the diagnosis of these pathophysiological processes it is important to have radioligands in hand able to specifically bind on the 5-HT 1a receptor in order to allow brain imaging. due to the optimal radiation properties of 99mTc there is a considerable interest in the development of 99mTc radiopharmaceuticals for imaging serotonergic CNS receptors using single-photon emission tomography (SPET). Here we introduce two cyclopentadienyl technitium tricarbonyl conjugates of piperidine derivatives which show high accumulation of radioactivity in brain areas rich in 5-HT 1a receptors

  18. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    ZOU Bai-cang; DONG Lei; WANG Yan; WANG Sheng-hao; CAO Ming-bo

    2007-01-01

    Background The 5-hydroxytryptamine7 receptor(5-HT7 receptor,5-HT7R) plays an important role in the regulation of smooth muscle relaxation and visceral sensation and might be involved in the pathogenesis of the gastrointestinal dyskinesia,abdominal pain and visceral paresthesia in irritable bowel syndrome(IBS).The aim of this study was to investigate the role of the 5-HT7 receptor in the pathogenesis of lBS.Methods A rat model of irritable bowel syndrome with diarrhea(IBS-D) was established by colonic instillation of acetic acid and restraint stress.A rat model with irritable bowel syndrome with constipation(IBS-C) was established by stomach irrigated with 0-4℃ Cool Water daily for 14 days.The content and distribution of 5-HT in the brain and gut were examined by immunohistochemistry and the mRNA expression of the 5-HT7 receptor was determined by fluorescent quantitative reverse transcription polymerase chain reaction.The accumulation of cyclic adenosine monophosphate (cAMP) in all the same tissues was measured by radioimmunity.Results The models of IBS were reliable by identification.The immunohistochemistry results showed that there were significantly more 5-HT positive cells in the IBS-D group than in the control group in the hippocampus,hypothalamus,jejunum,ileum,proximate colon and distal colon(P<0.05),as well as more than were found in the IBS-C group in jejunum and ileum(P<0.05).There were more 5-HT positive cells in the IBS-C group than in the control hippocampus,hypothalamus,ileum,proximate colon,and distal colon(P<0.05).Real time-PCR results showed that the expression level of the 5-HT7 receptor in both the IBS-C and IBS-D groups were enhanced compared with the control group in the hippocampus and hypothalamus(P<0.05).The expression level of 5-HT7 receptors in the IBS-C group was notably greater when compared with the controls in the ileum and colon (P<0.05).The cAMP accumulation in the hippocampus and hypothalamus in both the IBS-C and IBS-D groups was

  19. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury. PMID:26661249

  20. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  1. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control.

  2. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival

    Science.gov (United States)

    Vajkoczy, Peter; Knyazev, Pjotr; Kunkel, Andrea; Capelle, Hans-Holger; Behrndt, Sandra; von Tengg-Kobligk, Hendrik; Kiessling, Fabian; Eichelsbacher, Uta; Essig, Marco; Read, Tracy-Ann; Erber, Ralf; Ullrich, Axel

    2006-01-01

    Malignant gliomas remain incurable brain tumors because of their diffuse-invasive growth. So far, the genetic and molecular events underlying gliomagenesis are poorly understood. In this study, we have identified the receptor tyrosine kinase Axl as a mediator of glioma growth and invasion. We demonstrate that Axl and its ligand Gas6 are overexpressed in human glioma cell lines and that Axl is activated under baseline conditions. Furthermore, Axl is expressed at high levels in human malignant glioma. Inhibition of Axl signaling by overexpression of a dominant-negative receptor mutant (AXL-DN) suppressed experimental gliomagenesis (growth inhibition >85%, P 72 days). A detailed analysis of the distinct hallmarks of glioma pathology, such as cell proliferation, migration, and invasion and tumor angiogenesis, revealed that inhibition of Axl signaling interfered with cell proliferation (inhibition 30% versus AXL-WT), glioma cell migration (inhibition 90% versus mock and AXL-WT, P < 0.05), and invasion (inhibition 62% and 79% versus mock and AXL-WT, respectively; P < 0.05). This study describes the identification, functional manipulation, in vitro and in vivo validation, and preclinical therapeutic inhibition of a target receptor tyrosine kinase mediating glioma growth and invasion. Our findings implicate Axl in gliomagenesis and validate it as a promising target for the development of approaches toward a therapy of these highly aggressive but, as yet, therapy-refractory, tumors. PMID:16585512

  3. Increase in brain /sup 125/I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hydroxydopamine or ventral tegmental lesions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.S.L.; Lotti, V.J.; Martin, G.E.; Chen, T.B.

    1983-02-21

    Specific /sup 125/I-CCK receptor binding was significantly increased in brain tissue taken from guinea pig or mouse following chronic (2-3 week) daily administration of haloperidol (2-3 mg/kg/day). Scatchard analysis indicated the increase in CCK binding was due to an increased receptor number (B max) with no change in affinity (Kd). In guinea pigs, the increased CCK binding was observed in the mesolimbic regions and frontal cortex, but not in striatum, hippocampus nor posterior cortex. In mice, however, the increases occurred in both pooled cerebral cortical-hippocampal tissue, and in the remainder of the brain. Enhanced CCK receptor binding was also observed in membranes prepared from whole brain of mice one month following intracisternal injection of 6-hydroxydopamine. Additionally, an increase in CCK binding was observed in mesolimbic regions and frontal cortex, but not striatum or hippocampus, of guinea pigs 3 weeks after an unilateral radiofrequency lesions of the ipsilateral ventral tegmentum. The present studies demonstrate that three different procedures which reduce dopaminergic function in the brain enhance CCK receptor binding. The data provide further support for a functional interrelationship between dopaminergic systems and CCK in some brain regions and raise the possibility that CCK may play a role in the antipsychotic action of neuroleptics.

  4. Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis

    Directory of Open Access Journals (Sweden)

    Saha Asit K

    2006-09-01

    Full Text Available Abstract Background Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect. These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. Hypothesis The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT, dopamine (D and norepinephrine (NE all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nts for each of the known (and unknown neurotransmitters in the right anterior (RA and left posterior (LP regions (cortical and subcortical of the brain, and has the converse effects on a different set of receptor subtypes (designated nth. In contrast, 'Exercise' increases nth activity/concentration and/or reduces nts activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF (among others in exercise and its suppression in stress. Conclusion On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments

  5. Effects of repeated treatment with fluoxetine and citalopram, 5-HT uptake inhibitors, on 5-HT1A and 5-HT2 receptors in the rat brain.

    OpenAIRE

    Klimek, V; Zak-Knapik, J; Mackowiak, M.

    1994-01-01

    Repeated treatment with fluoxetine and citalopram, which are potent 5-HT reuptake inhibitors, resulted in different regulation of 5-HT1A and 5-HT2 receptors in the rat brain. Their effects were compared with those of other antidepressants: imipramine, mianserin and levoprotiline. The density of 5-HT1A receptors, labelled with [3H]8-OH-DPAT, in the rat hippocampus was enhanced after citalopram, imipramine, mianserin and levoprotiline, but not altered after fluoxetine administration. [3H]Ketans...

  6. "Neuro-semeiotics" and "free-energy minimization" suggest a unified perspective for integrative brain actions: focus on receptor heteromers and Roamer type of volume transmission.

    Science.gov (United States)

    Agnati, Luigi F; Guidolin, Diego; Marcoli, Manuela; Genedani, Susanna; Borroto-Escuela, Dasiel; Maura, Guido; Fuxe, Kjell

    2014-01-01

    Two far-reaching theoretical approaches, namely "Neuro-semeiotics" (NS) and "Free-energy Minimization" (FEM), have been recently proposed as frames within which to put forward heuristic hypotheses on integrative brain actions. In the present paper these two theoretical approaches are briefly discussed in the perspective of a recent model of brain architecture and information handling based on what we suggest calling Jacob's tinkering principle, whereby "to create is to recombine!". The NS and FEM theoretical approaches will be discussed from the perspective both of the Roamer-Type Volume Transmission (especially exosome-mediated) of intercellular communication and of the impact of receptor oligomers and Receptor-Receptor Interactions (RRIs) on signal recognition/decoding processes. In particular, the Bio-semeiotics concept of "adaptor" will be used to analyze RRIs as an important feature of NS. Furthermore, the concept of phenotypic plasticity of cells will be introduced in view of the demonstration of the possible transfer of receptors (i.e., adaptors) into a computational network via exosomes (see also Appendix). Thus, Jacob's tinkering principle will be proposed as a theoretical basis for some learning processes both at the network level (Turing-like type of machine) and at the molecular level as a consequence of both the plastic changes in the adaptors caused by the allosteric interactions in the receptor oligomers and the intercellular transfer of receptors. Finally, on the basis of NS and FEM theories, a unified perspective for integrative brain actions will be proposed. PMID:25175453

  7. "Neuro-semeiotics" and "free-energy minimization" suggest a unified perspective for integrative brain actions: focus on receptor heteromers and Roamer type of volume transmission.

    Science.gov (United States)

    Agnati, Luigi F; Guidolin, Diego; Marcoli, Manuela; Genedani, Susanna; Borroto-Escuela, Dasiel; Maura, Guido; Fuxe, Kjell

    2014-01-01

    Two far-reaching theoretical approaches, namely "Neuro-semeiotics" (NS) and "Free-energy Minimization" (FEM), have been recently proposed as frames within which to put forward heuristic hypotheses on integrative brain actions. In the present paper these two theoretical approaches are briefly discussed in the perspective of a recent model of brain architecture and information handling based on what we suggest calling Jacob's tinkering principle, whereby "to create is to recombine!". The NS and FEM theoretical approaches will be discussed from the perspective both of the Roamer-Type Volume Transmission (especially exosome-mediated) of intercellular communication and of the impact of receptor oligomers and Receptor-Receptor Interactions (RRIs) on signal recognition/decoding processes. In particular, the Bio-semeiotics concept of "adaptor" will be used to analyze RRIs as an important feature of NS. Furthermore, the concept of phenotypic plasticity of cells will be introduced in view of the demonstration of the possible transfer of receptors (i.e., adaptors) into a computational network via exosomes (see also Appendix). Thus, Jacob's tinkering principle will be proposed as a theoretical basis for some learning processes both at the network level (Turing-like type of machine) and at the molecular level as a consequence of both the plastic changes in the adaptors caused by the allosteric interactions in the receptor oligomers and the intercellular transfer of receptors. Finally, on the basis of NS and FEM theories, a unified perspective for integrative brain actions will be proposed.

  8. 1α,25-Dihydroxyvitamin D3-Liganded Vitamin D Receptor Increases Expression and Transport Activity of P-glycoprotein in Isolated Rat Brain Capillaries and Human and Rat Brain Microvessel Endothelial Cells

    OpenAIRE

    Durk, Matthew R.; Chan, Gary N.Y.; Campos, Christopher R.; Peart, John C.; Chow, Edwin C.Y.; Lee, Eason; Cannon, Ronald E.; Bendayan, Reina; Miller, David S.; Pang, K. Sandy

    2012-01-01

    MDR1/P-gp induction by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] for 4 h increased P-gp protein expression (4-fold). Incubation with 1,25(OH)2D3 for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate...

  9. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    International Nuclear Information System (INIS)

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des[gl18, ser19, gly20, leu21, gly22] ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation

  10. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Ming-hua LI; Koichi INOUE; Hong-fang SI; Zhi-gang XIONG

    2011-01-01

    Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca2+overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca2+ loading remained elusive. This review discusses the role of two Ca2+-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca2+ toxicity associated with brain ischemia.

  11. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    DEFF Research Database (Denmark)

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.;

    2009-01-01

    to increased food and alcohol intake, and conversely, stimulation of the serotonergic system induces weight reduction and decreased food/alcohol intake as well as tobacco smoking. To investigate whether body weight, alcohol intake and tobacco smoking were related to the regulation of the cerebral serotonin 2A...... receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25...

  12. Application of 5-hydroxytryptamine receptor imaging for study of neuropsychiatric disorders and brain functions

    International Nuclear Information System (INIS)

    In the central nervous system, the widely distributed 5-hydroxytryptamine (5-HT)receptors are involved in regulating a large number of psychological and physiological functions, including mood, sleep, endocrine and autonomic nervous system. Abnormal 5-HT transmission has been implicated in a variety of neuropsychiatric disorders, such as pain, depression and epilepsy. With the development of radioligands, non-invasive nuclear imaging technique with exquisite sensitivity and specificity has been applied for delineation of neurotransmitter function in vivo. It does great benefit for researches of these diseases and development of drugs. This review provided an overview of 5-HT receptors radioligands and recent findings. (authors)

  13. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness

    NARCIS (Netherlands)

    Calcagnoli, Federica; de Boer, Sietse F.; Beiderbeck, Daniela I.; Althaus, Monika; Koolhaas, Jaap M.; Neumann, Inga D.

    2014-01-01

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inv

  14. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  15. Flavylium salts as in vitro precursors of potent ligands to brain GABA-A receptors

    DEFF Research Database (Denmark)

    Kueny-Stotz, Marie; Chassaing, Stefan; Brouillard, Raymond;

    2008-01-01

    The synthesis of a series of derivatized flavylium cations was undertaken and the affinity to the benzodiazepine binding site of the GABA-A receptor evaluated. The observed high affinity for some derivatives (sub-muM range) was explained by an in vitro transformation of the flavylium cations into...

  16. Changes of brain neuropeptide Y and its receptors in rats with flurazepam tolerance and dependence

    Institute of Scientific and Technical Information of China (English)

    Li-ping ZHANG; Li WANG

    2005-01-01

    Aim: Anticonvulsant tolerance and dependence are two obstacles that restrict the clinical use of benzodiazepines (BDZ). In order to explore the mechanism of these two adverse reactions, changes of neuropeptide Y (NPY) and its receptors in the hippocampus of rat models, in relation to flurazepam (FZP, a member of BDZ) tolerance and dependence, were investigated. Methods: The mRNA of preproNPY and its receptors (Y1, Y2, and Y5) in the hippocampus were determined by competitive RT-PCR, and the distribution of NPY in the hippocampus was examined by immunohistochemistry. Results: A decrease of preproNPY mRNA in the hippocampus was foundin tolerant and dependent rats. The level ofpreproNPY mRNA in the hippocampus was reversely correlated with the degree of tolerance and dependence, measured by the threshold of pentylenetetrazol-induced seizures.Immunohistochemistry indicated a decrease of NPY-immunoreactive material in neurons of the CA1, CA3, and dentate gyrus regions of both tolerant and dependent rats. The mRNA of NPY receptors Y1 and Y5 decreased in tolerant rats but did not change in dependent rats. The mRNA of NPY receptor Y2 increased in tolerant rats but decreased in dependent rats. Conclusion: A decrease of NPY in the hippocampus might be involved in anticonvulsant tolerance and dependence following long-term treatment with FZP. Y1, Y2, and Y5 mRNA were also altered in FZP tolerance and dependence.

  17. Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET.

    Science.gov (United States)

    Olsson, Hans; Halldin, Christer; Farde, Lars

    2004-06-01

    Dopaminergic neurotransmission in extrastriatal regions may play a crucial role in the pathophysiology and treatment of neuropsychiatric disorders. The high-affinity radioligands [(11)C]FLB 457, [(123)I]epidepride, and [(18)F]fallypride are now used in clinical studies to measure these low-density receptor populations in vivo. However, a single determination of the regional binding potential (BP) does not differentiate receptor density (B(max)) from the apparent affinity (K(D)). In this positron emission tomography (PET) study, we measured extrastriatal dopamine D2 receptor density (B(max)) and apparent affinity (K(D)) in 10 healthy subjects using an in vivo saturation approach. Each subject participated in two to three PET measurements with different specific radioactivity of [(11)C]FLB 457. The commonly used simplified reference tissue model (SRTM) was used in a comparison of BP values with the B(max) values obtained from the saturation analysis. The calculated regional receptor density values were of the same magnitude (0.33-1.68 nM) and showed the same rank order as reported from postmortem studies, that is, in descending order thalamus, lateral temporal cortex, anterior cinguli, and frontal cortex. The affinity ranged from 0.27 to 0.43 nM, that is, approximately 10-20 times the value found in vitro (20 pM). The area under the cerebellar time activity curve (TAC) was slightly lower (11 +/- 8%, mean +/- SD, P = 0.004, n = 10) after injection of low as compared with high specific radioactivity, indicating sensitivity to the minute density of dopamine D2 receptors in the this region. The results of the present study support that dopamine D2 receptor density and affinity can be differentiated in low-density regions using a saturation approach. There was a significant (P < 0.001) correlation between the binding potential calculated with SRTM and the receptor density (B(max)), which supports the use of BP in clinical studies where differentiation of B(max) and K

  18. Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain

    Directory of Open Access Journals (Sweden)

    Radenović Lidija Lj.

    2005-01-01

    Full Text Available The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. UDC 612.815 612.82.

  19. Influence of apolipoprotein E and its receptors on cerebral amyloid precursor protein metabolism following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuai; SUN Xiao-chuan

    2012-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among young individuals in our society,and globally the incidence of TBI is rising sharply.Mounting evidence has indicated that apolipoprotein E (apoE:protein; APOE:gene) genotype influences the outcome after TBI.The proposed mechanism by which APOE affects the clinicopathological consequences of TBI is multifactorial and includes amyloid deposition,disruption of lipid distribution,dysfunction of mitochondrial energy production,oxidative stress and increases intracellular calcium in response to injury.This paper reviews the current state of knowledge regarding the influence of apoE and its receptors on cerebral amyloid betaprotein precursor metabolism following TBI.

  20. Simplified PET measurement for evaluating histamine H{sub 1} receptors in human brains using [{sup 11}C]doxepin

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hideki [Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan); Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan)]. E-mail: ukimura@ieee.org; Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan); Sasaki, Toru [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan); Tashiro, Manabu [Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575 (Japan); Yanai, Kazuhiko [Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575 (Japan); Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0022 (Japan)

    2004-11-01

    The aim of this study was to develop simplified positron emission tomography measurement using [{sup 11}C]doxepin ([{sup 11}C]DOX) to evaluate histamine H{sub 1} receptors (H1Rs) in human brains. We evaluated the correlation between the distribution volume (DV) of [{sup 11}C]DOX, estimated quantitatively with a two-compartment model, and the [{sup 11}C]DOX uptake obtained at various time intervals and normalized using the metabolite-corrected plasma radioactivity. We found that the static 70- to 90-min images normalized using the plasma radioactivity at 10 min postinjection reflected the DV of [{sup 11}C]DOX-H1R binding.

  1. Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Console-Bram, Linda M; Soboloff, Jonathan; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2016-01-01

    Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum (ER). Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca(2+) entry (SOCE), a Ca(2+) influx mechanism promoted by depletion of intracellular Ca(2+) stores, in rat brain microvascular endothelial cells (RBMVEC). Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies indicate an unprecedented role for Sig-1R as a SOCE inhibitor. PMID:26467159

  2. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andrea; Müller-Forell, Wibke [Institute of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Buchholz, Hans-Georg; Maus, Stephan; Reuss, Stefan; Schreckenberger, Mathias; Miederer, Isabelle, E-mail: isabelle.miederer@unimedizin-mainz.de [Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Lutz, Beat [Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128 (Germany)

    2015-12-15

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL

  3. Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]buprenorphine in baboon brain

    International Nuclear Information System (INIS)

    Buprenorphine (BPN) is a mixed opiate agonist-antagonist used as an analgesic and in the treatment of opiate addiction. We have used [6-O-[11C]methyl]buprenorphine ([11C]BPN) to measure the regional distribution in baboon brain, the test-retest stability of repeated studies in the same animal, the displacement of the labeled drug by naloxone in vivo, and the tissue distribution in mice. The regional distribution of radioactivity in baboon brain determined with PET was striatum > thalamus > cingulate gyrus > frontal cortex > parietal cortex > occipital cortex > cerebellum. This distribution corresponded to opiate receptor density and to previously published data (37). The tracer uptake in adult female baboons showed no significant variation in serial scans in the same baboon with no intervention in the same scanning session. HPLC analysis of baboon plasma showed the presence of labeled metabolites with 92% ± 2.2% and 43% ± 14.4% of the intact tracer remaining at 5 and 30 min, respectively. Naloxone, an opiate receptor antagonist, administered 30-40 min after tracer injection at a dose of 1.0 mg/kg i.v., reduced [11C]BPN binding in thalamus, striatum, cingulate gyrus, and frontal cortex to values 0.25 to 0.60 of that with no intervention. There were minimal (11C]BPN can be displaced by naloxone in vivo, and they affirm the feasibility of using this tracer and displacement methodology for short-term kinetics studies with PET. Mouse tissue distribution data were used to estimate the radiation dosimetry to humans. The critical organ was the small intestine, with a radiation dose estimate to humans of 117 nrad/mCi

  4. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    International Nuclear Information System (INIS)

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [18F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates

  5. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  6. Natriuretic peptide receptor-3 underpins the disparate regulation of endothelial and vascular smooth muscle cell proliferation by C-type natriuretic peptide

    OpenAIRE

    Khambata, Rayomand S.; Panayiotou, Catherine M; Hobbs, Adrian J

    2011-01-01

    BACKGROUND AND PURPOSE C-type natriuretic peptide (CNP) is an endothelium-derived vasorelaxant, exerting anti-atherogenic actions in the vasculature and salvaging the myocardium from ischaemic injury. The cytoprotective effects of CNP are mediated in part via the Gi-coupled natriuretic peptide receptor (NPR)3. As GPCRs are well-known to control cell proliferation, we investigated if NPR3 activation underlies effects of CNP on endothelial and vascular smooth muscle cell mitogenesis. EXPERIMENT...

  7. Pharmacokinetics and Brain Uptake in the Rhesus Monkey of a Fusion Protein of Arylsulfatase A and a Monoclonal Antibody Against the Human Insulin Receptor

    Science.gov (United States)

    Boado, Ruben J.; Lu, Jeff Zhiqiang; Hui, Eric K.-W.; Sumbria, Rachita K.; Pardridge, William M.

    2014-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [125I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein. PMID:23192358

  8. Role of Toll-like receptor 4 and Janus kinase and signal transducer and activator of transcription signal transduction pathway in sepsis-induced brain damage

    Institute of Scientific and Technical Information of China (English)

    Haiyan Yin; Jianrui Wei; Rui Zhang; Xiaoling Ye; Youfeng Zhu

    2011-01-01

    The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs.However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive.In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure.AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats.Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 expression.

  9. Assessment of {alpha}7 nicotinic acetylcholine receptor availability in juvenile pig brain with [{sup 18}F]NS10743

    Energy Technology Data Exchange (ETDEWEB)

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Funke, Uta; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Leipzig (Germany); Becker, Georg; Sabri, Osama [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Cumming, Paul; Xiong, Guoming [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Peters, Dan [NeuroSearch A/S, Ballerup (Denmark)

    2011-08-15

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [{sup 18}F]NS10743, a novel diazabicyclononane derivative targeting {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [{sup 18}F]NS10743 under baseline conditions (n = 3) and after blocking of the {alpha}7 nAChR with NS6740 (3 mg.kg{sup -1} bolus + 1 mg.kg{sup -1}.h{sup -1} continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [{sup 18}F]NS10743 passed readily into the brain, with peak uptake occurring in {alpha}7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUV{sub max} was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUV{sub max} 1.53 {+-} 0.32). Administration of NS6740 significantly decreased [{sup 18}F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BP{sub ND}. The baseline BP{sub ND} ranged from 0.39 {+-} 0.08 in the cerebellum to 0.76 {+-} 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BP{sub ND} in regions with high [{sup 18}F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BP{sub ND} in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [{sup 18}F]NS10743 as a target-specific radiotracer for the molecular imaging of central {alpha}7 nAChRs by PET. (orig.)

  10. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    Science.gov (United States)

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  11. Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas.

    Science.gov (United States)

    Marco, Eva María; Rubino, Tiziana; Adriani, Walter; Viveros, María-Paz; Parolaro, Daniela; Laviola, Giovanni

    2009-02-27

    Despite the alarming increment in the use and abuse of cannabis preparations among young people, little is known about possible long-term consequences of targeting the endocannabinoid system during the critical developmental period of adolescence. Therefore, we aimed to analyze possible long-lasting neurobiological consequences of enhancing endocannabinoid signalling during adolescence, by means of blocking anandamide (AEA) hydrolysis. Adolescent Wistar male rats were administered an inhibitor of AEA hydrolysis, i.e. URB597 (0, 0.1 or 0.5 mg/kg/day from postnatal days 38 to 43). The expression of brain cannabinoid receptor type 1 (CB1R) was then analyzed by [(3)H]CP-55,940 auto-radiographic binding at adulthood. Repeated URB597 administration during adolescence persistently modified CB1R binding in a region-dependent manner. A long-lasting decrease of CB1R binding levels was found in caudate-putamen, nucleus accumbens, ventral tegmental area and hippocampus, while an opposite increment was observed in the locus coeruleus. Present results provide evidence for long-lasting effects of adolescent URB597 administration. Activation of endocannabinoid transmission during the still plastic phase of adolescence may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses. Insights into the developmental trajectories of this neuromodulatory system may help us to better understand and prevent outcomes of neonatal and adolescent cannabis exposure.

  12. Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury

    Directory of Open Access Journals (Sweden)

    Krady J Kyle

    2006-06-01

    Full Text Available Abstract The cytokines IL-1α and IL-1β are induced rapidly after insults to the CNS, and their subsequent signaling through the type 1 IL-1 receptor (IL-1R1 has been regarded as essential for a normal astroglial and microglial/macrophage response. To determine whether abrogating signaling through the IL-1R1 will alter the cardinal astrocytic responses to injury, we analyzed molecules characteristic of activated astrocytes in response to a penetrating stab wound in wild type mice and mice with a targeted deletion of IL-1R1. Here we show that after a stab wound injury, glial fibrillary acidic protein (GFAP induction on a per cell basis is delayed in the IL-1R1-null mice compared to wild type counterparts. However, the induction of chondroitin sulfate proteoglycans, tenascin, S-100B as well as glutamate transporter proteins, GLAST and GLT-1, and glutamine synthetase are independent of IL-1RI signaling. Cumulatively, our studies on gliosis in the IL-1R1-null mice indicate that abrogating IL-1R1 signaling delays some responses of astroglial activation; however, many of the important neuroprotective adaptations of astrocytes to brain trauma are preserved. These data recommend the continued development of therapeutics to abrogate IL-1R1 signaling to treat traumatic brain injuries. However, astroglial scar related proteins were induced irrespective of blocking IL-1R1 signaling and thus, other therapeutic strategies will be required to inhibit glial scarring.

  13. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP, an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1R. At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3-dependent Ca(2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.

  14. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  15. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration.

    Science.gov (United States)

    Zanos, Panos; Georgiou, Polymnia; Metaxas, Athanasios; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2015-07-23

    Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use. PMID:26037668

  16. Brain Angiotensin II Type 1 Receptor Blockade Improves Dairy Blood Pressure Variability via Sympathoinhibition in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Takuya Kishi

    2015-01-01

    Full Text Available Abnormal blood pressure (BP elevation in early morning is known to cause cardiovascular events. Previous studies have suggested that one of the reasons in abnormal dairy BP variability is sympathoexcitation. We have demonstrated that brain angiotensin II type 1 receptor (AT1R causes sympathoexcitation. The aim of the present study was to investigate whether central AT1R blockade attenuates the excess BP elevation in rest-to-active phase in hypertensive rats or not. Stroke-prone spontaneously hypertensive rats (SHRSP were treated with intracerebroventricular infusion (ICV of AT1R receptor blocker (ARB, oral administration of hydralazine (HYD, or ICV of vehicle (VEH. Telemetric averaged mean BP (MBP was measured at early morning (EM, after morning (AM, and night (NT. At EM, MBP was significantly lower in ARB to a greater extent than in HYD compared to VEH, though MBP at AM was the same in ARB and HYD. At NT, MBP was also significantly lower in ARB than in HYD. These results in MBP were compatible to those in sympathoexcitation and suggest that central AT1R blockade attenuates excess BP elevation in early active phase and continuous BP elevation during rest phase independent of depressor response in hypertensive rats.

  17. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan

    2009-01-01

    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  18. Dynamic expression of nerve growth factor and its receptor TrkA after subarachnoid hemorrhage in rat brain.

    Science.gov (United States)

    Song, Jin-Ning; Liu, Zun-Wei; Sui, Long; Zhang, Bin-Fei; Zhao, Yong-Lin; Ma, Xu-Dong; Gu, Hua

    2016-08-01

    Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells. Nerve growth factor and its receptor TrkA may promote regeneration of neural cells, but their expression after subarachnoid hemorrhage remains unclear. In the present study, a rat model of subarachnoid hemorrhage was established using two injections of autologous blood into the cistern magna. Immunohisto-chemical staining suggested that the expression of nerve growth factor and TrkA in the cerebral cortex and brainstem increased at 6 hours, peaked at 12 hours and decreased 1 day after induction of subarachnoid hemorrhage, whereas the expression in the hippocampus increased at 6 hours, peaked on day 1, and decreased 3 days later. Compared with those for the rats in the sham and saline groups, neurobehavioral scores decreased significantly 12 hours and 3 days after subarachnoid hemorrhage (P < 0.05). These results suggest that the expression of nerve growth factor and its receptor TrkA is dynamically changed in the rat brain and may thus participate in neuronal survival and nerve regeneration after subarachnoid hemorrhage. PMID:27651776

  19. A novel selective androgen receptor modulator, NEP28, is efficacious in muscle and brain without serious side effects on prostate.

    Science.gov (United States)

    Akita, Kazumasa; Harada, Koichiro; Ichihara, Junji; Takata, Naoko; Takahashi, Yasuhiko; Saito, Koichi

    2013-11-15

    Age-related androgen depletion is known to be a risk factor for various diseases, such as osteoporosis and sarcopenia. Furthermore, recent studies have demonstrated that age-related androgen depletion results in accumulation of β-amyloid protein and thereby acts as a risk factor for the development of Alzheimer's disease. Supplemental androgen therapy has been shown to be efficacious in treating osteoporosis and sarcopenia. In addition, studies in animals have demonstrated that androgens can play a protective role against Alzheimer's disease. However, androgen therapy is not used routinely for these indications, because of side effects. Selective androgen receptor modulators (SARMs) are a new class of compounds. SARMs maintain the beneficial effects of androgens on bone and muscle while reducing unwanted side effects. NEP28 is a new SARM exhibiting high selectivity for androgen receptor. To investigate the pharmacological effects of NEP28, we compared the effects on muscle, prostate, and brain with mice that were androgen depleted by orchidectomy and then treated with either placebo, NEP28, dihydrotestosterone, or methyltestosterone. We demonstrated that NEP28 showed tissue-selective effect equivalent to or higher than existing SARMs. In addition, the administration of NEP28 increased the activity of neprilysin, a known Aβ-degrading enzyme. These results indicate that SARM is efficacious for the treatment of not only osteoporosis and sarcopenia, but also Alzheimer's disease.

  20. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Gang Chen; Qiang Fu; Jiangbei Cao; Weidong Mi

    2012-01-01

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  1. Cooperative effect of angiotensin AT(1) and endothelin ET(A) receptor antagonism limits the brain damage after ischemic stroke in rat

    DEFF Research Database (Denmark)

    Stenman, Emelie; Jamali, Roya; Henriksson, Marie;

    2007-01-01

    ) and endothelin ET(A) receptors however decreased the brain damage and improved the neurological scores (both Psmooth muscle cells......Cerebral ischemia results in enhanced expression of smooth muscle cell endothelin and angiotensin receptors in cerebral arteries. We hypothesise that this phenomenon may be detrimental and that acute treatment with a combined non-hypotensive dose of the angiotensin AT(1) receptor inhibitor.......05 mg/kg/day), ZD1611 (0.15 mg/kg/day), both combined or vehicle with start immediately after the occlusion. After 48 h the rats were sacrificed, the brains sliced and stained with 1% 2, 3, 5-triphenyltetrazolium chloride (TTC) and the volume of ischemic damage determined. The middle cerebral arteries...

  2. Neuropsychological, Metabolic, and GABAA Receptor Studies in Subjects with Repetitive Traumatic Brain Injury.

    Science.gov (United States)

    Bang, Seong Ae; Song, Yoo Sung; Moon, Byung Seok; Lee, Byung Chul; Lee, Ho-Young; Kim, Jong-Min; Kim, Sang Eun

    2016-06-01

    Repetitive traumatic brain injury (rTBI) occurs as a result of mild and accumulative brain damage. A prototype of rTBI is chronic traumatic encephalopathy (CTE), which is a degenerative disease that occurs in patients with histories of multiple concussions or head injuries. Boxers have been the most commonly studied patient group because they may experience thousands of subconcussive hits over the course of a career. This study examined the consequences of rTBI with structural brain imaging and biomolecular imaging and investigated whether the neuropsychological features of rTBI were related to the findings of the imaging studies. Five retired professional boxers (mean age, 46.8 ± 3.19 years) and four age-matched controls (mean age, 48.5 ± 3.32 years) were studied. Cognitive-motor related functional impairment was assessed, and all subjects underwent neuropsychological evaluation and behavioral tasks, as well as structural brain imaging and functional-molecular imaging. In neuropsychological tests, boxers showed deficits in delayed retrieval of visuospatial memory and motor coordination, which had a meaningful relationship with biomolecular imaging results indicative of neuronal injury. Morphometric abnormalities were not found in professional boxers by structural magnetic resonance imaging (MRI). Glucose metabolism was impaired in frontal areas associated with cognitive dysfunction, similar to findings in Alzheimer's disease. Low binding potential (BP) of (18)F-flumazenil (FMZ) was found in the angular gyrus and temporal cortical regions, revealing neuronal deficits. These results suggested that cognitive impairment and motor dysfunction reflect chronic damage to neurons in professional boxers with rTBI. PMID:26414498

  3. A previously uncharacterized role for estrogen receptor β: Defeminization of male brain and behavior

    OpenAIRE

    Kudwa, Andrea E.; Bodo, Cristian; Gustafsson, Jan-Åke; Rissman, Emilie F.

    2005-01-01

    Sex differences in brain and behavior are ubiquitous in sexually reproducing species. One cause of sexual dimorphisms is developmental differences in circulating concentrations of gonadal steroids. Neonatal testes produce androgens; thus, males are exposed to both testosterone and estradiol, whereas females are not exposed to high concentrations of either hormone until puberty. Classically, the development of neural sex differences is initiated by estradiol, which activates two processes in m...

  4. GABAB receptor modulation of adenylate cyclase activity in rat brain slices.

    OpenAIRE

    Hill, D R

    1985-01-01

    An investigation of the effects of gamma-aminobutyric acid (GABA) and the selective GABAB receptor agonist, baclofen, on basal and stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in slices of rat cerebral cortex has been carried out. Neither GABA nor baclofen produced any significant change in basal cyclic AMP levels. By contrast noradrenaline and forskolin both produced dose-dependent increases in cellular cyclic AMP accumulation. GABA (in the presence of nipecotic acid) ...

  5. The Nuclear Receptor PPARγ as a Therapeutic Target for Cerebrovascular and Brain Dysfunction in Alzheimer's Disease

    OpenAIRE

    Nektaria Nicolakakis

    2010-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ), and synthetic ligands for PPARα (fibrates) and PPARγ (Thiazolidinediones, TZDs) are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little w...

  6. Asymmetric Synthesis of Spirocyclic 2-Benzopyrans for Positron Emission Tomography of σ1 Receptors in the Brain

    Directory of Open Access Journals (Sweden)

    Katharina Holl

    2014-01-01

    Full Text Available Sharpless asymmetric dihydroxylation of styrene derivative 6 afforded chiral triols (R-7 and (S-7, which were cyclized with tosyl chloride in the presence of Bu2SnO to provide 2-benzopyrans (R-4 and (S-4 with high regioselectivity. The additional hydroxy moiety in the 4-position was exploited for the introduction of various substituents. Williamson ether synthesis and replacement of the Boc protective group with a benzyl moiety led to potent σ1 ligands with high σ1/σ2-selectivity. With exception of the ethoxy derivative 16, the (R-configured enantiomers represent eutomers with eudismic ratios of up to 29 for the ester (R-18. The methyl ether (R-15 represents the most potent σ1 ligand of this series of compounds, with a Ki value of 1.2 nM and an eudismic ratio of 7. Tosylate (R-21 was used as precursor for the radiosynthesis of [18F]-(R-20, which was available by nucleophilic substitution with K[18F]F K222 carbonate complex. The radiochemical yield of [18F]-(R-20 was 18%–20%, the radiochemical purity greater than 97% and the specific radioactivity 175–300 GBq/µmol. Although radiometabolites were detected in plasma, urine and liver samples, radiometabolites were not found in brain samples. After 30 min, the uptake of the radiotracer in the brain was 3.4% of injected dose per gram of tissue and could be reduced by coadministration of the σ1 antagonist haloperidol. [18F]-(R-20 was able to label those regions of the brain, which were reported to have high density of σ1 receptors.

  7. Transgenic silencing of neurons in the mammalian brain by expression of the allatostatin receptor (AlstR).

    Science.gov (United States)

    Wehr, M; Hostick, U; Kyweriga, M; Tan, A; Weible, A P; Wu, H; Wu, W; Callaway, E M; Kentros, C

    2009-10-01

    The mammalian brain is an enormously complex set of circuits composed of interconnected neuronal cell types. The analysis of central neural circuits will be greatly served by the ability to turn off specific neuronal cell types while recording from others in intact brains. Because drug delivery cannot be restricted to specific cell types, this can only be achieved by putting "silencer" transgenes under the control of neuron-specific promoters. Towards this end we have created a line of transgenic mice putting the Drosophila allatostatin (AL) neuropeptide receptor (AlstR) under the control of the tetO element, thus enabling its inducible expression when crossed to tet-transactivator lines. Mammals have no endogenous AL or AlstR, but activation of exogenously expressed AlstR in mammalian neurons leads to membrane hyperpolarization via endogenous G-protein-coupled inward rectifier K(+) channels, making the neurons much less likely to fire action potentials. Here we show that this tetO/AlstR line is capable of broadly expressing AlstR mRNA in principal neurons throughout the forebrain when crossed to a commercially-available transactivator line. We electrophysiologically characterize this cross in hippocampal slices, demonstrating that bath application of AL leads to hyperpolarization of CA1 pyramidal neurons, making them refractory to the induction of action potentials by injected current. Finally, we demonstrate the ability of AL application to silence the sound-evoked spiking responses of auditory cortical neurons in intact brains of AlstR/tetO transgenic mice. When crossed to other transactivator lines expressing in defined neuronal cell types, this AlstR/tetO line should prove a very useful tool for the analysis of intact central neural circuits.

  8. Transgenic Silencing of Neurons in the Mammalian Brain by Expression of the Allatostatin Receptor (AlstR)

    Science.gov (United States)

    Wehr, M.; Hostick, U.; Kyweriga, M.; Tan, A.; Weible, A. P.; Wu, H.; Wu, W.; Callaway, E. M.

    2009-01-01

    The mammalian brain is an enormously complex set of circuits composed of interconnected neuronal cell types. The analysis of central neural circuits will be greatly served by the ability to turn off specific neuronal cell types while recording from others in intact brains. Because drug delivery cannot be restricted to specific cell types, this can only be achieved by putting “silencer” transgenes under the control of neuron-specific promoters. Towards this end we have created a line of transgenic mice putting the Drosophila allatostatin (AL) neuropeptide receptor (AlstR) under the control of the tetO element, thus enabling its inducible expression when crossed to tet-transactivator lines. Mammals have no endogenous AL or AlstR, but activation of exogenously expressed AlstR in mammalian neurons leads to membrane hyperpolarization via endogenous G-protein-coupled inward rectifier K+ channels, making the neurons much less likely to fire action potentials. Here we show that this tetO/AlstR line is capable of broadly expressing AlstR mRNA in principal neurons throughout the forebrain when crossed to a commercially-available transactivator line. We electrophysiologically characterize this cross in hippocampal slices, demonstrating that bath application of AL leads to hyperpolarization of CA1 pyramidal neurons, making them refractory to the induction of action potentials by injected current. Finally, we demonstrate the ability of AL application to silence the sound-evoked spiking responses of auditory cortical neurons in intact brains of AlstR/tetO transgenic mice. When crossed to other transactivator lines expressing in defined neuronal cell types, this AlstR/tetO line should prove a very useful tool for the analysis of intact central neural circuits. PMID:19692509

  9. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.

    Science.gov (United States)

    Hammer, C; Stepniak, B; Schneider, A; Papiol, S; Tantra, M; Begemann, M; Sirén, A-L; Pardo, L A; Sperling, S; Mohd Jofrry, S; Gurvich, A; Jensen, N; Ostmeier, K; Lühder, F; Probst, C; Martens, H; Gillis, M; Saher, G; Assogna, F; Spalletta, G; Stöcker, W; Schulz, T F; Nave, K-A; Ehrenreich, H

    2014-10-01

    In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient blood-brain barrier (ApoE(-/-)) and in vitro endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in ApoE(-/-) mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised blood-brain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P=6.15E-08) as well as past influenza A (P=0.024) or B (P=0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The >10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function. PMID:23999527

  10. Dopaminergic 3H-agonist receptors in rat brain: new evidence on localization and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Bacopoulos, N.G.

    1984-01-23

    Recent methodological advances have allowed the reliable assay of specific dopaminergic 3H-agonist binding sites in rat striatum. Lesions of dopamine(DA) terminals or drugs which deplete DA levels prevent the preincubation-induced increase in binding, and this effect is completely reversible by preincubation with added DA. It is concluded that the evidence supporting the existence of presynaptic D-3 sites is artefactual and that 3H-DA binding sites are more likely related to post-synaptic receptors. 3H-DA binding involves two sites, one of which has pharmacologic properties similar to D-1 receptors, whereas the other resembles D-2 receptors. The affinity of 15 antipsychotic drugs for 3H-haloperidol binding sites was highly correlated (R = 0.94) with their inhibitory potency at a subset of 3H-DA binding sites. However, the inhibition of 3H-DA binding by antipsychotic drugs was noncompetitive. These findings can be explained by an allosteric model, whereby antagonists bind to a site different from but allosterically linked to a high-affinity 3H-DA binding site.

  11. Electrophysiological and autoradiographical evidence of V1 vasopressin receptors in the lateral septum of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raggenbass, M.; Tribollet, E.; Dreifuss, J.J.

    1987-11-01

    Extracellular recordings were obtained from single neurons located in the lateral septum, an area known to receive a vasopressinergic innervation in the rat brain. Approximately half of the neurons tested responded to 8-L-arginine vasopressin (AVP) by a marked increase in firing rate at concentrations greater than 1 nM. The effect of vasopressin was blocked by synthetic structural analogues possessing antagonistic properties on peripheral vasopressin and oxytocin receptors. Oxytocin was much less potent than vasopressin in firing septal neurons, and a selective oxytocic agonist was totally ineffective. The action of vasopressin on neuronal firing was mimicked by the vasopressor agonist (2-phenylalanine,8-ornithine)vasotocin but not by the selective antidiuretic agonist 1-deamino(8-D-arginine)vasopressin. In a parallel study, sites that bind (/sup 3/H)AVP at low concentration (1.5 nM) were found by in vitro autoradiography in the lateral septum. Adjacent sections were also incubated with 1.5 mM (/sup 3/H)AVP and, in addition, with 100 nM (2-phenylalanine,8-ornithine)vasotocin or 1-deamino(8-D-arginine)vasopressin--i.e., the same compounds as those used for the electrophysiological study. Results showed that the vasopressor agonist, but not the antidiuretic agonist, displaced (/sup 3/H)AVP, thus indicating that the vasopressin binding sites detected by autoradiography in the septum were V1 (vasopressor type) rather than V2 (antidiuretic type) receptors. Based on the electrophysiological evidence, we conclude that these receptors, when occupied, lead to increased firing of lateral septal neurons.

  12. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4

    Directory of Open Access Journals (Sweden)

    Li Fan

    2011-11-01

    Full Text Available Abstract Background Activation of amoeboid microglial cells (AMC and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia. Results We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7 but the immunofluorescence in AMC was progressively diminished with advancing age (P14. It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group and TNF-α expression (40% vs hypoxic group. However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression. Conclusions It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl adenosine

  13. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Misra, U K; Pizzo, S V

    1998-05-29

    Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation. PMID:9593670

  14. Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

    International Nuclear Information System (INIS)

    [18F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [18F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain. Dynamic small-animal PET scans with [18F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (VT) of [18F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification. The percentage of intact [18F]MK-9470 in arterial plasma samples was 80 ± 23 % at 10 min, 38 ± 30 % at 40 min and 13 ± 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. VT values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability (≤10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [18F]MK-9470 VT, but was correlated. A correlation between [18F]MK-9470 VT and SUV in the brain was also found (R 2 = 0.26-0.33; p ≤ 0.03). While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [18F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input. (orig.)

  15. Radiotherapy for asymptomatic brain metastasis in epidermal growth factor receptor mutant non-small cell lung cancer without prior tyrosine kinase inhibitors treatment: a retrospective clinical study

    International Nuclear Information System (INIS)

    Non-small cell lung cancer (NSCLC) with brain metastasis (BM) harboring an epidermal growth factor receptor (EGFR) mutation shows good response to tyrosine kinase inhibitors (TKIs). This study is to assess the appropriate timing of brain radiotherapy (RT) for asymptomatic BM in EGFR mutant NSCLC patients. There were 628 patients diagnosed with EGFR mutant NSCLC between October 2005 and December 2011. Treatment outcomes had been retrospectively evaluated in 96 patients with asymptomatic BM without prior TKI treatment. 39 patients received first-line brain RT, 23 patients received delayed brain RT, and 34 patients did not receive brain RT. With a median follow-up of 26 months, the 2-year OS was 40.6 %. Univariate analyses revealed that ECOG performance status (p = 0.006), other distant metastases (p = 0.002) and first line systemic treatment (p = 0.032) were significantly associated with overall survival (OS). Multivariate analyses revealed that other sites of distant metastases (p = 0.030) were prognostic factor. The timing of brain RT was not significantly related to OS (p = 0.246). The 2-year BM progression-free survival (PFS) was 26.9 %. Brain RT as first-line therapy failed to demonstrate a significant association with BM PFS (p = 0.643). First-line brain RT failed to improve long-term survival in TKI-naïve EGFR mutant NSCLC patients with asymptomatic BM. Prospective studies are needed to validate these clinical findings

  16. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    International Nuclear Information System (INIS)

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level

  17. Autoradiographical detection of cholecystokinin-A receptors in primate brain using sup 125 I-Bolton Hunter CCK-8 and 3H-MK-329

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.R.; Shaw, T.M.; Graham, W.; Woodruff, G.N. (Merck Sharp and Dohme Research Laboratories, Harlow, Essex (England))

    1990-04-01

    In vitro autoradiography was performed in order to visualize cholecystokinin-A (CCK-A) receptors in sections of Cynomolgus monkey brain. CCK-A receptors were defined as those which displayed high affinity for the selective non-peptide antagonist MK-329 (L-364,718) and were detected in several regions by selective inhibition of 125I-Bolton Hunter CCK using MK-329 or direct labeling with 3H-MK-329. In the caudal medulla, high densities of CCK-A sites were present in the nucleus tractus solitarius, especially the caudal and medial aspects, and also the dorsal motor nucleus of the vagus. CCK-A sites were localized to a number of hypothalamic nuclei such as the supraoptic and paraventricular nuclei, the dorsomedial and infundibular nuclei as well as the neurohypophysis. The mammillary bodies and supramammillary nuclei also contained CCK-A receptor sites. High concentrations of CCK-A receptors were present in the substantia nigra zona compacta and also the ventral tegmental area and may be associated with dopamine cell bodies. Binding of 3H-MK-329 was also detected in parts of the caudate nucleus and ventral putamen. The detection, by autoradiographical means, of CCK-A receptors throughout the Cynomolgus monkey brain contrasts with similar studies performed using rodents and suggests differences in the density and, perhaps, the importance of CCK-A receptors in the primate as opposed to the rodent. The data suggest the possibility that CCK-A receptors may be involved in a number of important brain functions as diverse as the processing of sensory information from the gut, the regulation of hormone secretion, and the activity of dopamine cell activity.

  18. Pentobarbitone modulation of NMDA receptors in neurones isolated from the rat olfactory brain.

    OpenAIRE

    Charlesworth, P; Jacobson, I; Richards, C. D.

    1995-01-01

    1. The action of pentobarbitone on the N-methyl-D-aspartate (NMDA) receptors of neurones freshly dissociated from the olfactory bulb and olfactory tubercle has been studied using patch-clamp techniques. 2. Pentobarbitone produced a concentration-dependent depression of the currents evoked by NMDA with an IC50 value of c. 250 microM. 3. Analysis of the NMDA-evoked noise produced power spectra that could be fitted by the sum of two Lorentzians with corner frequencies of 17 and 82 Hz. Pentobarbi...

  19. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    Science.gov (United States)

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space

  20. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  1. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats.

    Science.gov (United States)

    Sankhwar, Madhu L; Yadav, Rajesh S; Shukla, Rajendra K; Singh, Dhirendra; Ansari, Reyaz W; Pant, Aditya B; Parmar, Devendra; Khanna, Vinay K

    2016-03-01

    Human exposure to monocrotophos, an organophosphate pesticide, could occur due to its high use in agriculture to protect crops. Recently, we found that postlactational exposure to monocrotophos impaired cholinergic mechanisms in young rats and such changes persisted even after withdrawal of monocrotophos exposure. In continuation to this, the effect of monocrotophos on noncholinergic targets and role of oxidative stress in its neurotoxicity has been studied. Exposure of rats from postnatal day (PD)22 to PD49 to monocrotophos (0.50 or 1.0 mg kg(-1) body weight, perorally) significantly impaired motor activity and motor coordination on PD50 as compared to controls. A significant decrease in the binding of (3)H-spiperone to striatal membrane (26%, p 0.05; 37%, p < 0.05) in those exposed at a higher dose, respectively, was observed on PD50 compared with the controls. Alterations in the binding persisted even after withdrawal of monocrotophos exposure on PD65. Increased oxidative stress in brain regions following exposure of rats to monocrotophos was also observed on PD50 that persisted 15 days after withdrawal of exposure on PD65. The results suggest that monocrotophos exerts its neurobehavioral toxicity by affecting noncholinergic functions involving dopaminergic and serotonergic systems associated with enhanced oxidative stress. The results also exhibit vulnerability of developing brain to monocrotophos as most of the changes persisted even after withdrawal of its exposure. PMID:24105069

  2. STRATEGIES FOR QUANTIFYING PET IMAGING DATA FROM TRACER STUDIES OF BRAIN RECEPTORS AND ENZYMES.

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.

    2001-04-02

    A description of some of the methods used in neuroreceptor imaging to distinguish changes in receptor availability has been presented in this chapter. It is necessary to look beyond regional uptake of the tracer since uptake generally is affected by factors other than the number of receptors for which the tracer has affinity. An exception is the infusion method producing an equilibrium state. The techniques vary in complexity some requiring arterial blood measurements of unmetabolized tracer and multiple time uptake data. Others require only a few plasma and uptake measurements and those based on a reference region require no plasma measurements. We have outlined some of the limitations of the different methods. Laruelle (1999) has pointed out that test/retest studies to which various methods can be applied are crucial in determining the optimal method for a particular study. The choice of method will also depend upon the application. In a clinical setting, methods not involving arterial blood sampling are generally preferred. In the future techniques for externally measuring arterial plasma radioactivity with only a few blood samples for metabolite correction will extend the modeling options of clinical PET. Also since parametric images can provide information beyond that of ROI analysis, improved techniques for generating such images will be important, particularly for ligands requiring more than a one-compartment model. Techniques such as the wavelet transform proposed by Turkheimer et al. (2000) may prove to be important in reducing noise and improving quantitation.

  3. Metabolism of [{sup 123}I]epidepride may affect brain dopamine D{sub 2} receptor imaging with single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, K.A.; Yu, M.; Kuikka, J.T.; Aakerman, K.K. [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio (Finland); Hiltunen, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Lehtonen, J. [Department of Psychiatry, University of Kuopio (Finland); Halldin, C. [Karolinska Institute, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden); Tiihonen, J. [Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio (Finland)

    2000-02-01

    Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D{sub 2} receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [{sup 123}I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D{sub 2} receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=-0.58, P<0.02), suggesting that plasma metabolite analysis is essential when imaging dopamine D{sub 2} receptors with SPET using [{sup 123}I]epidepride. (orig.)

  4. Dopamine D1 receptor imaging in the rodent and primate brain using the isoquinoline (+)-[{sup 11}C]A-69024 and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Besret, L.; Herard, A.S.; Guillermier, M.; Hantraye, P. [CNRS, URA 2210, F-91406 Orsay (France); Dolle, F.; Demphel, S.; Hinnen, F.; Coulon, C.; Ottaviani, M.; Bottlaender, M. [CEA, DSV, I2BM, SHFJ, Lab Imagerie Mol Expt, F-91406 Orsay (France); Herard, A.S.; Guillermier, M.; Hantraye, P. [CEA, DSV, I2BM, Mol Imaging Res Ctr, F-92265 Fontenay Aux Roses (France); Kassiou, M. [Univ Sydney, Discipline Med Radiat Sci, Sydney, NSW 2006 (Australia); Kassiou, M. [Univ Sydney, Brain and Mind Res Inst, Sydney, NSW 2050 (Australia); Kassiou, M. [Univ Sydney, Sch Chem, Sydney, NSW 2006 (Australia)

    2008-07-01

    In vivo pharmacokinetic and brain binding characteristics of (+)-[{sup 11}C]A-69024, a high-affinity-D1-selective dopamine receptor antagonist, were assessed with micro-PET and {beta}-microprobes in the rat and PET in the baboon. The biodistribution of (+)-[{sup 11}C]A-69024 in rats and baboons showed a rapid brain uptake (reaching a maximal value at 5 and 15 min postinjection in rats and baboons, respectively), followed by a slow wash out. The region/cerebellum concentration ratio was characterized by a fourfold higher uptake in striatum and a twofold higher uptake in cortical regions, consistent with in vivo specific binding of the radiotracer in these cerebral regions. Furthermore, this specific (+)-[{sup 11}C]A-69024 binding significantly correlated with the reported in vitro distribution of dopamine D1-receptors. Finally, the specific uptake of the tracer in the striatum and cortical regions was completely prevented by either a pretreatment with large doses of nonradioactive {+-}A-69024 or of the D1-selective antagonist SCH23390, resulting in a similar uptake in the reference region (cerebellum) and in other brain regions. Thus, (+)-[{sup 11}C]A-69024 appears to be a specific and enantioselective radioligand to visualize and quantify brain dopamine D1 receptors in vivo using positron emission tomography. (authors)

  5. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Directory of Open Access Journals (Sweden)

    Ana Belen Lopez-Rodriguez

    Full Text Available Traumatic brain injury (TBI incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2, blood brain barrier proteins (AQP4 and astrogliosis markers (vimentin to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h, early mid-term (72h and late mid-term (two weeks. Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  6. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Viveros, Maria-Paz; Garcia-Segura, Luis M

    2015-01-01

    Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  7. Action of ZDY101 on passive avoidance test and brain M-receptor density after intracranial co-injection of Aβ plus ibotenic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of this study was to establish a model by single injection of Aβ1-40+IA into rat brain basal ganglion and examine the effect of ZDY101, an active component of a Yin tonic from Chinese traditional medicinal herb. The results showed that the amnestic effect of co-injection of Aβ and IA lasted for at least 2 months. At same time, the total M-receptor density in model brain was significantly lower than blank control, indicating the change is profound enough for long term pathological studies or drug screening. It can be clearly seen that the decreased brain M-receptor density caused by Aβ was significantly increased by ZDY101. Such an elevation effect was significantly correlated with dose of ZDY101 when the dose was examined in a certain reasonable range. It can also be clearly seen that such an elevation of M-cholinergic receptor density was significantly correlated with the improvement of memory which indicated that the increase of M-cholinergic receptor density was animportant factor in improving the memory of such animal model.

  8. Basic and clinical physiology of the inner ear receptors and their neural pathways in the brain.

    Science.gov (United States)

    Sohmer, H; Freeman, S

    2000-01-01

    The six receptors of the inner ear (cochlea, two otolith organs and three semicircular canals) share a common transduction unit made up of a sensory hair cell, a first order sensory neuron and the synapse between them. Displacement of the stereocilia in a particular direction leads to excitation of the hair cell and activation of the neuron. Electrical and mechanical reflections of these stages of transduction can be recorded non-invasively in humans and in animals. These include cochlear microphonic potentials, otoacoustic emissions, auditory and vestibular evoked potentials. The ability to record these activities can be used to track the development of inner ear function in the fetus and neonate and to study the effects of various ototoxic agents (e.g. noise) and drugs.

  9. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine

  10. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    Science.gov (United States)

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  11. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  12. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed.

    Science.gov (United States)

    Burk, Raymond F; Hill, Kristina E; Olson, Gary E; Weeber, Edwin J; Motley, Amy K; Winfrey, Virginia P; Austin, Lori M

    2007-06-01

    Selenoprotein P (Sepp1) is a plasma and extracellular protein that is rich in selenium. Deletion of Sepp1 results in sharp decreases of selenium levels in the brain and testis with dysfunction of those organs. Deletion of Sepp1 also causes increased urinary selenium excretion, leading to moderate depletion of whole-body selenium. The lipoprotein receptor apolipoprotein E receptor-2 (apoER2) binds Sepp1 and facilitates its uptake by Sertoli cells, thus providing selenium for spermatogenesis. Experiments were performed to assess the effect of apoER2 on the concentration and function of selenium in the brain and on whole-body selenium. ApoER2-/- and apoER2+/+ male mice were fed a semipurified diet with selenite added as the source of selenium. ApoER2-/- mice had depressed brain and testis selenium, but normal levels in liver, kidney, muscle, and the whole body. Feeding a selenium-deficient diet to apoER2-/- mice led to neurological dysfunction and death, with some of the characteristics exhibited by Sepp1-/- mice fed the same diet. Thus, although it does not affect whole-body selenium, apoER2 is necessary for maintenance of brain selenium and for prevention of neurological dysfunction and death under conditions of selenium deficiency, suggesting an interaction of apoER2 with Sepp1 in the brain.

  13. Changes in dopamine D2 and GluR-1 glutamate receptor mRNAs in the rat brain after treatment with phencyclidine.

    Directory of Open Access Journals (Sweden)

    Tomita,Hiroaki

    1995-04-01

    Full Text Available In situ hybridization of slide-mounted brain sections from rats subjected to acute and chronic phencyclidine treatment was carried out using synthetic oligonucleotides complementary to dopamine D2-receptor and non-N-methyl-D-aspartate (NMDA glutamate-receptor-subunit (GluR-1 mRNAs. There was no significant difference in either the D2-receptor or the GluR-1 mRNA levels in any brain region of the acute phencyclidine (10 mg/kg-treated and control groups. However, chronic administration of phencyclidine (10 mg/kg/day, 14 days significantly decreased the dopamine D2-receptor mRNA level in the caudate-putamen (by 27%, P < 0.01 and significantly increased the GluR-1 mRNA level in the prefrontal cortex (by 29%, P < 0.001. These results suggest that the chronic pharmaco-behavioral effects of phencyclidine may involve expression of both dopamine- and non-NMDA glutamate-receptor mRNAs.

  14. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells.

    Science.gov (United States)

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Joan Abbott, N; Couraud, Pierre-Olivier; Pan, Weihong

    2010-12-01

    Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability. PMID:20977476

  15. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    Science.gov (United States)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  16. Dopamine D(2) receptor quantification in extrastriatal brain regions using [(123)I]epidepride with bolus/infusion.

    Science.gov (United States)

    Pinborg, L H; Videbaek, C; Knudsen, G M; Swahn, C G; Halldin, C; Friberg, L; Paulson, O B; Lassen, N A

    2000-06-15

    The iodinated benzamide epidepride, which shows a picomolar affinity binding to dopamine D(2) receptors, has been designed for in vivo studies using SPECT. The aim of the present study was to apply a steady-state condition by the bolus/infusion approach with [(123)I]epidepride for the quantification of striatal and extrastriatal dopamine D(2) receptors in humans. In this way the distribution volume of the tracer can be determined from a single SPECT image and one blood sample. Based on bolus experiments, an algorithm using conventional convolution arguments for prediction of the outcome of a bolus/infusion (B/I) experiment was applied. It was predicted that a B/I protocol with infusion of one-third of the initial bolus per hour would be appropriate. Steady-state conditions were attained in extrastriatal regions within 3-4 h but the infusion continued up to 7 h in order to minimize the significance of individual differences in plasma clearance and binding parameters. A steady-state condition, however, could not be attained in striatal brain regions using a B/I protocol of 20 h, even after 11 h. Under near steady-state conditions a striatal:cerebellar ratio of 23 was demonstrated. Epidepride has a unique signal-to-noise ratio compared to [(123)I]IBZM but present difficulties for steady-state measurements of striatal regions. The bolus/infusion approach is particularly feasible for quantification of the binding potential in extrastriatal regions. PMID:10819910

  17. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    OpenAIRE

    Davor Stanić; Sydney Dubois; Hui Kheng Chua; Bruce Tonge; Nicole Rinehart; Malcolm K Horne; Wah Chin Boon

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, in...

  18. Sigma-1 Receptor Imaging in the Brain: Cerebral sigma-1 receptors and cognition: Small-animal PET studies using 11C-SA4503

    OpenAIRE

    Kuzhuppilly Ramakrishnan, Nisha

    2014-01-01

    The sigma-1 receptor is a unique orphan receptor, strongly expressed in neurons and glia. Sigma-1 receptors are involved in several central nervous system (CNS) disorders like depression, anxiety, psychosis, schizophrenia, Parkinson’s disease, Alzheimer’s disease, addiction and neuropathic pain. Several CNS drugs like haloperidol, donepezil, rimcazole, fluvoxamine, sertraline and clorgyline have moderate to high sigma-1 receptor affinity. Pharmaceutical companies currently involved in R&D and...

  19. Expression of receptor for advanced glycation endproducts and nuclear factor κB in brain hippocampus of rat with chronic fluorosis

    Institute of Scientific and Technical Information of China (English)

    张凯琳

    2014-01-01

    Objective To investigate the expressions of receptor for advanced glycation endproducts(RAGE)and nuclear factorκB(NF-κB)in brain hippocampus of rat with chronic fluorosis,and to reveal the mechanism of brain damage resulted from chronic fluorosis.Methods Sixty clean grade SD rats were randomly divided to three groups(20 rats in each group,10 female and 10 male)fed with different contents of fluoride,control group with normal tap-water(<0.5 mg/L fluoride),

  20. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    OpenAIRE

    Marta Kruk-Slomka; Anna Boguszewska-Czubara; Tomasz Slomka; Barbara Budzynska; Grazyna Biala

    2015-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection...

  1. Sigma-1 Receptor Imaging in the Brain : Cerebral sigma-1 receptors and cognition: Small-animal PET studies using 11C-SA4503

    NARCIS (Netherlands)

    Kuzhuppilly Ramakrishnan, Nisha

    2014-01-01

    The sigma-1 receptor is a unique orphan receptor, strongly expressed in neurons and glia. Sigma-1 receptors are involved in several central nervous system (CNS) disorders like depression, anxiety, psychosis, schizophrenia, Parkinson’s disease, Alzheimer’s disease, addiction and neuropathic pain. Sev

  2. The protective effect of heat acclimation from hypoxic damage in the brain involves changes in the expression of glutamate receptors

    Science.gov (United States)

    Yacobi, Assaf; Stern Bach, Yael; Horowitz, Michal

    2014-01-01

    Long-term heat acclimation (34 °C, 30d) alters the physiological responses and the metabolic state of organisms. It also improves ability to cope with hypoxic stress via a cross-tolerance mechanism. Within the brain, the hippocampal and frontal cortex neurons are the most sensitive to hypoxia and cell death is mainly caused by calcium influx via glutamate-gated ion channels, specifically NMDA and AMPA receptors. GluN1 subunit levels of NMDA-R correspond to NMDA-R levels. GluN2B/GluN2A subunit ratio is a qualitative index of channel activity; a higher ratio implies lower calcium permeability. The GluA2 subunit of AMPA-R controls channel permeability by inhibiting calcium penetration. Here, in rats model we (i)used behavioral-assessment tests to evaluate heat acclimation mediated hypoxic (15’ 4.5 ± 0.5% O2) neuroprotection, (ii) measured protein and transcript levels of NMDA-R and AMPA-R subunits before and after hypoxia in the hippocampus and the frontal cortex, to evaluate the role of Ca2+ in neuro-protection/cross-tolerance. Behavioral tests confirmed hypoxic tolerance in long-term (30d) but not in short-term (2d) heat acclimated rats. Hypoxic tolerance in the long-term acclimated phenotype was accompanied by a significant decrease in basal NMDA receptor GluN1 protein and an increase in its mRNA. The long-term acclimated rats also showed post ischemic increases in the GluN2B/GluN2A subunit ratio and GluA2 subunit of the AMPA receptor, supporting the hypothesis that reduced calcium permeability contributes to heat acclimation mediated hypoxia cross-tolerance. Abrupt post ischemic change in GluN2B/GluN2A subunit ratio with no change in NMDA-R subunits transcript levels implies that post-translational processes are inseparable acclimatory cross-tolerance mechanism.

  3. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    OpenAIRE

    LIU, QIULI; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmis...

  4. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Different agents have been investigated for their effects on [3H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [3H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [3H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [3H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [3H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [3H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K+ provoked a nearly total [3H] glycogen hydrolysis. (author)

  5. Development of radioactive agent for image diagnosis of brain dopamine receptor

    International Nuclear Information System (INIS)

    Recently, MRI is often used to examine pathological degeneration of intracerebellar neurons of patients with Parkinson's disease, Huntington's chorea, spinocerebellar degeneration, etc. However, the efficacy of MRI is still unsatisfactory at present. In this project, the efficacy of SPECT was examined to evaluate the cerebellar functions in the previous year and it was found that the benzodiazepin receptor in CNS was detectable using SPECT with 125I iomazenil. In this year, ocular movements as one of cerebellar functions was attempted using functional MRI and patients' ocular movements were analyzed on the basis of the saccade during functional MRI imaging by Ober2 (Permobil Sweden). Image of an activated region in the frontal eye field (FEF), supplementary eye field (SEF), parietal eye field (PEF), posterior lobe or cerebellum was obtainable by Ober2-attached functional MRI. Especially, vermis 5, 6 and 7 lobules in the cerebellum were activated and random saccade was much stronger than regular saccade in the cerebellum. These results indicated that functional MRI was usable for clinical evaluation of patients with central nervous degeneration. (M.N.)

  6. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  7. N-methyl-D-aspartate receptor subtype 3A promotes apoptosis in developing mouse brain exposed to hyperoxia

    Institute of Scientific and Technical Information of China (English)

    Jimei Li; Shanping Yu; Zhongyang Lu; Osama Mohamad; Ling Wei

    2012-01-01

    In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyl-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2'-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN+ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen.

  8. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    Science.gov (United States)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (Paxis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  9. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors.

    OpenAIRE

    Gauger, Kelly J; Kato, Yoshihisa; Haraguchi, Koichi; Lehmler, Hans-Joachim; Robertson, Larry W.; Bansal, Ruby; Zoeller, R. Thomas

    2004-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants routinely found in human and animal tissues. Developmental exposure to PCBs is associated with neuropsychologic deficits, which may be related to effects on thyroid hormone (TH) signaling in the developing brain. However, PCBs may interfere with TH signaling solely by reducing circulating levels of TH, or they may exert direct effects on TH receptors (TRs). Therefore, we tested whether maternal exposure to a commercial...

  10. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions

    OpenAIRE

    LaLumiere, Ryan T; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats (∼300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h la...

  11. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors

    OpenAIRE

    Tomasi, Dardo; Wang, Gene-Jack; Wang, Ruiliang; Caparelli, Elisabeth C.; Logan, Jean; Volkow, Nora D.

    2014-01-01

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and PET in 20 active cocaine abuser...

  12. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    Science.gov (United States)

    Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A; Sharp, Trevor; Sibson, Nicola R; Martin, Chris

    2015-12-01

    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.

  13. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.

  14. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  15. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    Science.gov (United States)

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Kandpal, Raj P.; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants, namely, GluR6B, GluR6C, GluR6D and GluR6E in fibroblast cell lines. The variants GluR6D and GluR6E have not been described before, and appear to be specific for non-neuronal cells. Genomic analysis and cloning of the sequence preceding the transcribed region led to the identification of two tissue specific promoters designated as neuronal promoter PN and non-neuronal promoter PNN. We have used RNA ligase mediated RACE and in silico analyses to locate two sets of transcription start sites, and confirmed specific transcripts initiated by PN and PNN in brain cells and fibroblasts, respectively. The domain structure of variants GluR6D and GluR6E revealed the absence of three transmembrane domains. The lack of these domains suggests that the mature receptors arising from these variant subunits may not function as active channels. Based on these structural features in GluR6D and GluR6E, and the observations that GluR6B, GluR6C, GluR6D and GluR6E are exclusively expressed in non-neuronal cells, it is likely that these receptor subunits function as non-channel signaling proteins. PMID:20230879

  16. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia.

    Science.gov (United States)

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  17. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    Science.gov (United States)

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  18. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  19. Depressive behavior and alterations in receptors for dopamine and 5-hydroxytryptamine in the brain of the senescence accelerated mouse (SAM)-P10.

    Science.gov (United States)

    Onodera, T; Watanabe, R; Tha, K K; Hayashi, Y; Murayama, T; Okuma, Y; Ono, C; Oketani, Y; Hosokawa, M; Nomura, Y

    2000-08-01

    The senescence accelerated mouse (SAM) is known as a murine model of aging. SAM consists of senescence accelerated-prone mouse (SAMP) and senescence accelerated-resistant mouse (SAMR). Previous studies reported that SAMP10 exhibits age-related learning impairments and behavioral depression in a tail suspension test after 7 months. We investigated the changes in emotional behavior in a forced swimming test and in receptors for dopamine and 5-hydroxytryptamine (5-HT) in SAMP10. SAMP10 at 8 months showed an increase of immobility in the test compared with SAMR1. Treatment with desipramine (25 mg/kg, i.p., 3 days) in SAMP10 caused a decrease in immobility. In the cortex from SAMP10, [3H]quinpirole binding to D2/D3 dopamine receptors increased significantly compared with control SAMR1. In the hippocampus from SAMP10, [3H]8-hydroxy DPAT binding to 5-HT1A receptor increased. In midbrains from SAMP10, bindings of [3H]quinpirole and [3H]8-hydroxy DPAT increased. [3H]SCH23390 binding to D1/D5 receptors and [3H]ketanserin binding to 5-HT2 receptor in brain regions examined in SAMP10 were similar to those in SAMR1. The present findings represent the first neurochemical evidence of an increase of D2/D3 and 5-HT1A receptors in SAMP10. SAMP10 may be a useful model of aging associated depressive behavior. PMID:11001177

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. Altered regional brain volumes in elderly carriers of a risk variant for drug abuse in the dopamine D2 receptor gene (DRD2).

    Science.gov (United States)

    Roussotte, Florence F; Jahanshad, Neda; Hibar, Derrek P; Thompson, Paul M

    2015-06-01

    Dopamine D2 receptors mediate the rewarding effects of many drugs of abuse. In humans, several polymorphisms in DRD2, the gene encoding these receptors, increase our genetic risk for developing addictive disorders. Here, we examined one of the most frequently studied candidate variant for addiction in DRD2 for association with brain structure. We tested whether this variant showed associations with regional brain volumes across two independent elderly cohorts, totaling 1,032 subjects. We first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI1). We hypothesized that this addiction-related polymorphism would be associated with structural brain differences in regions previously implicated in familial vulnerability for drug dependence. Then, we assessed the generalizability of our findings by testing this polymorphism in a non-overlapping replication sample of 294 elderly subjects from a continuation of the first ADNI project (ADNI2) to minimize the risk of reporting false positive results. In both cohorts, the minor allele-previously linked with increased risk for addiction-was associated with larger volumes in various brain regions implicated in reward processing. These findings suggest that neuroanatomical phenotypes associated with familial vulnerability for drug dependence may be partially mediated by DRD2 genotype.

  2. Deficiency of complement receptors CR2/CR1 in Cr2⁻/⁻ mice reduces the extent of secondary brain damage after closed head injury.

    Science.gov (United States)

    Neher, Miriam D; Rich, Megan C; Keene, Chesleigh N; Weckbach, Sebastian; Bolden, Ashley L; Losacco, Justin T; Patane, Jenée; Flierl, Michael A; Kulik, Liudmila; Holers, V Michael; Stahel, Philip F

    2014-01-01

    Complement activation at the C3 convertase level has been associated with acute neuroinflammation and secondary brain injury after severe head trauma. The present study was designed to test the hypothesis that Cr2-/- mice, which lack the receptors CR2/CD21 and CR1/CD35 for complement C3-derived activation fragments, are protected from adverse sequelae of experimental closed head injury. Adult wild-type mice and Cr2-/- mice on a C57BL/6 genetic background were subjected to focal closed head injury using a standardized weight-drop device. Head-injured Cr2-/- mice showed significantly improved neurological outcomes for up to 72 hours after trauma and a significantly decreased post-injury mortality when compared to wild-type mice. In addition, the Cr2-/- genotype was associated with a decreased extent of neuronal cell death at seven days post-injury. Western blot analysis revealed that complement C3 levels were reduced in the injured brain hemispheres of Cr2-/- mice, whereas plasma C3 levels remained unchanged, compared to wild-type mice. Finally, head-injured Cr2-/- had an attenuated extent of post-injury C3 tissue deposition, decreased astrocytosis and microglial activation, and attenuated immunoglobulin M deposition in injured brains compared to wild-type mice. Targeting of these receptors for complement C3 fragments (CR2/CR1) may represent a promising future approach for therapeutic immunomodulation after traumatic brain injury. PMID:24885042

  3. Deficiency of complement receptors CR2/CR1 in Cr2⁻/⁻ mice reduces the extent of secondary brain damage after closed head injury.

    Science.gov (United States)

    Neher, Miriam D; Rich, Megan C; Keene, Chesleigh N; Weckbach, Sebastian; Bolden, Ashley L; Losacco, Justin T; Patane, Jenée; Flierl, Michael A; Kulik, Liudmila; Holers, V Michael; Stahel, Philip F

    2014-05-24

    Complement activation at the C3 convertase level has been associated with acute neuroinflammation and secondary brain injury after severe head trauma. The present study was designed to test the hypothesis that Cr2-/- mice, which lack the receptors CR2/CD21 and CR1/CD35 for complement C3-derived activation fragments, are protected from adverse sequelae of experimental closed head injury. Adult wild-type mice and Cr2-/- mice on a C57BL/6 genetic background were subjected to focal closed head injury using a standardized weight-drop device. Head-injured Cr2-/- mice showed significantly improved neurological outcomes for up to 72 hours after trauma and a significantly decreased post-injury mortality when compared to wild-type mice. In addition, the Cr2-/- genotype was associated with a decreased extent of neuronal cell death at seven days post-injury. Western blot analysis revealed that complement C3 levels were reduced in the injured brain hemispheres of Cr2-/- mice, whereas plasma C3 levels remained unchanged, compared to wild-type mice. Finally, head-injured Cr2-/- had an attenuated extent of post-injury C3 tissue deposition, decreased astrocytosis and microglial activation, and attenuated immunoglobulin M deposition in injured brains compared to wild-type mice. Targeting of these receptors for complement C3 fragments (CR2/CR1) may represent a promising future approach for therapeutic immunomodulation after traumatic brain injury.

  4. Dopamine D2-receptor imaging with [sup 123]I-iodobenzamide SPECT in migraine patients abusing ergotamine: does ergotamine cross the blood brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeff, N.P.; Visser, W.H.; Ferrari, M.D.; Saxena, P.R.; Royen, E.A. van (Erasmus Univ., Rotterdam (Netherlands))

    1993-10-01

    Two migraine patients were studied by in vivo SPECT using the dopamine D2-receptor specific radioligand [sup 123]I-3-iodo-6-methoxybenzamide ([sup 123]I-IBZM) during ergotamine abuse and after withdrawal. Results were compared with 15 healthy controls. Striatum/cerebellum and striatum/occipital cortex ratios of count rate density were calculated as a semiquantitative measurement for striatal dopamine D2-receptor binding potential. No differences were found in striatal uptake of [sup 123]I-IBZM between healthy controls and the patients when on or off ergotamine. Preliminary evidence suggests that ergotamine may not occupy striatal dopamine D2-receptors to a large extent and thus may not cross the blood brain barrier in large quantities. 23 refs., 3 figs.

  5. Dopamine D2-receptor imaging with 123I-iodobenzamide SPECT in migraine patients abusing ergotamine: does ergotamine cross the blood brain barrier?

    International Nuclear Information System (INIS)

    Two migraine patients were studied by in vivo SPECT using the dopamine D2-receptor specific radioligand 123I-3-iodo-6-methoxybenzamide (123I-IBZM) during ergotamine abuse and after withdrawal. Results were compared with 15 healthy controls. Striatum/cerebellum and striatum/occipital cortex ratios of count rate density were calculated as a semiquantitative measurement for striatal dopamine D2-receptor binding potential. No differences were found in striatal uptake of 123I-IBZM between healthy controls and the patients when on or off ergotamine. Preliminary evidence suggests that ergotamine may not occupy striatal dopamine D2-receptors to a large extent and thus may not cross the blood brain barrier in large quantities. 23 refs., 3 figs

  6. In vitro assessment of the agonist properties of the novel 5-HT{sub 1A} receptor ligand, CUMI-101 (MMP), in rat brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Nicola; Christie, Isabel [Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, CM19 5AW Essex (United Kingdom); Rabiner, Eugenii Alfredovich, E-mail: eugenii_a_rabiner@gsk.co [GSK Clinical Imaging Centre, London Hammersmith Hospital-IC, W12 0NN London (United Kingdom); Laruelle, Marc; Watson, Jeannette [Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, CM19 5AW Essex (United Kingdom)

    2011-02-15

    Introduction: Development of agonist positron emission tomography (PET) radioligands for the 5-HT neurotransmitter system is an important target to enable the understanding of human 5-HT function in vivo. [{sup 11}C]CUMI-101, proposed as the first 5-HT{sub 1A} receptor agonist PET ligand, has been reported to behave as a potent 5-HT{sub 1A} agonist in a cellular system stably expressing human recombinant 5-HT{sub 1A} receptors. In this study, we investigate the agonist properties of CUMI-101 in rat brain tissue. Methods: [{sup 35}S]-GTP{gamma}S binding studies were used to determine receptor function in HEK (human embryonic kidney) 293 cells transfected with human recombinant 5-HT{sub 1A} receptors and in rat cortex and rat hippocampal tissue, following administration of CUMI-101 and standard 5-HT1A antagonists (5-HT, 5-CT and 8-OH-DPAT). Results: CUMI-101 behaved as an agonist at human recombinant 5-HT{sub 1A} receptors (pEC{sub 50} 9.2). However, CUMI-101 did not show agonist activity in either rat cortex or hippocampus at concentrations up to 10 {mu}M. In these tissues, CUMI-behaved as an antagonist with pK{sub B}s of 9.2 and 9.3, respectively. Conclusions: Our studies demonstrate that as opposed to its behavior in human recombinant system, in rat brain tissue CUMI-101 behaves as a potent 5-HT{sub 1A} receptor antagonist.

  7. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain

    Science.gov (United States)

    González, Sergio; Rangel-Barajas, Claudia; Peper, Marcela; Lorenzo, Ramiro; Moreno, Estefanía; Ciruela, Francisco; Borycz, Janusz; Ortiz, Jordi; Lluís, Carme; Franco, Rafael; McCormick, Peter J.; Volkow, Nora D.; Rubinstein, Marcelo; Floran, Benjamin; Ferré, Sergi

    2011-01-01

    Polymorphic variants of the dopamine D4 receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here we show that whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele (D4.7) does not. D2 receptor activation in the D2S-D4 receptor heteromer potentiates D4 receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D4.7 or in the striatum of knock-in mutant mice carrying the 7 repeats of the human D4.7 in the third intracellular loop of the D4 receptor. In the striatum D4 receptors are localized in cortico-striatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative characteristics than the D2S-D4 receptor heteromer-mediated MAPK signaling and D2S receptor activation potentiates D4 receptor-mediated inibition of striatal glutamate release. It is therefore postulated that dysfunctional D2S-D4.7 heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD. PMID:21844870

  8. Preclinical evaluation and quantification of [{sup 18}F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy [K.U. Leuven, University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); Koole, Michel; Laere, Koen van [K.U. Leuven, University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); Celen, Sofie; Bormans, Guy [K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); K.U. Leuven, Laboratory for Radiopharmacy, Leuven (Belgium)

    2012-09-15

    [{sup 18}F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [{sup 18}F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain. Dynamic small-animal PET scans with [{sup 18}F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (V{sub T}) of [{sup 18}F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification. The percentage of intact [{sup 18}F]MK-9470 in arterial plasma samples was 80 {+-} 23 % at 10 min, 38 {+-} 30 % at 40 min and 13 {+-} 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. V{sub T} values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability ({<=}10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [{sup 18}F]MK-9470 V{sub T}, but was correlated. A correlation between [{sup 18}F]MK-9470 V{sub T} and SUV in the brain was also found (R {sup 2} = 0.26-0.33; p {<=} 0.03). While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [{sup 18}F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input. (orig.)

  9. (18)F-FCWAY, a serotonin 1A receptor radioligand, is a substrate for efflux transport at the human blood-brain barrier.

    Science.gov (United States)

    Liow, Jeih-San; Zoghbi, Sami S; Hu, Shuo; Hall, Matthew D; Hines, Christina S; Shetty, H Umesha; Araneta, Maria D; Page, Emily M; Pike, Victor W; Kreisl, William C; Herscovitch, Peter; Gottesman, Michael M; Theodore, William H; Innis, Robert B

    2016-09-01

    Efflux transporters at the blood-brain barrier can decrease the entry of drugs and increase the removal of those molecules able to bypass the transporter. We previously hypothesized that (18)F-FCWAY, a radioligand for the serotonin 5-HT1A receptor, is a weak substrate for permeability glycoprotein (P-gp) based on its very early peak and rapid washout from human brain. To determine whether (18)F-FCWAY is a substrate for P-gp, breast cancer resistance protein (BCRP), and multidrug resistance protein (MRP1) - the three most prevalent efflux transporters at the blood-brain barrier - we performed three sets of experiments. In vitro, we conducted fluorescence-activated cell sorting (FACS) flow cytometry studies in cells over-expressing P-gp, BCRP, and MRP1 treated with inhibitors specific to each transporter and with FCWAY. Ex vivo, we measured (18)F-FCWAY concentration in plasma and brain homogenate of transporter knockout mice using γ-counter and radio-HPLC. In vivo, we conducted positron emission tomography (PET) studies to assess changes in humans who received (18)F-FCWAY during an infusion of tariquidar (2-4mg/kg iv), a potent and selective P-gp inhibitor. In vitro studies showed that FCWAY allowed fluorescent substrates to get into the cell by competitive inhibition of all three transporters at the cell membrane. Ex vivo measurements in knockout mice indicate that (18)F-FCWAY is a substrate only for P-gp and not BCRP. In vivo, tariquidar increased (18)F-FCWAY brain uptake in seven of eight subjects by 60-100% compared to each person's baseline. Tariquidar did not increase brain uptake via some peripheral mechanism, given that it did not significantly alter concentrations in plasma of the parent radioligand (18)F-FCWAY or its brain-penetrant radiometabolite (18)F-FC. These results show that (18)F-FCWAY is a weak substrate for efflux transport at the blood-brain barrier; some radioligand can enter brain, but its removal is hastened by P-gp. Although (18)F-FCWAY is

  10. Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: effects of sleep deprivation

    Science.gov (United States)

    Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant effects requires a better understanding of dopamine's role in attention processing. Here we test the hypotheses that D2/D3 receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [11C]raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum. PMID:27219347

  11. Maternal epileptic seizure induced by Pentylenetetrazol: Apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain

    Directory of Open Access Journals (Sweden)

    Naseer Muhammad

    2009-06-01

    Full Text Available Abstract Epilepsy is a prominent sign of neurological dysfunction in children with various fetal and maternal deficiencies. However, the detailed mechanism and influences underlying epileptic disorders are still unrevealed. The hippocampal neurons are vulnerable to epilepsy-induced pathologic changes and often manifests as neuronal death. The present study was designed to investigate the effect of maternal epileptic seizure on apoptotic neuronal death, modulation of GABAB1 receptor (R, and protein kinase A-α (PKA in prenatal rat hippocampal neurons at gestational days (GD 17.5. Seizure was induced in pregnant rat using intraperitoneal injection of pentylenetetrazol (PTZ (40 mg/kg for 15 days. To confirm the seizure electroencephalography (EEG data was obtained by the Laxtha EEG-monitoring device in the EEG recording room and EEG were monitored 5 min and 15 min after PTZ injection. The RT-PCR and Western blot results showed significant increased expression of cytochrome-c and caspases-3, while decreased levels of GABAB1R, and PKA protein expression upon ethanol, PTZ and ethanol plus PTZ exposure in primary neuronal cells cultured from PTZ-induced seizure model as compare to non-PTZ treated maternal group. Apoptotic neurodegeneration was further confirmed with Fluoro-Jade B and propidium iodide staining, where neurons were scattered and shrunken, with markedly condensed nuclei in PTZ treated group compared with control. This study for the first time indicate that PTZ-induced seizures triggered activation of caspases-3 to induce widespread apoptotic neuronal death and decreased GABAB1R expression in hippocampal neurons, providing a possible mechanistic link between maternal epilepsy induced neurodegeneration alteration of GABAB1R and PKA expression level during prenatal brain development. This revealed new aspects of PTZ and ethanol's modulation on GABAB1R, learning and memory. Further, explain the possibility that children delivered by epileptic

  12. Measurement of dopamine D{sub 2} receptors in living human brain using [{sup 11}C]raclopride with ultra-high specific radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Yota [Molecular Neuroimaging Group, Molecular Imaging Center, National Institutes of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan); Department of Psychiatry, School of Medicine, Teikyo University, Itabashi-Ku, Tokyo, 173-8605 (Japan); Ito, Hiroshi, E-mail: hito@nirs.go.j [Molecular Neuroimaging Group, Molecular Imaging Center, National Institutes of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan); Takahashi, Hidehiko; Yasuno, Fumihiko; Ikoma, Yoko [Molecular Neuroimaging Group, Molecular Imaging Center, National Institutes of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan); Zhang, Ming-Rong [Molecular Probe Group, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan); Nanko, Shinichiro [Department of Psychiatry, School of Medicine, Teikyo University, Itabashi-Ku, Tokyo, 173-8605 (Japan); Suzuki, Kazutoshi [Molecular Probe Group, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan); Suhara, Tetsuya [Molecular Neuroimaging Group, Molecular Imaging Center, National Institutes of Radiological Sciences, Inage-ku, Chiba, 263-8555 (Japan)

    2010-10-15

    Introduction: High specific radioactivity is preferable in the measurement of neuroreceptor bindings with positron emission tomography (PET) because receptor occupancy by mixed cold ligand hampers the accurate estimation of receptor binding. Recently, we succeeded in synthesizing [{sup 11}C]raclopride, a dopamine D{sub 2} receptor ligand, with ultra-high specific radioactivity, i.e., several thousand GBq/{mu}mol. In the present study, we compared the [{sup 11}C]raclopride bindings to dopamine D{sub 2} receptors between radioligands with ultra-high specific radioactivity and ordinary high specific radioactivity in healthy human subjects. Methods: Two PET studies using [{sup 11}C]raclopride with ultra-high specific radioactivity (4302-7222 GBq/{mu}mol) or ordinary high specific radioactivity (133-280 GBq/{mu}mol) were performed on different days in 14 healthy men. Binding potential (BP) was calculated by the simplified reference tissue method, peak equilibrium method, and area-under-the-curve method for each region-of-interest using time-activity data in the cerebellum as a reference brain region. Results: BP values for radioligands with ultra-high specific radioactivity and ordinary high specific radioactivity calculated by the simplified reference tissue method were 4.06{+-}0.29 and 4.10{+-}0.25 in the putamen, 0.44{+-}0.07 and 0.47{+-}0.07 in the thalamus and 0.37{+-}0.06 and 0.38{+-}0.06 in the temporal cortex, respectively (mean{+-}S.D.). No significant difference in BP was observed between ultra-high specific radioactivity and ordinary high specific radioactivity in any of the brain regions. Conclusion: BP values of [{sup 11}C]raclopride with ultra-high specific radioactivity did not differ from those with ordinary high specific radioactivity in the measured brain regions, including striatal and extrastriatal regions.

  13. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    Science.gov (United States)

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  14. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain.

    Science.gov (United States)

    Elmore, Monica R P; Najafi, Allison R; Koike, Maya A; Dagher, Nabil N; Spangenberg, Elizabeth E; Rice, Rachel A; Kitazawa, Masashi; Matusow, Bernice; Nguyen, Hoa; West, Brian L; Green, Kim N

    2014-04-16

    The colony-stimulating factor 1 receptor (CSF1R) is a key regulator of myeloid lineage cells. Genetic loss of the CSF1R blocks the normal population of resident microglia in the brain that originates from the yolk sac during early development. However, the role of CSF1R signaling in microglial homeostasis in the adult brain is largely unknown. To this end, we tested the effects of selective CSF1R inhibitors on microglia in adult mice. Surprisingly, extensive treatment results in elimination of ∼99% of all microglia brain-wide, showing that microglia in the adult brain are physiologically dependent upon CSF1R signaling. Mice depleted of microglia show no behavioral or cognitive abnormalities, revealing that microglia are not necessary for these tasks. Finally, we discovered that the microglia-depleted brain completely repopulates with new microglia within 1 week of inhibitor cessation. Microglial repopulation throughout the CNS occurs through proliferation of nestin-positive cells that then differentiate into microglia.

  15. An in vivo study of the dopaminergic receptors in the brain of man using 11C-pimozide and positron emission tomography

    International Nuclear Information System (INIS)

    Positron emission tomography was used to establish the regional cerebral pharmacokinetics of a carbon 11-labelled neuroleptic, pimozide, in an attempt to observe its specific bonding to dopaminergic receptors in vivo. The 11C-pimozide kinetics were compared in two brain structures at the two ends of the dopaminergic receptor density scale: the striatum and cerebellum, very rich in and devoid of these receptors respectively. In 8 patients a significant radioactivity uptake was observed in the striatum as compared with the cerebellum, in agreement with in vivo studies on animals using tritiated pimozide. In 5 patients pre-treated by a therapeutic dose of a cold neuroleptic (haloperidol) this difference in kinetics no longer existed. Moreover no kinetic difference is observed, either before or after haloperidol administration, between the frontal cortex (relatively low in dopaminergic receptors) and cerebellum. These results strongly suggest that pharmacokinetic phenomena directly related to the specific bonding of 11C-pimozide on the striatal dopaminergic receptors are observable on man in vivo. This specific bonding however remains quantitatively weak as compared with the strong non-specific bonding

  16. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium

    OpenAIRE

    Cooke, P S; Buchanan, D. L.; Young, P.; Setiawan, T.; Brody, J.; Korach, K S; Taylor, J; Lubahn, D.B.; Cunha, G R

    1997-01-01

    Estradiol-17β (E2) acts through the estrogen receptor (ER) to regulate uterine growth and functional differentiation. To determine whether E2 elicits epithelial mitogenesis through epithelial ER versus indirectly via ER-positive stromal cells, uteri from adult ER-deficient ER knockout (ko) mice and neonatal ER-positive wild-type (wt) BALB/c mice were used to produce the following tissue recombinants containing ER in epithelium (E) and/or stroma (S), or lacking ER altogether: wt-S + wt-E, wt-S...

  17. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain.

    Science.gov (United States)

    Dowie, Megan J; Grimsey, Natasha L; Hoffman, Therri; Faull, Richard L M; Glass, Michelle

    2014-09-01

    Huntington's disease (HD) is an inherited neurological disease with motor, cognitive and psychiatric symptoms. Characterised by neuronal degeneration, HD pathology is initially apparent in the striatum and cortex. Considerable research has recently suggested that the neurological immune response apparent in brain injury and disease may provide a valuable therapeutic target. Cannabinoid CB2 receptors are localised and up-regulated on a number of peripheral immune cell types following inflammation and injury. However, their cellular location within the human brain during inflammation has not been well characterised. The present study shows CB2 is expressed in human post-mortem striatum in HD. Quantification revealed a trend towards an increase in CB2 staining with disease, but no significant difference was measured compared to neurologically normal controls. In HD striatal tissue, there is an up-regulation of the brains' resident immune cells, with a significant increase in GFAP-positive astrocyte staining at both grade 1 (685±118%) and grade 3 (1145±163%) and Iba1-positive microglia at grade 1 (299±27%) but not grade 3 (119±48%), compared to neurologically normal controls. Both cell types exhibit irregular cell morphology, particularly at higher grades. Using double-labelled immunohistochemistry CB2 receptors are demonstrated not to be expressed on microglia or astrocytes and instead appear to be localised on CD31-positive blood vessel endothelium and vascular smooth muscle. Co-expression analysis suggests that CB2 may be more highly expressed on CD31 positive cells in HD brains than in control brains. Contrasting with evidence from rodent studies suggesting CB2 glial cell localisation, our observation that CB2 is present on blood vessel cells, with increased CD31 co-localisation in HD may represent a new context for CB2 therapeutic approaches to neurodegenerative diseases.

  18. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  19. Insulin Receptor Antibody-α-N-Acetylglucosaminidase Fusion Protein Penetrates the Primate Blood-Brain Barrier and Reduces Glycosoaminoglycans in Sanfilippo Type B Fibroblasts.

    Science.gov (United States)

    Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric Ka-Wai; Lin, Huilan; Pardridge, William M

    2016-04-01

    Mucopolysaccharidosis Type IIIB (MPSIIIB) is caused by mutations in the gene encoding the lysosomal enzyme, α-N-acetylglucosaminidase (NAGLU). MPSIIIB presents with severe disease of the central nervous system, but intravenous NAGLU enzyme replacement therapy has not been developed because the NAGLU enzyme does not cross the blood-brain barrier (BBB). A BBB-penetrating form of the enzyme was produced by re-engineering NAGLU as an IgG-enzyme fusion protein, where the IgG domain is a monoclonal antibody (mAb) against the human insulin receptor (HIR). The HIRMAb traverses the BBB via transport on the endogenous insulin receptor and acts as a molecular Trojan horse to ferry the fused NAGLU across the BBB from blood. The NAGLU was fused to the carboxyl terminus of each heavy chain of the HIRMAb via an extended 31-amino acid linker, and the fusion protein is designated HIRMAb-LL-NAGLU. The fusion protein retains high affinity binding to the HIR, and on a molar basis has an enzyme activity equal to that of recombinant human NAGLU. Treatment of MPSIIIB fibroblasts with the fusion protein normalizes intracellular NAGLU enzyme activity and reduces sulfate incorporation into intracellular glycosoaminoglycan. The fusion protein is targeted to the lysosomal compartment of the cells as shown by confocal microscopy. The fusion protein was radiolabeled with the [(125)I]-Bolton-Hunter reagent and injected intravenously in the adult Rhesus monkey. The fusion protein was rapidly cleared from plasma by all major peripheral organs. The high brain uptake of the fusion protein, 1% injected dose/brain, enables normalization of brain NAGLU enzyme activity with a therapeutic dose of 1 mg/kg. The HIRMAb-LL-NAGLU fusion protein is a new treatment of the brain in MPSIIIB, which can be administered by noninvasive intravenous infusion. PMID:26910785

  20. Preclinical evaluation of [{sup 11}C]SA4503. Radiation dosimetry, in vivo selectivity and PET imaging of sigma{sub 1} receptors in the cat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Kazunori; Ishiwata, Kiichi; Shimada, Yuhei; Kimura, Yuichi; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Kobayashi, Tadayuki; Matsuno, Kiyoshi; Homma, Yoshio

    2000-08-01

    Our previous in vivo study with rats has demonstrated that {sup 11}C-labeled 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine ([{sup 11}C]SA4503) is a potential radioligand for mapping central nervous system (CNS) sigma{sub 1} receptors by positron emission tomography (PET). In the present study, we further characterized this ligand. The radiation absorbed-dose of [{sup 11}C]SA4503 in humans estimated with the tissue distribution in mice, was higher in the liver, kidney and pancreas than in other organs studied, but was low enough for clinical use. The brain uptake of [{sup 11}C]SA4503 in mice was reduced to approximately 60-70% by co-injection of carrier SA4503 and haloperidol, but not by co-injection of any of six ligands for sigma{sub 2} or other receptors, for which SA4503 showed in vitro >100 times weaker affinity than for sigma{sub 1} receptor. In the cat brain, the uptake in the cortex was higher than that in the cerebellum. The radioactivity in the cortex and cerebellum accumulated for the first 10 min and then gradually decreased until 81.5 min in the baseline measurement, but rapidly decreased in the carrier-loading condition. The receptor-mediated uptake was estimated to be approximately 60-65% of the total radioactivity in the cortex and cerebellum at 76 min after tracer injection. We have concluded that [{sup 11}C]SA4503 has the potential for mapping sigma{sub 1} receptor by PET. (author)

  1. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Meyer Rebecca C

    2010-05-01

    Full Text Available Abstract Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.

  2. The serotonin 5-HT7Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating.

    Directory of Open Access Journals (Sweden)

    Jaime Becnel

    Full Text Available The 5-HT(7 receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT(7 receptor, as well as homologs for the mammalian 5-HT(1A, and 5-HT(2, receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT(7Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT(7Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly.

  3. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    International Nuclear Information System (INIS)

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by 45Ca2+ efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3

  4. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Muñoz María

    2009-03-01

    Full Text Available Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than

  5. Solubilization of high affinity corticotropin-releasing factor receptors from rat brain: Characterization of an active digitonin-solubilized receptor complex

    International Nuclear Information System (INIS)

    The binding characteristics of CRF receptors in rat frontal cerebral cortex membranes solubilized in 1% digitonin were determined. The binding of [125I]Tyro-ovine CRF ([125I]oCRF) to solubilized membrane proteins was dependent on incubation time, temperature, and protein concentration, was saturable and of high affinity, and was absent in boiled tissue. The solubilized receptors retained their high affinity for [125I] oCRF in the solubilized state, exhibiting a dissociation constant (KD) of approximately 200 pM, as determined by direct binding saturation isotherms. Solubilized CRF receptors maintained the rank order of potencies for various related and unrelated CRF peptides characteristic of the membrane CRF receptor: rat/human CRF congruent to ovine CRF congruent to Nle21,38-rat CRF greater than alpha-helical oCRF-(9-41) greater than oCRF-(7-41) much greater than vasoactive intestinal peptide, arginine vasopressin, or the substance-P antagonist. Furthermore, the absolute potencies (Ki values) for the various CRF-related peptides in solubilized receptors were almost identical to those observed in the membrane preparations, indicating that the CRF receptor retained its high affinity binding capacity in the digitonin-solubilized state. Chemical affinity cross-linking of digitonin-solubilized rat cortical membrane proteins revealed a specifically labeled protein with an apparent mol wt of 58,000 which was similar to the labeled protein in native membrane homogenates. Although solubilized CRF receptors retained their high affinity for agonists, their sensitivity for guanine nucleotide was lost. Size exclusion chromatography substantiated these results, demonstrating that in the presence or absence of guanine nucleotides, [125I]oCRF labeled the same size receptor complex

  6. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    OpenAIRE

    Elizabeth eHammock; Pat eLevitt

    2013-01-01

    Oxytocin (OXT) has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could r...

  7. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice.

    OpenAIRE

    Giménez, R.; Raïch, J.; Aguilar, J.

    1991-01-01

    1. Spiroperidol binding (dopamine D2 receptors) and quinuclidinyl benzilate binding (muscarinic receptors) in striata of 19-month old mice was analyzed for animals that had received chronic administration of cytidine 5'-diphosphocholine (CDP-choline) incorporated into the chow consumed (100 or 500 mg kg-1 added per day) for the 7 months before they were killed. 2. Treated animals displayed an increase in the dopamine receptor densities of 11% for those receiving 100 mg kg-1 and 18% for those ...

  8. A Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand

    Directory of Open Access Journals (Sweden)

    Rodrigo Teodoro

    2015-10-01

    Full Text Available Changes in the expression of α7 nicotinic acetylcholine receptors (α7 nAChRs in the human brain are widely assumed to be associated with neurological and neurooncological processes. Investigation of these receptors in vivo depends on the availability of imaging agents such as radioactively labelled ligands applicable in positron emission tomography (PET. We report on a series of new ligands for α7 nAChRs designed by the combination of dibenzothiophene dioxide as a novel hydrogen bond acceptor functionality with diazabicyclononane as an established cationic center. To assess the structure-activity relationship (SAR of this new basic structure, we further modified the cationic center systematically by introduction of three different piperazine-based scaffolds. Based on in vitro binding affinity and selectivity, assessed by radioligand displacement studies at different rat and human nAChR subtypes and at the structurally related human 5-HT3 receptor, we selected the compound 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl-2-fluorodibenzo-[b,d]thiophene 5,5-dioxide (10a for radiolabeling and further evaluation in vivo. Radiosynthesis of [18F]10a was optimized and transferred to an automated module. Dynamic PET imaging studies with [18F]10a in piglets and a monkey demonstrated high uptake of radioactivity in the brain, followed by washout and target-region specific accumulation under baseline conditions. Kinetic analysis of [18F]10a in pig was performed using a two-tissue compartment model with arterial-derived input function. Our initial evaluation revealed that the dibenzothiophene-based PET radioligand [18F]10a ([18F]DBT-10 has high potential to provide clinically relevant information about the expression and availability of α7 nAChR in the brain.

  9. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Soonmi Won

    Full Text Available Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH2D3 (vitamin D after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa, the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF-kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH 2D3 with the vitamin D receptor (VDR was inhibited by pyridoxal 5'-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH 2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells.

  10. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles.

    Science.gov (United States)

    Wei, Lin; Guo, Xi-Ying; Yang, Ting; Yu, Min-Zhi; Chen, Da-Wei; Wang, Jian-Cheng

    2016-08-20

    Treatment of brain tumor remains a great challenge worldwide. Development of a stable, safe, and effective siRNA delivery system which is able to cross the impermeable blood-brain barrier (BBB) and target glioma cells is necessary. This study aims to investigate the therapeutic effects of intravenous administration of T7 peptide modified core-shell nanoparticles (named T7-LPC/siRNA NPs) on brain tumors. Layer-by-layer assembling of protamine/chondroitin sulfate/siRNA/cationic liposomes followed by T7 peptide modification has been carried out in order to obtain a targeted siRNA delivery system. In vitro cellular uptake experiments demonstrated a higher intracellular fluorescence intensity of siRNA in brain microvascular endothelial cells (BMVECs) and U87 glioma cells when treated with T7-LPC/siRNA NPs compared with PEG-LPC/siRNA NPs. In the co-culture model of BMVECs and U87 cells, a significant down-regulation of EGFR protein expression occurred in the U87 glioma cells after treatment with the T7-LPC/siEGFR NPs. Moreover, the T7-LPC/siRNA NPs had an advantage in penetrating into a deep region of the tumor spheroid compared with PEG-LPC/siRNA NPs. In vivo imaging revealed that T7-LPC/siRNA NPs accumulated more specifically in brain tumor tissues than the non-targeted NPs. Also, in vivo tumor therapy experiments demonstrated that the longest survival period along with the greatest downregulation of EGFR expression in tumor tissues was observed in mice with an intracranial U87 glioma treated with T7-LPC/siEGFR NPs compared with mice receiving other formulations. Therefore, we believe that these transferrin receptor-mediated core-shell nanoparticles are an important potential siRNA delivery system for brain tumor-targeted therapy.

  11. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory.

    Directory of Open Access Journals (Sweden)

    Olena Lykhmus

    Full Text Available Nicotinic acetylcholine receptors (nAChRs expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42, memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208 or injected with bacterial lipopolysaccharide (LPS for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208 resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1 neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2 α7(1-208 nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.

  12. Autoradiographic comparison of [{sup 125}I]epidepride and [{sup 125}I]NCQ 298 binding to human brain extrastriated dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Haakan; Halldin, Christer; Jerning, Eva; Oesterlund, Marie; Farde, Lars; Sedvall, Goeran

    1997-07-01

    Extrastriatal D{sub 2}-dopamine receptors can be visualized in the monkey and human brain using the benzamides [{sup 11}C]- and [{sup 76}Br]FLB 457 in PET and [{sup 123}I]epidepride in SPECT but not with the salicylamide analogues [{sup 76}Br]FLB 463 and [{sup 123}I]NCQ 298. To clarify the background for the differences in binding seen in vivo, we have compared the in vitro binding of [{sup 125}I]epidepride and [{sup 125}I]NCQ 298, using human whole hemisphere autoradiography. The images obtained with any radioligand showed detailed distribution with very dense binding in the putamen and the caudate nucleus and with the same detailed extrastriatal distribution. Thus, the divergent results obtained in vivo cannot be explained by different binding properties of the extrastriatal receptors.

  13. Cocaine alters mu but not delta or kappa opioid receptor-stimulated in situ [35S]GTPgammaS binding in rat brain.

    Science.gov (United States)

    Schroeder, Joseph A; Niculescu, Michelle; Unterwald, Ellen M

    2003-01-01

    Chronic cocaine administration produces alterations in mu and kappa opioid receptor density as well as striatal and accumbens opioid-regulated adenylyl cyclase activity, suggesting a psychostimulant responsive interaction between opioidergic and dopaminergic systems. Stimulation of G-protein-coupled opioid receptors inhibits adenylyl cyclase production of cyclic AMP. The present study employed in situ [(35)S]GTPgammaS binding to measure opioid receptor-stimulated activation of G-proteins in response to acute and chronic cocaine exposure. Male Fischer rats received acute (1 or 3 days) or chronic (14 days) binge pattern cocaine administration. Three and 14 days of cocaine injections resulted in greater increases in the ability of the mu receptor agonist DAMGO to stimulate [(35)S]GTPgammaS binding in both the core and the shell of the nucleus accumbens, all regions of the caudate putamen and the cingulate cortex compared with saline-matched controls. The greatest increases in DAMGO-stimulated [(35)S]GTPgammaS binding were observed in the dorsal areas of the caudate putamen in animals that received 14 days of cocaine. No significant changes in delta (DPDPE), or kappa (dynorphin A(1-17)) receptor-stimulated [(35)S]GTPgammaS binding were found in any brain region in response to cocaine administration. These results demonstrate that binge pattern cocaine administration induce changes in mu but not delta or kappa opioid receptor-mediated G-protein activity. This study provides support for the hypothesis that the addictive properties of both psychostimulants and opiates may share common neurochemical signaling substrates. PMID:12422370

  14. Human Herpesvirus 6A Infection in CD46 Transgenic Mice: Viral Persistence in the Brain and Increased Production of Proinflammatory Chemokines via Toll-Like Receptor 9

    OpenAIRE

    Reynaud, Joséphine M.; Jégou, Jean-François; Welsch, Jérémy C.; Horvat, Branka

    2014-01-01

    Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B...

  15. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function

    OpenAIRE

    Kask, Kalev; Zamanillo, Daniel; Rozov, Andrei; Burnashev, Nail; Sprengel, Rolf; Seeburg, Peter H.

    1998-01-01

    Calcium permeability of l-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in excitatory neurons of the mammalian brain is prevented by coassembly of the GluR-B subunit, which carries an arginine (R) residue at a critical site of the channel pore. The codon for this arginine is created by site-selective adenosine deamination of an exonic glutamine (Q) codon at the pre-mRNA level. Thus, central neurons can potentially control the calcium permeability of AMPARs by the level o...

  16. Antagonist properties of (−)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain

    OpenAIRE

    Corradetti, Renato; Laaris, Nora; Hanoun, Naima; Laporte, Anne-Marie; Le Poul, Emmanuel; Hamon, Michel; Lanfumey, Laurence

    1998-01-01

    The aim of the present work was to characterize the 5-hydroxytryptamine1A (5-HT1A) antagonistic actions of (−)-pindolol and WAY 100635 (N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide). Studies were performed on 5-HT1A receptors located on 5-hydroxytryptaminergic neurones in the dorsal raphe nucleus (DRN) and on pyramidal cells in the CA1 and CA3 regions of the hippocampus in rat brain slices.Intracellular electrophysiological recording of CA1 pyramidal ...

  17. Deficiency of complement receptors CR2/CR1 in Cr2 -/- mice reduces the extent of secondary brain damage after closed head injury

    OpenAIRE

    Neher, Miriam D.; Rich, Megan C; Keene, Chesleigh N; Weckbach, Sebastian; Bolden, Ashley L; Losacco, Justin T; Patane, Jenée; Flierl, Michael A; Kulik, Liudmila; Holers, V. Michael; Stahel, Philip F

    2014-01-01

    Complement activation at the C3 convertase level has been associated with acute neuroinflammation and secondary brain injury after severe head trauma. The present study was designed to test the hypothesis that Cr2 -/- mice, which lack the receptors CR2/CD21 and CR1/CD35 for complement C3-derived activation fragments, are protected from adverse sequelae of experimental closed head injury. Adult wild-type mice and Cr2 -/- mice on a C57BL/6 genetic background were subjected to focal closed head ...

  18. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway.

    Science.gov (United States)

    Rodriguez-Rodriguez, Patricia; Almeida, Angeles; Bolaños, Juan P

    2013-04-01

    Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.

  19. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    Science.gov (United States)

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  20. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors.

    Science.gov (United States)

    Tomasi, Dardo; Wang, Gene-Jack; Wang, Ruiliang; Caparelli, Elisabeth C; Logan, Jean; Volkow, Nora D

    2015-01-01

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and Positron emission tomography in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal, and premotor cortices and insula and disengaged cuneus and default mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. These findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues. PMID:25142207

  1. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism

    International Nuclear Information System (INIS)

    Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [18F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB1) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D2 receptor availability and amphetamine-induced turning behaviour. Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [18F]MK-9470, [18F]FDG and [11C]raclopride. Relative glucose metabolism and parametric CB1 receptor and D2 binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). In the QA model, [18F]MK-9470 uptake, glucose metabolism and D2 receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p -5), while an increase for these markers was observed on the contralateral side (>5%, all p -4). [18F]MK-9470 binding was also increased in the cerebellum (p = 2.10-5), where it was inversely correlated to the number of ipsiversive turnings (p = 7.10-6), suggesting that CB1 receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p = 1.10-6). These data point to in vivo changes in endocannabinoid transmission, specifically for CB1 receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D2 and CB1 neurotransmission in the contralateral hemisphere. (orig.)

  2. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.;

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB rec...

  3. Prostaglandin E2 receptor expression in the rat trigeminal-vascular system and other brain structures involved in pain

    DEFF Research Database (Denmark)

    Myren, Maja; Olesen, Jes; Gupta, Saurabh

    2012-01-01

    receptors in both peripheral and central structures involved in pain transmission and perception in migraine: dura mater, cerebral arteries, trigeminal ganglion, trigeminal nucleus caudalis, periaqueductal grey, thalamus, hypothalamus, cortex, pituitary gland, hippocampus and cerebellum. In the trigeminal-vascular......, all four receptors are located in areas implicated in migraine supporting the possible involvement of PGE(2) in this disease....

  4. Cl- conduction of GABA(A)-receptor complex of synaptic membranes of rat brain cortex after development of chronic epileptization of the brain (pharmacological kindling).

    Science.gov (United States)

    Rebrov, I G; Karpova, M N; Andreev, A A; Klishina, N Y; Kalinina, M V; Kusnetzova, L V

    2008-03-01

    Experiments on Wistar rats showed that basal and muscimol-induced 36Cl- entry into synaptoneurosomes isolated from the brain cortex decreased after kindling (30 mg/kg pentylenetetrazole intraperitoneally for 30 days) in animals with seizure severity score 4-5. Changes in Cl- conduction during kindling are discussed.

  5. Increased receptor density of α2 adrenoceptors and GABAA α5 receptors in limbic brain regions in the domoic acid rat model of epilepsy

    DEFF Research Database (Denmark)

    Thomsen, Majken; Lillethorup, Thea Pinholt; Wegener, Gregers;

    concentrations in DOM rats may represent a compensatory up-regulation in response to reduced GABAergic input. Noradrenaline reduces neuronal excitability. Elevated receptor expression could be a protective mechanism that attempts to compensate for the lowered seizure threshold caused by DOM....

  6. The change of metabotropic glutamate receptor 5 expression level in rats with late-stage traumatic brain injury and the therapeutic effect of taurine

    Directory of Open Access Journals (Sweden)

    Ying CAI

    2016-08-01

    Full Text Available Objective To investigate the change of metabotropic glutamate receptor 5 (mGluR5 expression level in rats with late-stage (the 7th day traumatic brain injury (TBI and the role of taurine. Methods The left cerebral TBI rat models were made by using lateral fluid percussion method. A total of 30 specific pathogen free (SPF male Sprague-Dawley (SD rats were randomly divided into 3 groups: sham operation group (control group, TBI model group (TBI group and taurine treatment group (taurine group. Wet and dry weight method was used to measure the brain water content. Real-time fluorescent quantitative polymerase chain reaction (PCR and Western blotting were used to detect the change of mRNA and protein expression of aquaporin 4 (AQP4 and mGluR5 in each group.  Results Compared with control group, the brain water content (t = 4.893, P = 0.002, AQP4 mRNA (t = 6.523, P = 0.000 and protein (t = 4.366, P = 0.008 expression were upregulated, while mGluR5 mRNA (t = 5.776, P = 0.001 and protein (t = 3.945, P = 0.014 expression were downregulated in TBI group. After taurine treatment, the brain water content (t = 2.151, P = 0.140, AQP4 mRNA (t = 1.144,P = 0.432 and protein (t = 0.367, P = 0.804 decreased to normal, while mGluR5 mRNA (t = 1.824, P = 0.216 and protein (t = 1.185, P = 0.414 increased to normal. Correlation analysis showed brain water content was negatively correlated with mGluR5 mRNA (r = -0.617, P = 0.014 and mGluR5 protein (r = -0.665, P = 0.007, while it was positively correlated with AQP4 protein (r = 0.658, P = 0.008.  Conclusions Taurine can significantly increase the mGluR5 expression level of brain issue in the late-stage (the 7th day of TBI and decline brain edema and brain water content. It may be a potential protective agent as an inhibitory neurotransmitter. DOI: 10.3969/j.issn.1672-6731.2016.08.008

  7. Signalling through the type 1 insulin-like growth factor receptor (IGF1R interacts with canonical Wnt signalling to promote neural proliferation in developing brain

    Directory of Open Access Journals (Sweden)

    Qichen Hu

    2012-07-01

    Full Text Available Signalling through the IGF1R [type 1 IGF (insulin-like growth factor receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i the activity of a LacZ (β-galactosidase reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene and (ii the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i retarded brain growth, (ii reduced precursor proliferation and (iii decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.

  8. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    Science.gov (United States)

    Rivera, Patricia; Blanco, Eduardo; Bindila, Laura; Alen, Francisco; Vargas, Antonio; Rubio, Leticia; Pavón, Francisco J.; Serrano, Antonia; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence. PMID:26483633

  9. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A.

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  10. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology.

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  11. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  12. Effects of a n-3 PUFA deficient diet on the expression of retinoid nuclear receptors, neurogranin and neuromodulin in rat brain

    Directory of Open Access Journals (Sweden)

    Buaud Benjamin

    2007-05-01

    Full Text Available A lot of studies performed in rodents revealed that n-3 polyunsaturated fatty acid (PUFA deficient diets could induce deficits of learning capacities but the mechanisms involved are not well known. Retinoic acid (RA and its nuclear receptors (RAR and RXR play a central role in the maintenance of cognitive processes and synaptic plasticity via its action on target genes that are neurogranin (RC3 and neuromodulin (GAP43. Given some interferences were described between the retinoid and fatty acid signaling pathways, we investigated the effects of a _α-linolenic acid (18: 3 n-3 deficient diet on retinoic acid nuclear receptors (RAR, and RXR, on GAP43 and RC3, and on blood and brain fatty acid composition in rats at three times of diet: 3, 9 and 18 weeks. In blood and brain of these animals, we observed a severe n-3 PUFA deficit (18:3 n-3, 20:5 n-3 and particularly 22:6 n-3 associated with an increase in the n-6 PUFA content (mainly 22:5 n-6. Real-time PCR and western blot analysis allowed us to note that retinoid signaling, GAP43 and RC3 expression were affected in the striatum of the n-3 PUFA deprived rats.

  13. Striatal and extrastriatal imaging of dopamine D{sub 2}receptors in the living human brain with [ {sup 123}I]epidepride single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Aakerman, K.K. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Hiltunen, J. [MAP Medical Technologies Inc., Tikkakoski (Finland); Bergstroem, K.A. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Raesaenen, P. [Department of Forensic Psychiatry, University of Kuopio and Niuvanniemi Hospital, Kuopio (Finland); Vanninen, E. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Halldin, C. [Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Hospital, Stockholm (Sweden); Tiihonen, J. [Department of Forensic Psychiatry, University of Kuopio and Niuvanniemi Hospital, Kuopio (Finland)

    1997-05-01

    The iodine-123 labelled ligand benzamide epidepride was evaluated as a probe for in vivo imaging of striatal and extrastriatal dopamine D{sub 2}receptor sites in the human brain. Four healthy males were imaged with a high-resolution single-photon emission tomography scanner. Striatal radioactivity peaked at 3 h after injection. The specific binding in the striatum was 0.91 {+-}0.03 at 3 h and this ratio steadily increased with time. Extrastriatal radioactivity was highest in the thalamus, in the midbrain and in the temporal cortex, and peaked at 45-60 min after injection of tracer. A smaller amount of radioactivity was found in the parietal, frontal and occipital cortices. Two radioactive metabolites were observed, of which one was more lipophilic than the parent compound. The radiation burden to the patient was 0.035 mSv/MBq (effective dose equivalent). The preliminary results showed that [ {sup 123}I]epidepride can be used for imaging striatal and extrastriatal dopamine D {sub 2}receptor sites in the living human brain. (orig.). With 5 figs., 1 tab.

  14. Striatal and extrastriatal imaging of dopamine D2 receptors in the living human brain with [123I]epidepride single-photon emission tomography.

    Science.gov (United States)

    Kuikka, J T; Akerman, K K; Hiltunen, J; Bergström, K A; Räsänen, P; Vanninen, E; Halldin, C; Tiihonen, J

    1997-05-01

    The iodine-123 labelled ligand benzamide epidepride was evaluated as a probe for in vivo imaging of striatal and extrastriatal dopamine D2 receptor sites in the human brain. Four healthy males were imaged with a high-resolution single-photon emission tomography scanner. Striatal radioactivity peaked at 3 h after injection. The specific binding in the striatum was 0.91+/-0.03 at 3 h and this ratio steadily increased with time. Extrastriatal radioactivity was highest in the thalamus, in the midbrain and in the temporal cortex, and peaked at 45-60 min after injection of tracer. A smaller amount of radioactivity was found in the parietal, frontal and occipital cortices. Two radioactive metabolites were observed, of which one was more lipophilic than the parent compound. The radiation burden to the patient was 0.035 mSv/MBq (effective dose equivalent). The preliminary results showed that [123I]epidepride can be used for imaging striatal and extrastriatal dopamine D2 receptor sites in the living human brain. PMID:9142727

  15. Striatal and extrastriatal imaging of dopamine D2receptors in the living human brain with [ 123I[epidepride single-photon emission tomography

    International Nuclear Information System (INIS)

    The iodine-123 labelled ligand benzamide epidepride was evaluated as a probe for in vivo imaging of striatal and extrastriatal dopamine D2receptor sites in the human brain. Four healthy males were imaged with a high-resolution single-photon emission tomography scanner. Striatal radioactivity peaked at 3 h after injection. The specific binding in the striatum was 0.91 ±0.03 at 3 h and this ratio steadily increased with time. Extrastriatal radioactivity was highest in the thalamus, in the midbrain and in the temporal cortex, and peaked at 45-60 min after injection of tracer. A smaller amount of radioactivity was found in the parietal, frontal and occipital cortices. Two radioactive metabolites were observed, of which one was more lipophilic than the parent compound. The radiation burden to the patient was 0.035 mSv/MBq (effective dose equivalent). The preliminary results showed that [ 123I[epidepride can be used for imaging striatal and extrastriatal dopamine D 2receptor sites in the living human brain. (orig.). With 5 figs., 1 tab

  16. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan;

    2010-01-01

    The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2...... receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1] and was...

  17. High affinity dopamine D2 receptor radioligands. 3. [123I] and [125I]epidepride: In vivo studies in rhesus monkey brain and comparison with in vitro pharmacokinetics in rat brain

    International Nuclear Information System (INIS)

    Studies of [123I]epidepride uptake in rhesus monkey brain were performed using single photon tomography. Striatal uptake peaked at 0.85% of administered dose/g at 107 min post-injection, then declined slowly to 0.70% of administered dose/g at 6 h. Striatal:posterior brain ratios rose from 2 at 25 min to 6.8 at 105 min, to 15 at 4 h and to 58 at 6.4 h. [123I]Epidepride was displaced by haloperidol (0.1 and 1 mg/kg) with a half-life of washout of 55 min. Little displacement of [123I]epidepride was observed following administration of 1 or 2 mg/kg d-amphetamine, respectively, indicating [123I]epidepride is not easily displaced by endogenous dopamine. In vitro equilibrium binding studies with [125I]epidepride using rat striatum revealed a KD of 46 pM and Bmax of 33 pmol/g tissue at 37 degrees C, while at 25 degrees C the KD was 25 pM and the Bmax 32 pmol/g tissue. In vitro kinetic analysis of association and dissociation curves revealed a half-life for receptor dissociation at 37 degrees C of 15 min and 79--90 min at 25 degrees C. Allowing for the temperature difference, there is good correspondence between in vivo and in vitro dissociation kinetics at 25 degrees C. Increasing in vitro incubation temperature from 25 to 37 degrees C caused a 6-fold increase in the dissociation rate, suggesting that there is a change in binding kinetics at the dopamine D2 receptor at 37 degrees C compared to in vivo binding. The results of this study indicate that [123I]epidepride is an excellent radioligand for SPECT studies of the dopamine D2 receptor in man. 34 refs., 4 figs

  18. Evaluation in vitro and in animals of a new {sup 11}C-labeled PET radioligand for metabotropic glutamate receptors 1 in brain

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, Paolo; Liow, Jeih-San; Zoghbi, Sami S.; Clark, David T.; Morse, Cheryl; Pike, Victor W. [National Institute of Mental Health, National Institutes of Health, Molecular Imaging Branch, Bethesda, MD (United States); Barth, Vanessa N.; Rhoads, Emily; Siuda, Edward; Heinz, Beverly A.; Nisenbaum, Eric; Dressman, Bruce; Joshi, Elizabeth; Luffer-Atlas, Debra; Fisher, Matthew J.; Masters, John J.; Goebl, Nancy; Kuklish, Steven L.; Tauscher, Johannes [Eli Lilly and Co., Indianapolis, IN (United States); Innis, Robert B. [National Institute of Mental Health, National Institutes of Health, Molecular Imaging Branch, Bethesda, MD (United States); National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States)

    2013-02-15

    Two allosteric modulators of the group I metabotropic glutamate receptors (mGluR1 and mGluR5) were evaluated as positron emission tomography (PET) radioligands for mGluR1. LY2428703, a full mGluR1 antagonist (IC{sub 50} 8.9 nM) and partial mGluR5 antagonist (IC{sub 50} 118 nM), and LSN2606428, a full mGluR1 and mGluR5 antagonist (IC{sub 50} 35.3 nM and 10.2 nM, respectively) were successfully labeled with {sup 11}C and evaluated as radioligands for mGluR1. The pharmacology of LY2428703 was comprehensively assessed in vitro and in vivo, and its biodistribution was investigated by liquid chromatography-mass spectrometry/mass spectrometry, and by PET imaging in the rat. In contrast, LSN2606428 was only evaluated in vitro; further evaluation was stopped due to its unfavorable pharmacological properties and binding affinity. {sup 11}C-LY2428703 showed promising characteristics, including: (1) high potency for binding to human mGluR1 (IC{sub 50} 8.9 nM) with no significant affinity for other human mGlu receptors (mGluR2 through mGluR8); (2) binding to brain displaceable by administration of an mGluR1 antagonist; (3) only one major radiometabolite in both plasma and brain, with a negligible brain concentration (with 3.5 % of the total radioactivity in cerebellum) and no receptor affinity; (4) a large specific and displaceable signal in the mGluR1-rich cerebellum with no significant in vivo affinity for mGluR5, as shown by PET studies in rats; and (5) lack of substrate behavior for efflux transporters at the blood-brain barrier, as shown by PET studies conducted in wild-type and knockout mice. {sup 11}C-LY2428703, a new PET radioligand for mGluR1 quantification, displayed promising characteristics both in vitro and in vivo in rodents. (orig.)

  19. Antacid Use and De Novo Brain Metastases in Patients with Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Who Were Treated Using First-Line First-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Yu-Mu Chen

    Full Text Available Antacid treatments decrease the serum concentrations of first-generation epidermal growth factor receptor (EGFR-tyrosine kinase inhibitors (TKIs, although it is unknown whether antacids affect clinical outcomes. As cerebrospinal fluid concentrations of TKIs are much lower than serum concentrations, we hypothesized that this drug-drug interaction might affect the prognosis of patients with de novo brain metastases.This retrospective study evaluated 269 patients with EGFR-mutant non-small cell lung cancer (NSCLC who had been diagnosed between December 2010 and December 2013, and had been treated using first-line first-generation EGFR-TKIs. Among these patients, we identified patients who concurrently used H2 receptor antagonists (H2RAs and proton pump inhibitors (PPIs as antacids. Patients who exhibited >30% overlap between the use of TKIs and antacids were considered antacid users.Fifty-seven patients (57/269, 21.2% were antacid users, and antacid use did not significantly affect progression-free survival (PFS; no antacids: 11.2 months, H2RAs: 9.4 months, PPIs: 6.7 months; p = 0.234. However, antacid use significantly reduced overall survival (OS; no antacids: 25.0 months, H2RAs: 15.5 months, PPIs: 11.3 months; p = 0.002. Antacid use did not affect PFS for various metastasis sites, although antacid users with de novo brain metastases exhibited significantly shorter OS, compared to non-users (11.8 vs. 16.3 months, respectively; p = 0.041. Antacid use did not significantly affect OS in patients with bone, liver, or pleural metastases.Antacid use reduced OS among patients with EGFR-mutant NSCLC who were treated using first-line first-generation EGFR-TKIs, and especially among patients with de novo brain metastases.

  20. Guipi decoction effects on brain somatostatin levels and receptor mRNA expression in rats with spleen deficiency

    Institute of Scientific and Technical Information of China (English)

    Huinan Qian; Le Wang; Libo Shen; Xueqin Hu

    2008-01-01

    BACKGROUND:Somatostatin is abundant in the hypothalamus,cerebral cortex,limbic system,and mesencephalon.Somatostatin mRNA expression in the brain of rats with spleen deficiency is noticeably reduced,as well as attenuation of cognitive function. OBJECTIVE:To observe the interventional effect of Guipi decoction on somatostatin level and somatostatin receptor 1(SSTRI)mRNA expression in different encephalic regions of rats with spleen deficiency,and to compare the interventional effects of Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pellet. DESIGN:A randomized controlled observation. SETTING:Basic Medical College,Beijing University of Traditional Chinese Medicine.MATERIALS:Fifty adult Wistar male rats,of clean grade,weighing(160 ± 10)g,were provided by Beijing Weitong Lihua Laboratory Animal Technology Co.,Ltd.The protocol was performed in accordance with ethical guidelines for the use and care of animals.Somatostatin 1 polyclonal anti-rabbit antibody and SSTR1 in situ hybridization kit were provided by Department of Neuroanatomy,Shanghai Second Military Medical University of Chinese PLA.The drug for developing rat models of spleen deficiency was composed of Dahuang,Houpu and Zhishi,and prepared at 2:1:1.Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pellet recipes were made according to previous studies.METHODS:This study was performed at the Basic Medical College,Beijing University of Traditional Chinese Medicine from March 2002 to March 2005.The rats were randomly divided into 5 groups,with 10 rats in each group:normal,model,Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pelletgroups.Rat models of the latter 4 groups were developed by methods of purgation with bitter and cold nature drugs,improper diet,and overstrain.The rats received 7.5 g/kg of the drugs each morning and were fasted every other day,but were allowed free access to water at all times,The rats were forced to swim in 25℃ water until fatigued.Rats in the normal group

  1. Neonatal domoic acid increases receptor density of α2 adrenoceptors and GABAA α5 receptors in limbic brain regions of adult rats

    DEFF Research Database (Denmark)

    Thomsen, Majken; Lillethorup, Thea Pinholt; Wegener, Gregers;

    Background: The presymptomatic events involved in neurological disorders such as epilepsy remain elusive but represent an opportunity to understand disease development and stop the pathogenic processes leading to chronic epilepsy. Previous studies using Western blot and immunohistochemistry have ...... expression could be a protective mechanism that attempts to compensate for the lowered seizure threshold caused by DOM. These results indicate that low-dose neonatal DOM induces seemingly permanent changes in receptor expression that may be important in delayed-onset epilepsy....

  2. The effect of anaesthesia on [{sup 18}F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy; Van Laere, Koen [KU Leuven and University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); Bormans, Guy [KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium)

    2010-06-15

    Small animal PET can be applied to study molecular processes in animal models of a variety of human diseases. In order to keep the animals in a restricted position during imaging, anaesthesia is in many instances inevitable. Using small animal PET and ex vivo autoradiography, we examined the influence of pentobarbital and isoflurane anaesthesia on the rat brain uptake of [{sup 18}F]MK-9470, a radioligand for the type 1 cannabinoid receptor. PET imaging was performed on adult Wistar rats under pentobarbital (n=6) and isoflurane anaesthesia (n=7), and under control conditions (free moving during tracer uptake, n=8). Parametric PET images were generated, anatomically standardized and analysed by voxel-based Statistical Parametric Mapping and a predefined volume of interest approach. Immediately after in vivo PET, brains were processed for ex vivo autoradiography using manually placed regions of interest. An extra group (n=6) was included ex vivo, in which animals were intravenously injected without the use of anaesthetics. Using in vivo and ex vivo molecular imaging techniques, no significant changes in absolute [{sup 18}F]MK-9470 uptake were present in the brain of pentobarbital and isoflurane rats as compared to control conditions. Relative [{sup 18}F]MK-9470 uptake PET values obtained applying global scaling were, however, decreased in the cortex under both anaesthetics (pentobarbital: -13.3{+-}1.4%; isoflurane -8.7 {+-} 3.1%), while an increase was seen in the cerebellum by 13.5 {+-} 4.0% and 13.9 {+-} 4.1% under pentobarbital and isoflurane, respectively. Ex vivo results were in agreement with in vivo findings. These findings suggest a similar, regionally specific interference of pentobarbital and isoflurane anaesthesia with in vivo CB1 receptor imaging using [{sup 18}F]MK-9470. (orig.)

  3. C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells.

    Science.gov (United States)

    Glogowska, Aleksandra; Kunanuvat, Usakorn; Stetefeld, Jörg; Patel, Trushar R; Thanasupawat, Thatchawan; Krcek, Jerry; Weber, Ekkehard; Wong, G William; Del Bigio, Marc R; Hoang-Vu, Cuong; Hombach-Klonisch, Sabine; Klonisch, Thomas

    2013-12-01

    We report a novel ligand-receptor system composed of the leucine-rich G-protein-coupled relaxin receptor, RXFP1, and the C1q-tumour necrosis factor-related protein 8 (CTRP8) in human primary brain cancer, a tumour entity devoid of the classical RXFP1 ligands, RLN1-3. In structural homology studies and computational docking experiments we delineated the N-terminal region of the globular C1q region of CTRP8 and the leucine-rich repeat units 7 and 8 of RXFP1 to mediate this new ligand-receptor interaction. CTRP8 secreted from HEK293T cells, recombinant human (rh) CTRP8, and short synthetic peptides derived from the C1q globular domain of human CTRP8 caused the activation of RXFP1 as determined by elevated intracellular cAMP levels and the induction of a marked pro-migratory phenotype in established glioblastoma (GB) cell lines and primary cells from GB patients. Employing a small competitor peptide, we were able to disrupt the CTRP8-RXFP1-induced increased GB motility. The CTRP8-RXFP1-mediated migration in GB cells involves the activation of PI3K and specific protein kinase C pathways and the increased production/secretion of the potent lysosomal protease cathepsin B (cathB), a known prognostic marker of GB. Specific inhibition of CTRP8-induced cathB activity effectively blocked the ability of primary GB to invade laminin matrices. Finally, co-immunoprecipitation studies revealed the direct interaction of human CTRP8 with RXFP1. Our results support a therapeutic approach in GB aimed at targeting multiple steps of the CTRP8-RXFP1 signalling pathway by a combined inhibitor and peptide-based strategy to block GB dissemination within the brain. PMID:24014093

  4. Human Mu Opioid Receptor (OPRM1A118G) polymorphism is associated with brain mu- opioid receptor binding potential in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.; Logan, J.; Ray, R.; Ruparel, K.; Newberg, A.; Wileyto, E.P.; Loughead, J.W.; Divgi, C.; Blendy, J.A.; Logan, J.; Zubieta, J.-K.; Lerman, C.

    2011-04-15

    Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BP{sub ND} or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [{sup 11}C] carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BP{sub ND} than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BP{sub ND} difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.

  5. Human Mu Opioid Receptor (OPRM1A118G) polymorphism is associated with brain mu- opioid receptor binding potential in smokers

    International Nuclear Information System (INIS)

    Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BPND or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [11C] carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BPND than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BPND difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.

  6. PET study using [11C]FTIMD with ultra-high specific activity to evaluate I2-imidazoline receptors binding in rat brains

    International Nuclear Information System (INIS)

    Introduction: We recently developed a selective 11C-labeled I2-imidazoline receptor (I2R) ligand, 2-(3-fluoro-4-[11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). [11C]FTIMD showed specific binding to I2Rs in rat brains having a high density of I2R, as well as to I2Rs those in monkey brains, as illustrated by positron emission tomography (PET) and autoradiography. However, [11C]FTIMD also showed moderate non-specific binding in rat brains. In order to increase the specificity for I2R in rat brains, we synthesized [11C]FTIMD with ultra-high specific activity and evaluated its binding. Methods: [11C]FTIMD with ultra-high specific activity was prepared by a palladium-promoted cross-coupling reaction of the tributylstannyl precursor and [11C]methyl iodide, which was produced by iodination of [11C]methane using the single-pass method. Dynamic PET scans were conducted in rats, and the kinetic parameters were estimated. Results: [11C]FTIMD with ultra-high specific activity was successfully synthesized with an appropriate level of radioactivity and ultra-high specific activity (4470±1660 GBq/μmol at end of synthesis, n=11) for injection. In the PET study, distribution volume (VT) values in all the brain regions investigated whether I2R expression was greatly reduced in BU224-pretreatead rats compared with control rats (29–45% decrease). Differences in VT values between control and BU224-pretreated rats using [11C]FTIMD with ultra-high specific activity were greater than those using [11C]FTIMD with normal specific activity (17–34% decrease) in all brain regions investigated. Conclusion: Quantitative PET using [11C]FTIMD with ultra-high specific activity can contribute to the detection of small changes in I2R expression in the brain.

  7. Effects of ketamine-midazolam anesthesia on the expression of NMDA and AMPA receptor subunit in the peri-infarction of rat brain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; ZHANG Peng-bo; QIU Shu-dong; LIU Yong; TIAN Ying-fang; WANG Ying

    2006-01-01

    Background Activation of N-methyl-D-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors play an important role in the neurons death induced by ischemia.The mitigating effect of intravenous anesthetics on ischemic neuron injury is related to their influence on NMDA receptors. This study was performed to investigate the effect of ketamine-midazolam anesthesia on the NMDA and AMPA receptor subunits expression in the peri-infarction of ischemic rat brain and explore its potential mechanism of neuroprotection.This study was supported by National Natural Science Foundation of China (NSFC) (No.30200291).Methods Thirty Sprague Dawley (SD) rats were subjected to permanent middle cerebral artery occlusion under ketamine/atropine (100/0.05 mg/kg) or ketamine-midazolam/atropine (60/50/0.05 mg/kg) intraperitoneal anesthesia (n=15 each). Twenty-four hours after ischemia, five rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally and infarct size was measured. Twenty-four and 72 hours after ischemia, four rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally. After staining the brain tissue slices with toluidine blue, the survived neurons in the peri-infarction were observed. Also, the expression level of NMDA receptors 1 (NR1), NMDA receptors 2A (NR2A), NMDA receptors 2B (NR2B) and AMPA (GluR1 subunit) were determined by grayscale analysis in immunohistochemical stained slices.Results Compared with ketamine anesthesia, ketamine-midazolam anesthesia produced not only smaller infarct size [(24.1±4.6)% vs (38.4±4.2)%, P<0.05], but also higher neuron density (24 hours: 846± 16 vs 756±24,P<0.05; 72 hours: 882±22 vs 785± 18, P<0.05) and lower NR2A (24 hours: 123.0±4.9 vs 95.0±2.5, P<0.05; 72 hours: 77.8±4.1 vs 54.2±3.9, P<0.05) and NR2B (24 hours: 98.5±2.7 vs 76.3±2.4, P<0.05; 72hours: 67.2

  8. The discovery of epidepride and its analogs as high-affinity radioligands for imaging extrastriatal dopamine D(2) receptors in human brain.

    Science.gov (United States)

    de Paulis, Tomas

    2003-01-01

    [(123)I]Epidepride, [(18)F]fallypride, and [(76)Br]isoremoxipride (FLB-457) and their corresponding [(11)C]labeled derivatives belong to a class of high-affinity radioligands for SPECT or PET imaging of dopamine D(2) receptors in the human brain. In contrast to previously used imaging agents, these ligands are capable of identifying extrastriatal dopamine D(2) receptors. The design of these substituted benzamides derive its origin from the atypical antipsychotic agent, remoxipride. Starting in the late 1970's, halogenated analogs of (S)-sulpiride were evaluated in binding assays and behavioral studies, leading to the discovery of remoxipride. Remoxipride was 10 times weaker than sulpiride in vitro but 50 times more potent in vivo. Search for a putative active metabolite of remoxipride led to the discovery of raclopride and eticlopride, the former becoming a useful radioligand as tritium or carbon-11 labeled form for receptor binding and PET studies, respectively. In the US, the mono-iodine analog of raclopride, [(123)I]iodobenzamide (IBZM), was found to have moderate putamen-to-cerebellum ratio in rat and human brain. Continued search for metabolites of remoxipride led to the discovery of its 3,6-dihydroxy derivative, NCQ-344, with an extremely potent in vivo activity in the rat. SAR studies of the metabolites of remoxipride led to the discovery of the 3-methoxy isomer, isoremoxipride (FLB-457) and its corresponding 6-hydroxy analog, FLB-463, both having affinities for the dopamine D(2) receptor in the 20-30 pM range. Later, the 5-[(123)I]iodo analog of FLB-463, [(123)I]ioxipride ([(123)I]NCQ-298), became a potential SPECT imaging agent. In the mean time, the deshydroxy analog of IBZM, [(125)I]iodopride, showed binding potential in the rat similar to [(125)I]IBZM. Epidepride was designed by combining the structure of isoremoxipride with that of iodopride. In 1988, epidepride was independently prepared and radiolabeled in three separate laboratories in Stockholm

  9. Different sensitivities to competitive inhibition of benzodiazepine receptor binding of {sup 11}C-iomazenil and {sup 11}C-flumazenil in rhesus monkey brain

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Osamu; Hosoi, Rie; Kobayashi, Kaoru [Osaka Univ., Suita (Japan). Medical School; Itoh, Takashi; Gee, A.; Suzuki, Kazutoshi

    2001-04-01

    The in vivo binding kinetics of {sup 11}C-iomazenil were compared with those of {sup 11}C-flumazenil binding in rhesus monkey brain. The monkey was anesthetized with ketamine and intravenously injected with either {sup 11}C-iomazenil or {sup 11}C-flumazenil in combination with the coadministration of different doses of non-radioactive flumazenil (0, 5 and 20 {mu}g/kg). The regional distribution of {sup 11}C-iomazenil in the brain was similar to that of {sup 11}C-flumazenil, but the sensitivity of {sup 11}C-iomazenil binding to competitive inhibition by non-radioactive flumazenil was much less than that of {sup 11}C-flumazenil binding. A significant reduction in {sup 11}C-flumazenil binding in the cerebral cortex was observed with 20 {mu}g/kg of flumazenil, whereas a relatively smaller inhibition of {sup 11}C-iomazenil binding in the same region was observed with the same dose of flumazenil. These results suggest that {sup 11}C-flumazenil may be a superior radiotracer for estimating benzodiazepine receptor occupancy in the intact brain. (author)

  10. Thromboxane A2 receptor antagonist SQ29548 reduces ischemic stroke-induced microglia/macrophages activation and enrichment, and ameliorates brain injury

    Science.gov (United States)

    Yan, Aijuan; Zhang, Tingting; Yang, Xiao; Shao, Jiaxiang; Fu, Ningzhen; Shen, Fanxia; Fu, Yi; Xia, Weiliang

    2016-01-01

    Thromboxane A2 receptor (TXA2R) activation is thought to be involved in thrombosis/hemostasis and inflammation responses. We have previously shown that TXA2R antagonist SQ29548 attenuates BV2 microglia activation by suppression of ERK pathway, but its effect is not tested in vivo. The present study aims to explore the role of TXA2R on microglia/macrophages activation after ischemia/reperfusion brain injury in mice. Adult male ICR mice underwent 90-min transient middle cerebral artery occlusion (tMCAO). Immediately and 24 h after reperfusion, SQ29548 was administered twice to the ipsilateral ventricle (10 μl, 2.6 μmol/ml, per dose). Cerebral infarction volume, inflammatory cytokines release and microglia/macrophages activation were measured using the cresyl violet method, quantitative polymerase chain reaction (qPCR), and immunofluorescence double staining, respectively. Expression of TXA2R was significantly increased in the ipsilateral brain tissue after ischemia/reperfusion, which was also found to co-localize with activated microglia/macrophages in the infarct area. Administration of SQ29548 inhibited microglia/macrophages activation and enrichment, including both M1 and M2 phenotypes, and attenuated ischemia-induced IL-1ß, IL-6, and TNF-α up-regulation and iNOS release. TXA2R antagonist SQ29548 inhibited ischemia-induced inflammatory response and furthermore reduced microglia/macrophages activation and ischemic/reperfusion brain injury. PMID:27775054

  11. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  12. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain.

    Science.gov (United States)

    Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J

    1994-04-01

    We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.

  13. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Science.gov (United States)

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; pcaffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.