WorldWideScience

Sample records for brain processes supporting

  1. Enhanced structural connectivity within a brain sub-network supporting working memory and engagement processes after cognitive training.

    Science.gov (United States)

    Román, Francisco J; Iturria-Medina, Yasser; Martínez, Kenia; Karama, Sherif; Burgaleta, Miguel; Evans, Alan C; Jaeggi, Susanne M; Colom, Roberto

    2017-05-01

    The structural connectome provides relevant information about experience and training-related changes in the brain. Here, we used network-based statistics (NBS) and graph theoretical analyses to study structural changes in the brain as a function of cognitive training. Fifty-six young women were divided in two groups (experimental and control). We assessed their cognitive function before and after completing a working memory intervention using a comprehensive battery that included fluid and crystallized abilities, working memory and attention control, and we also obtained structural MRI images. We acquired and analyzed diffusion-weighted images to reconstruct the anatomical connectome and we computed standardized changes in connectivity as well as group differences across time using NBS. We also compared group differences relying on a variety of graph-theory indices (clustering, characteristic path length, global and local efficiency and strength) for the whole network as well as for the sub-network derived from NBS analyses. Finally, we calculated correlations between these graph indices and training performance as well as the behavioral changes in cognitive function. Our results revealed enhanced connectivity for the training group within one specific network comprised of nodes/regions supporting cognitive processes required by the training (working memory, interference resolution, inhibition, and task engagement). Significant group differences were also observed for strength and global efficiency indices in the sub-network detected by NBS. Therefore, the connectome approach is a valuable method for tracking the effects of cognitive training interventions across specific sub-networks. Moreover, this approach allowsfor the computation of graph theoretical network metricstoquantifythetopological architecture of the brain networkdetected. The observed structural brain changes support the behavioral results reported earlier (see Colom, Román, et al., 2013

  2. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    Science.gov (United States)

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  3. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  4. Inside the brain of an elite athlete: the neural processes that support high achievement in sports.

    Science.gov (United States)

    Yarrow, Kielan; Brown, Peter; Krakauer, John W

    2009-08-01

    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance.

  5. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  6. Social support, stress and the aging brain.

    Science.gov (United States)

    Sherman, Stephanie M; Cheng, Yen-Pi; Fingerman, Karen L; Schnyer, David M

    2016-07-01

    Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress.

  7. Age differences in brain systems supporting transient and sustained processes involved in prospective memory and working memory.

    Science.gov (United States)

    Peira, Nathalie; Ziaei, Maryam; Persson, Jonas

    2016-01-15

    In prospective memory (PM), an intention to act in response to an external event is formed, retained, and at a later stage, when the event occurs, the relevant action is performed. PM typically shows a decline in late adulthood, which might affect functions of daily living. The neural correlates of this decline are not well understood. Here, 15 young (6 female; age range=23-30years) and 16 older adults (5 female; age range=64-74years) were scanned with fMRI to examine age-related differences in brain activation associated with event-based PM using a task that facilitated the separation of transient and sustained components of PM. We show that older adults had reduced performance in conditions with high demands on prospective and working memory, while no age-difference was observed in low-demanding tasks. Across age groups, PM task performance activated separate sets of brain regions for transient and sustained responses. Age-differences in transient activation were found in fronto-striatal and MTL regions, with young adults showing more activation than older adults. Increased activation in young, compared to older adults, was also found for sustained PM activation in the IFG. These results provide new evidence that PM relies on dissociable transient and sustained cognitive processes, and that age-related deficits in PM can be explained by an inability to recruit PM-related brain networks in old age.

  8. A support design process

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, J.; Scott, P.B. [Health and Safety Executive (United Kingdom)

    2004-07-01

    A workman suffered a fatal injury due to a fall of ground from the face of a development drivage, which was supported by passive supports supplemented with roof bolts. A working party was set up to review the support process and evaluate how protection of the workmen could be improved whilst setting supports.The working party included representatives from the trade unions, the mines inspectorate and mine operators.Visits were made to several mines and discussions were held with the workmen and management at these mines. The paper describes the results of the visits and how a support design process was evolved. The process will ensure that the support system is designed to reduce the inherent hazards associated with setting supports using either conventional or mixed support systems.

  9. Genetic Algorithm Supported by Graphical Processing Unit Improves the Exploration of Effective Connectivity in Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Lawrence Wing Chi Chan

    2015-05-01

    Full Text Available Brain regions of human subjects exhibit certain levels of associated activation upon specific environmental stimuli. Functional Magnetic Resonance Imaging (fMRI detects regional signals, based on which we could infer the direct or indirect neuronal connectivity between the regions. Structural Equation Modeling (SEM is an appropriate mathematical approach for analyzing the effective connectivity using fMRI data. A maximum likelihood (ML discrepancy function is minimized against some constrained coefficients of a path model. The minimization is an iterative process. The computing time is very long as the number of iterations increases geometrically with the number of path coefficients. Using regular Quad-Core Central Processing Unit (CPU platform, duration up to three months is required for the iterations from 0 to 30 path coefficients. This study demonstrates the application of Graphical Processing Unit (GPU with the parallel Genetic Algorithm (GA that replaces the Powell minimization in the standard program code of the analysis software package. It was found in the same example that GA under GPU reduced the duration to 20 hours and provided more accurate solution when compared with standard program code under CPU.

  10. Business process support

    Energy Technology Data Exchange (ETDEWEB)

    Carle, Adriana; Fiducia, Daniel [Transportadora de Gas del Sur S.A. (TGS), Buenos Aires (Argentina)

    2005-07-01

    This paper is about the own development of business support software. The developed applications are used to support two business processes: one of them is the process of gas transportation and the other is the natural gas processing. This software has interphases with the ERP SAP, software SCADA and on line gas transportation simulation software. The main functionalities of the applications are: entrance on line real time of clients transport nominations, transport programming, allocation of the clients transport nominations, transport control, measurements, balanced pipeline, allocation of gas volume to the gas processing plants, calculate of product tons processed in each plant and tons of product distributed to clients. All the developed software generates information to the internal staff, regulatory authorities and clients. (author)

  11. Supporting Right-Brained Thinking

    Science.gov (United States)

    Mescolotto, Lee M.

    2010-01-01

    In his book, "A Whole New Mind", Daniel Pink champions the benefits of right-brained thinking: creativity, flexibility, empathy, and meaning. He stresses the need to not only be logical, but also aware of emotion; to not only be sequential, but also conceptual; and to not only be calculating, but also recognize value. The project described in this…

  12. Training the Mind's Eye: "Brain Movies" Support Comprehension and Recall

    Science.gov (United States)

    Wilson, Donna

    2012-01-01

    Explicit instruction on the skill of creating mental imagery from text supports reading comprehension and recall. This article shares a strategy for teaching students how to process what they read by comparing mental imagery to "brain movies." It emphasizes choosing appropriate fiction and nonfiction texts to encourage readers to build the skill…

  13. Brain organization for music processing.

    Science.gov (United States)

    Peretz, Isabelle; Zatorre, Robert J

    2005-01-01

    Research on how the brain processes music is emerging as a rich and stimulating area of investigation of perception, memory, emotion, and performance. Results emanating from both lesion studies and neuroimaging techniques are reviewed and integrated for each of these musical functions. We focus our attention on the common core of musical abilities shared by musicians and nonmusicians alike. Hence, the effect of musical training on brain plasticity is examined in a separate section, after a review of the available data regarding music playing and reading skills that are typically cultivated by musicians. Finally, we address a currently debated issue regarding the putative existence of music-specific neural networks. Unfortunately, due to scarcity of research on the macrostructure of music organization and on cultural differences, the musical material under focus is at the level of the musical phrase, as typically used in Western popular music.

  14. IT Support for Healthcare Processes

    NARCIS (Netherlands)

    Lenz, R.; Reichert, M.U.

    2005-01-01

    Patient treatment processes require the cooperation of different organizational units and medical disciplines. In such an environment an optimal process support becomes crucial. Though healthcare processes frequently change, and therefore the separation of the flow logic from the application code se

  15. Oxytocin: parallel processing in the social brain?

    Science.gov (United States)

    Dölen, Gül

    2015-06-01

    Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  16. Gender differences in brain networks supporting empathy.

    Science.gov (United States)

    Schulte-Rüther, Martin; Markowitsch, Hans J; Shah, N Jon; Fink, Gereon R; Piefke, Martina

    2008-08-01

    Females frequently score higher on standard tests of empathy, social sensitivity, and emotion recognition than do males. It remains to be clarified, however, whether these gender differences are associated with gender specific neural mechanisms of emotional social cognition. We investigated gender differences in an emotion attribution task using functional magnetic resonance imaging. Subjects either focused on their own emotional response to emotion expressing faces (SELF-task) or evaluated the emotional state expressed by the faces (OTHER-task). Behaviorally, females rated SELF-related emotions significantly stronger than males. Across the sexes, SELF- and OTHER-related processing of facial expressions activated a network of medial and lateral prefrontal, temporal, and parietal brain regions involved in emotional perspective taking. During SELF-related processing, females recruited the right inferior frontal cortex and superior temporal sulcus stronger than males. In contrast, there was increased neural activity in the left temporoparietal junction in males (relative to females). When performing the OTHER-task, females showed increased activation of the right inferior frontal cortex while there were no differential activations in males. The data suggest that females recruit areas containing mirror neurons to a higher degree than males during both SELF- and OTHER-related processing in empathic face-to-face interactions. This may underlie facilitated emotional "contagion" in females. Together with the observation that males differentially rely on the left temporoparietal junction (an area mediating the distinction between the SELF and OTHERS) the data suggest that females and males rely on different strategies when assessing their own emotions in response to other people.

  17. Brain-computer interface supported collaborative work: Implications for rehabilitation.

    Science.gov (United States)

    Nam, C S; Lee, J; Bahn, S

    2013-01-01

    Working together and collaborating in a group can provide greater benefits for people with severe motor disability. However, it is still not clear how collaboration should be supported by BCI systems. The present study explored BCI-supported collaborative work by investigating differences in performance and brain activity between when a pair of users performs a task jointly with each other and when they do alone only through means of their brain activity. We found differences in performance and brain activity between different work conditions. The results of this research should provide fundamental knowledge of BCI-supported cooperative work.

  18. Mnemonic Training Reshapes Brain Networks to Support Superior Memory

    NARCIS (Netherlands)

    Dresler, M.; Shirer, W.R.; Konrad, B.N.; Muller, N.C.J.; Wagner, I.; Fernandez, G.S.E.; Czisch, M.; Greicius, M.D.

    2017-01-01

    Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI

  19. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ITSM process assessment supporting ITIL

    CERN Document Server

    Barafort, Béatrix; Cortina, Stéphane

    2009-01-01

    The key to any successful IT Service Management solution are strong, clear processes that are fit for purpose. The continual cycle of service improvements must therefore look at the existing processes and assess how effective they are within changing business requirements.This innovative title not only looks at this fundamental process assessment, it does it using the key ISO/IEC standard in this area. In brief, this title explains the meeting between two standards:ITIL: the de facto standard in IT Service Management.ISO/IEC 15504 Information technology - Process assessmentReaders can therefor

  1. Hyper-brain networks support romantic kissing in humans.

    Science.gov (United States)

    Müller, Viktor; Lindenberger, Ulman

    2014-01-01

    Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one's own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta-alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one's own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

  2. Computer Supported Collaborative Processes in Virtual Organizations

    CERN Document Server

    Paszkiewicz, Zbigniew

    2012-01-01

    In global economy, turbulent organization environment strongly influences organization's operation. Organizations must constantly adapt to changing circumstances and search for new possibilities of gaining competitive advantage. To face this challenge, small organizations base their operation on collaboration within Virtual Organizations (VOs). VO operation is based on collaborative processes. Due to dynamism and required flexibility of collaborative processes, existing business information systems are insufficient to efficiently support them. In this paper a novel method for supporting collaborative processes based on process mining techniques is proposed. The method allows activity patterns in various instances of collaborative processes to be identified and used for recommendation of activities. This provides an opportunity for better computer support of collaborative processes leading to more efficient and effective realization of business goals.

  3. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Science.gov (United States)

    Dillahunt-Aspillaga, Christina; Jorgensen-Smith, Tammy; Ehlke, Sarah; Sosinski, Melanie; Monroe, Douglas; Thor, Jennifer

    2013-01-01

    Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  4. Numerical support, information processing and attitude change

    NARCIS (Netherlands)

    de Dreu, C.K.W.; de Vries, N.K.

    1993-01-01

    In two experiments we studied the prediction that majority support induces stronger convergent processing than minority support for a persuasive message, the more so when recipients are explicitly forced to pay attention to the source's point of view; this in turn affects the amount of attitude chan

  5. Brain bases of morphological processing in young children.

    Science.gov (United States)

    Arredondo, Maria M; Ip, Ka I; Shih Ju Hsu, Lucy; Tardif, Twila; Kovelman, Ioulia

    2015-08-01

    How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young English-speaking children completed an auditory morphological awareness task behaviorally (n = 69, ages 6-12) and in fMRI (n = 16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporoparietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children's reading acquisition across languages.

  6. A brain-computer interface to support functional recovery

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Sørensen, Helge Bjarup Dissing

    2013-01-01

    of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating...

  7. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  8. Formalisms to Support the Definition of Processes

    Institute of Scientific and Technical Information of China (English)

    Leon J.Osterweil

    2009-01-01

    This paper emphasizes the importance of defining processes rigorously, completely, clearly, and in detail in order to support the complex projects that are essential to the modern world. The paper argues that such process definitions provide needed structure and context for the development of effective software systems. The centrality of process is argued by enumerating seven key ways in which processes and their definitions are expected to provide important benefits to society. The paper provides an example of a process formalism that makes good progress towards the difficult goal of being simultaneously rigorous, detailed, broad, and clear. Early experience suggests that these four key characteristics of this formalism do indeed seem to help it to support meeting the seven key benefits sought from process definitions. Additional research is suggested in order to gain more insights into needs in the area of process definition formalisms.

  9. Exercise as an intervention for the age-related decline in brain metabolic support

    Directory of Open Access Journals (Sweden)

    Brenda J Anderson

    2010-08-01

    Full Text Available To identify interventions for brain aging, we must first identify the processes in which we hope to intervene. Brain aging is a period of decreasing functional capacity and increasing vulnerability, which reflect a reduction in morphological organization and perhaps degeneration. Since life is ultimately dependent upon the ability to maintain cellular organization through metabolism, this review explores evidence for a decline in neural metabolic support during aging, which includes a reduction in whole brain cerebral blood flow, and cellular metabolic capacity. Capillary density may also decrease with age, although the results are less clear. Exercise may be a highly effective intervention for brain aging, because it improves the cardiovascular system as a whole, and increases regional capillary density and neuronal metabolic capacity. Although the evidence is strongest for motor regions, more work may yield additional evidence for exercise-related improvement in metabolic support in non-motor regions. The protective effects of exercise may be specific to brain region and the type of insult. For example, exercise protects striatal cells from ischemia, but it produces mixed results after hippocampal seizures. Exercise can improve metabolic support and bioenergetic capacity in adult animals, but it remains to be determined whether it has similar effects in aging animals. What is clear is that exercise can influence the multiple levels of support necessary for maintaining optimal neuronal function, which is unique among proposed interventions for aging.

  10. A brain-computer interface to support functional recovery.

    Science.gov (United States)

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  11. Brownian semistationary processes and conditional full support

    CERN Document Server

    Pakkanen, Mikko S

    2010-01-01

    In this note, we study the infinite-dimensional conditional laws of Brownian semistationary processes. Motivated by the fact that these processes are typically not semimartingales, we present sufficient conditions ensuring that a Brownian semistationary process has conditional full support, a property introduced by Guasoni, R\\'asonyi, and Schachermayer [Ann. Appl. Probab., 18 (2008) pp. 491--520]. By the results of Guasoni, R\\'asonyi, and Schachermayer, this property has two important implications. It ensures, firstly, that the process admits no free lunches under proportional transaction costs, and secondly, that it can be approximated pathwise (in the sup norm) by semimartingales that admit equivalent martingale measures.

  12. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    2007-08-01

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plant risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.

  13. Blood-brain barrier-supported neurogenesis in healthy and diseased brain.

    Science.gov (United States)

    Pozhilenkova, Elena A; Lopatina, Olga L; Komleva, Yulia K; Salmin, Vladimir V; Salmina, Alla B

    2017-02-14

    Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.

  14. Brain Mechanisms Supporting Modulation of Pain by Mindfulness Meditation

    Science.gov (United States)

    Zeidan, F.; Martucci, K.T.; Kraft, R.A.; Gordon, N.S.; McHaffie, J.G.; Coghill, R.C.

    2011-01-01

    The subjective experience of one’s environment is constructed by interactions among sensory, cognitive, and affective processes. For centuries, meditation has been thought to influence such processes by enabling a non-evaluative representation of sensory events. To better understand how meditation influences the sensory experience, we employed arterial spin labeling (ASL) functional magnetic resonance imaging to assess the neural mechanisms by which mindfulness meditation influences pain in healthy human participants. After four-days of mindfulness meditation training, meditating in the presence of noxious stimulation significantly reduced pain-unpleasantness by 57% and pain-intensity ratings by 40% when compared to rest. A two factor repeated measures analysis of variance was used to identify interactions between meditation and pain-related brain activation. Meditation reduced pain-related activation of the contra lateral primary somatosensory cortex. Multiple regression analysis was used to identify brain regions associated with individual differences in the magnitude of meditation-related pain reductions. Meditation-induced reductions in pain intensity ratings were associated with increased activity in the anterior cingulate cortex and anterior insula, areas involved in the cognitive regulation of nociceptive processing. Reductions in pain unpleasantness ratings were associated with orbitofrontal cortex activation, an area implicated in reframing the contextual evaluation of sensory events. Moreover, reductions in pain unpleasantness also were associated with thalamic deactivation, which may reflect a limbic gating mechanism involved in modifying interactions between afferent in put and executive-order brain areas. Taken together, these data indicate that meditation engages multiple brain mechanisms that alter the construction of the subjectively available pain experience from afferent information. PMID:21471390

  15. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  16. Mnemonic Training Reshapes Brain Networks to Support Superior Memory.

    Science.gov (United States)

    Dresler, Martin; Shirer, William R; Konrad, Boris N; Müller, Nils C J; Wagner, Isabella C; Fernández, Guillén; Czisch, Michael; Greicius, Michael D

    2017-03-08

    Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that, in a group of naive controls, functional connectivity changes induced by 6 weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain's functional network organization to enable superior memory performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Supporting the processes of teaching and learning

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2010-01-01

    This paper presents a theoretical framework focusing on the processes of teaching. The framework can be used for analysis of teaching and learning practice, as well as analysis of the intended processes proposed and supported in teaching/learning materials; on the other hand, the framework can...... be used when planning teaching and designing learning materials, in casu digital learning platforms. Processes are examined at the micro-level, identified as interaction sequences, and at the meso-level as workflows. The macro-level, the level of modules, is only addressed sporadically in this paper...... for developing more complex competences in students. A number of alternative interaction sequences and workflows are described and discussed. These alternatives all have their advantages, but they are evaluated as more complex, troublesome, and inconvenient to work with. Teaching and learning materials support...

  18. Infrared Database for Process Support Materials

    Science.gov (United States)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for

  19. Supporting the processes of teaching and learning

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2010-01-01

    be used when planning teaching and designing learning materials, in casu digital learning platforms. Processes are examined at the micro-level, identified as interaction sequences, and at the meso-level as workflows. The macro-level, the level of modules, is only addressed sporadically in this paper...... for developing more complex competences in students. A number of alternative interaction sequences and workflows are described and discussed. These alternatives all have their advantages, but they are evaluated as more complex, troublesome, and inconvenient to work with. Teaching and learning materials support...... interaction sequences and workflows in a variety of ways by helping the teacher and students carry out their respective tasks. With digital technologies, it is possible to develop far more sophisticated support for the processes of teaching and learning. In the last part of the paper, an innovative type...

  20. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  1. Emotion processing in the visual brain: a MEG analysis.

    Science.gov (United States)

    Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus

    2008-06-01

    Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.

  2. Correlated activity supports efficient cortical processing

    Directory of Open Access Journals (Sweden)

    Chou Po Hung

    2015-01-01

    Full Text Available Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that ‘choristers’, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking, carry more generalizable object information than uncorrelated neurons (‘soloists’ in macaque inferior temporal (IT cortex. The rarity of choristers (as low as 6% of IT neurons indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons, that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior.

  3. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Directory of Open Access Journals (Sweden)

    Christina Dillahunt-Aspillaga

    Full Text Available Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  4. Hierarchy of Information Processing in the Brain

    DEFF Research Database (Denmark)

    Deco, Gustavo; Kringelbach, Morten L

    2017-01-01

    A general theory of brain function has to be able to explain local and non-local network computations over space and time. We propose a new framework to capture the key principles of how local activity influences global computation, i.e., describing the propagation of information and thus the bro...

  5. Contextual information processing of brain in art appreciation.

    Science.gov (United States)

    Takahashi, Shigeko; Ejima, Yoshimichi

    2013-04-01

    A psycho-historical framework for the science of art appreciation will be an experimental discipline that may shed new light on the highest capacities of the human brain, yielding new scientific ways to talk about the art appreciation. The recent findings of the contextual information processing in the human brain make the concept of the art-historical context clear for empirical experimentation.

  6. Matlab-supported undergraduate image processing instruction

    Science.gov (United States)

    Dawant, Benoit M.

    1998-06-01

    More and more often, undergraduate students express the desire to take a course on image processing. These students will learn the most if the theory and algorithms covered in class can be not only illustrated through examples shown by the instructor during class but also coded, tested, and evaluated by the class participants. In the past, the major hurdle to developing a hands-on approach to image processing instruction has been the amount of programming required to implement relatively simple applications. Typical undergraduate students lack experience with low level programming languages and time is spent teaching the language itself rather than experimenting with the algorithms. High level and interpreted programming languages such as Matlab permit to address this question. Even with very little practical exposure to the language, students can rapidly develop the level of skills required to implement a range of image processing algorithms. This presentation will go over the material covered in a senior level introductory course in image processing taught at Vanderbilt University. The course itself is taught in a traditional way but it is supported by laboratories during which students are asked to implement algorithms ranging from connected component labeling to image deblurring. The students are also assigned projects that span several weeks. Examples of such assignments and projects are presented.

  7. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  8. Image-matching as a medical diagnostic support tool (DST) for brain diseases in children.

    Science.gov (United States)

    Huang, H K; Nielsen, J F; Nelson, Marvin D; Liu, Lifeng

    2005-01-01

    Imaging-matching is an important research area in imaging informatics. We have developed and evaluated a novel diagnostic support tool (DST) based on medical image matching using MR brain images. The approach consists of two steps, database generation and image matching. The database contains pre-diagnosed MR brain images. As the images are added to the database, they are registered to the 3D Talairach coordinate system. In addition, regions of interests (ROI) are generated, and image-processing techniques are used to extract relevant image parameters related to the brain and diseases from the ROIs and from the entire MR image. The second step is to retrieve relevant information from the database by performing image matching. In this step, the physician first submits a query image. The DST computes the similarity between the query image and each of the images in the database, and then presents the most similar images to the user. Since the database contains pre-diagnosed images, the retrieved cases tend to contain relevant diagnostic information. To evaluate the usefulness of the DST in a clinical setting, pediatric brain diseases were used. The database contains 2500 pediatric patients between ages 0 and 18 with brain Magnetic Resonance (MR) images of known brain lesions. A testbed was established at the Children's Hospital Los Angeles (CHLA) for acquiring MR images from the PACS server of patients with known lesions. These images were matched against those in the DST pediatric brain MR database. An expert pediatric neuroradiologist evaluated the matched results. We found that in most cases, the image-matching method was able to quickly retrieve images with relevant diagnostic content. The evaluation method and results are given.

  9. Behavioral Laterality of the Brain: Support for the Binary Construct of Hemisity

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2013-10-01

    Full Text Available Three terms define brain behavioral laterality: Hemispheric dominance identifies the cerebral hemisphere producing one’s first language. Hemispheric asymmetry locates the brain side of non-language skills. A third term is needed to describe a person’s binary thinking, learning, and behaving styles. Since the 1950s split-brain studies, evidence has accumulated that individuals with right or left brain behavioral orientations (RPs or LPs exist. Originally, hemisphericity sought, but failed, to confirm the existence of such individual differences, due to its assertion that each individual lay somewhere on a gradient between competing left and right brain extremes. Recently, hemisity, a more accurate behavioral laterality context, has emerged. It posits that one’s behavioral laterality is binary: i.e., inherently either right or left brain-oriented. This insight enabled the quantitative determination of right or left behavioral laterality of thousands of subjects. MRI scans of right and left brain-oriented groups revealed two neuroanatomical differences. The first was an asymmetry of an executive element in the anterior cingulate cortex. This provided hemisity both a rationale and a primary standard. RPs and LPs gave opposite answers to many behavioral preference either-or, forced choice questions. This showed that several sex vs. hemisity traits are being conflated by society. Such was supported by the second neuroanatomical difference between the hemisity subtypes, that RPs of either sex had up to three times larger corpus callosi than LPs. Individuals of the same hemisity but opposite sex had more personality traits in common than those of the same sex but different hemisity. Although hemisity subtypes were equally represented in the general population, the process of higher education and career choice caused substantial hemisity sorting among the professions. Hemisity appears to be a valid and promising area for quantitative research of

  10. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  11. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  12. Information Support of Processes in Warehouse Logistics

    Directory of Open Access Journals (Sweden)

    Gordei Kirill

    2013-11-01

    Full Text Available In the conditions of globalization and the world economic communications, the role of information support of business processes increases in various branches and fields of activity. There is not an exception for the warehouse activity. Such information support is realized in warehouse logistic systems. In relation to territorial administratively education, the warehouse logistic system gets a format of difficult social and economic structure which controls the economic streams covering the intermediary, trade and transport organizations and the enterprises of other branches and spheres. Spatial movement of inventory items makes new demands to participants of merchandising. Warehousing (in the meaning – storage – is one of the operations entering into logistic activity, on the organization of a material stream, as a requirement. Therefore, warehousing as "management of spatial movement of stocks" – is justified. Warehousing, in such understanding, tries to get rid of the perception as to containing stocks – a business expensive. This aspiration finds reflection in the logistic systems working by the principle: "just in time", "economical production" and others. Therefore, the role of warehouses as places of storage is transformed to understanding of warehousing as an innovative logistic system.

  13. Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution.

    Science.gov (United States)

    Noreikiene, Kristina; Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Husby, Arild; Merilä, Juha

    2015-07-07

    The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h(2) = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.

  14. Peculiarities of support for management information process

    OpenAIRE

    Chornous, G.

    2010-01-01

    The article deals with the problems of determination of perspective directions and models of decision making support based on Bussiness Intelligence technology (BI) and proper improvement of the modern information systems and technologies for effective decisions support.

  15. Topological self-organization and prediction learning support both action and lexical chains in the brain.

    Science.gov (United States)

    Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito

    2014-07-01

    A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. Copyright © 2014 Cognitive Science Society, Inc.

  16. Genetic architecture supports mosaic brain evolution and independent brain-body size regulation.

    Science.gov (United States)

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D; Williams, Robert W

    2012-01-01

    The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.

  17. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  18. How Can Educational Psychologists Support the Reintegration of Children with an Acquired Brain Injury upon Their Return to School?

    Science.gov (United States)

    Ball, Heather; Howe, Julia

    2013-01-01

    This study explores the process of reintegration into school for children with an acquired brain injury (ABI) and considers the role of the educational psychologist (EP) in supporting these children. Interviews were conducted with a range of professionals in two specialist settings: a specialist rehabilitation centre and a children's hospital with…

  19. How Can Educational Psychologists Support the Reintegration of Children with an Acquired Brain Injury upon Their Return to School?

    Science.gov (United States)

    Ball, Heather; Howe, Julia

    2013-01-01

    This study explores the process of reintegration into school for children with an acquired brain injury (ABI) and considers the role of the educational psychologist (EP) in supporting these children. Interviews were conducted with a range of professionals in two specialist settings: a specialist rehabilitation centre and a children's hospital with…

  20. INFORMATION SUPPORT TRANSPORTATION PROCESS MULTIMODAL SYSTEM

    Directory of Open Access Journals (Sweden)

    N. A. Filippova

    2015-02-01

    Full Text Available Background: is to improve information support for the organization and functioning of multimodal systems delive-ry modes of transport in the northern regions of the Russian Federation on the basis of the development of theoretical and methodological and practical provisions, criteria, methods and mathematical models.Method or methodology of the work: a methodology placement vehicle logistics center (TLC in the Nordic region, providing links all transport modes involved in the delivery of energy, developed a model to optimize the parameters of the transport network, used for traffic, the most effective schemes of delivery of goods in multimodal report, taking into account the specifics of the Nordic region, and funding.Results: Studies have applied and may be used by the fe-deral and regional authorities and management in the deve-lopment of integrated programs for energy-Northern regions. Proposed in the theoretical research and methodological approaches are one way to increase the efficiency of the delivery of goods in the event of a little predictable situations on the route, TLC and transhipment points. The developed techniques are used and can be used to improve the northern region of the process control of cargo delivery.Conclusion: Therefore, based on the analysis of the status of the issue, it is quite obvious that the very topical area of optimization of the transport needs of the region to ensure the development and implementation of methods to improve the efficiency and quality of freight traffic by improving organizational structures and technology traffic control all transport space in the region.

  1. The brain as a distributed intelligent processing system: an EEG study.

    Directory of Open Access Journals (Sweden)

    Armando Freitas da Rocha

    Full Text Available BACKGROUND: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS, first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. METHODOLOGY AND PRINCIPAL FINDINGS: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Wechsler Adult Intelligence Scale and WISC (Wechsler Intelligence Scale for Children, and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. CONCLUSION: The present results support these claims and the neural efficiency hypothesis.

  2. Binary Color Classification For Brain Computer Interface Using Neural Networks And Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Charmi Sunil Mehta

    2014-04-01

    Full Text Available As the power of modern computers grows alongside our understanding of the human brain, we move a step closer in transforming some pretty spectacular science fiction into reality. The advent of Brain Computer Interface (BCI is indeed leading us to a burgeoning era of complete automation empowering our interaction with computer not only with robustness but with also a gift of intelligence. For the fraction of our society suffering from severe motor disabilities BCI has offered a novel solution of overcoming the problems faced in communicating and environment control. Thus the purpose of our current research is to harness the brain‟s ability to generate Visually Evoked Potentials (VEPs by capturing the response of the brain to the transitions of color from grey to green and grey to red. Our prime focus is to explore EEG-based signal processing techniques in order to classify two colors; which can be further deployed in future by coupling the actuators so as to perform few basic tasks. The extracted EEG features are classified using Support Vector Machines (SVM and Artificial Neural Networks (ANN. We recorded 100% accuracy on testing the model after training and validation process. Moreover, we obtained 90% accuracy on re-testing the model with all samples acquired for the task using Quadratic SVM classifier.

  3. Phases management for advanced life support processes

    NARCIS (Netherlands)

    Eckhard, F.; Brunink, J.A.J.; Tuinstra, B.; Assink, J.W.; Ten Asbroek, N.; Backx, V.; Klaassen, A.; Waters, G.; Stasiak, M.A.; Dixon, M.; Ordoñez-Inda, L.

    2005-01-01

    For a planetary base, a reliable life support system including food and water supply, gas generation and waste management is a condition sine qua non. While for a short-term period the life support system may be an open loop, i.e. water, gases and food provided from the Earth, for long-term missions

  4. Coordination processes in computer supported collaborative writing

    NARCIS (Netherlands)

    Kanselaar, G.; Erkens, Gijsbert; Jaspers, Jos; Prangsma, M.E.

    2005-01-01

    In the COSAR-project a computer-supported collaborative learning environment enables students to collaborate in writing an argumentative essay. The TC3 groupware environment (TC3: Text Composer, Computer supported and Collaborative) offers access to relevant information sources, a private notepad, a

  5. Nonretinotopic visual processing in the brain.

    Science.gov (United States)

    Melcher, David; Morrone, Maria Concetta

    2015-01-01

    A basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophysiology and neuroimaging have provided evidence for the modulation of neural firing by gaze position and processing of visual information based on craniotopic or spatiotopic coordinates. Transient remapping of the spatial and temporal properties of neurons contingent on saccadic eye movements has been demonstrated in visual cortex, as well as frontal and parietal areas involved in saliency/priority maps, and is a good candidate to mediate some of the spatial invariance demonstrated by perception. Recent studies suggest that spatiotopic selectivity depends on a low spatial resolution system of maps that operates over a longer time frame than retinotopic processing and is strongly modulated by high-level cognitive factors such as attention. The interaction of an initial and rapid retinotopic processing stage, tied to new fixations, and a longer lasting but less precise nonretinotopic level of visual representation could underlie the perception of both a detailed and a stable visual world across saccadic eye movements.

  6. Processing Of Visual Information In Primate Brains

    Science.gov (United States)

    Anderson, Charles H.; Van Essen, David C.

    1991-01-01

    Report reviews and analyzes information-processing strategies and pathways in primate retina and visual cortex. Of interest both in biological fields and in such related computational fields as artificial neural networks. Focuses on data from macaque, which has superb visual system similar to that of humans. Authors stress concept of "good engineering" in understanding visual system.

  7. Hyper-brain networks support romantic kissing in humans

    OpenAIRE

    Viktor Müller; Ulman Lindenberger

    2014-01-01

    Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic k...

  8. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  9. Supporting chemical process design under uncertainty

    OpenAIRE

    Wechsung,A.; Oldenburg, J; J. Yu; Polt,A.

    2010-01-01

    A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enh...

  10. Unveiling the mystery of visual information processing in human brain

    CERN Document Server

    Diamant, Emanuel

    2008-01-01

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. ...

  11. Voice processing in monkey and human brains.

    Science.gov (United States)

    Scott, Sophie K

    2008-09-01

    Studies in humans have indicated that the anterior superior temporal sulcus has an important role in the processing of information about human voices, especially the identification of talkers from their voice. A new study using functional magnetic resonance imaging (fMRI) with macaques provides strong evidence that anterior auditory fields, part of the auditory 'what' pathway, preferentially respond to changes in the identity of conspecifics, rather than specific vocalizations from the same individual.

  12. Support Routines for In Situ Image Processing

    Science.gov (United States)

    Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean

    2013-01-01

    This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the

  13. Evidence for peer support in rehabilitation for individuals with acquired brain injury: A systematic review.

    Science.gov (United States)

    Wobma, Ruth; Nijland, Rinske H M; Ket, Johannes C F; Kwakkel, Gert

    2016-11-11

    To systematically review the literature on evidence for the application of peer support in the rehabilitation of persons with acquired brain injury. PubMed, Embase.com, Ebsco/Cinahl, Ebsco/PsycInfo and Wiley/Cochrane Library were searched from inception up to 19 June 2015. Randomized controlled trials were included describing participants with acquired brain injury in a rehabilitation setting and peer supporters who were specifically assigned to this role. Two independent reviewers assessed metho-dological quality using the PEDro scale. Cohen's kappa was calculated to assess agreement between the reviewers. Two randomized controlled trials could be included, both focussing on patients with traumatic brain injury. The randomized controlled trials included a total of 126 participants with traumatic brain injury and 62 care-givers and suggest a positive influence of peer support for traumatic brain injury survivors and their caregivers in areas of social support, coping, behavioural control and physical quality of life. The evidence for peer support is limited and restricted to traumatic brain injury. Randomized controlled trials on peer support for patients with other causes of acquired brain injury are lacking. It is important to gain more insight into the effects of peer support and the influence of patient and peer characteristics and the intervention protocol.

  14. Learning acts on distinct processes for visual form perception in the human brain.

    Science.gov (United States)

    Mayhew, Stephen D; Li, Sheng; Kourtzi, Zoe

    2012-01-18

    Learning is known to facilitate our ability to detect targets in clutter and optimize brain processes for successful visual recognition. Previous brain-imaging studies have focused on identifying spatial patterns (i.e., brain areas) that change with learning, implicating occipitotemporal and frontoparietal areas. However, little is known about the interactions within this network that mediate learning-dependent improvement in complex perceptual tasks (i.e., discrimination of visual forms in clutter). Here we take advantage of the complementary high spatial and temporal resolution of simultaneous EEG-fMRI to identify the learning-dependent changes in spatiotemporal brain patterns that mediate enhanced behavioral sensitivity in the discrimination of global forms after training. We measured the observers' choices when discriminating between concentric and radial patterns presented in noise before and after training. Similarly, we measured the choices of a pattern classifier when predicting each stimulus from EEG-fMRI signals. By comparing the performance of human observers and classifiers, we demonstrated that learning alters sensitivity to visual forms and EEG-fMRI activation patterns related to distinct visual recognition processes. In particular, behavioral improvement after training was associated with changes in (1) early processes involved in the integration of global forms in higher occipitotemporal and parietal areas, and (2) later processes related to categorical judgments in frontal circuits. Thus, our findings provide evidence that learning acts on distinct visual recognition processes and shapes feedforward interactions across brain areas to support performance in complex perceptual tasks.

  15. Classical Wave Model of Quantum-Like Processing in Brain

    Science.gov (United States)

    Khrennikov, A.

    2011-01-01

    We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.

  16. How a lateralized brain supports symmetrical bimanual tasks.

    Directory of Open Access Journals (Sweden)

    Roland S Johansson

    2006-06-01

    Full Text Available A large repertoire of natural object manipulation tasks require precisely coupled symmetrical opposing forces by both hands on a single object. We asked how the lateralized brain handles this basic problem of spatial and temporal coordination. We show that the brain consistently appoints one of the hands as prime actor while the other assists, but the choice of acting hand is flexible. When study participants control a cursor by manipulating a tool held freely between the hands, the left hand becomes prime actor if the cursor moves directionally with the left-hand forces, whereas the right hand primarily acts if it moves with the opposing right-hand forces. In neurophysiological (electromyography, transcranial magnetic brain stimulation and functional magnetic resonance brain imaging experiments we demonstrate that changes in hand assignment parallels a midline shift of lateralized activity in distal hand muscles, corticospinal pathways, and primary sensorimotor and cerebellar cortical areas. We conclude that the two hands can readily exchange roles as dominant actor in bimanual tasks. Spatial relationships between hand forces and goal motions determine hand assignments rather than habitual handedness. Finally, flexible role assignment of the hands is manifest at multiple levels of the motor system, from cortical regions all the way down to particular muscles.

  17. Kisspeptin modulates sexual and emotional brain processing in humans

    Science.gov (United States)

    Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.

    2017-01-01

    BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678

  18. A Brain Network Processing the Age of Faces

    NARCIS (Netherlands)

    Homola, G.A.; Jbabdi, S.; Beckmann, C.F.; Bartsch, A.J.

    2012-01-01

    Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previo

  19. Tutorial: Signal Processing in Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.

    2010-01-01

    Research in Electroencephalogram (EEG) based Brain-Computer Interfaces (BCIs) has been considerably expanding during the last few years. Such an expansion owes to a large extent to the multidisciplinary and challenging nature of BCI research. Signal processing undoubtedly constitutes an essential co

  20. Maternal Support and Brain Development: Neuroscience Validation for the Importance of Early Caregiving Relationships

    Science.gov (United States)

    Luby, Joan; Rogers, Cynthia

    2013-01-01

    Advances in brain imaging methods and technology over the last 2 decades have opened an unprecedented window into the understanding of the structure and function of the human brain. In this article, the authors describe their investigation of the relationship between maternal support, observed during the preschool period, and the size of key brain…

  1. Soil processing method journal article supporting data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the...

  2. Brain Processing of Contagious Itch in Patients with Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Christina Schut

    2017-07-01

    Full Text Available Several studies show that itch and scratching cannot only be induced by pruritogens like histamine or cowhage, but also by the presentation of certain (audio- visual stimuli like pictures on crawling insects or videos showing other people scratching. This phenomenon is coined “Contagious itch” (CI. Due to the fact that CI is more profound in patients with the chronic itchy skin disease atopic dermatitis (AD, we believe that it is highly relevant to study brain processing of CI in this group. Knowledge on brain areas involved in CI in AD-patients can provide us with useful hints regarding non-invasive treatments that AD-patients could profit from when they are confronted with itch-inducing situations in daily life. Therefore, this study investigated the brain processing of CI in AD-patients. 11 AD-patients underwent fMRI scans during the presentation of an itch inducing experimental video (EV and a non-itch inducing control video (CV. Perfusion based brain activity was measured using arterial spin labeling functional MRI. As expected, the EV compared to the CV led to an increase in itch and scratching (p < 0.05. CI led to a significant increase in brain activity in the supplementary motor area, left ventral striatum and right orbitofrontal cortex (threshold: p < 0.001; cluster size k > 50. Moreover, itch induced by watching the EV was by trend correlated with activity in memory-related regions including the temporal cortex and the (pre- cuneus as well as the posterior operculum, a brain region involved in itch processing (threshold: p < 0.005; cluster size k > 50. These findings suggest that the fronto-striatal circuit, which is associated with the desire to scratch, might be a target region for non-invasive treatments in AD patients.

  3. Classification of Brain Tumor Using Support Vector Machine Classfiers

    Directory of Open Access Journals (Sweden)

    Dr.D. J. Pete

    2014-03-01

    Full Text Available Magnetic resonance imagi ng (MRI is an imaging technique that has played an important role in neuro science research for studying brain images. Classification is an important part in order to distinguish between normal patients and those who have the possibility of having abnormalities or tumor. The proposed method consists of two stages: feature extraction and classification. In first stage features are extracted from images using GLCM. In the next stage, extracted features are fed as input to Kernel-Based SVM classifier. It classifies the images between normal and abnormal along with Grade of tumor depending upon features. For Brain MRI images; features extracted with GLCM gives 98% accuracy with Kernel-Based SVM Classifiesr. Software used is MATLAB R2011a.

  4. Effect of Lead (Pb on Inflammatory Processes in the Brain

    Directory of Open Access Journals (Sweden)

    Karina Chibowska

    2016-12-01

    Full Text Available That the nervous system is the main target of lead (Pb has long been considered an established fact until recent evidence has linked the Pb effect on the immune system to the toxic effects of Pb on the nervous system. In this paper, we present recent literature reports on the effect of Pb on the inflammatory processes in the brain, particularly the expression of selected cytokines in the brain (interleukin 6, TGF-β1, interleukin 16, interleukin 18, and interleukin 10; expression and activity of enzymes participating in the inflammatory processes, such as cyclooxygenase 2, caspase 1, nitrogen oxide synthase (NOS 2 and proteases (carboxypeptidases, metalloproteinases and chymotrypsin; and the expression of purine receptors P2X4 and P2X7. A significant role in the development of inflammatory processes in the brain is also played by microglia (residual macrophages in the brain and the spinal cord, which act as the first line of defense in the central nervous system, and astrocytes—Whose most important function is to maintain homeostasis for the proper functioning of neurons. In this paper, we also present evidence that exposure to Pb may result in micro and astrogliosis by triggering TLR4-MyD88-NF-κB signaling cascade and the production of pro-inflammatory cytokines.

  5. Comparison of Alternative Processes for Support Decisions

    Directory of Open Access Journals (Sweden)

    Manuel Martínez-Álvarez

    2014-08-01

    Full Text Available There are many tasks that revolve around combinatorial analysis problems, same tasks found in Decision Support Systems (DSS as most of these are responsible for assessing a number of possibilities to deliver the best options. Within the analysis of possible solutions is performed by the DSS there are alternative procedures inside the engine for making decisions that involve them. As part of these alternative procedures today has highlighted the use of metaheuristics, thus in this paper we propose a comparison of some of them trying to broaden the spectrum we have for the applications nowadays.

  6. Supporting Process Improvement using Method Increments

    NARCIS (Netherlands)

    Vlaanderen, Kevin

    2014-01-01

    With the research described in this dissertation, we aim to shed light on the characteristics of process improvement efforts by looking at their evolution (how to change?) rather than their content (what to change?). This research is triggered by three main propositions, derived from earlier work: (

  7. Process Drama Explorations to Support "Macbeth."

    Science.gov (United States)

    Anderson, Jared; Barrera, Gregory; Benedict, Julie; Cavanaugh, Michael; Christensen, Jessica; Clark, Susannah; Dallimore, Natalie; Drown, Danielle; Fink, Susan; Hansen, Josh; Haubner, Ashley; Hinsdale, Robin; Johnson, Tyler; King, JuLee; Maufort, Brenda; Neubauer, Laura; Popple, Jennifer; Praggastis, Cate; Price, Matt; Raber, Lloyd; Rowland, Tiffany; Strite-Hatch, Amy; Torson, Christine; Tuckness, Tara

    2003-01-01

    Explains that each year, theatre education majors at the University of Utah select a production that will be mounted by a professional theatre company on the campus. Explains that the theatre education majors complete extensive dramaturgical research for the production, and create a process drama pre-show piece that is presented to over 1500 K-12…

  8. Supporting Process Improvement using Method Increments

    NARCIS (Netherlands)

    Vlaanderen, Kevin

    2014-01-01

    With the research described in this dissertation, we aim to shed light on the characteristics of process improvement efforts by looking at their evolution (how to change?) rather than their content (what to change?). This research is triggered by three main propositions, derived from earlier work:

  9. Computation and brain processes, with special reference to neuroendocrine systems.

    Science.gov (United States)

    Toni, Roberto; Spaletta, Giulia; Casa, Claudia Della; Ravera, Simone; Sandri, Giorgio

    2007-01-01

    The development of neural networks and brain automata has made neuroscientists aware that the performance limits of these brain-like devices lies, at least in part, in their computational power. The computational basis of a. standard cybernetic design, in fact, refers to that of a discrete and finite state machine or Turing Machine (TM). In contrast, it has been suggested that a number of human cerebral activites, from feedback controls up to mental processes, rely on a mixing of both finitary, digital-like and infinitary, continuous-like procedures. Therefore, the central nervous system (CNS) of man would exploit a form of computation going beyond that of a TM. This "non conventional" computation has been called hybrid computation. Some basic structures for hybrid brain computation are believed to be the brain computational maps, in which both Turing-like (digital) computation and continuous (analog) forms of calculus might occur. The cerebral cortex and brain stem appears primary candidate for this processing. However, also neuroendocrine structures like the hypothalamus are believed to exhibit hybrid computional processes, and might give rise to computational maps. Current theories on neural activity, including wiring and volume transmission, neuronal group selection and dynamic evolving models of brain automata, bring fuel to the existence of natural hybrid computation, stressing a cooperation between discrete and continuous forms of communication in the CNS. In addition, the recent advent of neuromorphic chips, like those to restore activity in damaged retina and visual cortex, suggests that assumption of a discrete-continuum polarity in designing biocompatible neural circuitries is crucial for their ensuing performance. In these bionic structures, in fact, a correspondence exists between the original anatomical architecture and synthetic wiring of the chip, resulting in a correspondence between natural and cybernetic neural activity. Thus, chip "form

  10. Development of brain mechanisms for processing affective touch

    Directory of Open Access Journals (Sweden)

    Malin eBjornsdotter

    2014-02-01

    Full Text Available Affective tactile stimulation plays a key role in the maturation of neural circuits, but the development of brain mechanisms processing touch is poorly understood. We therefore used functional magnetic resonance imaging (fMRI to study brain responses to soft brush stroking of both glabrous (palm and hairy (forearm skin in healthy children (5-13 years, adolescents (14-17 years and adults (25-35 years. Adult-defined regions-of-interests in the primary somatosensory cortex (SI, secondary somatosensory cortex (SII, insular cortex and right posterior superior temporal sulcus (pSTS were significantly and similarly activated in all age groups. Whole-brain analyses revealed that responses in the ipsilateral SII were positively correlated with age in both genders, and that responses in bilateral regions near the pSTS correlated significantly and strongly with age in females but not in males. These results suggest that brain mechanisms associated with both sensory-discriminative and affective-motivational aspects of touch are largely established in school-aged children, and that there is a general continuing maturation of SII and a female-specific increase in pSTS sensitivity with age. Our work establishes a groundwork for future comparative studies of tactile processing in developmental disorders characterized by disrupted social perception such as autism.

  11. Social Support Modulates Stress-Related Gene Expression in Various Brain Regions of Piglets

    Science.gov (United States)

    Kanitz, Ellen; Hameister, Theresa; Tuchscherer, Armin; Tuchscherer, Margret; Puppe, Birger

    2016-01-01

    The presence of an affiliative conspecific may alleviate an individual’s stress response in threatening conditions. However, the mechanisms and neural circuitry underlying the process of social buffering have not yet been elucidated. Using the domestic pig as an animal model, we examined the effect of a 4-h maternal and littermate deprivation on stress hormones and on mRNA expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2 and the immediate early gene c-fos in various brain regions of 7-, 21- and 35-day old piglets. The deprivation occurred either alone or with a familiar or unfamiliar age-matched piglet. Compared to piglets deprived alone, the presence of a conspecific animal significantly reduced free plasma cortisol concentrations and altered the MR/GR balance and 11ß-HSD2 and c-fos mRNA expression in the prefrontal cortex (PFC), amygdala and hypothalamus, but not in the hippocampus. The alterations in brain mRNA expression were particularly found in 21- or 35-day old piglets, which may reflect the species-specific postnatal ontogeny of the investigated brain regions. The buffering effects of social support were most pronounced in the amygdala, indicating its significance both for the assessment of social conspecifics as biologically relevant stimuli and for the processing of emotional states. In conclusion, the present findings provide further evidence for the importance of the cortico-limbic network underlying the abilities of individuals to cope with social stress and strongly emphasize the benefits of social partners in livestock with respect to positive welfare and health. PMID:27965550

  12. Prototype Tool Support for SEI Process and Risk Knowledge

    Science.gov (United States)

    Feather, M.; Kelly, J.; Kiper, J.

    1999-01-01

    We have developed a prototype of tool support for risk assessment that uses selected components of the Software Engineering Institute (SEI) information, specifically: Capability Maturity Model (CMM) process activities, CMM process goals and the SEI taxonomy of software project risks.

  13. Infant Auditory Processing and Event-related Brain Oscillations

    Science.gov (United States)

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P.; Benasich, April A.

    2015-01-01

    Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net

  14. A brain network processing the age of faces.

    Directory of Open Access Journals (Sweden)

    György A Homola

    Full Text Available Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.

  15. Process Support for Cooperative Work on the World Wide Web

    NARCIS (Netherlands)

    Sikkel, Nicolaas; Neumann, Olaf; Sachweh, Sabine

    The World Wide Web is becoming a dominating factor in information technology. Consequently, computer supported cooperative work on the Web has recently drawn a lot of attention. Process Support for Cooperative Work (PSCW) is a Web based system supporting both structured and unstructured forms of

  16. A hybrid hierarchical approach for brain tissue segmentation by combining brain atlas and least square support vector machine.

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-10-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.

  17. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    Science.gov (United States)

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  18. Data near processing support for climate data analysis

    Science.gov (United States)

    Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils

    2016-04-01

    Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted

  19. Brain, music, and non-Poisson renewal processes

    Science.gov (United States)

    Bianco, Simone; Ignaccolo, Massimiliano; Rider, Mark S.; Ross, Mary J.; Winsor, Phil; Grigolini, Paolo

    2007-06-01

    In this paper we show that both music composition and brain function, as revealed by the electroencephalogram (EEG) analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this important conclusion we process the data with the minimum spanning tree method, so as to detect significant events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process. This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging experiment (AE). First, we find that in both cases the distances between two consecutive events are described by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding survival probabilities Ψ(t) are well fitted by stretched exponentials [ Ψ(t)∝exp (-(γt)α) , with 0.5music composition yield μmusic on the human brain.

  20. IT Support for Healthcare Processes - Premises, Challenges, Perspectives

    NARCIS (Netherlands)

    Lenz, R.; Reichert, M.U.

    2007-01-01

    Healthcare processes require the cooperation of different organizational units and medical disciplines. In such an environment optimal process support becomes crucial. Though healthcare processes frequently change, and therefore the separation of the flow logic from the application code seems to be

  1. Process Planning Support System for Green Manufacturing and its application

    Institute of Scientific and Technical Information of China (English)

    HE Yan; LIU Fei; CAO Huajun; ZHANG Hua

    2007-01-01

    Owing to a lack of practical methods and soft- ware tools in the existing researches on green manufacturing (GM), process planning support system for green manufac- turing (GMPPSS) was developed to deal with the problems in optimization of environment-benign process planning. The GMPPSS consisted mainly of three function modules and related model repositories including: selection of process elements, optimization of process courses, and evaluation of process projects for GM. The database of the GMPPSS was used to provide plentiful information on resources consump- tion and environmental impact in manufacturing processes, which consisted of process attribute database, inventory database, machine database, tool database, and the cutting fluid database. Raw materials, secondary material consump- tion, energy consumption, and environment impacts of pro- cess planning were optimized to improve the green attribute of process planning of parts with the supports of the data- bases and model repositories. The gear processing in the machining tool factory was presented to verify the system's applicability.

  2. EEG processing and its application in brain-computer interface

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Xu Guanghua; Xie Jun; Zhang Feng; Li Lili; Han Chengcheng; Li Yeping; Sun Jingjing

    2013-01-01

    Electroencephalogram (EEG) is an efficient tool in exploring human brains.It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines and human beings,namely,brain-computer interface (BCI).The purpose of this review is to illustrate the recent researches in EEG processing and EEG-based BCI.First,we outline several methods in removing artifacts from EEGs,and classical algorithms for fatigue detection are discussed.Then,two BCI paradigms including motor imagery and steady-state motion visual evoked potentials (SSMVEP) produced by oscillating Newton' s rings are introduced.Finally,BCI systems including wheelchair controlling and electronic car navigation are elaborated.As a new technique to control equipments,BCI has promising potential in rehabilitation of disorders in central nervous system,such as stroke and spinal cord injury,treatment of attention deficit hyperactivity disorder (ADHD) in children and development of novel games such as brain-controlled auto racings.

  3. Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae).

    Science.gov (United States)

    O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J

    2013-01-01

    The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume.

  4. Suprasegmental speech cues are automatically processed by the human brain: a mismatch negativity study.

    Science.gov (United States)

    Honbolygó, Ferenc; Csépe, Valéria; Ragó, Anett

    2004-06-03

    This study investigates the electrical brain activity correlates of the automatic detection of suprasegmental and local speech cues by using a passive oddball paradigm, in which the standard Hungarian word 'banán' ('banana' in English) was contrasted with two deviants: a voiceless phoneme deviant ('panán'), and a stress deviant, where the stress was on the second syllable, instead of the obligatory first one. As a result, we obtained the mismatch negativity component (MMN) of event-related brain potentials in each condition. The stress deviant elicited two MMNs: one as a response to the lack of stress as compared to the standard stimulus, and another to the additional stress. Our results support that the MMN is as valuable in investigating processing characteristics of suprasegmental features as in that of phonemic features. MMN data may provide further insight into pre-attentive processes contributing to spoken word recognition.

  5. Functional specificity for high-level linguistic processing in the human brain.

    Science.gov (United States)

    Fedorenko, Evelina; Behr, Michael K; Kanwisher, Nancy

    2011-09-27

    Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain regions. For the critical case of language, conflicting answers arise from the neuropsychological literature, which features striking dissociations between deficits in linguistic and nonlinguistic abilities, vs. the neuroimaging literature, which has argued for overlap between activations for linguistic and nonlinguistic processes, including arithmetic, domain general abilities like cognitive control, and music. Here, we use functional MRI to define classic language regions functionally in each subject individually and then examine the response of these regions to the nonlinguistic functions most commonly argued to engage these regions: arithmetic, working memory, cognitive control, and music. We find little or no response in language regions to these nonlinguistic functions. These data support a clear distinction between language and other cognitive processes, resolving the prior conflict between the neuropsychological and neuroimaging literatures.

  6. Functional development of the brain's face-processing system.

    Science.gov (United States)

    Haist, Frank; Anzures, Gizelle

    2017-01-01

    In the first 20 years of life, the human brain undergoes tremendous growth in size, weight, and synaptic connectedness. Over the same time period, a person achieves remarkable transformations in perception, thought, and behavior. One important area of development is face processing ability, or the ability to quickly and accurately extract extensive information about a person's identity, emotional state, attractiveness, intention, and numerous other types of information that are crucial to everyday social interaction and communication. Associating particular brain changes with specific behavioral and intellectual developments has historically been a serious challenge for researchers. Fortunately, modern neuroimaging is dramatically advancing our ability to make associations between morphological and behavioral developments. In this article, we demonstrate how neuroimaging has revolutionized our understanding of the development of face processing ability to show that this essential perceptual and cognitive skill matures consistently yet slowly over the first two decades of life. In this manner, face processing is a model system of many areas of complex cognitive development. WIREs Cogn Sci 2017, 8:e1423. doi: 10.1002/wcs.1423 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Functional specializations for music processing in the human newborn brain.

    Science.gov (United States)

    Perani, Daniela; Saccuman, Maria Cristina; Scifo, Paola; Spada, Danilo; Andreolli, Guido; Rovelli, Rosanna; Baldoli, Cristina; Koelsch, Stefan

    2010-03-09

    In adults, specific neural systems with right-hemispheric weighting are necessary to process pitch, melody, and harmony as well as structure and meaning emerging from musical sequences. It is not known to what extent the specialization of these systems results from long-term exposure to music or from neurobiological constraints. One way to address this question is to examine how these systems function at birth, when auditory experience is minimal. We used functional MRI to measure brain activity in 1- to 3-day-old newborns while they heard excerpts of Western tonal music and altered versions of the same excerpts. Altered versions either included changes of the tonal key or were permanently dissonant. Music evoked predominantly right-hemispheric activations in primary and higher order auditory cortex. During presentation of the altered excerpts, hemodynamic responses were significantly reduced in the right auditory cortex, and activations emerged in the left inferior frontal cortex and limbic structures. These results demonstrate that the infant brain shows a hemispheric specialization in processing music as early as the first postnatal hours. Results also indicate that the neural architecture underlying music processing in newborns is sensitive to changes in tonal key as well as to differences in consonance and dissonance.

  8. Phylogenetic Analysis Supports a Link between DUF1220 Domain Number and Primate Brain Expansion.

    Science.gov (United States)

    Zimmer, Fabian; Montgomery, Stephen H

    2015-06-25

    The expansion of DUF1220 domain copy number during human evolution is a dramatic example of rapid and repeated domain duplication. Although patterns of expression, homology, and disease associations suggest a role in cortical development, this hypothesis has not been robustly tested using phylogenetic methods. Here, we estimate DUF1220 domain counts across 12 primate genomes using a nucleotide Hidden Markov Model. We then test a series of hypotheses designed to examine the potential evolutionary significance of DUF1220 copy number expansion. Our results suggest a robust association with brain size, and more specifically neocortex volume. In contradiction to previous hypotheses, we find a strong association with postnatal brain development but not with prenatal brain development. Our results provide further evidence of a conserved association between specific loci and brain size across primates, suggesting that human brain evolution may have occurred through a continuation of existing processes.

  9. NUMERICAL SUPPORT, INFORMATION-PROCESSING AND ATTITUDE-CHANGE

    NARCIS (Netherlands)

    DEDREU, CKW; DEVRIES, NK

    1993-01-01

    In two experiments we studied the prediction that majority support induces stronger convergent processing than minority support for a persuasive message, the more so when recipients are explicitly forced to pay attention to the source's point of view; this in turn affects the amount of attitude chan

  10. Early Student Support for Process Studies of Surface Freshwater Dispersal

    Science.gov (United States)

    2016-06-24

    light field is varied to decay exponentially with depth. The spectra of tracer variance are computed for different growth rates and related to the...To) 06/24/2016 FINAL 12/01 /2012-03/31 /2016 4. TITLE AND SUBTITLE sa. CONTRACT NUMBER Early Student Support for Process Studies of Surface...ONRREPORT Early Student Support Process Studies of Surface Freshwater Dispersal June 24, 2016 Amala Mahadevan Woods Hole Oceanographic Institution

  11. Family caregivers' support needs after brain injury: a synthesis of perspectives from caregivers, programs, and researchers.

    Science.gov (United States)

    Gan, Caron; Gargaro, Judith; Brandys, Clare; Gerber, Gary; Boschen, Kathryn

    2010-01-01

    There is a dearth of support for family members who assume caregiving responsibilities following acquired brain injury (ABI). This qualitative study broadens the understanding of ABI caregiver support needs through data triangulation from multiple interview sources across different settings. Thirty-nine caregivers across urban and rural settings in Ontario participated in focus groups. Interviews focused on ABI support services received, their utility, access barriers, needed supports, and suggestions for service delivery. Key informant interviews were also held with four US researchers funded through the TBI Model Systems, one Canadian provincial government health official, and representatives from 11 Ontario ABI programs including two brain injury associations. Interviews focused on existing or proposed caregiver programs and gaps in services. A coding framework was developed through content analysis, centring on five themes: coping, supports that worked, supports needed, barriers, and ideal world recommendations. Perspectives from those involved in receiving, providing and researching caregiver interventions following ABI were synthesized to provide a thorough, detailed depiction of the ongoing support needs of caregivers. This convergence of evidence underscores that caregiver support needs transcend geographical boundaries and must be comprehensive, accessible, long-term, and encompass education, emotional, and instrumental support. Recommendations for ABI caregiver support services are offered.

  12. Decision Support Systems (DSS) in Construction Tendering Processes

    CERN Document Server

    Mohemad, Rosmayati; Othman, Zulaiha Ali; Noor, Noor Maizura Mohamad

    2010-01-01

    The successful execution of a construction project is heavily impacted by making the right decision during tendering processes. Managing tender procedures is very complex and uncertain involving coordination of many tasks and individuals with different priorities and objectives. Bias and inconsistent decision are inevitable if the decision-making process is totally depends on intuition, subjective judgement or emotion. In making transparent decision and healthy competition tendering, there exists a need for flexible guidance tool for decision support. Aim of this paper is to give a review on current practices of Decision Support Systems (DSS) technology in construction tendering processes. Current practices of general tendering processes as applied to the most countries in different regions such as United States, Europe, Middle East and Asia are comprehensively discussed. Applications of Web-based tendering processes is also summarised in terms of its properties. Besides that, a summary of Decision Support Sy...

  13. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.

    Science.gov (United States)

    Brown, Andrew D; Marotta, Thomas R

    2017-02-01

    Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns

    Directory of Open Access Journals (Sweden)

    Gwen A. Frishkoff

    2007-01-01

    Full Text Available This paper describes a framework for automated classification and labeling of patterns in electroencephalographic (EEG and magnetoencephalographic (MEG data. We describe recent progress on four goals: 1 specification of rules and concepts that capture expert knowledge of event-related potentials (ERP patterns in visual word recognition; 2 implementation of rules in an automated data processing and labeling stream; 3 data mining techniques that lead to refinement of rules; and 4 iterative steps towards system evaluation and optimization. This process combines top-down, or knowledge-driven, methods with bottom-up, or data-driven, methods. As illustrated here, these methods are complementary and can lead to development of tools for pattern classification and labeling that are robust and conceptually transparent to researchers. The present application focuses on patterns in averaged EEG (ERP data. We also describe efforts to extend our methods to represent patterns in MEG data, as well as EM patterns in source (anatomical space. The broader aim of this work is to design an ontology-based system to support cross-laboratory, cross-paradigm, and cross-modal integration of brain functional data. Tools developed for this project are implemented in MATLAB and are freely available on request.

  15. Recent advances in brain physiology and cognitive processing

    Directory of Open Access Journals (Sweden)

    Alfredo Pereira Jr

    2011-03-01

    Full Text Available The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena.

  16. Recent advances in brain physiology and cognitive processing

    Directory of Open Access Journals (Sweden)

    Pereira Jr Alfredo

    2011-01-01

    Full Text Available The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena.

  17. Recent advances in brain physiology and cognitive processing.

    Science.gov (United States)

    Alfredo, Pereira; Pereira, Maria Alice Ornellas; Furlan, Fábio Augusto

    2011-01-01

    The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte) has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses) connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena.

  18. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities.

    Science.gov (United States)

    Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S

    2014-09-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults.

  19. ICT Support for Regulatory Compliance of Business Processes

    OpenAIRE

    Governatori, Guido

    2014-01-01

    In this paper we propose an ITC (Information and Communication Technology) approach to support regulatory compliance for business processes, and we report on the development and evaluation of a business process compliance checker called Regorous, based on the compliance-by-design methodology proposed by Governatori and Sadiq

  20. Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study

    Science.gov (United States)

    Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.

    2007-01-01

    Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…

  1. Pattern classification of brain activation during emotional processing in subclinical depression : psychosis proneness as potential confounding factor

    NARCIS (Netherlands)

    Modinos, Gemma; Mechelli, Andrea; Pettersson-Yeo, William; Allen, Paul; McGuire, Philip; Aleman, Andre

    2013-01-01

    We used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II). Two groups w

  2. Caregiver wellbeing: an examination of the coping-appraisel process of caring for individuals with an acquired brain injury

    LENUS (Irish Health Repository)

    2011-12-09

    Objective: Previous literature has demonstrated empirical support for a stress process model of caregiving (Chronister & Chan, 2006). This study examined whether a coping–appraisal stress model helps in our understanding of the experience of caregiving for people with an acquired brain injury.\\r\

  3. Pattern classification of brain activation during emotional processing in subclinical depression : psychosis proneness as potential confounding factor

    NARCIS (Netherlands)

    Modinos, Gemma; Mechelli, Andrea; Pettersson-Yeo, William; Allen, Paul; McGuire, Philip; Aleman, Andre

    2013-01-01

    We used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II). Two groups

  4. FEATURES OF USING AUGMENTED REALITY TECHNOLOGY TO SUPPORT EDUCATIONAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Yury A. Kravchenko

    2014-01-01

    Full Text Available The paper discusses the concept and technology of augmented reality, the rationale given the relevance and timeliness of its use to support educational processes. Paper is a survey and study of the possibility of using augmented reality technology in education. Architecture is proposed and constructed algorithms of the software system management QR-codes media objects. An overview of the features and uses of augmented reality technology to support educational processes is displayed, as an option of a new form of visual demonstration of complex objects, models and processes

  5. [Sensory processing could be temporally organized by ultradian brain rhythms].

    Science.gov (United States)

    Pedemonte, M; Velluti, R A

    Neuronal activity of sensory systems depends on input from the environment, the body and the brain itself. Various rhythms have been shown to affect sensory processing, such as the waking-sleep cycle and hippocampal theta waves, our aim in this revision. The hippocampus, known as a structure involved in learning and memory processing, has the theta rhythm (4-10 Hz), present in all behavioural states. This rhythm has been temporally related to automatic, reflex and voluntary movements, both during wakefulness and sleep, and in the autonomic control of the heart rate. On the other hand theta rhythm has been considered as a novelty detector expressing different level of attention, selecting the information and protecting from interference. Our research is based on the hypothesis that sensory processing needs a timer to be processed and stored, and hippocampal theta rhythm could contribute to the temporal organization of these events. We have demonstrated that auditory and visual unitary discharges in guinea pigs show phase-locking to the hippocampal theta rhythm. This temporal correlation appears during both spontaneous and specific sensory stimulation evoked discharges. Neuronal discharges fluctuate between phase-locked and uncorrelated firing modes relative to the theta rhythm. This changing state depends on known and unknown situations. We have provoked, changing the visual stimuli, a power theta rhythm increment and the phase-locking between this rhythm and the lateral geniculate neurone discharge during wakefulness. In slow wave sleep results were different demonstrating that the ways of the inputs processing have changed.

  6. Differential brain activation to angry faces by elite warfighters: neural processing evidence for enhanced threat detection.

    Directory of Open Access Journals (Sweden)

    Martin P Paulus

    Full Text Available BACKGROUND: Little is known about the neural basis of elite performers and their optimal performance in extreme environments. The purpose of this study was to examine brain processing differences between elite warfighters and comparison subjects in brain structures that are important for emotion processing and interoception. METHODOLOGY/PRINCIPAL FINDINGS: Navy Sea, Air, and Land Forces (SEALs while off duty (n = 11 were compared with n = 23 healthy male volunteers while performing a simple emotion face-processing task during functional magnetic resonance imaging. Irrespective of the target emotion, elite warfighters relative to comparison subjects showed relatively greater right-sided insula, but attenuated left-sided insula, activation. Navy SEALs showed selectively greater activation to angry target faces relative to fearful or happy target faces bilaterally in the insula. This was not accounted for by contrasting positive versus negative emotions. Finally, these individuals also showed slower response latencies to fearful and happy target faces than did comparison subjects. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that elite warfighters deploy greater processing resources toward potential threat-related facial expressions and reduced processing resources to non-threat-related facial expressions. Moreover, rather than expending more effort in general, elite warfighters show more focused neural and performance tuning. In other words, greater neural processing resources are directed toward threat stimuli and processing resources are conserved when facing a nonthreat stimulus situation.

  7. Primary brain tumor patients' supportive care needs and multidisciplinary rehabilitation, community and psychosocial support services: awareness, referral and utilization.

    Science.gov (United States)

    Langbecker, Danette; Yates, Patsy

    2016-03-01

    Primary brain tumors are associated with significant physical, cognitive and psychosocial changes. Although treatment guidelines recommend offering multidisciplinary rehabilitation and support services to address patients' residual deficits, the extent to which patients access such services is unclear. This study aimed to assess patients' supportive care needs early after diagnosis, and quantify service awareness, referral and utilization. A population-based sample of 40 adults recently diagnosed with primary brain tumors was recruited through the Queensland Cancer Registry, representing 18.9 % of the eligible population of 203 patients. Patients or carer proxies completed surveys of supportive care needs at baseline (approximately 3 months after diagnosis) and 3 months later. Descriptive statistics summarized needs and service utilization, and linear regression identified predictors of service use. Unmet supportive care needs were highest at baseline for all domains, and highest for the physical and psychological needs domains at each time point. At follow-up, participants reported awareness of, referral to, and use of 32 informational, support, health professional or practical services. All or almost all participants were aware of at least one informational (100 %), health professional (100 %), support (97 %) or practical service (94 %). Participants were most commonly aware of speech therapists (97 %), physiotherapists (94 %) and diagnostic information from the internet (88 %). Clinician referrals were most commonly made to physiotherapists (53 %), speech therapists (50 %) and diagnostic information booklets (44 %), and accordingly, participants most commonly used physiotherapists (56 %), diagnostic information booklets (47 %), diagnostic information from the internet (47 %), and speech therapists (43 %). Comparatively low referral to and use of psychosocial services may limit patients' abilities to cope with their condition and the changes they

  8. Dissociable brain mechanisms for processing social exclusion and rule violation.

    Science.gov (United States)

    Bolling, Danielle Z; Pitskel, Naomi B; Deen, Ben; Crowley, Michael J; McPartland, James C; Mayes, Linda C; Pelphrey, Kevin A

    2011-02-01

    Social exclusion inherently involves an element of expectancy violation, in that we expect other people to follow the unwritten rule to include us in social interactions. In this functional magnetic resonance imaging (fMRI) study, we employed a unique modification of an interactive virtual ball-tossing game called "Cyberball" (Williams et al., 2000) and a novel paradigm called "Cybershape," in which rules are broken in the absence of social exclusion, to dissociate brain regions that process social exclusion from rule violations more generally. Our Cyberball game employed an alternating block design and removed evoked responses to events when the participant was throwing the ball in inclusion to make this condition comparable to exclusion, where participants did not throw. With these modifications, we replicated prior findings of ventral anterior cingulate cortex (vACC), insula, and posterior cingulate cortex activity evoked by social exclusion relative to inclusion. We also identified exclusion-evoked activity in the hippocampi, left ventrolateral prefrontal cortex, and left middle temporal gyrus. Comparing social exclusion and rule violation revealed a functional dissociation in the active neural systems as well as differential functional connectivity with vACC. Some overlap was observed in regions differentially modulated by social exclusion and rule violation, including the vACC and lateral parietal cortex. These overlapping brain regions showed different activation during social exclusion compared to rule violation, each relative to fair play. Comparing activation patterns to social exclusion and rule violation allowed for the dissociation of brain regions involved in the experience of exclusion versus expectancy violation.

  9. Classification of normal and pathological aging processes based on brain MRI morphology measures

    Science.gov (United States)

    Perez-Gonzalez, J. L.; Yanez-Suarez, O.; Medina-Bañuelos, V.

    2014-03-01

    Reported studies describing normal and abnormal aging based on anatomical MRI analysis do not consider morphological brain changes, but only volumetric measures to distinguish among these processes. This work presents a classification scheme, based both on size and shape features extracted from brain volumes, to determine different aging stages: healthy control (HC) adults, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Three support vector machines were optimized and validated for the pair-wise separation of these three classes, using selected features from a set of 3D discrete compactness measures and normalized volumes of several global and local anatomical structures. Our analysis show classification rates of up to 98.3% between HC and AD; of 85% between HC and MCI and of 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indexes to classify different aging stages.

  10. Production Logistics Simulation Supported by Process Description Languages

    Directory of Open Access Journals (Sweden)

    Bohács Gábor

    2016-03-01

    Full Text Available The process description languages are used in the business may be useful in the optimization of logistics processes too. The process description languages would be the obvious solution for process control, to handle the main sources of faults and to give a correct list of what to do during the logistics process. Related to this, firstly, the paper presents the main features of the frequent process description languages. The following section describes the currently most used process modelling languages, in the areas of production and construction logistics. In addition, the paper gives some examples of logistics simulation, as another very important field of logistics system modelling. The main edification of the paper, the logistics simulation supported by process description languages. The paper gives a comparison of a Petri net formal representation and a Simul8 model, through a construction logistics model, as the major contribution of the research.

  11. Analysis and simulation of brain signal data by EEG signal processing technique using MATLAB

    Directory of Open Access Journals (Sweden)

    Sasikumar Gurumurthy

    2013-06-01

    Full Text Available EEG is brain signal processing technique that allows gaining the understanding of the complex inner mechanisms of the brain and abnormal brain waves have shown to be associated with particular brain disorders. The analysis of brain waves plays an important role in diagnosis of different brain disorders. MATLAB provides an interactive graphic user interface (GUI allowing users to flexiblyand interactively process their high-density EEG dataset and other brain signal data different techniques such as independent component analysis (ICA and/or time/frequency analysis (TFA, as well as standard averaging methods. We will be showing different brain signals by comparing, analysing and simulating datasets which is already loaded in the MATLAB software to process the EEG signals.

  12. The analytic hierarchy process as a support for decision making

    Directory of Open Access Journals (Sweden)

    Filipović Milanka

    2007-01-01

    Full Text Available The first part of this text deals with a convention site selection as one of the most lucrative areas in the tourism industry. The second part gives a further description of a method for decision making - the analytic hierarchy process. The basic characteristics: hierarchy constructions and pair wise comparison on the given level of the hierarchy are allured. The third part offers an example of application. This example is solved using the Super - Decision software, which is developed as a computer support for the analytic hierarchy process. This indicates that the AHP approach is a useful tool to help support a decision of convention site selection. .

  13. The brain's router: a cortical network model of serial processing in the primate brain.

    Science.gov (United States)

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R; Dehaene, Stanislas; Sigman, Mariano

    2010-04-29

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.

  14. Decision Support Systems (DSS in Construction Tendering Processes

    Directory of Open Access Journals (Sweden)

    Rosmayati Mohemad

    2010-03-01

    Full Text Available The successful execution of a construction project is heavily impacted by making the right decision during tendering processes. Managing tender procedures is very complex and uncertain involving coordination of many tasks and individuals with different priorities and objectives. Bias and inconsistent decision are inevitable if the decision-making process is totally depends on intuition, subjective judgement or emotion. In making transparent decision and healthy competition tendering, there exists a need for flexible guidance tool for decision support. Aim of this paper is to give a review on current practices of Decision Support Systems (DSS technology in construction tendering processes. Current practices of general tendering processes as applied to the most countries in different regions such as United States, Europe, Middle East and Asia are comprehensively discussed. Applications of Web-based tendering processes is also summarised in terms of its properties. Besides that, a summary of Decision Support System (DSS components is included in the next section. Furthermore, prior researches on implementation of DSS approaches in tendering processes are discussed in details. Current issues arise from both of paper-based and Web-based tendering processes are outlined. Finally, conclusion is included at the end of this paper.

  15. An Ontology-driven Framework for Supporting Complex Decision Process

    OpenAIRE

    Chai, Junyi; Liu, James N. K.

    2011-01-01

    The study proposes a framework of ONTOlogy-based Group Decision Support System (ONTOGDSS) for decision process which exhibits the complex structure of decision-problem and decision-group. It is capable of reducing the complexity of problem structure and group relations. The system allows decision makers to participate in group decision-making through the web environment, via the ontology relation. It facilitates the management of decision process as a whole, from criteria generation, alternat...

  16. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network.

    Science.gov (United States)

    Spreng, R Nathan; Grady, Cheryl L

    2010-06-01

    The ability to rise above the present environment and reflect upon the past, the future, and the minds of others is a fundamentally defining human feature. It has been proposed that these three self-referential processes involve a highly interconnected core set of brain structures known as the default mode network (DMN). The DMN appears to be active when individuals are engaged in stimulus-independent thought. This network is a likely candidate for supporting multiple processes, but this idea has not been tested directly. We used fMRI to examine brain activity during autobiographical remembering, prospection, and theory-of-mind reasoning. Using multivariate analyses, we found a common pattern of neural activation underlying all three processes in the DMN. In addition, autobiographical remembering and prospection engaged midline DMN structures to a greater degree and theory-of-mind reasoning engaged lateral DMN areas. A functional connectivity analysis revealed that activity of a critical node in the DMN, medial prefrontal cortex, was correlated with activity in other regions in the DMN during all three tasks. We conclude that the DMN supports common aspects of these cognitive behaviors involved in simulating an internalized experience.

  17. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis.

    NARCIS (Netherlands)

    Frokjaer, J.B.; Bouwense, S.A.W.; Olesen, S.S.; Lundager, F.H.; Eskildsen, S.F.; Goor, H. van; Wilder-Smith, O.H.G.; Drewes, A.M.

    2012-01-01

    BACKGROUND & AIMS: Patients with painful chronic pancreatitis (CP) might have abnormal brain function. We assessed cortical thickness in brain areas involved in visceral pain processing. METHODS: We analyzed brain morphologies of 19 patients with painful CP and compared them with 15 healthy individu

  18. Age-related changes in brain support cells: Implications for stroke severity.

    Science.gov (United States)

    Sohrabji, Farida; Bake, Shameena; Lewis, Danielle K

    2013-10-01

    Stroke is one of the leading causes of adult disability and the fourth leading cause of mortality in the US. Stroke disproportionately occurs among the elderly, where the disease is more likely to be fatal or lead to long-term supportive care. Animal models, where the ischemic insult can be controlled more precisely, also confirm that aged animals sustain more severe strokes as compared to young animals. Furthermore, the neuroprotection usually seen in younger females when compared to young males is not observed in older females. The preclinical literature thus provides a valuable resource for understanding why the aging brain is more susceptible to severe infarction. In this review, we discuss the hypothesis that stroke severity in the aging brain may be associated with reduced functional capacity of critical support cells. Specifically, we focus on astrocytes, that are critical for detoxification of the brain microenvironment and endothelial cells, which play a crucial role in maintaining the blood brain barrier. In view of the sex difference in stroke severity, this review also discusses studies of middle-aged acyclic females as well as the effects of the estrogen on astrocytes and endothelial cells.

  19. Supporting the self-regulatory resource: does conscious self-regulation incidentally prime nonconscious support processes?

    Science.gov (United States)

    Dorris, Derek C

    2009-11-01

    Ego-depletion (depletion of self-regulatory strength) can impair conscious efforts at self-regulation. Research into nonconscious self-regulation has demonstrated that preconscious automaticity and implementation intentions can automatically carry out regulatory tasks during times of ego-depletion. However, preconscious automaticity can only emerge during well-practiced tasks while implementation intentions can only support tasks that have been explicitly planned. Thus, when it comes to supporting the conscious self-regulation of nonroutine and unplanned behaviour during times of ego-depletion these processes should be ineffective. However, it is argued here that because the conscious self-regulation of nonroutine and unplanned behaviour can incidentally prime the underlying mental representations those primed representations can be postconsciously re-activated to support that behaviour during times of ego-depletion. Postconscious self-regulation might, therefore, support a type of self-regulatory behaviour that has, thus far, not been associated with any form of support.

  20. Action Learning--A Process Which Supports Organisational Change Initiatives

    Science.gov (United States)

    Joyce, Pauline

    2012-01-01

    This paper reflects on how action learning sets (ALSs) were used to support organisational change initiatives. It sets the scene with contextualising the inclusion of change projects in a masters programme. Action learning is understood to be a dynamic process where a team meets regularly to help individual members address issues through a highly…

  1. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen;

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure ...

  2. Decision support for information systems management : applying analytic hierarchy process

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision

  3. School Processes in Providing Reading Support in GCSE Examinations

    Science.gov (United States)

    Griffiths, Dominic; Woods, Kevin

    2010-01-01

    Against a background of increasing student eligibility for "access arrangements" in examinations for the General Certificate of Secondary Education (GCSE), this article examines the processes within schools that structure a student's access to the provision of reading support, including staff and student viewpoints. Dominic Griffiths,…

  4. Decision support for information systems management : applying analytic hierarchy process

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision

  5. The prolongation of somatic support in a pregnant woman with brain-death: a case report

    Directory of Open Access Journals (Sweden)

    Amaral Eliana

    2006-04-01

    Full Text Available Abstract Background Medical literature has increasingly reported cases of maternal brain death during pregnancy. This is a rare situation which demands the decision and, depending on the gestational age, the implementation of a set of measures to prolong the homeostasis of the human body after brain death for the purpose of maintaining the foetus alive until its viability. Case presentation A 40 year old woman suffered an intracranial haemorrhage during the 25th week of pregnancy. Despite neurosurgical drainage of a gross intraparenchymatous haematoma, the patient developed brain death. Upon confirmation of this diagnosis, she received full ventilatory and nutritional support, vasoactive drugs, maintenance of normothermia, hormone replacement and other supportive measures required to prolong gestation and improve the survival prognosis of her foetus. All decisions regarding the patient's treatment were taken in consensus with her family. She also received corticosteroids to accelerate foetal lung maturity. During the twenty-five days of somatic support, the woman's condition remained stable; however, during the last seven days the foetus developed oligohydramnios and brain-sparring, which led the medical team to take the decision to perform a Caesarean section at that moment. After delivery, the patient's organs were removed for donation. The male infant was born weighing 815 g, with an Apgar score of 9 and 10 at the first and fifth minutes, respectively. The infant was admitted to the neonatal intensive care unit, but did not require mechanical ventilation and had no major complications. He was discharged at 40 days of life, with no sequelae and weighing 1850 g. Conclusion These results are in accordance with findings from previous studies and case reports suggesting the appropriateness and safety of extended somatic support during pregnancy under certain circumstances. They also suggest the need for prompt diagnosis of brain death before the

  6. Alarm pheromone processing in the ant brain: an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    2010-06-01

    Full Text Available Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe of the ant Camponotus obscuripes. Alarm pheromone information is then transmitted, via projection neurons, to the lateral horn and the calyces of the mushroom body of the protocerebrum. In the lateral horn, we found a specific area where terminal boutons of alarm pheromone-sensitive projection neurons are more densely distributed than in the rest of the lateral horn. Some neurons in the protocerebrum responded specifically to formic acid or n-undecane and they may participate in the control of behavioral responses to each pheromone component. Other neurons, especially those originating from the mushroom body lobe, responded also to non-pheromonal odors and may play roles in integration of pheromonal and non-pheromonal signals. We found that a class of neurons receive inputs in the lateral horn and the mushroom body lobe and terminate in a variety of premotor areas. These neurons may participate in the control of aggressive behavior, which is sensitized by alarm pheromones and is triggered by non-pheromonal sensory stimuli associated with a potential enemy. We propose that the alarm pheromone processing system has evolved by differentiation of a part of general odor processing system.

  7. Redesigning ambulatory care business processes supporting clinical care delivery.

    Science.gov (United States)

    Patterson, C; Sinkewich, M; Short, J; Callas, E

    1997-04-01

    The first step in redesigning the health care delivery process for ambulatory care begins with the patient and the business processes that support the patient. Patient-related business processes include patient access, service documentation, billing, follow-up, collection, and payment. Access is the portal to the clinical delivery and care management process. Service documentation, charge capture, and payment and collection are supporting processes to care delivery. Realigned provider networks now demand realigned patient business services to provide their members/customers/patients with improved service delivery at less cost. Purchaser mandates for cost containment, health maintenance, and enhanced quality of care have created an environment where every aspect of the delivery system, especially ambulatory care, is being judged. Business processes supporting the outpatient are therefore being reexamined for better efficiency and customer satisfaction. Many health care systems have made major investments in their ambulatory care environment, but have pursued traditional supporting business practices--such as multiple access points, lack of integrated patient appointment scheduling and registration, and multiple patient bills. These are areas that are appropriate for redesign efforts--all with the customer's needs and convenience in mind. Similarly, setting unrealistic expectations, underestimating the effort required, and ignoring the human elements of a patient-focused business service redesign effort can sabotage the very sound reasons for executing such an endeavor. Pitfalls can be avoided if a structured methodology, coupled with a change management process, are employed. Deloitte & Touche Consulting Group has been involved in several major efforts, all with ambulatory care settings to assist with the redesign of their business practices to consider the patient as the driver, instead of the institution providing the care.

  8. Brain potentials associated with the outcome processing in framing effects.

    Science.gov (United States)

    Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian

    2012-10-24

    Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing.

  9. BRAIN-COMPUTER-INTERFACE – SUPPORTED MOTOR IMAGERY TRAININTG FOR PATIENTS WITH HEMIPARESIS

    Directory of Open Access Journals (Sweden)

    O. A. Mokienko

    2013-01-01

    Full Text Available The aim of study was to assess the feasibility of motor imagery supported brain-computer interface in patients with hemiparesis. 13 patients with central paresis of the hand and 15 healthy volunteers were learning to control EEG-based interface with feedback. No differences on interface control quality were found between patients and healthy subjects. The trainings were accompanied by the desynchronization of sensorimotor rhythm. In patients with cortical damage the source of EEG-activity was dislocated.

  10. TOPICAL REVIEW: A survey of signal processing algorithms in brain computer interfaces based on electrical brain signals

    Science.gov (United States)

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.

    2007-06-01

    Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  11. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  12. Anticipatory Processing in the Brain on the Perception of Müller-Lyer Illusionary Figures—A Brain Potential Study

    Science.gov (United States)

    Nomura, Shusaku; Sasaki, Shuntaro; Hirakawa, Masato; Hiwaki, Osamu

    2010-11-01

    We investigated the brain potential in relation with the recognition of Müller-Lyer (ML) illusionary figure, which was a famous optical illusion. Although it is frequently assumed that the ML illusionary effect could be derived from its geometrical construction, it derives the same length miss-estimation effect on the sense of touch; haptic illusion. Moreover it occurs in people who are blindfolded or congenital blind. Thus somehow higher information processing than the optical one within the brain could be expected to involve with the recognition of ML figure while few brain studies have demonstrated it. We then investigated the brain waves under subjects' perceiving ML illusionary figure. As a result the marked difference of the brain potential between ML and the control condition around the midline of parietal brain, where the multi-modal perception information was thought to associate within the brain, was observed. This result implies that the anticipatory processing on the perception of ML illusionary figures would be derived by integrating multi-sensory information.

  13. Melatonin Supports CYP2D-Mediated Serotonin Synthesis in the Brain.

    Science.gov (United States)

    Haduch, Anna; Bromek, Ewa; Wójcikowski, Jacek; Gołembiowska, Krystyna; Daniel, Władysława A

    2016-03-01

    Melatonin is used in the therapy of sleep and mood disorders and as a neuroprotective agent. The aim of our study was to demonstrate that melatonin supported (via its deacetylation to 5-methoxytryptamine) CYP2D-mediated synthesis of serotonin from 5-methoxytryptamine. We measured serotonin tissue content in some brain regions (the cortex, hippocampus, nucleus accumbens, striatum, thalamus, hypothalamus, brain stem, medulla oblongata, and cerebellum) (model A), as well as its extracellular concentration in the striatum using an in vivo microdialysis (model B) after melatonin injection (100 mg/kg i.p.) to male Wistar rats. Melatonin increased the tissue concentration of serotonin in the brain structures studied of naïve, sham-operated, or serotonergic neurotoxin (5,7-dihydroxytryptamine)-lesioned rats (model A). Intracerebroventricular quinine (a CYP2D inhibitor) prevented the melatonin-induced increase in serotonin concentration. In the presence of pargyline (a monoaminoxidase inhibitor), the effect of melatonin was not visible in the majority of the brain structures studied but could be seen in all of them in 5,7-dihydroxytryptamine-lesioned animals when serotonin storage and synthesis via a classic tryptophan pathway was diminished. Melatonin alone did not significantly increase extracellular serotonin concentration in the striatum of naïve rats but raised its content in pargyline-pretreated animals (model B). The CYP2D inhibitor propafenone given intrastructurally prevented the melatonin-induced increase in striatal serotonin in those animals. The obtained results indicate that melatonin supports CYP2D-catalyzed serotonin synthesis from 5-methoxytryptamine in the brain in vivo, which closes the serotonin-melatonin-serotonin biochemical cycle. The metabolism of exogenous melatonin to the neurotransmitter serotonin may be regarded as a newly recognized additional component of its pharmacological action.

  14. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Siddiqui

    Full Text Available A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT, principal component analysis (PCA, and least squares support vector machine (LS-SVM are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%. Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities

  15. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    Science.gov (United States)

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  16. The design and implementation of decision support tools of proton beam therapy treatment planning of brain cancer patients

    Science.gov (United States)

    Le, Anh; Documet, Jorge; Joseph, Anika; Schulte, Reinhard; Liu, Brent

    2008-03-01

    Last year, we presented methodology to perform knowledge-based medical imaging informatics research on specific clinical scenarios where brain tumor patients are treated with Proton Beam Therapy (PT). In this presentation, we demonstrate the design and implementation of quantification and visualization tools to develop the knowledge base for therapy treatment planning based on DICOM-RT-ION objects. Proton Beam Therapy (PT) is a particular treatment that utilizes energized charged particles, protons, to deliver dose to the target region. Similar to traditional Radiation Therapy (RT), complex clinical imaging and informatics data are generated during the treatment process that guide the planning and the success of the treatment. Therefore, an Electronic Patient Record (ePR) System has been developed to standardize and centralize clinical imaging and informatics data and properly distribute data throughout the treatment duration. To further improve treatment planning process, we developed a set of decision support tools to improve the QA process in treatment planning process. One such example is a tool to assist in the planning of stereotactic PT cases where CT and MR images need to be analyzed simultaneously during treatment plan assessment. These tools are add-on features for DICOM standard ePR system of brain cancer patients and improve the clinical efficiency of PT treatment planning. Additional outcome data collected for PT cases are included in the overall DICOM-RT-ION database design as knowledge to enhance outcomes analysis for future PT adopters.

  17. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM with RBF kernel, using particle swarm optimization (PSO to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.

  18. Towards Process Support for Migrating Applications to Cloud Computing

    DEFF Research Database (Denmark)

    Chauhan, Muhammad Aufeef; Babar, Muhammad Ali

    2012-01-01

    Cloud computing is an active area of research for industry and academia. There are a large number of organizations providing cloud computing infrastructure and services. In order to utilize these infrastructure resources and services, existing applications need to be migrated to clouds. However...... for supporting migration to cloud computing based on our experiences from migrating an Open Source System (OSS), Hackystat, to two different cloud computing platforms. We explained the process by performing a comparative analysis of our efforts to migrate Hackystate to Amazon Web Services and Google App Engine....... We also report the potential challenges, suitable solutions, and lesson learned to support the presented process framework. We expect that the reported experiences can serve guidelines for those who intend to migrate software applications to cloud computing....

  19. Web Based Technologies to Support High Level Process Maturity

    Directory of Open Access Journals (Sweden)

    A. V. Sharmila

    2013-07-01

    Full Text Available This paper discusses the uses of Web based Technologies to support High Level Process Maturity in an organization. It also provides an overview of CMMI, focusing on the importance of centralized data storage and data access for sustaining high maturity levels of CMMI. Further, elaboration is made on the web based technology, stressing that change over to Web Based Application is extremely helpful to maintain the centralized data repository, to collect data for process capability baseline, and to track process performance management, with reduced maintenance effort and ease of data access. A case study analysis of advantages of adopting Web Based Technology is also narrated. Finally the paper concludes that the sustenance of High level Process maturity can be achieved by adopting web application technology.

  20. Support Assembly for Composite Laminate Materials During Roll Press Processing

    Science.gov (United States)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  1. Adsorption processes in spacecraft environmental control and life support systems.

    Science.gov (United States)

    DallBauman, L A; Finn, J E

    1999-01-01

    The environmental control and life support system on a spacecraft maintains a safe and comfortable environment in which the crew can live and work by supplying oxygen and water and by removing carbon dioxide, water vapor, and trace contaminants from cabin air. Although open-loop systems have been used successfully in the past for short-duration missions, the economics of current and future long-duration missions in space will make nearly complete recycling of air and water imperative. A variety of operations will be necessary to achieve the goal of nearly complete recycling. These include separation and reduction of carbon dioxide, removal of trace gas-phase contaminants, recovery and purification of humidity condensate, purification and polishing of wastewater streams, and others. Several of these can be performed totally or in part by adsorption processes. These processes are good candidates to perform separations and purifications in space due to their gravity independence, high reliability, relative high energy efficiency, design flexibility, technological maturity, and regenerative nature. For these reasons, adsorption has historically played a key role in life support on U.S. and Russian piloted spacecraft. Among the life support applications that can be achieved through use of adsorption technology are removal of trace contaminants and carbon dioxide from cabin air and recovery of potable water from waste streams. In each of these cases adsorption technology has been selected for use onboard the International Space Station. The requirements, science, and hardware for these applications are discussed. Human space exploration may eventually lead to construction of planetary habitats. These habitats may provide additional opportunities for use of adsorption processes, such as control of greenhouse gas composition, and may have different resources available to them, such as gases present in the planetary atmosphere. Separation and purification processes based on

  2. Integrating process and ontology to support supply chain modelling

    OpenAIRE

    2011-01-01

    Abstract Many researchers have recognized a lack of common framework to support supply chain modelling and analysis and proposed their solutions accordingly. Majority of the approaches proposed are more concerned with building an object model of a supply chain than identifying processes which realistically describe a supply chain. Though object models provide means or building blocks necessary to model and analyse different elements of a supply chain, an absence of supply chain pro...

  3. Decision support for information systems management: applying analytic hierarchy process

    OpenAIRE

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision making. AHP can be applied if the decision problem includes multiple objectives, conflicting criteria, incommensurable units, and aims at selecting an alternative from a known set of alternatives. ...

  4. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade Panarthropoda.

    Science.gov (United States)

    Persson, Dennis K; Halberg, Kenneth A; Jørgensen, Aslak; Møbjerg, Nadja; Kristensen, Reinhardt M

    2012-11-01

    The position of Tardigrada in the animal tree of life is a subject that has received much attention, but still remains controversial. Whereas some think tardigrades should be categorized as cycloneuralians, most authors argue in favor of a phylogenetic position within Panarthropoda as a sister group to Arthropoda or Arthropoda + Onychophora. Thus far, neither molecular nor morphological investigations have provided conclusive results as to the tardigrade sister group relationships. In this article, we present a detailed description of the nervous system of the eutardigrade Halobiotus crispae, using immunostainings, confocal laser scanning microscopy, and computer-aided three-dimensional reconstructions supported by transmission electron microscopy. We report details regarding the structure of the brain as well as the ganglia of the ventral nerve cord. In contrast to the newest investigation, we find transverse commissures in the ventral ganglia, and our data suggest that the brain is partitioned into at least three lobes. Additionally, we can confirm the existence of a subpharyngeal ganglion previously called subesophagal ganglion. According to our results, the original suggestion of a brain comprised of at least three parts cannot be rejected, and the data presented supports a sister group relationship of Tardigrada to 1) Arthropoda or 2) Onychophora or 3) Arthropoda + Onychophora.

  5. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    Science.gov (United States)

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.

  6. Not so different after all: The same oscillatory processes support different types of attention.

    Science.gov (United States)

    Frey, Julia Natascha; Ruhnau, Philipp; Weisz, Nathan

    2015-11-11

    Scientific research from the last two decades has provided a vast amount of evidence that brain oscillations reflect physiological activity enabling diverse cognitive processes. The goal of this review is to give a broad empirical and conceptual overview of how ongoing oscillatory activity may support attention processes. Keeping in mind that definitions of cognitive constructs like attention are prone to being blurry and ambiguous, the present review focuses mainly on the neural correlates of 'top-down' attention deployment. In particular, we will discuss modulations of (ongoing) oscillatory activity during spatial, temporal, selective, and internal attention. Across these seemingly distinct attentional domains, we will summarize studies showing the involvement of two oscillatory processes observed during attention deployment: power modulations mainly in the alpha band, and phase modulations in lower frequency bands. This article is part of a Special Issue entitled SI: Prediction and Attention.

  7. Intelligence, Surveillance, And Reconnaissance Processing, Exploitation, And Dissemination System In Support Of Global Strike In 2035

    Science.gov (United States)

    2012-02-15

    between the cerebrum and cerebellum, or between the left and right halves, is a brain that is crippled in functionality . The same is true for a PED...ways is the human brain. If the US could design its Processing, Exploitation, and Dissemination (PED) architecture to function similarly to the human...as the remaining half of the brain rewires itself to replace lost functionality . Blind people find their other senses are enhanced as the brain

  8. Quantum processes, space-time representation and brain dynamics

    CERN Document Server

    Roy, Sisir; Roy, Sisir; Kafatos, Menas

    2003-01-01

    The recent controversy of applicability of quantum formalism to brain dynamics has been critically analysed. The prerequisites for any type of quantum formalism or quantum field theory is to investigate whether the anatomical structure of brain permits any kind of smooth geometric notion like Hilbert structure or four dimensional Minkowskian structure for quantum field theory. The present understanding of brain function clearly denies any kind of space-time representation in Minkowskian sense. However, three dimensional space and one time can be assigned to the neuromanifold and the concept of probabilistic geometry is shown to be appropriate framework to understand the brain dynamics. The possibility of quantum structure is also discussed in this framework.

  9. Role of the brain in the regulation process of urination

    Directory of Open Access Journals (Sweden)

    V. B. Berdichevskiy

    2014-12-01

    Full Text Available The analysis of positron emission tomography of the brain with glucose isotope 18F-fluorodeoxyglucose in healthy men and women during the period of accumulation and emptying of the bladder revealed no gender-specific brain activity. The men and women during the accumulation and storage of urine occurs at a standard activity of the brain with the dominance of the left hemisphere. Zone hyperactivity of the brain during this period is the region of the back of the cingulate gyrus.During urination in both men and women have the increased activity of the cortex of the brain. Preserved the dominance of the left hemisphere. Hyperactivity zone of the brain during this period is the region of the anterior cingulate gyrus.Thus, the cortical control of the act of accumulation and bladder emptying in healthy people in our studies did not reveal gender differences. However, security features neurohumoral response of spinal centers and peripheral neuroregulation function of the lower urinary tract, may have a man and a woman significant differences.

  10. Emotion processing in the aging brain is modulated by semantic elaboration

    Science.gov (United States)

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M.; Cabeza, Roberto

    2010-01-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs’ capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. FMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. PMID:20869375

  11. Emotion processing in the aging brain is modulated by semantic elaboration.

    Science.gov (United States)

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M; Cabeza, Roberto

    2011-03-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs' capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. fMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation.

  12. Genetic covariation between brain volumes and IQ, reading performance, and processing speed.

    Science.gov (United States)

    Betjemann, Rebecca S; Johnson, Erin Phinney; Barnard, Holly; Boada, Richard; Filley, Christopher M; Filipek, Pauline A; Willcutt, Erik G; DeFries, John C; Pennington, Bruce F

    2010-03-01

    Although there has been much interest in the relation between brain size and cognition, few studies have investigated this relation within a genetic framework and fewer still in non-adult samples. We analyzed the genetic and environmental covariance between structural MRI data from four brain regions (total brain volume, neocortex, white matter, and prefrontal cortex), and four cognitive measures (verbal IQ (VIQ), performance IQ (PIQ), reading ability, and processing speed), in a sample of 41 MZ twin pairs and 30 same-sex DZ twin pairs (mean age at cognitive test = 11.4 years; mean age at scan = 15.4 years). Multivariate Cholesky decompositions were performed with each brain volume measure entered first, followed by the four cognitive measures. Consistent with previous research, each brain and cognitive measure was found to be significantly heritable. The novel finding was the significant genetic but not environmental covariance between brain volumes and cognitive measures. Specifically, PIQ shared significant common genetic variance with all four measures of brain volume (r (g) = .58-.82). In contrast, VIQ shared significant genetic influence with neocortex volume only (r (g) = .58). Processing speed was significant with total brain volume (r (g) = .79), neocortex (r (g) = .64), and white matter (r (g) = .89), but not prefrontal cortex. The only brain measure to share genetic influence with reading was total brain volume (r (g) = .32), which also shared genetic influences with processing speed.

  13. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  14. Self-supported electrocatalysts for advanced energy conversion processes

    Directory of Open Access Journals (Sweden)

    Tian Yi Ma

    2016-06-01

    Full Text Available The biggest challenge in developing new energy conversion technologies such as rechargeable metal-air batteries, regenerated fuel cells and water splitting devices is to find suitable catalysts that can efficiently and stably catalyze the key electrochemical processes involved. This paper reviews the new development of self-supported electrocatalysts in three categories: electrocatalysts growing on rigid substrates, electrocatalysts growing on soft substrates, and free-standing catalyst films. They are distinct and superior to the conventional powdery electrocatalysts, showing advantages in controllable nanostructure and chemical component, flexible electrode configuration, and outstanding catalytic performance. The self-supported electrocatalysts with various architectures like nanowire/plate/pillar arrays and porous films, composed of metals, metal oxides/selenides/phosphides, organic polymers, carbons and their corresponding hybrids, are presented and discussed. These catalysts exhibit high activity, durability and selectivity toward oxygen reduction, oxygen evolution, and/or hydrogen evolution reactions. The perspectives on the relevant areas are also proposed.

  15. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  16. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  17. New approaches to the study of human brain networks underlying spatial attention and related processes

    OpenAIRE

    Driver, Jon; Blankenburg, Felix; Bestmann, Sven; Ruff, Christian C.

    2010-01-01

    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective...

  18. SENSITIVITY ANALYSIS FOR ROLLING PROCESS BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    Huang Yanwei; Wu Tihua; Zhao Jingyi; Wang Yiqun

    2005-01-01

    A method for the calculation of the sensitivity factors of the rolling process has been obtained by differentiating the roll force model based on support vector machine. It can eliminate the algebraic loop of the analytical model of the rolling process. The simulations in the first stand of five stand cold tandem rolling mill indicate that the calculation for sensitivities by this proposed method can obtain a good accuracy, and an appropriate adjustment on the control variables determined directly by the sensitivity has an excellent compensation accuracy. Moreover, the roll gap has larger effect on the exit thickness than both front tension and back tension, and it is more efficient to select the roll gap as the controlvariable of the thickness control system in the first stand.

  19. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation.

    Directory of Open Access Journals (Sweden)

    Julie Wheway

    Full Text Available Endothelial cells (EC form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4(+ and CD8(+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.

  20. Behavioral and affective disorders after brain injury: French guidelines for prevention and community supports.

    Science.gov (United States)

    Luauté, J; Hamonet, J; Pradat-Diehl, P

    2016-02-01

    The purpose of this study was to elaborate practice guidelines for the prevention of behavioral and affective disorders in adult outpatients after traumatic brain injury (TBI); but also to identify the support systems available for family, caregivers of patients with TBI within the community. The elaboration of these guidelines followed the procedure validated by the French health authority for good practice recommendations, close to the Prisma statement. This involved a systematic and critical review of the literature looking for studies that investigated the impact of programs in community settings directed to behavioral and affective disorders post-TBI. Recommendations were than elaborated by a group of professionals and family representatives. Only six articles were found comprising 4 studies with a control group. Two studies showed a beneficial effect of personalized behavior management program delivered within natural community settings for persons with brain injury and their caregivers. Two other studies showed the relevance of scheduled telephone interventions to improve depressive symptoms and one study emphasized the usefulness of physical training. One study investigated the relevance of an outreach program; this study showed an improvement of the patients' independence but did not yield any conclusions regarding anxiety and depression. In addition to the application of care pathways already established by the SOFMER, prevention of behavioral and affective disorders for brain-injured outpatients should involve pain management, as well as development of therapeutic partnerships. It is recommended to inform patients, their family and caregivers regarding the local organization and facilities involved in the management of traumatic brain injury. The relevance of therapeutic education for implementing coping strategies, educating caregivers on behavioral disorder management, follow-up telephone interventions, and holistic therapy seems established. The

  1. Mechanism of case processing in the brain: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Satoru Yokoyama

    Full Text Available In sentence comprehension research, the case system, which is one of the subsystems of the language processing system, has been assumed to play a crucial role in signifying relationships in sentences between noun phrases (NPs and other elements, such as verbs, prepositions, nouns, and tense. However, so far, less attention has been paid to the question of how cases are processed in our brain. To this end, the current study used fMRI and scanned the brain activity of 15 native English speakers during an English-case processing task. The results showed that, while the processing of all cases activates the left inferior frontal gyrus and posterior part of the middle temporal gyrus, genitive case processing activates these two regions more than nominative and accusative case processing. Since the effect of the difference in behavioral performance among these three cases is excluded from brain activation data, the observed different brain activations would be due to the different processing patterns among the cases, indicating that cases are processed differently in our brains. The different brain activations between genitive case processing and nominative/accusative case processing may be due to the difference in structural complexity between them.

  2. Using information technology to support knowledge conversion processes

    Directory of Open Access Journals (Sweden)

    2001-01-01

    Full Text Available One of the main roles of Information Technology in Knowledge Management programs is to accelerate the speed of knowledge transfer and creation. The Knowledge Management tools intend to help the processes of collecting and organizing the knowledge of groups of individuals in order to make this knowledge available in a shared base. Due to the largeness of the concept of knowledge, the software market for Knowledge Management seems to be quite confusing. Technology vendors are developing different implementations of the Knowledge Management concepts in their software products. Because of the variety and quantity of Knowledge Management tools available on the market, a typology may be a valuable aid to organizations that are looking for answers to specific needs. The objective of this article is to present guidelines that help to design such a typology. Knowledge Management solutions such as intranet systems, Electronic Document Management (EDM, groupware, workflow, artificial intelligence-based systems, Business Intelligence (BI, knowledge map systems, innovation support, competitive intelligence tools and knowledge portals are discussed in terms of their potential contributions to the processes of creating, registering and sharing knowledge. A number of Knowledge Management tools (Lotus Notes, Microsoft Exchange, Business Objects, Aris Toolset, File Net, Gingo, Vigipro, Sopheon have been checked. The potential of each category of solutions to support the transfer of tacit and/or explicit knowledge and to facilitate the knowledge conversion spiral in the sense of Nonaka and Takeuchi (1995 is discussed.

  3. Operator support and diagnostic reasoning in an industrial process

    Energy Technology Data Exchange (ETDEWEB)

    Aaker, O.

    1996-12-31

    Efficient use of energy in production plants requires that the various processes are well controlled. The main focus of this doctoral thesis is on detection of errors and malfunctions using analytical redundancy and on state estimation using an open loop nonlinear model. A ``residual`` is present if a system does not behave as expected, or if a certain rule is violated. ``Reasoning`` is the action of finding process malfunctions based on observed residuals. The thesis applies a new formalism for comparing diagnostic reasoning methods both in terms of what knowledge is used and how it is used, and suggests a formal model of what is known about the process. The formalism is used to illustrate the difference between diagnostic reasoning based on physically interconnected process units and streams, and reasoning about goals and functions for finding a diagnosis. As an example of application, results and experiences from a test implementation using an open loop model for operator support in a complex fertilizer factory are reported. 108 refs., 61 figs., 37 tabs.

  4. An Investment Decision Support System for Process Industries

    Institute of Scientific and Technical Information of China (English)

    周章玉; 成思危; 华贲; 曾敏刚; 尹清华

    2001-01-01

    Most studies on investment evaluation mainly focus on enterprise economic benefits only, without process operability and sustainability considered. In this paper, we suggest that investment evaluation in process industries should be executed under three strategic objectives--enterprise benefits, social benefits and customer benefits. A systematic investment evaluation and decision-making method with a four-step procedure based on the analytic hierarchy process (AHP) is proposed to evaluate various qualitative and quantitative elements with various criteria. At the first step, the decision hierarchy is constructed under the three strategic objectives. Second, pair-wise comparison is utilized to evaluate the weights of elements and criteria. Third, qualitative elements are quantified by pair-wise comparison and quantitative elements are re-scaled by a uniform criterion. At the last, the best choice is made through synthesizing values upward in the hierarchy. An investment decision support system (DSS) is developed based on Microsoft Excel, and applied to a retrofit investment of united fluid catalytic cracking(FCC) and liquefied gas separation process in a refinery plant.

  5. Extracorporeal membrane oxygenation support in potential organ donors for brain death determination.

    Science.gov (United States)

    Hsieh, C-E; Lin, H-C; Tsui, Y-C; Lin, P-Y; Lin, K-H; Chang, Y-Y; Chen, Y-L

    2011-09-01

    Extracorporeal membrane oxygenation (ECMO) must be applied in early stages to perfuse organs before donation in order to expand the donor pool. The aim of this study was to examine the benefits of ECMO for potential organ donors with multiple complications. This retrospective review describes patients with ECMO support who were on the verge of brain death and therefore potential subjects for organ donation. Six organ donors with severe neurological damage under ECMO support completed the procedures, namely, two women and four men of ages 19 to 58 years (mean, 32 years). Three donors completed the brain-death determination procedure, one failed the procedure, and two experienced cardiac asystole prior to the procedure and were unable to be declared dead even after resuscitation. Nine kidneys and three livers were successfully retrieved from 5/6 donors, leading to 11 successful transplantations: eight kidneys, two livers, and one simultaneous kidney-liver transplantations. The organs functioned well and the recipients made full recoveries. ECMO allows for the maintenance of abdominal organ tissue perfusion without warm ischemia before organ procurement, providing sufficient time for safe organ donation procedures and reducing the risk of unpredictable cardiac arrest that could result in the donor death and graft loss. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Designing and Evaluating a Web Supported Instructional Material based on Brain Based Learning

    Directory of Open Access Journals (Sweden)

    Günay PALİÇ

    2012-06-01

    Full Text Available In this study, it is aimed to evaluate a web supported instructional material based on Brain Based Learning concerning “Energy” unit for the 9th grades in secondary education. The Case Study Method was used in the study. The sample of the study consists of a total of three physics education experts and one computer and instructional education expert working at the Fatih Faculty of Education in KTU and 10 physics teachers working in secondary schools in the city of Rize. In order to evaluate the educational material published on www.isgucenerji.com, semi-structured interviews were conducted with the experts. Also, an evaluation scale for the website consisting of 21 items was used to be applied to the teachers. The findings indicated that teachers have positive views about designed material’s convenience to curriculum and Brain Based Teaching. It was also deduced that the prepared material can be used for both classroom practice and individual studies. The study was finished with suggestions aimed at using and developing web supported teaching materials.

  7. BrainIACS: a system for web-based medical image processing

    Science.gov (United States)

    Kishore, Bhaskar; Bazin, Pierre-Louis; Pham, Dzung L.

    2009-02-01

    We describe BrainIACS, a web-based medical image processing system that permits and facilitates algorithm developers to quickly create extensible user interfaces for their algorithms. Designed to address the challenges faced by algorithm developers in providing user-friendly graphical interfaces, BrainIACS is completely implemented using freely available, open-source software. The system, which is based on a client-server architecture, utilizes an AJAX front-end written using the Google Web Toolkit (GWT) and Java Servlets running on Apache Tomcat as its back-end. To enable developers to quickly and simply create user interfaces for configuring their algorithms, the interfaces are described using XML and are parsed by our system to create the corresponding user interface elements. Most of the commonly found elements such as check boxes, drop down lists, input boxes, radio buttons, tab panels and group boxes are supported. Some elements such as the input box support input validation. Changes to the user interface such as addition and deletion of elements are performed by editing the XML file or by using the system's user interface creator. In addition to user interface generation, the system also provides its own interfaces for data transfer, previewing of input and output files, and algorithm queuing. As the system is programmed using Java (and finally Java-script after compilation of the front-end code), it is platform independent with the only requirements being that a Servlet implementation be available and that the processing algorithms can execute on the server platform.

  8. Psychosocial adjustment process of mothers caring for young men with traumatic brain injury: focusing on the mother-son relationship.

    Science.gov (United States)

    Fumiyo, Ishikawa; Sumie, Suzuki; Akiko, Okumiya; Yasuko, Shimizu

    2009-10-01

    This study focuses on the mother-son relationship of 13 mothers caring for single sons between the ages of 15 and 30 years who have higher brain dysfunction due to a traumatic brain injury. We aimed to elucidate the psychosocial adjustment process of mothers for 5 years following the injury to facilitate the social rehabilitation of both mother and son. Data obtained through a semistructured interview method were analyzed using a modified grounded theory approach. After 56 concepts were identified, 18 categories and then 8 core categories were semantically created. The 8 core categories were (a) avoid contact with son, (b) support son based on mother's own desire, (c) support son alone without external support, (d) realize mother's care limits and seek external support sources, (e) request and utilize external support, (f) support and work toward son's independence while monitoring his interactions with others, (g) mother considers own feelings and reenters society, and (h) strive for continued care of son with mother's acquired energy and efficient management skills. These were grouped into the following five stages: (a) avoidance, (b-c) closed, (d) support seeking, (e-f) withdrawal, and (g-h) reconstruction.

  9. [The processing of point clouds for brain deformation existing in image guided neurosurgery system].

    Science.gov (United States)

    Yao, Xufeng; Lin, Yixun; Song, Zhijian

    2008-08-01

    The finite element method (FEM) plays an important role in solving the brain deformation problem in the image guided neurosurgery system. The position of the brain cortex during the surgery provides the boundary condition for the FEM model. In this paper, the information of brain cortex is represented by the unstructured points and the boundary condition is achieved by the processing of unstructured points. The processing includes the mapping of texture, segmentation, simplification and denoising. The method of k-nearest clustering based on local surface properties is used to simplify and denoise the unstructured point clouds. The results of experiment prove the efficiency of point clouds processing.

  10. Leading research on brain functional information processing; No kino joho shori no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This research aims at searching the concept of an information processing device with a fully different architecture from a previous ones based on the study on human brain function, sense and perception, and developing the basic fabrication technology for such system, and realizing the human-like information processing mechanism of memorization, learning, association, perception, intuition and value judgement. As an approach deriving biological and technological models from experimental brain studies, the model was derived from the brain functional information processing based on brain development/differentiation mechanism, the control mechanism/material of brain activities, and the knowledge obtained from brain measurement and study. In addition, for understanding a brain oscillation phenomenon by computational neuroscience, the cerebral cortex neural network model composed of realistic neuron models was proposed. Evaluation of the previous large-scale neural network chip system showed its ability of learning and fast processing, however, the next-generation brain computer requires further R and D of some novel architecture, device and system. 184 refs., 41 figs., 2 tabs.

  11. Introductory study of brain function data processing; No kino joho shori no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An investigational study was conducted of the brain function aiming at developing an interface with the same function as humans have. In the study, the most up-to-date information/knowledge and future problems were examined on brain measurement, brain modeling, making a model an element, and the brain function data processing system. As to the brain measurement, the paper took up the multielectrode simultaneous measuring method and the optical multipoint measuring method as an invasive measuring method, and the functional magnetic resonance imaging, near-infrared spectroscopy, magneto-encephalography, and electro-encephalography as a non-invasive measuring method. Relating to the brain modeling, studies were made on senses of sight and smell, the movement control and the learning. As to making a model an element, how to make the modeled function a chip on silicone for example becomes the problem. Reported were two reports on making the sense of sight an element and one report on making the parallel dispersed processing mechanism of brain an element. About the brain function data processing system, three reports were made on the present situation, matters in question, and the future development of the system in the case of catching data processing as a system taking a step ahead from making the model an element. 250 refs., 74 figs., 11 tabs.

  12. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    Science.gov (United States)

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  13. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    Science.gov (United States)

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  14. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    Science.gov (United States)

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  15. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    Science.gov (United States)

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  16. Genetic architecture supports mosaic brain evolution and independent brain–body size regulation

    OpenAIRE

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D.; Robert W Williams

    2012-01-01

    The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental co...

  17. Goals reconfigure cognition by modulating predictive processes in the brain.

    Science.gov (United States)

    Pezzulo, Giovanni

    2014-04-01

    I applaud Huang & Bargh's (H&B's) theory that places goals at the center of cognition, and I discuss two ingredients missing from that theory. First, I argue that the brains of organisms much simpler than those of humans are already configured for goal achievement in situated interactions. Second, I propose a mechanistic view of the "reconfiguration principle" that links the theory with current views in computational neuroscience.

  18. Native-like brain processing of syntax can be attained by university foreign language learners.

    Science.gov (United States)

    Bowden, Harriet Wood; Steinhauer, Karsten; Sanz, Cristina; Ullman, Michael T

    2013-11-01

    Using event-related potentials (ERPs), we examined the neurocognition of late-learned second language (L2) Spanish in two groups of typical university foreign-language learners (as compared to native (L1) speakers): one group with only one year of college classroom experience, and low-intermediate proficiency (L2 Low), and another group with over three years of college classroom experience as well as 1-2 semesters of immersion experience abroad, and advanced proficiency (L2 Advanced). Semantic violations elicited N400s in all three groups, whereas syntactic word-order violations elicited LAN/P600 responses in the L1 and L2 Advanced groups, but not the L2 Low group. Indeed, the LAN and P600 responses were statistically indistinguishable between the L1 and L2 Advanced groups. The results support and extend previous findings. Consistent with previous research, the results suggest that L2 semantic processing always depends on L1-like neurocognitive mechanisms, whereas L2 syntactic processing initially differs from L1, but can shift to native-like processes with sufficient proficiency or exposure, and perhaps with immersion experience in particular. The findings further demonstrate that substantial native-like brain processing of syntax can be achieved even by typical university foreign-language learners. © 2013 Elsevier Ltd. All rights reserved.

  19. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    Science.gov (United States)

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  20. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  1. Brain Function Differences in Language Processing in Children and Adults with Autism

    OpenAIRE

    2013-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children an...

  2. The economic valuation of improved process plant decision support technology.

    Science.gov (United States)

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  3. Supporting change processes in design: Complexity, prediction and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Claudia M. [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: cme26@cam.ac.uk; Keller, Rene [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: rk313@cam.ac.uk; Earl, Chris [Open University, Department of Design and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: C.F.Earl@open.ac.uk; Clarkson, P. John [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: pjc10@cam.ac.uk

    2006-12-15

    Change to existing products is fundamental to design processes. New products are often designed through change or modification to existing products. Specific parts or subsystems are changed to similar ones whilst others are directly reused. Design by modification applies particularly to safety critical products where the reuse of existing working parts and subsystems can reduce cost and risk. However change is rarely a matter of just reusing or modifying parts. Changing one part can propagate through the entire design leading to costly rework or jeopardising the integrity of the whole product. This paper characterises product change based on studies in the aerospace and automotive industry and introduces tools to aid designers in understanding the potential effects of change. Two ways of supporting designers are described: probabilistic prediction of the effects of change and visualisation of change propagation through product connectivities. Change propagation has uncertainties which are amplified by the choices designers make in practice as they implement change. Change prediction and visualisation is discussed with reference to complexity in three areas of product development: the structural backcloth of connectivities in the existing product (and its processes), the descriptions of the product used in design and the actions taken to carry out changes.

  4. Investment in higher order central processing regions is not constrained by brain size in social insects.

    Science.gov (United States)

    Muscedere, Mario L; Gronenberg, Wulfila; Moreau, Corrie S; Traniello, James F A

    2014-06-07

    The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.

  5. Is there a place for CPR and sustained physiological support in brain-dead non-donors?

    Science.gov (United States)

    Brown, Stephen D

    2017-02-24

    This article addresses whether cardiopulmonary resuscitation (CPR) and sustained physiological support should ever be permitted in individuals who are diagnosed as brain dead and who had held previously expressed moral or religious objections to the currently accepted criteria for such a determination. It contrasts how requests for care would normally be treated in cases involving a brain-dead individual with previously expressed wishes to donate and a similarly diagnosed individual with previously expressed beliefs that did not conform to a brain-based conception of death. The paper first focuses narrowly on requests for CPR and then expands its scope to address extended physiological support. It describes how refusing the brain-dead non-donor's requests for either CPR or extended support would represent enduring harm to the antemortem or previously autonomous individual by negating their beliefs and self-identity. The paper subsequently discusses potential implications of policy that would allow greater accommodations to those with conscientious objections to currently accepted brain-based death criteria, such as for cost, insurance, higher brain formulations and bedside communication. The conclusion is that granting wider latitude to personal conceptions around the definition of death, rather than forcing a contested definition on those with valid moral and religious objections, would benefit both individuals and society.

  6. Concept formation: a supportive process for early career nurses.

    Science.gov (United States)

    Thornley, Tracey; West, Sandra

    2010-09-01

    Individuals come to understand abstract constructs such as that of the 'expert' through the formation of concepts. Time and repeated opportunity for observation to support the generalisation and abstraction of the developing concept are essential if the concept is to form successfully. Development of an effective concept of the 'expert nurse' is critical for early career nurses who are attempting to integrate theory, values and beliefs as they develop their clinical practice. This study explores the use of a concept development framework in a grounded theory study of the 'expert nurse'. Qualitative. Using grounded theory methods for data collection and analysis, semi-structured interviews were conducted with registered nurses. The participants were asked to describe their concept of the 'expert nurse' and to discuss their experience of developing this. Participants reported forming their concept of the 'expert nurse', after multiple opportunities to engage with nurses identified as 'expert'. This identification did not necessarily relate to the designated position of the 'expert nurse' or assigned mentors. When the early career nurse does not successfully form a concept of the 'expert nurse', difficulties in personal and professional development including skill/knowledge development may arise. To underpin development of their clinical practice effectively, early career nurses need to be provided with opportunities that facilitate the purposive formation of their own concept of the 'expert nurse'. Formation of this concept is not well supported by the common practice of assigning mentors. Early career nurses must be provided with the time and the opportunity to individually develop and refine their concept of the 'expert nurse'. To achieve this, strategies including providing opportunities to engage with expert nurses and discussion of the process of concept formation and its place in underpinning personal judgments may be of assistance. © 2010 Blackwell Publishing

  7. Using Word Processing to Implement an Effective Administrative Support System

    Science.gov (United States)

    Taylor, Wendy

    1978-01-01

    Describes the steps taken to reorganize the Administrative Support System of Houston Independent School District, to make it more efficient. A more flexible multi-function support team replaced the traditional private secretaries arrangement. (GA)

  8. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Rui Nouchi

    Full Text Available BACKGROUND: The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age on cognitive functions in the elderly. METHODS AND RESULTS: Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris. This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed. Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. CONCLUSIONS: Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. TRIAL REGISTRATION: UMIN Clinical Trial Registry 000002825.

  9. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    Science.gov (United States)

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Science.gov (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D

    2012-01-01

    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  11. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  12. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  13. Yawning and stretching predict brain temperature changes in rats:Support for the thermoregulatory hypothesis

    Directory of Open Access Journals (Sweden)

    Melanie L Shoup-Knox

    2010-09-01

    Full Text Available Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis.

  14. Relationship between brain and cognitive processes in Down syndrome.

    Science.gov (United States)

    Menghini, Deny; Costanzo, Floriana; Vicari, Stefano

    2011-05-01

    We investigated regional grey matter (GM) density in adolescents with Down syndrome (DS) compared to age-matched controls and correlated MRI data with neuropsychological measures in the DS group. Inter-group comparisons documented several GM concentration abnormalities in the participants with DS compared to controls. In the adolescents with DS, intra-group results also showed associations between regional GM density and the neuropsychological measures considered. In particular, GM density of the cerebellum and middle and inferior temporal gyrus was associated with linguistic measures. Short-term memory performances were correlated with the inferior parietal lobule, insula, superior temporal gyrus, medial occipital lobe, and cerebellum. Long-term memory abilities were correlated with GM density in the orbitofrontal cortex, lateral and medial temporal lobe regions, and anterior cingulum and visuo-perceptual abilities with GM density the left middle frontal gyrus. Results of this preliminary study are consistent with a not always efficient brain organization in DS.

  15. [Brain activity during different stages of the relaxation process].

    Science.gov (United States)

    gorev, A S; Kovaleva, A V; Panova, E N; Gorbacheva, A K

    2012-01-01

    A group of adults participated in experiment in which they were asked to reach relaxed state by using relaxation techniques (active relaxation) and to maintain this state without any technique (passive relaxation). Some changes of EEG-characteristics during relaxation were analyzed. This experiment includes four situations (different functional states): baselinel, active relaxation, passive relaxation, baseline2. EEG was recorded from 10 cortical leads: O1, O2, TPO (left and right), P3, P4, C3, C4, F3 and F4. A comparative EEG analysis was done for 10 frequency bands from 5 to 40 Hz. In each experimental situation we revealed general trends for EEG parameters and also some specific changes in EEG, which characterized brain organization during passive and active relaxed states.

  16. Green Transport Balanced Scorecard Model with Analytic Network Process Support

    Directory of Open Access Journals (Sweden)

    David Staš

    2015-11-01

    Full Text Available In recent decades, the performance of economic and non-economic activities has required them to be friendly with the environment. Transport is one of the areas having considerable potential within the scope. The main assumption to achieve ambitious green goals is an effective green transport evaluation system. However, these systems are researched from the industrial company and supply chain perspective only sporadically. The aim of the paper is to design a conceptual framework for creating the Green Transport (GT Balanced Scorecard (BSC models from the viewpoint of industrial companies and supply chains using an appropriate multi-criteria decision making method. The models should allow green transport performance evaluation and support of an effective implementation of green transport strategies. Since performance measures used in Balanced Scorecard models are interdependent, the Analytic Network Process (ANP was used as the appropriate multi-criteria decision making method. The verification of the designed conceptual framework was performed on a real supply chain of the European automotive industry.

  17. Brain signatures of artificial language processing: evidence challenging the critical period hypothesis.

    Science.gov (United States)

    Friederici, Angela D; Steinhauer, Karsten; Pfeifer, Erdmut

    2002-01-08

    Adult second language learning seems to be more difficult and less efficient than first language acquisition during childhood. By using event-related brain potentials, we show that adults who learned a miniature artificial language display a similar real-time pattern of brain activation when processing this language as native speakers do when processing natural languages. Participants trained in the artificial language showed two event-related brain potential components taken to reflect early automatic and late controlled syntactic processes, whereas untrained participants did not. This result challenges the common view that late second language learners process language in a principally different way from native speakers. Our findings demonstrate that a small system of grammatical rules can be syntactically instantiated by the adult speaker in a way that strongly resembles native-speaker sentence processing.

  18. Hebrew Brain vs. English Brain: Language Modulates the Way It Is Processed

    Science.gov (United States)

    Bick, Atira S.; Goelman, Gadi; Frost, Ram

    2011-01-01

    Is language processing universal? How do the specific properties of each language influence the way it is processed? In this study, we compare the neural correlates of morphological processing in Hebrew--a Semitic language with a rich and systematic morphology, to those revealed in English--an Indo-European language with a linear morphology. Using…

  19. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON, R.A.

    2000-03-13

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  20. Dissociation of GLP-1 and insulin association with food processing in the brain: GLP-1 sensitivity despite insulin resistance in obese humans

    Directory of Open Access Journals (Sweden)

    Martin Heni

    2015-12-01

    Conclusions: The postprandial release of GLP-1 might alter reward processes in the orbitofrontal cortex and might thereby support the termination of food intake and reduce hunger. While obese persons showed brain insulin resistance, no GLP-1 resistance was observed. Our study provides novel insight into the central regulation of food intake by the incretin hormone GLP-1.

  1. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions.

    Directory of Open Access Journals (Sweden)

    Gunes Sevinc

    Full Text Available BACKGROUND AND OBJECTIVES: Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. DATA SOURCE: A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22; studies evoking moral emotions were categorized as passive (n = 18. We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. RESULTS & CONCLUSIONS: Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that

  2. Contextual and Perceptual Brain Processes Underlying Moral Cognition: A Quantitative Meta-Analysis of Moral Reasoning and Moral Emotions

    Science.gov (United States)

    Sevinc, Gunes; Spreng, R. Nathan

    2014-01-01

    Background and Objectives Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. Data Source A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results & Conclusions Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of

  3. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions.

    Science.gov (United States)

    Sevinc, Gunes; Spreng, R Nathan

    2014-01-01

    Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel

  4. Brain activity and infant attachment history in young men during loss and reward processing.

    Science.gov (United States)

    Quevedo, Karina; Waters, Theodore E A; Scott, Hannah; Roisman, Glenn I; Shaw, Daniel S; Forbes, Erika E

    2017-05-01

    There is now ample evidence that the quality of early attachment experiences shapes expectations for supportive and responsive care and ultimately serves to scaffold adaptation to the salient tasks of development. Nonetheless, few studies have identified neural mechanisms that might give rise to these associations. Using a moderately large sample of low-income male participants recruited during infancy (N = 171), we studied the predictive significance of attachment insecurity and disorganization at age 18 months (as measured in the Strange Situation Procedure) for patterns of neural activation to reward and loss at age 20 years (assessed during a reward-based task as part of a functional magnetic resonance imaging scan). Results indicated that individuals with a history of insecure attachment showed hyperactivity in (a) reward- and emotion-related (e.g., basal ganglia and amygdala) structures and (b) emotion regulation and self-referential processing (cortical midline structures) in response to positive and negative outcomes (and anticipation of those outcomes). Further, the neural activation of individuals with a history of disorganized attachment suggested that they had greater emotional reactivity in anticipation of reward and employed greater cognitive control when negative outcomes were encountered. Overall, results suggest that the quality of early attachments has lasting impacts on brain function and reward processing.

  5. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  6. The bimusical brain is not two monomusical brains in one: evidence from musical affective processing.

    Science.gov (United States)

    Wong, Patrick C M; Chan, Alice H D; Roy, Anil; Margulis, Elizabeth H

    2011-12-01

    Complex auditory exposures in ambient environments include systems of not only linguistic but also musical sounds. Because musical exposure is often passive, consisting of listening rather than performing, examining listeners without formal musical training allows for the investigation of the effects of passive exposure on our nervous system without active use. Additionally, studying listeners who have exposure to more than one musical system allows for an evaluation of how the brain acquires multiple symbolic and communicative systems. In the present fMRI study, listeners who had been exposed to Western-only (monomusicals) and both Indian and Western musical systems (bimusicals) since childhood and did not have significant formal musical training made tension judgments on Western and Indian music. Significant group by music interactions in temporal and limbic regions were found, with effects predominantly driven by between-music differences in temporal regions in the monomusicals and by between-music differences in limbic regions in the bimusicals. Effective connectivity analysis of this network via structural equation modeling (SEM) showed significant path differences across groups and music conditions, most notably a higher degree of connectivity and larger differentiation between the music conditions within the bimusicals. SEM was also used to examine the relationships among the degree of music exposure, affective responses, and activation in various brain regions. Results revealed a more complex behavioral-neural relationship in the bimusicals, suggesting that affective responses in this group are shaped by multiple behavioral and neural factors. These three lines of evidence suggest a clear differentiation of the effects of the exposure of one versus multiple musical systems.

  7. Automatic volumetry on MR brain images can support diagnostic decision making

    Directory of Open Access Journals (Sweden)

    Aviv Richard I

    2008-05-01

    Full Text Available Abstract Background Diagnostic decisions in clinical imaging currently rely almost exclusively on visual image interpretation. This can lead to uncertainty, for example in dementia disease, where some of the changes resemble those of normal ageing. We hypothesized that extracting volumetric data from patients' MR brain images, relating them to reference data and presenting the results as a colour overlay on the grey scale data would aid diagnostic readers in classifying dementia disease versus normal ageing. Methods A proof-of-concept forced-choice reader study was designed using MR brain images from 36 subjects. Images were segmented into 43 regions using an automatic atlas registration-based label propagation procedure. Seven subjects had clinically probable AD, the remaining 29 of a similar age range were used as controls. Seven of the control subject data sets were selected at random to be presented along with the seven AD datasets to two readers, who were blinded to all clinical and demographic information except age and gender. Readers were asked to review the grey scale MR images and to record their choice of diagnosis (AD or non-AD along with their confidence in this decision. Afterwards, readers were given the option to switch on a false-colour overlay representing the relative size of the segmented structures. Colorization was based on the size rank of the test subject when compared with a reference group consisting of the 22 control subjects who were not used as review subjects. The readers were then asked to record whether and how the additional information had an impact on their diagnostic confidence. Results The size rank colour overlays were useful in 18 of 28 diagnoses, as determined by their impact on readers' diagnostic confidence. A not useful result was found in 6 of 28 cases. The impact of the additional information on diagnostic confidence was significant (p Conclusion Volumetric anatomical information extracted from brain

  8. Human Decision Processes: Implications for SSA Support Tools

    Science.gov (United States)

    Picciano, P.

    2013-09-01

    Despite significant advances in computing power and artificial intelligence (AI), few critical decisions are made without a human decision maker in the loop. Space Situational Awareness (SSA) missions are both critical and complex, typically adhering to the human-in-the-loop (HITL) model. The collection of human operators injects a needed diversity of expert knowledge, experience, and authority required to successfully fulfill SSA tasking. A wealth of literature on human decision making exists citing myriad empirical studies and offering a varied set of prescriptive and descriptive models of judgment and decision making (Hastie & Dawes, 2001; Baron, 2000). Many findings have been proven sufficiently robust to allow information architects or system/interface designers to take action to improve decision processes. For the purpose of discussion, these concepts are bifurcated in two groups: 1) vulnerabilities to mitigate, and 2) capabilities to augment. These vulnerabilities and capabilities refer specifically to the decision process and should not be confused with a shortcoming or skill of a specific human operator. Thus the framing of questions and orders, the automated tools with which to collaborate, priming and contextual data, and the delivery of information all play a critical role in human judgment and choice. Evaluating the merits of any decision can be elusive; in order to constrain this discussion, ‘rational choice' will tend toward the economic model characteristics such as maximizing utility and selection consistency (e.g., if A preferred to B, and B preferred to C, than A should be preferred to C). Simple decision models often encourage one to list the pros and cons of a decision, perhaps use a weighting schema, but one way or another weigh the future benefit (or harm) of making a selection. The result (sought by the rationalist models) should drive toward higher utility. Despite notable differences in researchers' theses (to be discussed in the full

  9. Fractal dimension of electroencephalographic time series and underlying brain processes.

    Science.gov (United States)

    Lutzenberger, W; Preissl, H; Pulvermüller, F

    1995-10-01

    Fractal dimension has been proposed as a useful measure for the characterization of electrophysiological time series. This paper investigates what the pointwise dimension of electroencephalographic (EEG) time series can reveal about underlying neuronal generators. The following theoretical assumptions concerning brain function were made (i) within the cortex, strongly coupled neural assemblies exist which oscillate at certain frequencies when they are active, (ii) several such assemblies can oscillate at a time, and (iii) activity flow between assemblies is minimal. If these assumptions are made, cortical activity can be considered as the weighted sum of a finite number of oscillations (plus noise). It is shown that the correlation dimension of finite time series generated by multiple oscillators increases monotonically with the number of oscillators. Furthermore, it is shown that a reliable estimate of the pointwise dimension of the raw EEG signal can be calculated from a time series as short as a few seconds. These results indicate that (i) The pointwise dimension of the EEG allows conclusions regarding the number of independently oscillating networks in the cortex, and (ii) a reliable estimate of the pointwise dimension of the EEG is possible on the basis of short raw signals.

  10. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    Science.gov (United States)

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  11. Aberrant modulation of brain activation by emotional valence during self-referential processing among patients with delusions of reference.

    Science.gov (United States)

    Girard, Todd A; Lakatos, Louis; Menon, Mahesh

    2017-09-01

    Delusions of reference are thought to reflect abnormally heightened attributions of salience to mundane events or stimuli that lead to convictions that they are personally significant or directed at the observer. Recent findings highlight abnormal recruitment of brain regions associated with self-referential processes among patients with referential delusions. Given the inherent overlap of emotion, incentive salience, and self-relevance, as well as with aberrant thought processes in psychosis, this study investigated the implicit relations between participants' perception of the emotional valence of stimuli on neural correlates of self-referent judgments among schizophrenia-spectrum patients with referential delusions. During fMRI scanning, participants indicated whether sentences describing personal characteristics seemed to refer specifically to them. Subsequently, participants rated their perceived emotional valence of each statement. Regression analyses revealed differential relations between groups across regions associated with self-referential processing, including prefrontal regions, anterior cingulate, insula, precuneus, and dorsal striatum. Within these regions, greater activation related to sentences rated as more positive among healthy comparison participants and more negative among patients. The current results warrant replication and extension with larger and longitudinal samples to assess potential moderating relations of clinical and demographic individual differences. These findings support aberrant brain activation associated with emotional and salience brain networks in schizophrenia and highlight the importance of considering specific emotional attributes (valence) in discrete domains of delusional thought (self-referential communication). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The influence of Mozart's music on brain activity in the process of learning.

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija; Gerlic, Ivan

    2006-12-01

    The study investigated the influence Mozart's music has on brain activity in the process of learning. A second objective was to test priming explanation of the Mozart effect. In Experiment 1 individuals were first trained in how to solve spatial rotation tasks, and then solved similar tasks. Fifty-six students were divided into 4 groups: a control one--CG who prior to and after training relaxed, and three experimental groups: MM--who prior to and after training listened to music; MS--who prior to training listened to music and subsequently relaxed; and SM--who prior to training relaxed and afterward listened to music. The music used was the first movement of Mozart's sonata (K. 448). In Experiment 2, thirty-six respondents were divided into three groups: CG, MM (same procedure as in Experiment 1), and BM--who prior to and after training listened to Brahms' Hungarian dance No. 5. In both experiments the EEG data collected during problem solving were analyzed using the methods of event-related desynchronization/synchronization (ERD/ERS) and approximated entropy (ApEn). In the first experiment the respondents of the MM, MS, and SM groups showed a better task-performance than did the respondents of the CG group. Individuals of the MM group displayed less complex EEG patterns and more alpha band synchronization than did respondents of the other three groups. In Experiment 2 individuals who listened to Mozart showed a better task performance than did the respondents of the CG and BM groups. They displayed less complex EEG patterns and more lower-1 alpha and gamma band synchronization than did the respondents of the BM group. Mozart's music, by activating task-relevant brain areas, enhances the learning of spatio-temporal rotation tasks. The results support priming explanation of the Mozart effect.

  13. Encoding and Retrieving Faces and Places: Distinguishing Process- and Stimulus-Specific Differences in Brain Activity

    Science.gov (United States)

    Prince, Steven E.; Dennis, Nancy A.; Cabeza, Roberto

    2009-01-01

    Among the most fundamental issues in cognitive neuroscience is how the brain may be organized into process-specific and stimulus-specific regions. In the episodic memory domain, most functional neuroimaging studies have focused on the former dimension, typically investigating the neural correlates of various memory processes. Thus, there is little…

  14. Event-Related Brain Potentials Reveal Anomalies in Temporal Processing of Faces in Autism Spectrum Disorder

    Science.gov (United States)

    McPartland, James; Dawson, Geraldine; Webb, Sara J.; Panagiotides, Heracles; Carver, Leslie J.

    2004-01-01

    Background: Individuals with autism exhibit impairments in face recognition, and neuroimaging studies have shown that individuals with autism exhibit abnormal patterns of brain activity during face processing. The current study examined the temporal characteristics of face processing in autism and their relation to behavior. Method: High-density…

  15. Quantum-like model of processing of information in the brain based on classical electromagnetic field

    CERN Document Server

    Khrennikov, Andrei

    2010-01-01

    We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of ``quantum physical brain'' reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a var...

  16. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  17. Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.

    Science.gov (United States)

    Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping

    2016-07-01

    Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration.

  18. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Science.gov (United States)

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  19. Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis.

    Science.gov (United States)

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R

    2012-01-01

    Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease.

  20. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W

    2002-01-01

    We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform a......) that perceptual and memorial processes can be dissociated on both functional and anatomical grounds. No evidence was obtained for the involvement of the parietal lobes in the integration of single objects....

  1. Support of Modelling in Process-Engineering Education

    NARCIS (Netherlands)

    Schaaf, van der H.; Vermuë, M.H.; Tramper, J.; Hartog, R.J.M.

    2006-01-01

    An objective of the Process Technology curriculum at Wageningen University is to teach students a stepwise modeling approach in the context of process engineering. Many process-engineering students have difficulty with learning to design a model. Some common problems are lack of structure in the des

  2. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    Science.gov (United States)

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms.

  3. From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval.

    Science.gov (United States)

    Geib, Benjamin R; Stanley, Matthew L; Dennis, Nancy A; Woldorff, Marty G; Cabeza, Roberto

    2017-01-23

    Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  4. Evolutionary modeling and correcting for observation error support a 3/5 brain-body allometry for primates.

    Science.gov (United States)

    Grabowski, Mark; Voje, Kjetil L; Hansen, Thomas F

    2016-05-01

    The tight brain-body allometry across mammals and primates has motivated and informed many hypotheses about brain evolution in humans and other taxa. While a 2/3 or a 3/4 scaling is often at the core of such research, such exponents are derived from estimates based on particular statistical and evolutionary assumptions without careful consideration of how either may influence findings. Here we quantify primate brain-body allometry using phylogenetic comparative methods based on models of both adaptive and constrained evolution, and estimate and account for observational error in both response and predictor variables. Our results supported an evolutionary model in which brain size is directly constrained to evolve in unison with body size, rather than adapting to changes in the latter. The effects of controlling for phylogeny and observation error were substantial, and our analysis yielded a novel 3/5 scaling exponent for primate brain-body evolutionary allometry. Using this exponent with the latest brain- and body-size estimates to calculate new encephalization quotients for apes, humans, and fossil hominins, we found early hominins were substantially more encephalized than previously thought. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  6. Machines and arguments: from life support technologies to the definition of brain death

    National Research Council Canada - National Science Library

    Kind, Luciana

    2009-01-01

    The article analyzes academic production about the debate surrounding the definition of brain death, based on bibliographic and documental research of international medical periodicals in the 1960s...

  7. Sensory competition in the face processing areas of the human brain.

    Directory of Open Access Journals (Sweden)

    Krisztina Nagy

    Full Text Available The concurrent presentation of multiple stimuli in the visual field may trigger mutually suppressive interactions throughout the ventral visual stream. While several studies have been performed on sensory competition effects among non-face stimuli relatively little is known about the interactions in the human brain for multiple face stimuli. In the present study we analyzed the neuronal basis of sensory competition in an event-related functional magnetic resonance imaging (fMRI study using multiple face stimuli. We varied the ratio of faces and phase-noise images within a composite display with a constant number of peripheral stimuli, thereby manipulating the competitive interactions between faces. For contralaterally presented stimuli we observed strong competition effects in the fusiform face area (FFA bilaterally and in the right lateral occipital area (LOC, but not in the occipital face area (OFA, suggesting their different roles in sensory competition. When we increased the spatial distance among pairs of faces the magnitude of suppressive interactions was reduced in the FFA. Surprisingly, the magnitude of competition depended on the visual hemifield of the stimuli: ipsilateral stimulation reduced the competition effects somewhat in the right LOC while it increased them in the left LOC. This suggests a left hemifield dominance of sensory competition. Our results support the sensory competition theory in the processing of multiple faces and suggests that sensory competition occurs in several cortical areas in both cerebral hemispheres.

  8. Processing words in two languages: An event-related brain potential study of proficient bilinguals.

    Science.gov (United States)

    Geyer, Alexandra; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan

    2011-05-01

    In a previous study of native-English speaking university learners of a second language (Spanish) we observed an asymmetric pattern of ERP translation priming effects in L1 and L2 (Alvarez et al., 2003, Brain & Language, 87, 290-304) with larger and earlier priming on the N400 component in the L2 to L1, compared with the L1 to L2 direction. In the current study 20 native-Russian speakers who were also highly proficient in English participated in a mixed language lexical decision task in which critical words were presented in Russian (L1) and English (L2) and repetitions of these words (within and between languages) were presented on subsequent trials. ERPs were recorded to all items allowing for comparisons of repetition effects within and between (translation) languages. The results revealed a symmetrical pattern of within-language repetition and between-language translation ERP priming effects, which in conjunction with Alvarez et al (2003), supports the hypothesis that L2 proficiency level rather than age or order of language acquisition is responsible for the observed patterns of translation priming. The ramifications of these results for models of bilingual word processing are discussed.

  9. Information Compression, Multiple Alignment, and the Representation and Processing of Knowledge in the Brain

    Directory of Open Access Journals (Sweden)

    James Gerard Wolff

    2016-11-01

    Full Text Available The SP theory of intelligence, with its realisation in the SP computer model, aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realised in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory -- SP-neural -- is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory -- outlined in the paper -- provides indirect support for SP-neural.In the abstract part of the SP theory (SP-abstract, all kinds of knowledge are represented with patterns, where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a ‘pattern’ is realised as an array of neurons called a pattern assembly, similar to Hebb's concept of a ‘cell assembly’ but with important differences.Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP and, more specifically, information compression via the powerful concept of multiple alignment, borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another.It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from

  10. Senior management support in the new product development process

    NARCIS (Netherlands)

    Gomes, J.F.; Gomes, Jorge; de Weerd-Nederhof, Petronella C.; Pearson, Alan; Fisscher, O.A.M.

    2001-01-01

    This paper studies the relationship between senior management support to new product development activities by means of a quantitative and qualitative analysis of questionnaire and interview data collected in the United Kingdom and the Netherlands. The quantitative analysis showed that there is a

  11. Action Learning as a Core Process for SME Business Support

    Science.gov (United States)

    Powell, James A.; Houghton, Jane

    2008-01-01

    This is an account the work of NetworkNorthWest, a [pound]1m project at the University of Salford that ran between 2004 and 2007 and was developed to address the issues relating to poor take up of traditional business support by small to medium-sized enterprises (SMEs) and low levels of engagement of the business community with Institutes of…

  12. Senior Management Support in the New Product Development Process

    NARCIS (Netherlands)

    Gomes, Jorge; Weerd-Nederhof, de Petra C.; Pearson, Alan; Fisscher, Olaf

    2001-01-01

    This paper studies the relationship between senior management support to new product development activities by means of a quantitative and qualitative analysis of questionnaire and interview data collected in the United Kingdom and the Netherlands. The quantitative analysis showed that there is a sm

  13. Process and Tool Support for Ontology-Aware Life Support System Development and Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in ontology development support a rich description of entities that are modeled within a domain and how these entities relate to each other. However,...

  14. Commentary: BRAIN NETWORKS. Correlated Gene Expression Supports Synchronous Activity in Brain Networks. Science 348, 1241–4

    Directory of Open Access Journals (Sweden)

    Spiro P. Pantazatos

    2017-07-01

    Full Text Available A recent report claims that functional brain networks defined with resting-state functional magnetic resonance imaging (fMRI can be recapitulated with correlated gene expression (i.e., high within-network tissue-tissue “strength fraction,” SF (Richiardi et al., 2015. However, the authors do not adequately control for spatial proximity. We replicated their main analysis, performed a more effective adjustment for spatial proximity, and tested whether “null networks” (i.e., clusters with center coordinates randomly placed throughout cortex also exhibit high SF. Removing proximal tissue-tissue correlations by Euclidean distance, as opposed to removing correlations within arbitrary tissue labels as in Richiardi et al. (2015, reduces within-network SF to no greater than null. Moreover, randomly placed clusters also have significantly high SF, indicating that high within-network SF is entirely attributable to proximity and is unrelated to functional brain networks defined by resting-state fMRI. We discuss why additional validations in the original article are invalid and/or misleading and suggest future directions.

  15. IT Support for Release Management Processes in the Automotive Industry

    NARCIS (Netherlands)

    Muller, D.; Herbst, J.; Hammori, M.; Reichert, M.U.; Dustdar, S.; Fiadeiro, J.L.; Sheth, A.

    2006-01-01

    Car development is based on long running, concurrently executed and highly dependent processes. The coordination and synchronization of these processes has become a complex and error-prone task due to the increasing number of functions and embedded systems in modern cars. These systems realize

  16. IT Support for Release Management Processes in the Automotive Industry

    NARCIS (Netherlands)

    Müller, D.; Herbst, J.; Hammori, M.; Reichert, M.U.; Dustdar, S.; Fiadeiro, J.L.; Sheth, A.

    2006-01-01

    Car development is based on long running, concurrently executed and highly dependent processes. The coordination and synchronization of these processes has become a complex and error-prone task due to the increasing number of functions and embedded systems in modern cars. These systems realize advan

  17. Ontological Support in Modeling Learners' Problem Solving Process

    Science.gov (United States)

    Lu, Chun-Hung; Wu, Chia-Wei; Wu, Shih-Hung; Chiou, Guey-Fa; Hsu, Wen-Lian

    2005-01-01

    This paper presents a new model for simulating procedural knowledge in the problem solving process with our ontological system, InfoMap. The method divides procedural knowledge into two parts: process control and action performer. By adopting InfoMap, we hope to help teachers construct curricula (declarative knowledge) and teaching strategies by…

  18. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  19. Brain mechanisms in religion and spirituality: An integrative predictive processing framework.

    Science.gov (United States)

    van Elk, Michiel; Aleman, André

    2017-02-01

    We present the theory of predictive processing as a unifying framework to account for the neurocognitive basis of religion and spirituality. Our model is substantiated by discussing four different brain mechanisms that play a key role in religion and spirituality: temporal brain areas are associated with religious visions and ecstatic experiences; multisensory brain areas and the default mode network are involved in self-transcendent experiences; the Theory of Mind-network is associated with prayer experiences and over attribution of intentionality; top-down mechanisms instantiated in the anterior cingulate cortex and the medial prefrontal cortex could be involved in acquiring and maintaining intuitive supernatural beliefs. We compare the predictive processing model with two-systems accounts of religion and spirituality, by highlighting the central role of prediction error monitoring. We conclude by presenting novel predictions for future research and by discussing the philosophical and theological implications of neuroscientific research on religion and spirituality.

  20. Brain Potentials During Affective Picture Processing in Children

    Science.gov (United States)

    Hajcak, Greg; Dennis, Tracy A.

    2008-01-01

    In adults, emotional (e.g., both unpleasant and pleasant) compared to neutral pictures elicit an increase in the early posterior negativity (EPN) and the late positive potential (LPP); modulation of these ERP components are thought to reflect the facilitated processing of, and increased attention to, motivationally salient stimuli. To determine whether the EPN and LPP are sensitive to emotional content in children, high-density EEG was recorded from 18 children who were 5 to 8 years of age (mean age = 77 months, SD = 11 months) while they viewed developmentally appropriate pictures selected from the International Affective Picture System. Self-reported ratings of valence and arousal were also obtained. An EPN was not evident following emotional compared to neutral pictures; however, a positivity maximal at occipital-parietal recording sites was increased from 500 to 1,000 ms following pleasant pictures and from 500 to 1,500 ms following unpleasant pictures. Comparisons between the EPN and LPP observed in children and adults, and implications for developmental studies of emotion, are discussed. PMID:19103249

  1. Facilitation as a management discipline to support organizational development processes

    DEFF Research Database (Denmark)

    Møller, Laura; Goduscheit, René Chester

    2015-01-01

    Private and public organisations conduct an ever increasing number of Development workshops, and the focus on effective meetings and structured development processes is significant. On the basis of a literature review, this article elucidates the concept of facilitation and demonstrates how...... for facilitation and ensuring backing for the work required. Preparation of the processes is a main focus of the literature in the field, and several studies stress the advantages of using a model to structure the preparation and execution of the process. Facilitation per se and serving as a facilitator both...

  2. Facilitation as a management discipline to support organizational development processes

    DEFF Research Database (Denmark)

    Møller, Laura; Goduscheit, René Chester

    2015-01-01

    Private and public organisations conduct an ever increasing number of Development workshops, and the focus on effective meetings and structured development processes is significant. On the basis of a literature review, this article elucidates the concept of facilitation and demonstrates how...... for facilitation and ensuring backing for the work required. Preparation of the processes is a main focus of the literature in the field, and several studies stress the advantages of using a model to structure the preparation and execution of the process. Facilitation per se and serving as a facilitator both...

  3. Brain death organ donation potential and life support therapy limitation in neurocritical patients.

    Science.gov (United States)

    Bodí, M A; Pont, T; Sandiumenge, A; Oliver, E; Gener, J; Badía, M; Mestre, J; Muñoz, E; Esquirol, X; Llauradó, M; Twose, J; Quintana, S

    2015-01-01

    To analyze the profile, incidence of life support therapy limitation (LSTL) and donation potential in neurocritical patients. A multicenter prospective study was carried out. Nine hospitals authorized for organ harvesting for transplantation. All patients consecutively admitted to the hospital with GCS < 8 during a 6-month period were followed-up until discharge or day 30 of hospital stay. Demographic data, cause of coma, clinical status upon admission and outcome were analyzed. LSTL, brain death (BD) and organ donation incidence were recorded. A total of 549 patients were included, with a mean age of 59.0 ± 14.5 years. The cause of coma was cerebral hemorrhage in 27.0% of the cases.LSTL was applied in 176 patients (32.1%). In 78 cases LSTL consisted of avoiding ICU admission. Age, the presence of contraindications, and specific causes of coma were associated to LSTL. A total of 58.1% of the patients died (n=319). One-hundred and thirty-three developed BD (24.2%), and 56.4% of these became organ donors (n=75). The presence of edema and mid-line shift on the CT scan, and transplant coordinator evaluation were associated to BD. LSTL was associated to a no-BD outcome. Early LSTL (first 4 days) was applied in 9 patients under 80 years of age, with no medical contraindications for donation and a GCS ≤ 4 who finally died in asystole. LSTL is a frequent practice in neurocritical patients. In almost one-half of the cases, LSTL consisted of avoiding admission to the ICU, and on several occasions the donation potential was not evaluated by the transplant coordinator. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  4. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    Science.gov (United States)

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  5. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-01-01

    Full Text Available BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM or finite element model (FEM created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa. BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  6. Implementing a Primary Healthcare Framework: The Importance of Nursing Leadership in Developing and Maintaining a Brain Tumor Support Group.

    Science.gov (United States)

    Nichols, Linda J; Wright, Kylie M

    2015-08-01

    Although brain tumor support groups have been available internationally for many years, Liverpool Hospital in Australia has not traditionally provided this service. As a leadership initiative, the development of a brain tumor support group that incorporates a primary healthcare framework is a sustainable approach that showcases the role of nursing leaders in changing attitudes and improving outcomes. The purpose of this review of the literature and reflection of clinical experience is to explore nursing leadership within brain tumor-specific support groups. This article will showcase a nurse-led group that incorporated a coordinated approach to delivering patient-centered care. The initiation of activities and interventions that reflected the five tenets of primary health care resulted in improved outcomes for individuals and their family caregivers throughout the trajectory of their illness. Vital to the success of this project was moving from a standalone leader to building collective and collaborative leadership more conducive to facilitating change. The support group successfully demonstrated that individuals and family caregivers may see ongoing and long-term improvements during and following treatment.

  7. Engineering concepts for food processing in bioregenerative life support systems.

    Science.gov (United States)

    Hunter, J B

    1999-01-01

    Long-duration manned missions, such as Mars exploration, will require development of new and cost-effective food production and delivery systems. Requirements for both carry-on preserved food and food processed from on-board crops exceed the capabilities of existing food processing and preservation technologies. For the transit phase, new food products, preservation methods, and processing technologies for ground-based food processing are required. The bioregenerative surface phase requires methods for processing of in situ-grown crops, treatment of food wastes, preparation of daily meals, and design of nutritious and appealing plant-based menus, all within severe cost and labor constraints. In design of the food supply for a long-term mission, the designers must select and apply both the packaged food and in situ processing technologies most appropriate for the specific mission requirements. This study aims to evaluate the strengths and weaknesses of different food system strategies in the context of different types of mission, and to point out the most important areas for future technology development.

  8. Process and barriers to organ donation and causes of brain death in northeast of Iran.

    Science.gov (United States)

    Bahrami, Abdollah; Khaleghi, Ebrahim; Vakilzadeh, Ali Khorsand; Afzalaghaee, Monavar

    2017-02-01

    Organ transplantation is the treatment of choice for some diseases. However, the need for cadaveric organ donation has either plateaued or is on a decreasing trend in some countries, especially in developed ones. In this study, we aimed to identify the barriers to organ donation in brain dead patients, who were referred to the organ procurement organizations (OPO) in northeast Iran. In this cross-sectional study during 2006 to 2013, data were collected from medical records of brain dead patients. Demographic information, cause of brain death, the process of obtaining informed consent, and the reasons for declining organ donation were obtained from the OPO records. The data were analyzed using chi-square test by SPSS 13 software. Of 1034 brain dead patients, 751 cases (72.6%) were eligible for organ donation, and, ultimately, 344 cases underwent organ donation. The rate of organ donation increased during the course of the study; medical and legal reasons as well as family refusal to authorize donation were the main barriers to the process. Based on the pattern of mortality, the need for living donors in developing countries, such as Iran and other countries in the Mediterranean region, can be reduced by improving the quality of healthcare, efficient identification of brain death, and obtaining consent with appropriate strategies.

  9. Web-based telemonitoring and delivery of caregiver support for patients with Parkinson disease after deep brain stimulation: protocol.

    Science.gov (United States)

    Marceglia, Sara; Rossi, Elena; Rosa, Manuela; Cogiamanian, Filippo; Rossi, Lorenzo; Bertolasi, Laura; Vogrig, Alberto; Pinciroli, Francesco; Barbieri, Sergio; Priori, Alberto

    2015-03-06

    The increasing number of patients, the high costs of management, and the chronic progress of the disease that prevents patients from performing even simple daily activities make Parkinson disease (PD) a complex pathology with a high impact on society. In particular, patients implanted with deep brain stimulation (DBS) electrodes face a highly fragile stabilization period, requiring specific support at home. However, DBS patients are followed usually by untrained personnel (caregivers or family), without specific care pathways and supporting systems. This projects aims to (1) create a reference consensus guideline and a shared requirements set for the homecare and monitoring of DBS patients, (2) define a set of biomarkers that provides alarms to caregivers for continuous home monitoring, and (3) implement an information system architecture allowing communication between health care professionals and caregivers and improving the quality of care for DBS patients. The definitions of the consensus care pathway and of caregiver needs will be obtained by analyzing the current practices for patient follow-up through focus groups and structured interviews involving health care professionals, patients, and caregivers. The results of this analysis will be represented in a formal graphical model of the process of DBS patient care at home. To define the neurophysiological biomarkers to be used to raise alarms during the monitoring process, neurosignals will be acquired from DBS electrodes through a new experimental system that records while DBS is turned ON and transmits signals by radiofrequency. Motor, cognitive, and behavioral protocols will be used to study possible feedback/alarms to be provided by the system. Finally, a set of mobile apps to support the caregiver at home in managing and monitoring the patient will be developed and tested in the community of caregivers that participated in the focus groups. The set of developed apps will be connected to the already

  10. Early specialization for voice and emotion processing in the infant brain

    NARCIS (Netherlands)

    Blasi, A.; Mercure, E.; Lloyd-Fox, S.; Thomson, A.; Brammer, M.; Sauter, D.; Deeley, Q.; Barker, G.J.; Renvall, V.; Deoni, S.; Gasston, D.; Williams, S.C.R.; Johnson, M.H.; Simmons, A.; Murphy, D.G.M.

    2011-01-01

    Human voices play a fundamental role in social communication, and areas of the adult "social brain" show specialization for processing voices and their emotional content (superior temporal sulcus, inferior prefrontal cortex, premotor cortical regions, amygdala, and insula) [ [1], [2], [3], [4], [5],

  11. Early referential context effects in sentence processing: Evidence from event-related brain potentials

    NARCIS (Netherlands)

    Berkum, J.J.A. van; Brown, C.M.; Hagoort, P.

    1999-01-01

    An event-related brain potentials experiment was carried out to examine the interplay of referential and structural factors during sentence processing in discourse. Subjects read (Dutch) sentences beginning like “David told the girl that … ” in short story contexts that had introduced either one or

  12. Involvement of the endocannabinoid system in reward processing in the human brain.

    Science.gov (United States)

    van Hell, Hendrika H; Jager, Gerry; Bossong, Matthijs G; Brouwer, Annelies; Jansma, J Martijn; Zuurman, Lineke; van Gerven, Joop; Kahn, René S; Ramsey, Nick F

    2012-02-01

    Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ(9)-tetrahydrocannabinol (THC) on reward-related brain activity. Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded ("reward trial") or not ("neutral trial"). Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction.

  13. The time-course and spatial distribution of brain activity associated with sentence processing.

    Science.gov (United States)

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain.

  14. Different brains process numbers differently: Structural bases of individual differences in spatial and nonspatial number representations

    NARCIS (Netherlands)

    Krause, F.; Lindemann, O.; Toni, I.; Bekkering, H.

    2014-01-01

    A dominant hypothesis on how the brain processes numerical size proposes a spatial representation of numbers as positions on a "mental number line." An alternative hypothesis considers numbers as elements of a generalized representation of sensorimotor-related magnitude, which is not obligatorily

  15. Raster Data Partitioning for Supporting Distributed GIS Processing

    Science.gov (United States)

    Nguyen Thai, B.; Olasz, A.

    2015-08-01

    In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the amount, but the resolution of raw data in spectral, spatial and temporal aspects as well. A significant portion of big data is geospatial data, and the size of such data is growing rapidly at least by 20% every year (Dasgupta, 2013). The produced increasing volume of raw data, in different format, representation and purpose the wealth of information derived from this data sets represents only valuable results. However, the computing capability and processing speed rather tackle with limitations, even if semi-automatic or automatic procedures are aimed on complex geospatial data (Kristóf et al., 2014). In late times, distributed computing has reached many interdisciplinary areas of computer science inclusive of remote sensing and geographic information processing approaches. Cloud computing even more requires appropriate processing algorithms to be distributed and handle geospatial big data. Map-Reduce programming model and distributed file systems have proven their capabilities to process non GIS big data. But sometimes it's inconvenient or inefficient to rewrite existing algorithms to Map-Reduce programming model, also GIS data can not be partitioned as text-based data by line or by bytes. Hence, we would like to find an alternative solution for data partitioning, data distribution and execution of existing algorithms without rewriting or with only minor modifications. This paper focuses on technical overview of currently available distributed computing environments, as well as GIS data (raster data) partitioning, distribution and distributed processing of GIS algorithms

  16. Effects of Cognitive Complexity and Emotional Upset on Processing Supportive Messages: Two Tests of a Dual-Process Theory of Supportive Communication Outcomes

    Science.gov (United States)

    Bodie, Graham D.; Burleson, Brant R.; Holmstrom, Amanda J.; McCullough, Jennifer D.; Rack, Jessica J.; Hanasono, Lisa K.; Rosier, Jennifer G.

    2011-01-01

    We report tests of hypotheses derived from a theory of supportive communication outcomes that maintains the effects of supportive messages are moderated by factors influencing the motivation and ability to process these messages. Participants in two studies completed a measure of cognitive complexity, which provided an assessment of processing…

  17. Support of the collaborative inquiry learning process: influence of support on task and team regulation

    NARCIS (Netherlands)

    Saab, N.; van Joolingen, W.; van Hout-Wolters, B.

    2012-01-01

    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation).

  18. Support of the collaborative inquiry learning process: influence of support on task and team regulation

    NARCIS (Netherlands)

    N. Saab; W. van Joolingen; B. van Hout-Wolters

    2012-01-01

    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation).

  19. Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model.

    Science.gov (United States)

    Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain

    2013-12-30

    There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.

  20. On Engineering Support for Business Process Modelling and Redesign

    NARCIS (Netherlands)

    Doumeingts, G.; Franken, H.M.; de Weger, M.K.; Browne, J.; Quartel, Dick; Ferreira Pires, Luis

    1997-01-01

    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a

  1. Supporting the Spirit of Learning. When Process Is Content.

    Science.gov (United States)

    Costa, Arthur L., Ed.; Liebmann, Rosemarie M., Ed.

    This book addresses the revision of the curriculum to meet the needs of the 21st century. After a foreword by Peter M. Senge and prefaces by the editors, the following chapters are included: (1) Process as Content in Education of Exceptional Children (Reuven Feuerstein, Rafi Feuerstein, and Yaron Schur); (2) Generative Topics for Process…

  2. External Influences on an Internal Process: Supporting Preservice Teacher Research

    Science.gov (United States)

    Schulte, Ann; Klipfel, Lyndsay Halpin

    2016-01-01

    In an effort to better understand how participating in teacher research as a student teacher compares to conducting it as a practicing teacher, a teacher educator and her former teacher education student engaged in a collaborative dialogue. They focus their reflections in this article on the impact of external forces on the process of teacher…

  3. A Study of Facilitating Cognitive Processes with Authentic Support

    Science.gov (United States)

    Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu

    2014-01-01

    This study designed learning activity to enhance students' cognitive processes. Students could learn in class and then apply and analyze new knowledge to solve daily life problems by taking pictures of learning objects in familiar authentic context, describing them, and sharing their homework with peers. This study carried out an experiment and it…

  4. Game Inspired Tool Support for e-Learning Processes

    Science.gov (United States)

    Charles, Marie-Therese; Bustard, David; Black, Michaela

    2009-01-01

    Student engagement is crucial to the success of e-learning but is often difficult to achieve in practice. One significant factor is the quality of the learning content; also important, however, is the suitability of the process through which that material is studied. In recent years much research has been devoted to improving e-learning content…

  5. Supporting Reflection on Self-Directed Learning Process in Hyperspace

    Science.gov (United States)

    Kashihara, Akihiro; Sakamoto, Masanao; Hasegawa, Shinobu; Toyoda, Jun'ichi

    Hypermedia/hypertext-based resources for learning generally provide learners with hyperspace, which consists of pages and links among the pages. In the hyperspace, they can navigate the pages in a self-directed way to learn the domain concepts/knowledge. The navigation often involves constructing knowledge, in which they would make semantic relationships among the contents learned in the navigated pages. Such self-directed learning in hyperspace requires learners to reflect on their knowledge construction process, which they have carried out so far, since what and how they have learned becomes hazy as the navigation progresses. However, it is hard for them to keep reflection during navigating hyperspace. The main issue addressed in this paper is how to facilitate learners' reflection to promote their self-directed learning. Our approach to this issue is to provide learners with a learning tool, which allows learners to annotate their navigation history representation with their knowledge construction process. The annotated navigation history enables them to reflect on their knowledge construction process. This paper also demonstrates an interactive history, which generates the annotated navigation history from learners' annotation. It also generates a knowledge map that visualizes the semantic relationships among the pages learners have learned in hyperspace. This paper also describes a case study with the interactive history. The results indicate that it facilitates reflection on knowledge construction process carried out in hyperspace.

  6. Modeling invariant object processing based on tight integration of simulated and empirical data in a Common Brain Space

    Directory of Open Access Journals (Sweden)

    Judith Carolien Peters

    2012-03-01

    Full Text Available Both in the field of Computer Vision and Experimental Neuroscience, recent advances have been made regarding the mechanisms underlying invariant object recognition. However, the differential methodological aims in both fields caused an independent model evolvement. A tighter integration of simulations and empirical observations may contribute to cross-fertilized development of 1 neurobiologically plausible computational models and 2 computationally-defined empirical theories, incrementally merged into a comprehensive brain model.We review recent fMRI findings on object invariance and suggest how they can be quantitatively compared to model simulations by projecting predicted and observed data in one Common Brain Space". The simultaneous matching of activity patterns within and across multiple processing stages in the simulated and empirical large-scale network may help to clarify how high-order invariant representations are created from low-level features. Given that columnar-level imaging is now in reach, due to the advent of high-resolution fMRI, it is time to capitalize on this new window into the brain and test which predictions of the various object recognition models are supported by this novel empirical evidence.

  7. Laboratory support for the didactic process of engineering processes automation at the Faculty of Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    G. Wszołek

    2006-02-01

    Full Text Available Purpose: The scope of the paper is to present effects of creating the laboratory support for the didactic process of automatic control of engineering processes.Design/methodology/approach: The discussed laboratory framework is a complex system, flexible in terms of further development, operating on four basic levels: rudimental- serving general introductory classes to the subject, advanced level- suitable for specialisation classes, hardware and software for individual or team work assignments completed in the course of self-studies, semester projects, BSc and MSc. theses, and the sophisticated level designed for PhD and DSc research workers.Findings: Close cooperation with industry and practical implementation of joint research projects play a crucial role in the functioning of the laboratory framework.Practical implications: The education of modern engineers and Masters of Science in automatic control and robotics is a challenging task which may be successfully accomplished only if faced with industrial reality. Continuously advancing industrial companies demand graduates who can quickly adjust to the workflow and who can instantly utilize the knowledge and skills acquired in the complex, interdisciplinary field of mechatronics.Originality/value: The discussed laboratory framework successfully couples software and hardware, providing a complex yet flexible system open for further development, enabling teaching and research into the design and operation of modern control systems, both by means of virtual construction and testing in simulation programs, as well as on real industrial structures configured in laboratory workstations.

  8. Brain white matter structure and information processing speed in healthy older age.

    Science.gov (United States)

    Kuznetsova, Ksenia A; Maniega, Susana Muñoz; Ritchie, Stuart J; Cox, Simon R; Storkey, Amos J; Starr, John M; Wardlaw, Joanna M; Deary, Ian J; Bastin, Mark E

    2016-07-01

    Cognitive decline, especially the slowing of information processing speed, is associated with normal ageing. This decline may be due to brain cortico-cortical disconnection caused by age-related white matter deterioration. We present results from a large, narrow age range cohort of generally healthy, community-dwelling subjects in their seventies who also had their cognitive ability tested in youth (age 11 years). We investigate associations between older age brain white matter structure, several measures of information processing speed and childhood cognitive ability in 581 subjects. Analysis of diffusion tensor MRI data using Tract-based Spatial Statistics (TBSS) showed that all measures of information processing speed, as well as a general speed factor composed from these tests (g speed), were significantly associated with fractional anisotropy (FA) across the white matter skeleton rather than in specific tracts. Cognitive ability measured at age 11 years was not associated with older age white matter FA, except for the g speed-independent components of several individual processing speed tests. These results indicate that quicker and more efficient information processing requires global connectivity in older age, and that associations between white matter FA and information processing speed (both individual test scores and g speed), unlike some other aspects of later life brain structure, are generally not accounted for by cognitive ability measured in youth.

  9. 4D Design and Simulation Technologies and Process Design Patterns to Support Lean Construction Methods

    Institute of Scientific and Technical Information of China (English)

    Manfred Breit; Manfred Vogel; Fritz H(a)ubi; Fabian M(a)rki; Micheal Raps

    2008-01-01

    The objective of this ongoing joint research program is to determine how 3D/4D modeling, simula- tion and visualization of Products (buildings), Organizations and Processes (POP) can support lean con- struction. Initial findings suggest that Process Design Pattern may have the potential to intuitively support ICT based lean construction. We initiated a "Process Archeology" in order to reveal the requirements for tools that can support the planning, simulation and control of lean construction methods. First findings show that existing tools provide only limited support and therefore, we started to develop new methodologies and technologies to overcome these shortcomings. Through the introduction of Process Design Patterns, we in- tent to establish process thinking in the interdisciplinary POP design. Optimized construction processes may be synthesized with semi-automatic methods by applying Process Design Pattems on building structures. By providing process templates that integrate problem solution and expert knowledge, Process Design Pat- tems may have the potential to ensure high quality process models.

  10. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    Science.gov (United States)

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  11. Brain functional network connectivity based on a visual task:visual information processing-related brain regions are signiifcantly activated in the task state

    Institute of Scientific and Technical Information of China (English)

    Yan-li Yang; Hong-xia Deng; Gui-yang Xing; Xiao-luan Xia; Hai-fang Li

    2015-01-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  12. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  13. Global Processing Training to Improve Visuospatial Memory Deficits after Right-Brain Stroke

    Science.gov (United States)

    Chen, Peii; Hartman, Ashley J.; Priscilla Galarza, C.; DeLuca, John

    2012-01-01

    Visuospatial stimuli are normally perceived from the global structure to local details. A right-brain stroke often disrupts this perceptual organization, resulting in piecemeal encoding and thus poor visuospatial memory. Using a randomized controlled design, the present study examined whether promoting the global-to-local encoding improves retrieval accuracy in right-brain-damaged stroke survivors with visuospatial memory deficits. Eleven participants received a single session of the Global Processing Training (global-to-local encoding) or the Rote Repetition Training (no encoding strategy) to learn the Rey–Osterrieth Complex Figure. The result demonstrated that the Global Processing Training significantly improved visuospatial memory deficits after a right-brain stroke. On the other hand, rote practice without a step-by-step guidance limited the degree of memory improvement. The treatment effect was observed both immediately after the training procedure and 24 h post-training. Overall, the present findings are consistent with the long-standing principle in cognitive rehabilitation that an effective treatment is based on specific training aimed at improving specific neurocognitive deficits. Importantly, visuospatial memory deficits after a right-brain stroke may improve with treatments that promote global processing at encoding. PMID:23070314

  14. Speech processing asymmetry revealed by dichotic listening and functional brain imaging.

    Science.gov (United States)

    Hugdahl, Kenneth; Westerhausen, René

    2016-12-01

    In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus.

  15. Feasibility and utility of telephone-based psychological support for people with brain tumor: A single-case experimental study

    Directory of Open Access Journals (Sweden)

    Stephanie eJones

    2015-03-01

    Full Text Available Rates of psychological distress are high following diagnosis and treatment of brain tumor. There can be multiple barriers to accessing psychological support, including physical and cognitive impairments and geographical limitations. Tele-based support could provide an effective and more flexible option for delivering psychological interventions. The present study aimed to investigate the feasibility and utility of a telephone-based psychotherapy intervention for people with brain tumor. A single-case multiple-baseline design was employed with a 4-7 week baseline phase, 10-week treatment phase and 5-week maintenance phase including a booster session. Four participants with a benign or malignant brain tumor (3 males & 1 female; aged 34 to 49 years, received 10 sessions of tele-based therapy and a booster session at four weeks post-treatment. Levels of depression, anxiety, and illness cognitions were monitored on a weekly basis throughout each phase whilst measures of quality of life, stress and self-concept were administered at the start and end of each phase. Weekly measures were analysed using a combination of both visual analysis and Tau-U statistics. Of the four participants, two of them demonstrated significant gains in mental health (depression and/or anxiety and a significant decrease in their levels of helplessness (p<.05. The other two participants did not show gains in mental health or change in illness cognitions. All participants reported improvement in quality of life post-treatment. The results of the study provide preliminary support concerning the feasibility and utility of tele-based therapy for some people with brain tumor. Further research examining factors influencing the outcomes of tele-based psychological support is needed.

  16. Experimentally supported mathematical modeling of continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette

    The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... in this thesis. The oven was successfully validated against a 10 m tunnel oven. Besides the ability to emulate the baking conditions in a tunnel oven, the new batch oven is designed and constructed for experimental research work. In the design options to follow the product continuously (especially weight...... and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing...

  17. System Design Support by Optimization Method Using Stochastic Process

    Science.gov (United States)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    We proposed the new optimization method based on stochastic process. The characteristics of this method are to obtain the approximate solution of the optimum solution as an expected value. In numerical calculation, a kind of Monte Carlo method is used to obtain the solution because of stochastic process. Then, it can obtain the probability distribution of the design variable because it is generated in the probability that design variables were in proportion to the evaluation function value. This probability distribution shows the influence of design variables on the evaluation function value. This probability distribution is the information which is very useful for the system design. In this paper, it is shown the proposed method is useful for not only the optimization but also the system design. The flight trajectory optimization problem for the hang-glider is shown as an example of the numerical calculation.

  18. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  19. [Effectiveness of neuropsychological rehabilitation in acquired brain injury (I): attention, processing speed, memory and language].

    Science.gov (United States)

    de Noreña, David; Ríos-Lago, Marcos; Bombín-González, Igor; Sánchez-Cubillo, Ignacio; García-Molina, Alberto; Tirapu-Ustárroz, Javier

    2010-12-01

    The consequences of acquired brain injury include impairments in cognition, emotion, and behaviour. Neuro-psychology provides techniques for treating these disorders, but it is still important to establish which of all the available tools are most effective for this purpose. This article reviews existing studies on the effectiveness of neuropsychological rehabilitation, focusing on those areas more often impaired due to acquired brain injury. The purpose of the article is to guide and orient neuro-psychological rehabilitation of these patients based on the strongest evidence available in the literature. This paper focuses on cognitive domains such as attention and neglect, memory and language. There is enough evidence to recommend the neuropsychological rehabilitation of the above processes in patients with acquired brain injury.

  20. Gender differences in functional hemispheric asymmetry during processing of vowels as reflected by the human brain magnetic response.

    Science.gov (United States)

    Obleser, J; Eulitz, C; Lahiri, A; Elbert, T

    2001-11-16

    A number of findings indicate gender differences in language-related functional hemispheric brain asymmetry. To test if such gender-specific laterality is already present at the level of vowel-processing, the auditory evoked magnetic field was recorded in healthy right-handed male and female participants in response to the German synthetic vowels [a], [e] and [i]. Female participants exhibited stronger N100m responses than male participants over the left hemisphere. This observation was highly reliable across repeated experimental sessions. The present lateralization shows that previous findings suggesting a stronger left-hemispheric dominance for verbal material in males than in females can not be generalized to basic speech elements. Furthermore, the present results support the importance of controlling for gender ratio in studies of phonetic processing.

  1. Distinct transcriptional changes in donor kidneys upon brain death induction in rats : Insights in the processes of brain death

    NARCIS (Netherlands)

    Schuurs, TA; Gerbens, F; van der Hoeven, JAB; Ottens, PJ; Kooi, KA; Leuvenink, HGD; Hofstra, RMW; Ploeg, RJ

    2004-01-01

    Brain death affects hormone regulation, inflammatory reactivity and hemodynamic stability. In transplant models, donor organs retrieved from brain dead (BD) rats suffer from increased rates of primary nonfunction and lower graft survival. To unravel the mechanisms behind brain death we have performe

  2. Integrating complex business processes for knowledge-driven clinical decision support systems.

    Science.gov (United States)

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  3. Never resting brain: simultaneous representation of two alpha related processes in humans.

    Directory of Open Access Journals (Sweden)

    Eti Ben-Simon

    Full Text Available Brain activity is continuously modulated, even at "rest". The alpha rhythm (8-12 Hz has been known as the hallmark of the brain's idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An 'induced alpha' that was correlated with the paradigm (eyes open/ eyes closed, and a 'spontaneous alpha' that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the 'induced map' included left lateral temporal cortical regions and the hippocampus; the 'spontaneous map' included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the 'resting brain'; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change.

  4. Processing of audiovisual associations in the human brain: dependency on expectations and rule complexity

    Directory of Open Access Journals (Sweden)

    Riikka eLindström

    2012-05-01

    Full Text Available In order to respond to environmental changes appropriately, the human brain must not only be able to detect environmental changes but also to form expectations of forthcoming events. The events in the external environment often have a number of multisensory features such as pitch and form. For integrated percepts of objects and events, crossmodal processing and crossmodally induced expectations of forthcoming events are needed. The aim of the present study was to determine whether the expectations created by visual stimuli can modulate the deviance detection in the auditory modality, as reflected by auditory event-related potentials (ERPs. Additionally, it was studied whether the complexity of the rules linking auditory and visual stimuli together affects this process. The N2 deflection of the ERP was observed in response to violations in the subjects' expectation of a forthcoming tone. Both temporal aspects and cognitive demands during the audiovisual deviance detection task modulated the brain processes involved.

  5. Art Therapy and the Brain: An Attempt to Understand the Underlying Processes of Art Expression in Therapy

    Science.gov (United States)

    Lusebrink, Vija B.

    2004-01-01

    The application of new techniques in brain imaging has expanded the understanding of the different functions and structures of the brain involved in information processing. This paper presents the main areas and functions activated in emotional states, the formation of memories, and the processing of motor, visual, and somatosensory information.…

  6. Intention processing in communication: a common brain network for language and gestures.

    Science.gov (United States)

    Enrici, Ivan; Adenzato, Mauro; Cappa, Stefano; Bara, Bruno G; Tettamanti, Marco

    2011-09-01

    Human communicative competence is based on the ability to process a specific class of mental states, namely, communicative intention. The present fMRI study aims to analyze whether intention processing in communication is affected by the expressive means through which a communicative intention is conveyed, that is, the linguistic or extralinguistic gestural means. Combined factorial and conjunction analyses were used to test two sets of predictions: first, that a common brain network is recruited for the comprehension of communicative intentions independently of the modality through which they are conveyed; second, that additional brain areas are specifically recruited depending on the communicative modality used, reflecting distinct sensorimotor gateways. Our results clearly showed that a common neural network is engaged in communicative intention processing independently of the modality used. This network includes the precuneus, the left and right posterior STS and TPJ, and the medial pFC. Additional brain areas outside those involved in intention processing are specifically engaged by the particular communicative modality, that is, a peri-sylvian language network for the linguistic modality and a sensorimotor network for the extralinguistic modality. Thus, common representation of communicative intention may be accessed by modality-specific gateways, which are distinct for linguistic versus extralinguistic expressive means. Taken together, our results indicate that the information acquired by different communicative modalities is equivalent from a mental processing standpoint, in particular, at the point at which the actor's communicative intention has to be reconstructed.

  7. Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis.

    Science.gov (United States)

    Patel, Aniruddh D

    2014-02-01

    A growing body of research suggests that musical training has a beneficial impact on speech processing (e.g., hearing of speech in noise and prosody perception). As this research moves forward two key questions need to be addressed: 1) Can purely instrumental musical training have such effects? 2) If so, how and why would such effects occur? The current paper offers a conceptual framework for understanding such effects based on mechanisms of neural plasticity. The expanded OPERA hypothesis proposes that when music and speech share sensory or cognitive processing mechanisms in the brain, and music places higher demands on these mechanisms than speech does, this sets the stage for musical training to enhance speech processing. When these higher demands are combined with the emotional rewards of music, the frequent repetition that musical training engenders, and the focused attention that it requires, neural plasticity is activated and makes lasting changes in brain structure and function which impact speech processing. Initial data from a new study motivated by the OPERA hypothesis is presented, focusing on the impact of musical training on speech perception in cochlear-implant users. Suggestions for the development of animal models to test OPERA are also presented, to help motivate neurophysiological studies of how auditory training using non-biological sounds can impact the brain's perceptual processing of species-specific vocalizations. This article is part of a Special Issue entitled .

  8. Granular computing with multiple granular layers for brain big data processing.

    Science.gov (United States)

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  9. Support Process of Surgical Block: Patient safety strategies

    Directory of Open Access Journals (Sweden)

    Rosa Martos Moreno

    2010-05-01

    Full Text Available Second edition of Guide of designe and continues improvement of the Care Integrated Procedures identifies us indispensable elements, among others, the ones related with the dimension patient safety. Objetive of this work has been the elaboration of a Surgical patient path document which contains those elements. The result has been a document in the shape of a indivisible triptych, continent of a lot of safety barrier ( pre surgical and assist surgical check-lists, clinic guides, etc that should avoid the appearance of adverse events. For its suitable employment it would be necessary introducing the document before the movement of the patient to the Surgical Block, during the pre surgical preparation at the Hospitalization Unit. It would be moved forward a step at the third level of the Process Architecture, to guarantee the Cares continuity and the Safety.

  10. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  11. Isolating human brain functional connectivity associated with a specific cognitive process

    Science.gov (United States)

    Silver, Michael A.; Landau, Ayelet N.; Lauritzen, Thomas Z.; Prinzmetal, William; Robertson, Lynn C.

    2010-02-01

    The use of functional magnetic resonance imaging (fMRI) to measure functional connectivity among brain areas has the potential to identify neural networks associated with particular cognitive processes. However, fMRI signals are not a direct measure of neural activity but rather represent blood oxygenation level-dependent (BOLD) signals. Correlated BOLD signals between two brain regions are therefore a combination of neural, neurovascular, and vascular coupling. Here, we describe a procedure for isolating brain functional connectivity associated with a specific cognitive process. Coherency magnitude (measuring the strength of coupling between two time series) and phase (measuring the temporal latency differences between two time series) are computed during performance of a particular cognitive task and also for a control condition. Subtraction of the coherency magnitude and phase differences for the two conditions removes sources of correlated BOLD signals that do not modulate as a function of cognitive task, resulting in a more direct measure of functional connectivity associated with changes in neuronal activity. We present two applications of this task subtraction procedure, one to measure changes in strength of coupling associated with sustained visual spatial attention, and one to measure changes in temporal latencies between brain areas associated with voluntary visual spatial attention.

  12. Intelligent Technique for Signal Processing to Identify the Brain Disorder for Epilepsy Captures Using Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Gurumurthy Sasikumar

    2016-01-01

    Full Text Available The new direction of understand the signal that is created from the brain organization is one of the main chores in the brain signal processing. Amid all the neurological disorders the human brain epilepsy is measured as one of the extreme prevalent and then programmed artificial intelligence detection technique is an essential due to the crooked and unpredictable nature of happening of epileptic seizures. We proposed an Improved Fuzzy firefly algorithm, which would enhance the classification of the brain signal efficiently with minimum iteration. An important bunching technique created on fuzzy logic is the Fuzzy C means. Together in the feature domain with the spatial domain the features gained after multichannel EEG signals remained combined by means of fuzzy algorithms. And for better precision segmentation process the firefly algorithm is applied to optimize the Fuzzy C-means membership function. Simultaneously for the efficient clustering method the convergence criteria are set. On the whole the proposed technique yields more accurate results and that gives an edge over other techniques. This proposed algorithm result compared with other algorithms like fuzzy c means algorithm and PSO algorithm.

  13. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Rui Nouchi

    Full Text Available BACKGROUND: Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age on a wide range of cognitive functions in young adults. METHODS: We conducted a double-blind (de facto masking randomized controlled trial using a popular brain training game (Brain Age and a popular puzzle game (Tetris. Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability. RESULTS AND DISCUSSION: Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed in the healthy young adults. CONCLUSIONS: Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields

  14. Expertise in folk music alters the brain processing of Western harmony.

    Science.gov (United States)

    Tervaniemi, M; Tupala, T; Brattico, E

    2012-04-01

    In various paradigms of modern neurosciences of music, experts of Western classical music have displayed superior brain architecture when compared with individuals without explicit training in music. In this paper, we show that chord violations embedded in musical cadences were neurally processed in a facilitated manner also by musicians trained in Finnish folk music. This result, obtained by using early right anterior negativity (ERAN) as an index of harmony processing, suggests that tonal processing is advanced in folk musicians by their long-term exposure to both Western and non-Western music.

  15. Brain function differences in language processing in children and adults with autism.

    Science.gov (United States)

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience.

  16. Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.

    Science.gov (United States)

    Abraham, Anna

    2014-01-01

    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.

  17. Creative thinking as orchestrated by semantic processing versus cognitive control brain networks

    Directory of Open Access Journals (Sweden)

    Anna eAbraham

    2014-02-01

    Full Text Available Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. Conceptual expansion refers to the ability to widen one’s conceptual structures to include unusual or novel associations, while overcoming knowledge constraints refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.

  18. Citric acid application for denitrification process support in biofilm reactor.

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  19. Design of educational artifacts as support to learning process.

    Science.gov (United States)

    Resende, Adson Eduardo; Vasconcelos, Flávio Henrique

    2012-01-01

    The aim of this paper is to identify utilization schemes developed by students and teachers in their interaction with educational workstations in the electronic measurement and instrumentation laboratory at the Department of Electrical Engineering in the Federal University of Minas Gerais (UFMG), Brazil. After that, these schemes were used to design a new workstation. For this, it was important to bear in mind that the mentioned artifacts contain two key characteristics: (1) one from the designers themselves, resulting from their experience and their technical knowledge of what they are designing and (2) the experience from users and the means through which they take advantage of and develop these artifacts, in turn rendering them appropriate to perform the proposed task - the utilization schemes developed in the process of mediation between the user and the artifact. The satisfactory fusion of these two points makes these artifacts a functional unit - the instruments. This research aims to demonstrate that identifying the utilization schemes by taking advantage of user experience and incorporating this within the design, facilitates its appropriation and, consequently, its efficiency as an instrument of learning.

  20. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  1. Pattern classification of brain activation during emotional processing in subclinical depression: psychosis proneness as potential confounding factor

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    2013-02-01

    Full Text Available We used Support Vector Machine (SVM to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II. Two groups were subsequently formed: (i subclinical (mild mood disturbance (n = 17 and (ii no mood disturbance (n = 17. Participants also completed a self-report questionnaire on subclinical psychotic symptoms, the Community Assessment of Psychic Experiences Questionnaire (CAPE positive subscale. The functional magnetic resonance imaging (fMRI paradigm entailed passive viewing of negative emotional and neutral scenes. The pattern of brain activity during emotional processing allowed correct group classification with an overall accuracy of 77% (p = 0.002, within a network of regions including the amygdala, insula, anterior cingulate cortex and medial prefrontal cortex. However, further analysis suggested that the classification accuracy could also be explained by subclinical psychotic symptom scores (correlation with SVM weights r = 0.459, p = 0.006. Psychosis proneness may thus be a confounding factor for neuroimaging studies in subclinical depression.

  2. Pattern classification of brain activation during emotional processing in subclinical depression: psychosis proneness as potential confounding factor.

    Science.gov (United States)

    Modinos, Gemma; Mechelli, Andrea; Pettersson-Yeo, William; Allen, Paul; McGuire, Philip; Aleman, Andre

    2013-01-01

    We used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II). Two groups were subsequently formed: (i) subclinical (mild) mood disturbance (n = 17) and (ii) no mood disturbance (n = 17). Participants also completed a self-report questionnaire on subclinical psychotic symptoms, the Community Assessment of Psychic Experiences Questionnaire (CAPE) positive subscale. The functional magnetic resonance imaging (fMRI) paradigm entailed passive viewing of negative emotional and neutral scenes. The pattern of brain activity during emotional processing allowed correct group classification with an overall accuracy of 77% (p = 0.002), within a network of regions including the amygdala, insula, anterior cingulate cortex and medial prefrontal cortex. However, further analysis suggested that the classification accuracy could also be explained by subclinical psychotic symptom scores (correlation with SVM weights r = 0.459, p = 0.006). Psychosis proneness may thus be a confounding factor for neuroimaging studies in subclinical depression.

  3. Application of a Morse filter in the processing of brain angiograms

    Science.gov (United States)

    Venegas Bayona, Santiago

    2014-06-01

    The angiograms are frequently used to find anomalies in the blood vessels. Hence, for improving the quality of the images with an angiogram, a Morse filter will be implemented (based on the model of the Morse Potential) in a brain's vessels angiogram using both softwares Maple ® and ImageJ ®. It will be shown the results of applying a Morse filter to an angiogram of the brain vessels. First, the image was processed with ImageJ using the plug-in Anisotropic Diffusion 2D and then, the filter was implemented. As it is illustrated in the results, the edges of the stringy elements are emphasized. Particularly, this is very useful in the medical image processing of blood vessels, like angiograms, due to the narrowing or obstruction which may be caused by illness like aneurysms, thrombosis or other diseases.

  4. A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns

    Science.gov (United States)

    2007-10-01

    Spatial analysis of evoked po- tentials in man—a review,” Progress in Neurobiology, vol. 23, no. 3, pp. 227–250, 1984. [38] “ Cartool software...Functional Brain Mapping Laboratory, Geneva, Switzerland, http://brainmapping.unige.ch/ Cartool .htm. [39] T. Koenig, K. Kochi, and D. Lehmann, “Event

  5. TBI-ROC Part Seven: Traumatic Brain Injury--Technologies to Support Memory and Cognition

    Science.gov (United States)

    Scherer, Marcia; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the seventh of a multi-part series on traumatic brain injury (TBI). The six earlier articles in this series have discussed the individualized nature of TBI and its consequences, the rehabilitation continuum, and interventions at various points along the continuum. As noted throughout the articles, many individuals with TBI…

  6. Evolving the Language-Ready Brain and the Social Mechanisms that Support Language

    Science.gov (United States)

    Arbib, Michael A.

    2009-01-01

    We first review the mirror-system hypothesis on the evolution of the language-ready brain, stressing the important role of imitation and protosign in providing the scaffolding for protospeech. We then assess the role of social interaction and non-specific knowledge of language in the emergence of new sign languages in deaf communities (focusing on…

  7. TBI-ROC Part Seven: Traumatic Brain Injury--Technologies to Support Memory and Cognition

    Science.gov (United States)

    Scherer, Marcia; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the seventh of a multi-part series on traumatic brain injury (TBI). The six earlier articles in this series have discussed the individualized nature of TBI and its consequences, the rehabilitation continuum, and interventions at various points along the continuum. As noted throughout the articles, many individuals with TBI…

  8. Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain.

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    Full Text Available Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.

  9. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    Science.gov (United States)

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  10. Superior Pattern Processing is the Essence of the Evolved Human Brain

    Directory of Open Access Journals (Sweden)

    Mark eMattson

    2014-08-01

    Full Text Available Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.

  11. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Science.gov (United States)

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  12. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Directory of Open Access Journals (Sweden)

    Victor Costumero

    Full Text Available The behavioral approach system (BAS from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  13. Spatial dynamics of bioelectrical processes of brain during prolonged contact with physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, N.B.; Kukhtina, G.V.

    Study of the spatial organization of the EEG activity of the brain of man under normal circumstances and under prolonged effect of superhigh frequency electromagnetic fields involved examination of 155 workers ranging in age from 20 up to 39 years and working while exposed to electromagnetic fields for periods ranging from 2 up to 20 years and selection, from these, of 34 persons with no cerebral-cranial trauma, neuroinfection, psychotrauma, somatic or other diseases in their anamnesis for neurophysiological study. Monopolar EEG and EKG were registered during work and at psychosensory rest. Plasticity of the subjects' neurodynamic processes was assessed during voluntary regulation of the alpha-rhythm. Graphs of spatial-discrete interaction of isoelectric states of the EEG of the various zones of the brain were recorded by a digital computer. Prolonged periods of work while exposed to superhigh frequency electromagnetic fields produces phase changes of the spatial-discrete organization of neurorhythms of the brain. Working under these conditions for periods from 7 up to 14 years produces stress on the adaptational potentials of the organism and causes asthenization of mechanisms of self-regulation of the brain, which disturbs other functions of the organism. The maximum permissible period of work under these conditions is 7-14 years. 22 references, 4 figures.

  14. A Derangement of the Brain Wound Healing Process May Cause Some Cases of Alzheimer’s Disease

    OpenAIRE

    Lehrer, Steven; Rheinstein, Peter H.

    2016-01-01

    A derangement of brain wound healing may cause some cases of Alzheimer’s disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer’s disease. Our hypothesi...

  15. Concept of E-machine: How does a "dynamical" brain learn to process "symbolic" information? Part I

    OpenAIRE

    Eliashberg, Victor

    2004-01-01

    The human brain has many remarkable information processing characteristics that deeply puzzle scientists and engineers. Among the most important and the most intriguing of these characteristics are the brain's broad universality as a learning system and its mysterious ability to dynamically change (reconfigure) its behavior depending on a combinatorial number of different contexts. This paper discusses a class of hypothetically brain-like dynamically reconfigurable associative learning system...

  16. Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra.

    NARCIS (Netherlands)

    Tate, A.R.; Underwood, J.; Acosta, D.M.; Julia-Sape, M.; Majos, C.; Moreno-Torres, A.; Howe, F.A.; Graaf, M. van der; Lefournier, V.; Murphy, M.M.; Loosemore, A.; Ladroue, C.; Wesseling, P.; Luc Bosson, J.; Cabanas, M.E.; Simonetti, A.W.; Gajewicz, W.; Calvar, J.; Capdevila, A.; Wilkins, P.R.; Bell, B.A.; Remy, C.; Heerschap, A.; Watson, D.; Griffiths, J.R.; Arus, C.

    2006-01-01

    A computer-based decision support system to assist radiologists in diagnosing and grading brain tumours has been developed by the multi-centre INTERPRET project. Spectra from a database of 1H single-voxel spectra of different types of brain tumours, acquired in vivo from 334 patients at four differe

  17. Lessons Learnt from the Improvement of Customer Support Processes: A Case Study on Incident Management

    Science.gov (United States)

    Jäntti, Marko

    IT Infrastructure Library (ITIL) is the most widely used IT service management framework that provides guidelines how to create, manage and support IT services. Service support processes, such as incident management and problem management, are among the first ITIL processes that organizations start to implement. However, several challenges may exist in the process implementation. The research question of this study is: which issues are important in establishing an ITIL-based incident management process? The main contribution of this paper is to present lessons learnt from an ITIL-based process improvement project that focused on establishing an incident management process in an IS department of a university hospital. Our results show that key issues in implementing incident management are to 1) define the basic concepts of incident management with concrete examples and 2) define process interfaces between incident management and other support processes.

  18. Regional brain activation supporting cognitive control in the context of reward is associated with treated adolescents’ marijuana problem severity at follow-up: A preliminary study

    Directory of Open Access Journals (Sweden)

    Tammy Chung

    2015-12-01

    Full Text Available This preliminary study examined the extent to which regional brain activation during a reward cue antisaccade (AS task was associated with 6-month treatment outcome in adolescent substance users. Antisaccade performance provides a sensitive measure of executive function and cognitive control, and generally improves with reward cues. We hypothesized that when preparing to execute an AS, greater activation in regions associated with cognitive and oculomotor control supporting AS, particularly during reward cue trials, would be associated with lower substance use severity at 6-month follow-up. Adolescents (n = 14, ages 14–18 recruited from community-based outpatient treatment completed an fMRI reward cue AS task (reward and neutral conditions, and provided follow-up data. Results indicated that AS errors decreased in reward, compared to neutral, trials. AS behavioral performance, however, was not associated with treatment outcome. As hypothesized, activation in regions of interest (ROIs associated with cognitive (e.g., ventrolateral prefrontal cortex and oculomotor control (e.g., supplementary eye field during reward trials were inversely correlated with marijuana problem severity at 6-months. ROI activation during neutral trials was not associated with outcomes. Results support the role of motivational (reward cue factors to enhance cognitive control processes, and suggest a potential brain-based correlate of youth treatment outcome.

  19. NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes

    Science.gov (United States)

    Smith, David A.; Smith, John V.

    2010-01-01

    The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics

  20. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Egsgaard, L L; Jensen, R; Buchgreitz, L

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  1. Biomaterial microenvironments to support the generation of new neurons in the adult brain.

    Science.gov (United States)

    Conway, Anthony; Schaffer, David V

    2014-05-01

    Neural stem cells (NSC) in two regions of the adult mammalian brain--the subventricular zone (SVZ) and hippocampus--continuously generate new neurons, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation, and integration of the newborn cells. A growing number of studies also report low-level neurogenesis in regions of the adult brain outside these established neurogenic niches--potentially via NSC recruitment or activation of local, quiescent NSCs--under perturbations such as ischemia, cell death, or viral gene delivery of proneural growth factors. We have explored whether implantation of engineered biomaterials can stimulate neurogenesis in normally quiescent regions of the brain. Specifically, recombinant versions of factors found within the NSC microenvironment, Sonic hedgehog, and ephrin-B2 were conjugated to long polymers, thereby creating highly bioactive, multivalent ligands that begin to emulate components of the neurogenic niche. In this engineered biomaterial microenvironment, new neuron formation was observed in normally non-neurogenic regions of the brain, the striatum, and the cortex, and combining these multivalent biomaterials with stromal cell-derived factor-1α increased neuronal commitment of newly divided cells seven- to eightfold in these regions. Additionally, the decreased hippocampal neurogenesis of geriatric rodents was partially rescued toward levels of young animals. We thus demonstrate for the first time de novo neurogenesis in both the cortex and striatum of adult rodents stimulated solely by delivery of synthetic biomaterial forms of proteins naturally found within adult neurogenic niches, offering the potential to replace neurons lost in neurodegenerative disease or injury as an alternative to cell implantation.

  2. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  3. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    Science.gov (United States)

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  4. Asymmetric Processing of Numerical and Nonnumerical Magnitudes in the Brain: An fMRI Study.

    Science.gov (United States)

    Leibovich, Tali; Vogel, Stephan E; Henik, Avishai; Ansari, Daniel

    2016-01-01

    It is well established that, when comparing nonsymbolic magnitudes (e.g., dot arrays), adults can use both numerical (i.e., the number of items) and nonnumerical (density, total surface areas, etc.) magnitudes. It is less clear which of these magnitudes is more salient or processed more automatically. In this fMRI study, we used a nonsymbolic comparison task to ask if different brain areas are responsible for the automatic processing of numerical and nonnumerical magnitudes, when participants were instructed to attend to either the numerical or the nonnumerical magnitudes of the same stimuli. An interaction of task (numerical vs. nonnumerical) and congruity (congruent vs. incongruent) was found in the right TPJ. Specifically, this brain region was more strongly activated during numerical processing when the nonnumerical magnitudes were negatively correlated with numerosity (incongruent trials). In contrast, such an interference effect was not evident during nonnumerical processing when the task-irrelevant numerical magnitude was incongruent. In view of the role of the right TPJ in the control of stimulus-driven attention, we argue that these data demonstrate that the processing of nonnumerical magnitudes is more automatic than that of numerical magnitudes and that, therefore, the influence of numerical and nonnumerical variables on each other is asymmetrical.

  5. Economics of coal conversion processing. Advances in coal gasification: support research. Advances in coal gasification: process development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The fall meeting of the American Chemical Society, Division of Fuel Chemistry, was held at Miami Beach, Florida, September 10-15, 1978. Papers involved the economics of coal conversion processing and advances in coal gasification, especially support research and process development and analysis. Fourteen papers have been entered individually into EDB and ERA; three papers had been entered previously from other sources. (LTN)

  6. Benchmarking in the process of donation after brain death: a methodology to identify best performer hospitals.

    Science.gov (United States)

    Matesanz, R; Coll, E; Domínguez-Gil, B; de la Rosa, G; Marazuela, R; Arráez, V; Elorrieta, P; Fernández-García, A; Fernández-Renedo, C; Galán, J; Gómez-Marinero, P; Martín-Delagebasala, C; Martín-Jiménez, S; Masnou, N; Salamero, P; Sánchez-Ibáñez, J; Serna, E; Martínez-Soba, F; Pastor-Rodríguez, A; Bouzas, E; Castro, P

    2012-09-01

    A benchmarking approach was developed in Spain to identify and spread critical success factors in the process of donation after brain death. This paper describes the methodology to identify the best performer hospitals in the period 2003-2007 with 106 hospitals throughout the country participating in the project. The process of donation after brain death was structured into three phases: referral of possible donors after brain death (DBD) to critical care units (CCUs) from outside units, management of possible DBDs within the CCUs and obtaining consent for organ donation. Indicators to assess performance in each phase were constructed and the factors influencing these indicators were studied to ensure that comparable groups of hospitals could be established. Availability of neurosurgery and CCU resources had a positive impact on the referral of possible DBDs to CCUs and those hospitals with fewer annual potential DBDs more frequently achieved 100% consent rates. Hospitals were grouped into each subprocess according to influencing factors. Hospitals with the best results were identified for each phase and hospital group. The subsequent study of their practices will lead to the identification of critical factors for success, which implemented in an adapted way should fortunately lead to increasing organ availability. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Conscious and unconscious processing of facial expressions: evidence from two split-brain patients.

    Science.gov (United States)

    Prete, Giulia; D'Ascenzo, Stefania; Laeng, Bruno; Fabri, Mara; Foschi, Nicoletta; Tommasi, Luca

    2015-03-01

    We investigated how the brain's hemispheres process explicit and implicit facial expressions in two 'split-brain' patients (one with a complete and one with a partial anterior resection). Photographs of faces expressing positive, negative or neutral emotions were shown either centrally or bilaterally. The task consisted in judging the friendliness of each person in the photographs. Half of the photograph stimuli were 'hybrid faces', that is an amalgamation of filtered images which contained emotional information only in the low range of spatial frequency, blended to a neutral expression of the same individual in the rest of the spatial frequencies. The other half of the images contained unfiltered faces. With the hybrid faces the patients and a matched control group were more influenced in their social judgements by the emotional expression of the face shown in the left visual field (LVF). When the expressions were shown explicitly, that is without filtering, the control group and the partially callosotomized patient based their judgement on the face shown in the LVF, whereas the complete split-brain patient based his ratings mainly on the face presented in the right visual field. We conclude that the processing of implicit emotions does not require the integrity of callosal fibres and can take place within subcortical routes lateralized in the right hemisphere.

  8. Basic emotion processing and the adolescent brain: Task demands, analytic approaches, and trajectories of changes

    Directory of Open Access Journals (Sweden)

    Larissa B. Del Piero

    2016-06-01

    Full Text Available Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach and cohort characteristics (e.g., age range were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and non-linear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age.

  9. Processing of Basic Speech Acts Following Localized Brain Damage: A New Light on the Neuroanatomy of Language

    Science.gov (United States)

    Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.

    2005-01-01

    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…

  10. Neuropsychological support to relatives of patients with severe traumatic brain injury in the sub-acute phase

    DEFF Research Database (Denmark)

    Norup, Anne; Kristensen, Karin Spangsberg; Siert, Lars

    2011-01-01

    Many studies have reported emotional distress in relatives of patients with brain injury, but few studies have investigated neuropsychological interventions for relatives. The present study assessed the amount of neuropsychological support as well as the actual number of sessions...... as characteristics related to the patient: Glasgow Coma Scale, Injury Severity Score, Early Functional Abilities, Functional Independence Measure, Rancho Los Amigos; and to the relative: symptoms of anxiety and depression (SCL-90-R), quality of life (SF-36) and amount and number of sessions of neuropsychological...

  11. Behavioral and brain oscillatory correlates of affective processing in subclinical depression.

    Science.gov (United States)

    Slobodskoy-Plusnin, Jaroslav

    2017-09-15

    Named among the most dangerous diseases of the modern era, depression is characterized primarily by distortions in the affective sphere. Despite extensive investigations of underlying the neural background, mechanisms of the distortion still remain unknown. The current study analyzed brain oscillatory dynamics in different frequencies during resting state and presentation of affective stimuli in nonclinical individuals with high Beck Depression Inventory-II (BDI-II) scores (HB) versus controls. Both behavioral and electrocortical "markers" of clinical depression were apparent at subclinical level. A resting-state electroencephalogram (EEG) of HB revealed increased power in low frequencies, predominantly in the frontal cortical areas, that is in accordance with a "spatio-temporal dysfunction" model of depression. Related to that, transition from an eyes-closed to eyes-open condition was associated with diminished alpha blockade in HB, suggesting difficulties with the relocation of attention focus from inner processes toward environmental stimuli. Subsequently, independently of a sign of emotion, five out of six discrete emotions were evaluated as less valenced and four out of six as less intense by HB than by controls, corroborating the view of emotion context insensitivity (ECI) associated with depression. Underlying brain oscillatory dynamics revealed that depression was associated with deficits in the early, implicit, processing stages of emotional stimuli. Later processing stages were characterized by prominent power surges in low and alpha frequencies, presumably indicating emotion upregulation processes and increased engagement of cognitive mechanisms in affective tasks. The study provides brain oscillatory-based mechanisms of emotion processing distortions associated with depression.

  12. Common and distinct brain regions processing multisensory bodily signals for peripersonal space and body ownership.

    Science.gov (United States)

    Grivaz, Petr; Blanke, Olaf; Serino, Andrea

    2017-02-15

    We take the feeling that our body belongs to us for granted. However, recent research has shown that it is possible to alter the subjective sensation of body ownership (BO) by manipulating multisensory bodily inputs. Several frontal and parietal regions are known to specifically process multisensory cues presented close to the body, i.e., within the peripersonal space (PPS). It has been proposed that these PPS fronto-parietal regions also underlie BO. However, most previous studies investigated the brain mechanisms of either BO or of PPS processing separately and by using a variety of paradigms. Here, we conducted an extensive meta-analysis of functional neuroimaging studies to investigate PPS and BO processing in humans in order to: a) assess quantitatively where each one of these functions was individually processed in the brain; b) identify whether and where these processes shared common or engaged distinct brain mechanisms; c) characterize these areas in terms of whole-brain co-activation networks and functions, respectively. We identified (i) a bilateral PPS network including superior parietal, temporo-parietal and ventral premotor regions and (ii) a BO network including posterior parietal cortex (right intraparietal sulcus, IPS; and left IPS and superior parietal lobule, SPL), right ventral premotor cortex, and the left anterior insula. Co-activation maps related to both PPS and BO encompassed largely overlapping fronto-parietal networks, but whereas the PPS network was more frequently associated with sensorimotor tasks, the BO network was rather associated with attention and awareness tasks. Finally, the conjunction analysis showed that (iii) PPS and BO tasks anatomically overlapped only in two clusters located in the left parietal cortex (dorsally at the intersection between the SPL, the IPS and area 2 and ventrally between areas 2 and IPS). Distinct activations were located for PPS at the temporo-parietal junction and for BO in the anterior insula. These

  13. Development of continuous pharmaceutical production processes supported by process systems engineering methods and tools

    DEFF Research Database (Denmark)

    Gernaey, Krist; Cervera Padrell, Albert Emili; Woodley, John

    2012-01-01

    The pharmaceutical industry is undergoing a radical transition towards continuous production processes. Systematic use of process systems engineering (PSE) methods and tools form the key to achieve this transition in a structured and efficient way....

  14. Expression, Covariation, and Genetic Regulation of miRNA Biogenesis Genes in Brain Supports their Role in Addiction, Psychiatric Disorders, and Disease

    Directory of Open Access Journals (Sweden)

    Megan Kathleen Mulligan

    2013-07-01

    Full Text Available The role of miRNA and miRNA biogenesis genes in the adult brain is just beginning to be explored. In this study we have performed a comprehensive analysis of the expression, genetic regulation, and co-expression of major components of the miRNA biogenesis pathway using human and mouse data sets and resources available on the GeneNetwork web site (genenetwork.org. We found a wide range of variation in expression in both species for key components of the pathway—Drosha, Pasha, and Dicer. Across species, tissues, and expression platforms all three genes are generally well correlated. No single genetic locus exerts a strong and consistent influence on the expression of these key genes across murine brain regions. However, in mouse striatum, many members of the miRNA pathway are correlated—including Dicer, Drosha, Pasha, Ars2 (Srrt, Eif2c1 (Ago1, Eif2c2 (Ago2, Zcchc11, and Snip1. The expression of these genes may be partly influenced by a locus on Chromosome 9 (105.67 to 106.32 Mb. We explored ~1500 brain phenotypes available for the C57BL/6J x DBA/2J (BXD genetic mouse population in order to identify miRNA biogenesis genes correlated with traits related to addiction and psychiatric disorders. We found a significant association between expression of Dicer and Drosha in several brain regions and the response to many drugs of abuse, including ethanol, cocaine, and methamphetamine. Expression of Dicer, Drosha, and Pasha in most of the brain regions explored is strongly correlated with the expression of key members of the dopamine system. Drosha, Pasha, and Dicer expression is also correlated with the expression of behavioral traits measuring depression and sensorimotor gating, impulsivity, and anxiety, respectively. Our study provides a global survey of the expression and regulation of key miRNA biogenesis genes in brain and provides preliminary support for the involvement of these genes and their product miRNAs in addiction and psychiatric disease

  15. Low-latency multi-threaded processing of neuronal signals for brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Jörg eFischer

    2014-01-01

    Full Text Available Brain-computer interfaces (BCIs require demanding numerical computations to transfer brain signals into control signals driving an external actuator. Increasing the computational performance of the BCI algorithms carrying out these calculations enables faster reaction to user inputs and allows using more demanding decoding algorithms. Here we introduce a modular and extensible software architecture with a multi-threaded signal processing pipeline suitable for BCI applications. The computational load and latency (the time that the system needs to react to user input are measured for different pipeline implementations in typical BCI applications with realistic parameter settings. We show that BCIs can benefit substantially from the proposed parallelization: firstly, by reducing the latency and secondly, by increasing the amount of recording channels and signal features that can be used for decoding beyond the amount which can be handled by a single thread. The proposed software architecture provides a simple, yet flexible solution for BCI applications.

  16. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain.

    Science.gov (United States)

    Kaneko, Naoko; Marín, Oscar; Koike, Masato; Hirota, Yuki; Uchiyama, Yasuo; Wu, Jane Y; Lu, Qiang; Tessier-Lavigne, Marc; Alvarez-Buylla, Arturo; Okano, Hideyuki; Rubenstein, John L R; Sawamoto, Kazunobu

    2010-07-29

    In the long-range neuronal migration of adult mammals, young neurons travel from the subventricular zone to the olfactory bulb, a long journey (millimeters to centimeters, depending on the species). How can these neurons migrate through the dense meshwork of neuronal and glial processes of the adult brain parenchyma? Previous studies indicate that young neurons achieve this by migrating in chains through astrocytic tunnels. Here, we report that young migrating neurons actively control the formation and maintenance of their own migration route. New neurons secrete the diffusible protein Slit1, whose receptor, Robo, is expressed on astrocytes. We show that the Slit-Robo pathway is required for morphologic and organizational changes in astrocytes that result in the formation and maintenance of the astrocytic tunnels. Through this neuron-glia interaction, the new neurons regulate the formation of the astrocytic meshwork that is needed to enable their rapid and directional migration in adult brain.

  17. Dogs cannot bark: event-related brain responses to true and false negated statements as indicators of higher-order conscious processing.

    Science.gov (United States)

    Herbert, Cornelia; Kübler, Andrea

    2011-01-01

    The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level) and prime-target expressions (word level). Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences), target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients.

  18. Business change process, creativity and the brain: a practitioner's reflective account with suggestions for future research.

    Science.gov (United States)

    Yeats, Rowena M; Yeats, Martyn F

    2007-11-01

    Resolution of a critical organizational problem requires the use of carefully selected techniques. This is the work of a management consultant: facilitating a business change process in an organizational setting. Here, an account is provided of a practitioner's reflections on one such case study that demonstrates a structure for a business change process. The reflective account highlights certain affective states and social behaviors that were extracted from participants during the business change process. These affective states and social behaviors are mediated by specific neural networks in the brain that are activated during organizational intervention. By breaking down the process into the affective states and social behaviors highlighted, cognitive neuroscience can be a useful tool for investigating the neural substrates of such intervention. By applying a cognitive neuroscience approach to examine organizational change, it is possible to converge on a greater understanding of the neural substrates of everyday social behavior.

  19. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.

    Science.gov (United States)

    Fallgatter, A J; Ehlis, A-C; Herrmann, M J; Hohoff, C; Reif, A; Freitag, C M; Deckert, J

    2010-07-01

    Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo-anteriorization (NGA) is a topographical event-related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.

  20. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb.

    Science.gov (United States)

    Cincotti, F; Pichiorri, F; Aricò, P; Aloise, F; Leotta, F; de Vico Fallani, F; Millán, J del R; Molinari, M; Mattia, D

    2012-01-01

    Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one-month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI-mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.

  1. Designing scheduling concept and computer support in the food processing industries

    NARCIS (Netherlands)

    van Donk, DP; van Wezel, W; Gaalman, G; Bititci, US; Carrie, AS

    1998-01-01

    Food processing industries cope with a specific production process and a dynamic market. Scheduling the production process is thus important in being competitive. This paper proposes a hierarchical concept for structuring the scheduling and describes the (computer) support needed for this concept.

  2. MEASUREMENT PROCESS OF SOFTWARE DEVELOPMENT PROJECTS FOR SUPPORTING STRATEGIC BUSINESS OBJECTIVES IN SOFTWARE DEVELOPING COMPANIES

    Directory of Open Access Journals (Sweden)

    Sandra Lais Pedroso

    2013-08-01

    Full Text Available Software developing companies work in a competitive market and are often challenged to make business decisions with impact on competitiveness. Models accessing maturity for software development processes quality, such as CMMI and MPS-BR, comprise process measurements systems (PMS. However, these models are not necessarily suitable to support business decisions, neither to achieve strategic goals. The objective of this work is to analyze how the PMS of software development projects could support business strategies for software developing companies. Results taken from this work show that PMS results from maturity models for software processes can be suited to help evaluating operating capabilities and supporting strategic business decisions.

  3. Development and validation of the Paediatric Care and Needs Scale (PCANS) for assessing support needs of children and youth with acquired brain injury.

    Science.gov (United States)

    Soo, Cheryl; Tate, Robyn L; Williams, Lindy; Waddingham, Skye; Waugh, Mary-Clare

    2008-07-01

    The Paediatric Care and Needs Scale (PCANS) is a newly developed scale that assesses support needs following childhood acquired brain injury (ABI). It yields three measures of support: overall, extent and intensity. The developmental process of the PCANS is described and concurrent and construct validity examined. In the validation study, 32 parents/caregivers of children with ABI aged 5-18 years completed the PCANS and other validating measures: Vineland Adaptive Behavior Scales (VABS), Functional Independence Measure for Children (Wee-FIM) and King's Outcome Scale of Childhood Head Injury (KOSCHI). VABS and Wee-FIM sub-scales examining similar and dissimilar domains to the PCANS were used to investigate convergent and divergent validity, respectively. Discriminant validity analysis used sub-groups dichotomized by VABS and KOSCHI data. Statistically significant correlation coefficients of moderate-to-strong magnitude were found between the PCANS support intensity score and most of the VABS, Wee-FIM and KOSCHI variables (r(s) = -0.46 to r(s) = -0.77, p VABS socialization vs PCANS psychosocial items, r(s) = -0.64, p VABS and KOSCHI scores. These findings provide preliminary evidence for the validity of the PCANS for assessing support needs after paediatric ABI.

  4. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42–47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility. PMID:28139694

  5. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42-47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility.

  6. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders.

    Science.gov (United States)

    Caria, Andrea; Venuti, Paola; de Falco, Simona

    2011-12-01

    Despite intersubject variability, dramatic impairments of socio-communicative skills are core features of autistic spectrum disorder (ASD). A deficit in the ability to express and understand emotions has often been hypothesized to be an important correlate of such impairments. Little is known about individuals with ASD's ability to sense emotions conveyed by nonsocial stimuli such as music. Music has been found to be capable of evoking and conveying strong and consistent positive and negative emotions in healthy subjects. The ability to process perceptual and emotional aspects of music seems to be maintained in ASD. Individuals with ASD and neurotypical (NT) controls underwent a single functional magnetic resonance imaging (fMRI) session while processing happy and sad music excerpts. Overall, fMRI results indicated that while listening to both happy and sad music, individuals with ASD activated cortical and subcortical brain regions known to be involved in emotion processing and reward. A comparison of ASD participants with NT individuals demonstrated decreased brain activity in the premotor area and in the left anterior insula, especially in response to happy music excerpts. Our findings shed new light on the neurobiological correlates of preserved and altered emotional processing in ASD.

  7. Neuroticism and the brain: a quantitative meta-analysis of neuroimaging studies investigating emotion processing.

    Science.gov (United States)

    Servaas, Michelle N; van der Velde, Jorien; Costafreda, Sergi G; Horton, Paul; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2013-09-01

    Neuroticism is a robust personality trait that constitutes a risk factor for mood disorders. Neuroimaging findings related to neuroticism have been inconsistent across studies and hardly integrated in order to construct a model of the underlying neural correlates of neuroticism. The aim of the current meta-analysis was to provide a quantitative summary of the literature, using a parametric coordinate-based meta-analysis (PCM) approach. Data were pooled for emotion processing tasks investigating the contrasts (negative>neutral) and (positive>neutral) to identify brain regions that are consistently associated with neuroticism across studies. Significant negative and positive correlations with neuroticism were found only for the contrast (negative>neutral) after multiple comparisons correction. Differences in brain activation were found to be associated with neuroticism during fear learning, anticipation of aversive stimuli and the processing and regulation of emotion. The relationship between neuroticism and these three psychological processes and their corresponding neural correlates is discussed. Furthermore, the meta-analytic findings are incorporated into a general model of emotion processing in neuroticism.

  8. Brain activity patterns induced by interrupting the cognitive processes with online advertising.

    Science.gov (United States)

    Rejer, Izabela; Jankowski, Jarosław

    2017-06-12

    As a result of the increasing role of online advertising and strong competition among advertisers, intrusive techniques are commonly used to attract web users' attention. Moreover, since marketing content is usually delivered to the target audience when they are performing typical online tasks, like searching for information or reading online content, its delivery interrupts the web user's current cognitive process. The question posed by many researchers in the field of online advertising is: how should we measure the influence of interruption of cognitive processes on human behavior and emotional state? Much research has been conducted in this field; however, most of this research has focused on monitoring activity in the simulated environment, or processing declarative responses given by users in prepared questionnaires. In this paper, a more direct real-time approach is taken, and the effect of the interruption on a web user is analyzed directly by studying the activity of his brain. This paper presents the results of an experiment that was conducted to find the brain activity patterns associated with interruptions of the cognitive process by showing internet advertisements during a text-reading task. Three specific aspects were addressed in the experiment: individual patterns, the consistency of these patterns across trials, and the intra-subject correlation of the individual patterns. Two main effects were observed for most subjects: a drop in activity in the frontal and prefrontal cortical areas across all frequency bands, and significant changes in the frontal/prefrontal asymmetry index.

  9. Massively parallel signal processing using the graphics processing unit for real-time brain-computer interface feature extraction

    Directory of Open Access Journals (Sweden)

    J. Adam Wilson

    2009-07-01

    Full Text Available The clock speeds of modern computer processors have nearly plateaued in the past five years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card (GPU was developed for real-time neural signal processing of a brain-computer interface (BCI. The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter, followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally-intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a CPU-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  10. Clustering the lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing

    Science.gov (United States)

    Crepaldi, Davide; Berlingeri, Manuela; Cattinelli, Isabella; Borghese, Nunzio A.; Luzzatti, Claudio; Paulesu, Eraldo

    2013-01-01

    Although it is widely accepted that nouns and verbs are functionally independent linguistic entities, it is less clear whether their processing recruits different brain areas. This issue is particularly relevant for those theories of lexical semantics (and, more in general, of cognition) that suggest the embodiment of abstract concepts, i.e., based strongly on perceptual and motoric representations. This paper presents a formal meta-analysis of the neuroimaging evidence on noun and verb processing in order to address this dichotomy more effectively at the anatomical level. We used a hierarchical clustering algorithm that grouped fMRI/PET activation peaks solely on the basis of spatial proximity. Cluster specificity for grammatical class was then tested on the basis of the noun-verb distribution of the activation peaks included in each cluster. Thirty-two clusters were identified: three were associated with nouns across different tasks (in the right inferior temporal gyrus, the left angular gyrus, and the left inferior parietal gyrus); one with verbs across different tasks (in the posterior part of the right middle temporal gyrus); and three showed verb specificity in some tasks and noun specificity in others (in the left and right inferior frontal gyrus and the left insula). These results do not support the popular tenets that verb processing is predominantly based in the left frontal cortex and noun processing relies specifically on temporal regions; nor do they support the idea that verb lexical-semantic representations are heavily based on embodied motoric information. Our findings suggest instead that the cerebral circuits deputed to noun and verb processing lie in close spatial proximity in a wide network including frontal, parietal, and temporal regions. The data also indicate a predominant—but not exclusive—left lateralization of the network. PMID:23825451

  11. Selective impairment of self body-parts processing in right brain-damaged patients.

    Science.gov (United States)

    Frassinetti, Francesca; Maini, Manuela; Benassi, Mariagrazia; Avanzi, Stefano; Cantagallo, Anna; Farnè, Alessandro

    2010-03-01

    To investigate whether the processing of the visual appearance of one's own body, that is the corporeal self is a unified or modular function we submitted eight right brain-damaged (RBD) patients and a group of fourteen age-matched neurologically healthy subjects, to a visual matching-to-sample task testing for corporeal self processing. If corporeal self processing is a unique function (i.e., body- and face-parts are processed by the same network), patients impaired in self body-parts (i.e., showing no self-advantage) should be impaired also in self face-parts; alternatively, if corporeal self processing is a modular function (i.e., body- and face-parts are processed by different networks), patients impaired in self body-parts should be unimpaired in self face-parts, unless the face-module is also damaged by the lesion. Results showed that healthy participants were more accurate in processing pictures representing their own as compared to other people's body- and face-parts, showing the so-called self-advantage. The patients' findings revealed a simple dissociation, in that patients who were impaired in the processing of self-related body-parts showed a preserved self-advantage when processing self-related face-parts, thus providing initial evidence of a modular representation of the corporeal self.

  12. Syntactic processing in the human brain: what we know, what we don't know, and a suggestion for how to proceed.

    Science.gov (United States)

    Fedorenko, Evelina; Nieto-Castañón, Alfonso; Kanwisher, Nancy

    2012-02-01

    For every claim in the neuroimaging literature about a particular brain region supporting syntactic processing, there exist other claims implicating the target region in different linguistic processes, and, in many cases, in non-linguistic cognitive processes (e.g., Blumstein, 2009). We argue that traditional group analysis methods in neuroimaging may obscure functional specificity because of inter-subject anatomical variability (Fedorenko & Kanwisher, 2009). In Fedorenko, Hsieh, Nieto-Castanon, Whitfield-Gabrieli, and Kanwisher (2010) we presented a functional localizer that allows quick and reliable identification of key language-sensitive regions in each individual brain. This approach enables pooling data from corresponding functional regions across subjects rather than from the same locations in stereotaxic space that may differ functionally due to inter-subject anatomical variability. In the current paper we demonstrate that the individual-subjects functional localization approach is superior to the traditional methods in its ability to distinguish among conditions in a brain region's response. This ability is at the core of all neuroimaging research and is critical for answering questions of functional specialization (e.g., does a brain region specialize for processing syntactic aspects of the linguistic signal), which is in turn essential for making inferences about the precise computations conducted in each brain region. Based on our results, we argue that supplementing existing methods with an individual-subjects functional localization approach may lead to a clearer picture of the neural basis of syntactic processing, as it has in some other domains, such as high-level vision (e.g., Kanwisher, 2010) and social cognition (e.g., Saxe & Kanwisher, 2003).

  13. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    Science.gov (United States)

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing.

    Science.gov (United States)

    Desroches, Amy S; Cone, Nadia E; Bolger, Donald J; Bitan, Tali; Burman, Douglas D; Booth, James R

    2010-10-14

    We explored the neural basis of spoken language deficits in children with reading difficulty, specifically focusing on the role of orthography during spoken language processing. We used functional magnetic resonance imaging (fMRI) to examine differences in brain activation between children with reading difficulties (aged 9-to-15 years) and age-matched children with typical achievement during an auditory rhyming task. Both groups showed activation in bilateral superior temporal gyri (BA 42 and 22), a region associated with phonological processing, with no significant between-group differences. Interestingly, typically achieving children, but not children with reading difficulties, showed activation of left fusiform cortex (BA 37), a region implicated in orthographic processing. Furthermore, this activation was significantly greater for typically achieving children compared to those with reading difficulties. These findings suggest that typical children automatically activate orthographic representations during spoken language processing, while those with reading difficulties do not. Follow-up analyses revealed that the intensity of the activation in the fusiform gyrus was associated with significantly stronger behavioral conflict effects in typically achieving children only (i.e., longer latencies to rhyming pairs with orthographically dissimilar endings than to those with identical orthographic endings; jazz-has vs. cat-hat). Finally, for reading disabled children, a positive correlation between left fusiform activation and nonword reading was observed, such that greater access to orthography was related to decoding ability. Taken together, the results suggest that the integration of orthographic and phonological processing is directly related to reading ability.

  15. Does CPOE support nurse-physician communication in the medication order process? A nursing perspective.

    Science.gov (United States)

    Saddik, Basema; Al-Mansour, Shaha

    2014-01-01

    The benefits of CPOE are many and have been recognised in the literature as important components for improving patient safety and clinician performance. However, there remain concerns about adverse effects CPOE systems may have on the medication order process and workflow processes. This study explores the perception of nurses regarding the CPOE support on nurse physician communication in the medication order process. A survey was developed measuring perceptions of CPOE features on workflow and nurse physician communication on a Likert scale. The majority of nurses felt that CPOE features supported the medication order process and perceived proper nurse physician communication. CPOE characteristics supported medication order processes and nurse physician communication although nurses reported additional work was required for follow up of physicians. Additional studies utilising in depth methods are recommended to fully understand medication order processes with further CPOE implementation.

  16. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    Science.gov (United States)

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.

  17. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    Science.gov (United States)

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target.

  18. Differences in Marital Satisfaction, Coping and Social Support following a Traumatic Brain Injury

    LENUS (Irish Health Repository)

    Carroll, Aine Dr.

    2009-01-01

    Objective: Adverse cognitive, emotional and behavioural sequelae of Traumatic Brain Injury (TBI) are commonly noted by family members. These sequelae can adversely impact on marital and family relationships. The aim of this study is to examine marital and relationship satisfaction following a TBI amongst patients and partners. Design: A questionnaire based postal survey was used to investigate relationship and marital satisfaction. Participants: Thirty four participants (14 male; 20 female), ranging in age from 25-68 years ( = 44 years, SD 11 years), took part in this study. Sixteen had sustained a TBI and eighteen were partners of patients with TBI. Participants with TBI who were inpatients at the National Rehabilitation Hospital (NRH) and their partners were invited to participate in the study. Outcome Measures: The Marital Satisfaction Questionnaire (MSI-R) was used to examine marital and relationship satisfaction. Results: Both patients and partners reported relationship difficulties following brain injury (z = -3.078, p < .05 patients; z = 2.699, p < .05 partners). Conclusion: This study highlights the significant impact of TBI on relationships for both the TBI survivor and their partners. Implications for interventions in neuropsychological rehabilitation are discussed.

  19. Practical support for Lean Six Sigma software process definition using IEEE software engineering standards

    CERN Document Server

    Land, Susan K; Walz, John W

    2012-01-01

    Practical Support for Lean Six Sigma Software Process Definition: Using IEEE Software Engineering Standards addresses the task of meeting the specific documentation requirements in support of Lean Six Sigma. This book provides a set of templates supporting the documentation required for basic software project control and management and covers the integration of these templates for their entire product development life cycle. Find detailed documentation guidance in the form of organizational policy descriptions, integrated set of deployable document templates, artifacts required in suppo

  20. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  1. Modeling and Supporting the Authoring Process of Multimedia Simulation Based Educational Software: A Knowledge Engineering Approach.

    Science.gov (United States)

    Kuyper, Michiel; de Hoog, Robert; de Jong, Ton

    2001-01-01

    Discussion of support for authoring educational software focuses on a shift from attention on activities to products, and describes the SIMQUEST authoring system for designing and creating simulation-based multimedia learning environments that include support for the discovery process of the learner consisting of explanations, assignments, a…

  2. Optimization-based decision support systems for planning problems in processing industries

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    Summary Optimization-based decision support systems for planning problems in processing industries Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in practice. The

  3. Optimization-based decision support systems for planning problems in processing industries

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    Summary Optimization-based decision support systems for planning problems in processing industries Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in practice. The tremendo

  4. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    Science.gov (United States)

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  5. Optimization-based decision support systems for planning problems in processing industries

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    Summary Optimization-based decision support systems for planning problems in processing industries Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in practice. The tremendo

  6. Supporting the Thesis Writing Process of International Research Students through an Ongoing Writing Group

    Science.gov (United States)

    Li, Linda Y.; Vandermensbrugghe, Joelle

    2011-01-01

    Evidence from research suggests writing support is particularly needed for international research students who have to tackle the challenges of thesis writing in English as their second language in Western academic settings. This article reports the development of an ongoing writing group to support the thesis writing process of international…

  7. 75 FR 16820 - Delegated Processing for Certain 202 Supportive Housing for the Elderly Projects

    Science.gov (United States)

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT Delegated Processing for Certain 202 Supportive Housing for the Elderly Projects... 202 Supportive Housing for the Elderly projects. OMB Approval Number: 2502-New. Form Numbers:...

  8. Supporting the Thesis Writing Process of International Research Students through an Ongoing Writing Group

    Science.gov (United States)

    Li, Linda Y.; Vandermensbrugghe, Joelle

    2011-01-01

    Evidence from research suggests writing support is particularly needed for international research students who have to tackle the challenges of thesis writing in English as their second language in Western academic settings. This article reports the development of an ongoing writing group to support the thesis writing process of international…

  9. Educational Support System for Experiments Involving Construction of Sound Processing Circuits

    Science.gov (United States)

    Takemura, Atsushi

    2012-01-01

    This paper proposes a novel educational support system for technical experiments involving the production of practical electronic circuits for sound processing. To support circuit design and production, each student uses a computer during the experiments, and can learn circuit design, virtual circuit making, and real circuit making. In the…

  10. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing.

    Science.gov (United States)

    Stevenson, Ryan A; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Camarata, Stephen; Wallace, Mark T

    2016-07-01

    A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Construction of intelligent decision support system in control of gas compression process

    Directory of Open Access Journals (Sweden)

    Леонид Михайлович Замиховский

    2015-04-01

    Full Text Available The necessity to construct the intelligent decision support systems (IDSS in the control of the gas compression process with inclusion in structure of the training module is substantiated. А block diagram of human-computer interaction in the system "Dispatcher - IDSS - ASC GCU - CS" is shown, and the functions of the separate blocks of the intellectual decision support system in the control of the gas compression process are defined

  12. Nordion/Ontario Hydro programs to support the growth of gamma processing

    Science.gov (United States)

    Bedward, D. A.; MacMillan, A. K.

    1993-07-01

    Over the past twenty years, Nordion International Inc. and Ontario Hydro have worked together to become the world's leading provider of products and services to support the gamma processing community. This paper details the abilities of these two companies to meet the current needs of the gamma irradiation industry. More importantly, it details their commitment to support the future growth and stability of gamma processing through both technical and financial assistance programs.

  13. Emotion and the processing of symbolic gestures: an event-related brain potential study

    Science.gov (United States)

    Flaisch, Tobias; Häcker, Frank; Renner, Britta

    2011-01-01

    The present study used event-related brain potentials to examine the hypothesis that emotional gestures draw attentional resources at the level of distinct processing stages. Twenty healthy volunteers viewed pictures of hand gestures with negative (insult) and positive (approval) emotional meaning as well as neutral control gestures (pointing) while dense sensor event-related potentials (ERPs) were recorded. Emotion effects were reflected in distinct ERP modulations in early and later time windows. Insult gestures elicited increased P1, early posterior negativity (EPN) and late positive potential (LPP) components as compared to neutral control gestures. Processing of approval gestures was associated with an increased P1 wave and enlarged EPN amplitudes during an early time window, while the LPP amplitude was not significantly modulated. Accordingly, negative insult gestures appear more potent than positive approval gestures in inducing a heightened state of attention during processing stages implicated in stimulus recognition and focused attention. PMID:20212003

  14. Oscillatory brain dynamics associated with the automatic processing of emotion in words.

    Science.gov (United States)

    Wang, Lin; Bastiaansen, Marcel

    2014-10-01

    This study examines the automaticity of processing the emotional aspects of words, and characterizes the oscillatory brain dynamics that accompany this automatic processing. Participants read emotionally negative, neutral and positive nouns while performing a color detection task in which only perceptual-level analysis was required. Event-related potentials and time frequency representations were computed from the concurrently measured EEG. Negative words elicited a larger P2 and a larger late positivity than positive and neutral words, indicating deeper semantic/evaluative processing of negative words. In addition, sustained alpha power suppressions were found for the emotional compared to neutral words, in the time range from 500 to 1000ms post-stimulus. These results suggest that sustained attention was allocated to the emotional words, whereas the attention allocated to the neutral words was released after an initial analysis. This seems to hold even when the emotional content of the words is task-irrelevant.

  15. Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development

    DEFF Research Database (Denmark)

    Edwards, Alistair V G; Schwämmle, Veit; Larsen, Martin Røssel

    2014-01-01

    UNLABELLED: Brain development is a process requiring precise control of many different cell types. One method to achieve this is through specific and temporally regulated modification of proteins in order to alter structure and function. Post-translational modification (PTM) of proteins is known...... to have wide-ranging and substantial effects on cellular function, both as part of signalling network modulation and more directly by modifying the function of key proteins. In this study, we show that PTM regulation is differentially targeted at different areas of the proteome, and that cytoskeletal...... proteins involved in neuronal process extension and maintenance are both more heavily modified and more frequently regulated at a PTM level. This suggests a clear role not only for PTMs in these processes, but possibly also for heavy protein modification in general. BIOLOGICAL SIGNIFICANCE: This study...

  16. Processing of global and local properties——An analysis with event-related brain potentials

    Institute of Scientific and Technical Information of China (English)

    韩世辉; 陈霖

    1996-01-01

    The different processing of global and local properties of compound visual stimuli was studied with event-related brain potentials (ERPs) in the present experiment. It was found that, compared with the identification of global properties, the discrimination of local properties elicited longer RTs, lower accuracies, increased amplitudes of P1, decreased amplitudes of N1, and longer latencies of N2 and P3. The conflict of global and local properties increased the amplitudes of P2, decreased the amplitudes of P3, and prolonged latencies of N2 and P3. These results indicated that the advantage of global processing occurs at an early perceptual stage, and the attentional mechanisms for global and local processing may be different.

  17. Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control.

    Science.gov (United States)

    Golub, Matthew D; Chase, Steven M; Batista, Aaron P; Yu, Byron M

    2016-04-01

    Sensorimotor control engages cognitive processes such as prediction, learning, and multisensory integration. Understanding the neural mechanisms underlying these cognitive processes with arm reaching is challenging because we currently record only a fraction of the relevant neurons, the arm has nonlinear dynamics, and multiple modalities of sensory feedback contribute to control. A brain-computer interface (BCI) is a well-defined sensorimotor loop with key simplifying advantages that address each of these challenges, while engaging similar cognitive processes. As a result, BCI is becoming recognized as a powerful tool for basic scientific studies of sensorimotor control. Here, we describe the benefits of BCI for basic scientific inquiries and review recent BCI studies that have uncovered new insights into the neural mechanisms underlying sensorimotor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Model-based approaches to support process improvement in complex product development

    OpenAIRE

    Wynn, David C.

    2007-01-01

    The performance of product development processes is important to the commercial success of new products. The improvement of these processes is thus a strategic imperative for many engineering companies — the aero-engine is one example of a complex product for which market pressures necessitate ever-shorter development times. This thesis argues that process modelling and simulation can support the improvement of complex product development processes. A literature review identified that desi...

  19. Functional neurology of a brain system: a 3D olfactory bulb model to process natural odorants.

    Science.gov (United States)

    Migliore, Michele; Cavarretta, Francesco; Hines, Michael L; Shepherd, Gordon M

    2013-01-01

    The network of interactions between mitral and granule cells in the olfactory bulb is a critical step in the processing of odor information underlying the neural basis of smell perception. We are building the first computational model in 3 dimensions of this network in order to analyze the rules for connectivity and function within it. The initial results indicate that this network can be modeled to simulate experimental results on the activation of the olfactory bulb by natural odorants, providing a much more powerful approach for 3D simulation of brain neurons and microcircuits.

  20. Critical issues in state-of-the-art brain-computer interface signal processing.

    Science.gov (United States)

    Krusienski, Dean J; Grosse-Wentrup, Moritz; Galán, Ferran; Coyle, Damien; Miller, Kai J; Forney, Elliott; Anderson, Charles W

    2011-04-01

    This paper reviews several critical issues facing signal processing for brain-computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation.

  1. Differential activation of the amygdala and the 'social brain' during fearful face-processing in Asperger Syndrome.

    Science.gov (United States)

    Ashwin, Chris; Baron-Cohen, Simon; Wheelwright, Sally; O'Riordan, Michelle; Bullmore, Edward T

    2007-01-01

    Impaired social cognition is a core feature of autism. There is much evidence showing people with autism use a different cognitive style than controls for face-processing. We tested if people with autism would show differential activation of social brain areas during a face-processing task. Thirteen adults with high-functioning autism or Asperger Syndrome (HFA/AS) and 13 matched controls. We used fMRI to investigate 'social brain' activity during perception of fearful faces. We employed stimuli known to reliably activate the amygdala and other social brain areas, and ROI analyses to investigate brain areas responding to facial threat as well as those showing a linear response to varying threat intensities. We predicted: (1) the HFA/AS group would show differential activation (as opposed to merely deficits) of the social brain compared to controls and (2) that social brain areas would respond to varied intensity of fear in the control group, but not the HFA/AS group. Both predictions were confirmed. The controls showed greater activation in the left amygdala and left orbito-frontal cortex, while the HFA/AS group showed greater activation in the anterior cingulate gyrus and superior temporal cortex. The control group also showed varying responses in social brain areas to varying intensities of fearful expression, including differential activations in the left and right amygdala. This response in the social brain was absent in the HFA/AS group. HFA/AS are associated with different patterns of activation of social brain areas during fearful emotion processing, and the absence in the HFA/AS brain of a response to varying emotional intensity.

  2. Individual reactions to high involvement work processes: investigating the role of empowerment and perceived organizational support.

    Science.gov (United States)

    Butts, Marcus M; Vandenberg, Robert J; DeJoy, David M; Schaffer, Bryan S; Wilson, Mark G

    2009-04-01

    This study sought to understand how high involvement work processes (HIWP) are processed at the employee level. Using structural equation modeling techniques, the authors tested and supported a model in which psychological empowerment mediated the effects of HIWP on job satisfaction, organizational commitment, job performance, and job stress. Furthermore, perceived organizational support (POS) was hypothesized to moderate the relationships between empowerment and these outcomes. With exception for the empowerment-job satisfaction association, support was found for our predictions. Future directions for research and the practical implications of our findings for both employees and organizations are discussed.

  3. Needs for everyday life support for brain tumour patients' relatives: systematic literature review

    DEFF Research Database (Denmark)

    Madsen, Karina; Poulsen, H S

    2011-01-01

    . The relatives lacked information about how to provide day-to-day care and how to manage psychoses and neuropsychiatric problems at home. Likewise, they needed help from the professionals to talk with each other about potentially reduced life expectancy. Most relatives appeared to value specialist nurse support...

  4. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  5. Face and location processing in children with early unilateral brain injury.

    Science.gov (United States)

    Paul, Brianna; Appelbaum, Mark; Carapetian, Stephanie; Hesselink, John; Nass, Ruth; Trauner, Doris; Stiles, Joan

    2014-07-01

    Human visuospatial functions are commonly divided into those dependent on the ventral visual stream (ventral occipitotemporal regions), which allows for processing the 'what' of an object, and the dorsal visual stream (dorsal occipitoparietal regions), which allows for processing 'where' an object is in space. Information about the development of each of the two streams has been accumulating, but very little is known about the effects of injury, particularly very early injury, on this developmental process. Using a set of computerized dorsal and ventral stream tasks matched for stimuli, required response, and difficulty (for typically-developing individuals), we sought to compare the differential effects of injury to the two systems by examining performance in individuals with perinatal brain injury (PBI), who present with selective deficits in visuospatial processing from a young age. Thirty participants (mean=15.1 years) with early unilateral brain injury (15 right hemisphere PBI, 15 left hemisphere PBI) and 16 matched controls participated. On our tasks children with PBI performed more poorly than controls (lower accuracy and longer response times), and this was particularly prominent for the ventral stream task. Lateralization of PBI was also a factor, as the dorsal stream task did not seem to be associated with lateralized deficits, with both PBI groups showing only subtle decrements in performance, while the ventral stream task elicited deficits from RPBI children that do not appear to improve with age. Our findings suggest that early injury results in lesion-specific visuospatial deficits that persist into adolescence. Further, as the stimuli used in our ventral stream task were faces, our findings are consistent with what is known about the neural systems for face processing, namely, that they are established relatively early, follow a comparatively rapid developmental trajectory (conferring a vulnerability to early insult), and are biased toward the right

  6. Altered brain processing of decision-making in healthy first-degree biological relatives of suicide completers.

    Science.gov (United States)

    Ding, Y; Pereira, F; Hoehne, A; Beaulieu, M-M; Lepage, M; Turecki, G; Jollant, F

    2016-12-13

    Suicidal behavior is heritable, with the transmission of risk being related to the transmission of vulnerability traits. Previous studies suggest that risky decision-making may be an endophenotype of suicide. Here, we aimed at investigating brain processing of decision-making in relatives of suicide completers in order to shed light on heritable mechanisms of suicidal vulnerability. Seventeen healthy first-degree biological relatives of suicide completers with no personal history of suicidal behavior, 16 relatives of depressed patients without any personal or family history of suicidal behavior, and 19 healthy controls were recruited. Functional 3 T magnetic resonance imaging scans were acquired while participants underwent the Iowa Gambling Task, an economic decision-making test. Whole-brain analyses contrasting activations during risky vs safe choices were conducted with AFNI and FSL. Individuals with a family history of suicide in comparison to control groups showed altered contrasts in left medial orbitofrontal cortex, and right dorsomedial prefrontal cortex. This pattern was different from the neural basis of familial depression. Moreover, controls in comparison to relatives showed increased contrast in several regions including the post-central gyrus, posterior cingulate and parietal cortices, and cerebellum (culmen) in familial suicide; and inferior parietal, temporal, occipital, anteromedial and dorsolateral prefrontal cortices, and cerebellum (vermis) in familial depression. These findings most likely represent a complex combination of vulnerability and protective mechanisms in relatives. They also support a significant role for deficient risk processing, and ventral and dorsal prefrontal cortex functioning in the suicidal diathesis.Molecular Psychiatry advance online publication, 13 December 2016; doi:10.1038/mp.2016.221.

  7. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.

    Science.gov (United States)

    Sidlauskaite, Justina; Wiersema, Jan R; Roeyers, Herbert; Krebs, Ruth M; Vassena, Eliana; Fias, Wim; Brass, Marcel; Achten, Eric; Sonuga-Barke, Edmund

    2014-09-01

    The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement.

  8. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Masahiro; Yamauchi, Syuichi [Yamaguchi Univ., Ube (Japan). Hospital; Wu, Jing-Long (and others)

    2001-06-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  9. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    Science.gov (United States)

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness.

  10. Brain process for perception of the "out of the body" tactile illusion for virtual object interaction.

    Science.gov (United States)

    Lee, Hye Jin; Lee, Jaedong; Kim, Chi Jung; Kim, Gerard J; Kim, Eun-Soo; Whang, Mincheol

    2015-04-01

    "Out of the body" tactile illusion refers to the phenomenon in which one can perceive tactility as if emanating from a location external to the body without any stimulator present there. Taking advantage of such a tactile illusion is one way to provide and realize richer interaction feedback without employing and placing actuators directly at all stimulation target points. However, to further explore its potential, it is important to better understand the underlying physiological and neural mechanism. As such, we measured the brain wave patterns during such tactile illusion and mapped out the corresponding brain activation areas. Participants were given stimulations at different levels with the intention to create veridical (i.e., non-illusory) and phantom sensations at different locations along an external hand-held virtual ruler. The experimental data and analysis indicate that both veridical and illusory sensations involve, among others, the parietal lobe, one of the most important components in the tactile information pathway. In addition, we found that as for the illusory sensation, there is an additional processing resulting in the delay for the ERP (event-related potential) and involvement by the limbic lobe. These point to regarding illusion as a memory and recognition task as a possible explanation. The present study demonstrated some basic understanding; how humans process "virtual" objects and the way associated tactile illusion is generated will be valuable for HCI (Human-Computer Interaction).

  11. PerPos: a Translucent Positioning Middleware Supporting Adaptation of Internal Positioning Processes

    DEFF Research Database (Denmark)

    Jensen, Jakob Langdal; Schougaard, Kari Rye; Kjærgaard, Mikkel Baun;

    2010-01-01

    process. To address this problem this paper proposes a positioning middleware named PerPos that is translucent and adaptable, i.e., it supports both high- and low-level interaction. The PerPos middleware provides translucency with respect to the positioning process and allows programmatic definition...

  12. Defense Health Care: Acquisition Process for TRICARE’s Third Generation of Managed Care Support Contracts

    Science.gov (United States)

    2014-03-01

    Selection Team Roles and Responsibilities for TRICARE’s Contract Award Process 11 Figure 3: Timeline of Bid Protest Events for TRICARE’s North Region...14-195 TRICARE Managed Care Support Contracts Figure 2: Source Selection Team Roles and Responsibilities for TRICARE’s Contract Award Process

  13. Beyond the Process of Teaming: Administrative Support, Classroom Practices, and Student Learning.

    Science.gov (United States)

    Trimble, Susan B.; Peterson, Gary W.

    This paper examines the relationships among administrative support, interdisciplinary team functioning, classroom practices, and student outcomes. It is premised on the need to move beyond examinations of the team process and explore the effects of processes on student learning. The report is based on a systemic research project that studied 60…

  14. Development of a Reference Image Collection Library for Histopathology Image Processing, Analysis and Decision Support Systems Research.

    Science.gov (United States)

    Kostopoulos, Spiros; Ravazoula, Panagiota; Asvestas, Pantelis; Kalatzis, Ioannis; Xenogiannopoulos, George; Cavouras, Dionisis; Glotsos, Dimitris

    2017-01-12

    Histopathology image processing, analysis and computer-aided diagnosis have been shown as effective assisting tools towards reliable and intra-/inter-observer invariant decisions in traditional pathology. Especially for cancer patients, decisions need to be as accurate as possible in order to increase the probability of optimal treatment planning. In this study, we propose a new image collection library (HICL-Histology Image Collection Library) comprising 3831 histological images of three different diseases, for fostering research in histopathology image processing, analysis and computer-aided diagnosis. Raw data comprised 93, 116 and 55 cases of brain, breast and laryngeal cancer respectively collected from the archives of the University Hospital of Patras, Greece. The 3831 images were generated from the most representative regions of the pathology, specified by an experienced histopathologist. The HICL Image Collection is free for access under an academic license at http://medisp.bme.teiath.gr/hicl/ . Potential exploitations of the proposed library may span over a board spectrum, such as in image processing to improve visualization, in segmentation for nuclei detection, in decision support systems for second opinion consultations, in statistical analysis for investigation of potential correlations between clinical annotations and imaging findings and, generally, in fostering research on histopathology image processing and analysis. To the best of our knowledge, the HICL constitutes the first attempt towards creation of a reference image collection library in the field of traditional histopathology, publicly and freely available to the scientific community.

  15. Predictors of Memory and Processing Speed Dysfunctions after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    William Winardi

    2014-01-01

    Full Text Available Background. The aims of this study were to evaluate the predictive value of admission Glasgow Coma Scale (GCS scores, duration of unconsciousness, neurosurgical intervention, and countercoup lesion on the impairment of memory and processing speed functions six months after a traumatic brain injury (TBI based on a structural equation modeling. Methods. Thirty TBI patients recruited from Neurosurgical Department at the Kaohsiung Medical University Hospital were administered the Wechsler Memory Scale-III (WMS-III and the Wechsler Adult Intelligence Scale-III processing speed index to evaluate the memory and processing speed functions. Results. The study showed that GCS scores accounted for 40% of the variance in memory/processing speed. No significant predictive effects were found for the other three variables. GCS classification at the time of TBI seems to correspond moderately to the severity of memory/processing speed dysfunctions. Conclusions. The present study demonstrated that admission GCS score is a robust predictor of memory/processing speed dysfunctions after TBI. The results should be replicated with a large sample of patients with TBI, or be extended by examining other potential clinical predictors.

  16. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward

    Science.gov (United States)

    2017-01-01

    Abstract Animal models of decision-making rely on an animal’s motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice. PMID:28466068

  17. Needs for everyday life support for brain tumour patients' relatives: systematic literature review

    DEFF Research Database (Denmark)

    Madsen, Karina; Poulsen, H S

    2011-01-01

    The purpose of this paper is to undertake a review of the everyday lives and the need for support felt by relatives of adults with malignant cerebral glioma. Through electronic literature searches we identified studies with qualitative, quantitative or mixed method designs. Fourteen studies were...... identified. They indicated that a relative often assumes the caregiver's role, taking over responsibility for the patient's illness and survival, and that the relative is often overwhelmingly exhausted by this task. The ever-changing circumstances left the relatives fearful, anxious and apprehensive....... The relatives lacked information about how to provide day-to-day care and how to manage psychoses and neuropsychiatric problems at home. Likewise, they needed help from the professionals to talk with each other about potentially reduced life expectancy. Most relatives appeared to value specialist nurse support...

  18. A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors.

    Science.gov (United States)

    Zarinbal, M; Fazel Zarandi, M H; Turksen, I B; Izadi, M

    2015-10-01

    The focus of this paper is diagnosing and differentiating Astrocytomas in MRI scans by developing an interval Type-2 fuzzy automated tumor detection system. This system consists of three modules: working memory, knowledge base, and inference engine. An image processing method with three steps of preprocessing, segmentation and feature extraction, and approximate reasoning is used in inference engine module to enhance the quality of MRI scans, segment them into desired regions, extract the required features, and finally diagnose and differentiate Astrocytomas. However, brain tumors have different characteristics in different planes, so considering one plane of patient's MRI scan may cause inaccurate results. Therefore, in the developed system, several consecutive planes are processed. The performance of this system is evaluated using 95 MRI scans and the results show good improvement in diagnosing and differentiating Astrocytomas.

  19. Whiteboard Icons to Support the Blood-Test Process in an Emergency Department

    DEFF Research Database (Denmark)

    Torkilsheyggi, Arnvør Martinsdottir á; Hertzum, Morten; From, Gustav

    2013-01-01

    The competent treatment of emergency department (ED) patients requires an effective and efficient process for handling laboratory tests such as blood tests. This study investigates how ED clinicians go about the process, from ordering blood tests to acknowledging their results and, specifically......, assesses the use of whiteboard icons to support this process. On the basis of observation and interviews we find that the blood-test process is intertwined with multiple other temporal patterns in ED work. The whiteboard icons, which indicate four temporally distinct steps in the blood-test process......, support the nurses in maintaining the flow of patients through the ED and the physicians in assessing test results at timeouts. The main results of this study are, however, that the blood-test process is temporally and collaboratively complex, that the whiteboard icons pass by most of this complexity...

  20. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    Science.gov (United States)

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-09-26

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  1. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  2. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Directory of Open Access Journals (Sweden)

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  3. Attention to language: novel MEG paradigm for registering involuntary language processing in the brain.

    Science.gov (United States)

    Shtyrov, Yury; Smith, Marie L; Horner, Aidan J; Henson, Richard; Nathan, Pradeep J; Bullmore, Edward T; Pulvermüller, Friedemann

    2012-09-01

    Previous research indicates that, under explicit instructions to listen to spoken stimuli or in speech-oriented behavioural tasks, the brain's responses to senseless pseudowords are larger than those to meaningful words; the reverse is true in non-attended conditions. These differential responses could be used as a tool to trace linguistic processes in the brain and their interaction with attention. However, as previous studies relied on explicit instructions to attend or ignore the stimuli, a technique for automatic attention modulation (i.e., not dependent on explicit instruction) would be more advantageous, especially when cooperation with instructions may not be guaranteed (e.g., neurological patients, children etc). Here we present a novel paradigm in which the stimulus context automatically draws attention to speech. In a non-attend passive auditory oddball sequence, rare words and pseudowords were presented among frequent non-speech tones of variable frequency and length. The low percentage of spoken stimuli guarantees an involuntary attention switch to them. The speech stimuli, in turn, could be disambiguated as words or pseudowords only in their end, at the last phoneme, after the attention switch would have already occurred. Our results confirmed that this paradigm can indeed be used to induce automatic shifts of attention to spoken input. At ~250ms after the stimulus onset, a P3a-like neuromagnetic deflection was registered to spoken (but not tone) stimuli indicating an involuntary attention shift. Later, after the word-pseudoword divergence point, we found a larger oddball response to pseudowords than words, best explained by neural processes of lexical search facilitated through increased attention. Furthermore, we demonstrate a breakdown of this orderly pattern of neurocognitive processes as a result of sleep deprivation. The new paradigm may thus be an efficient way to assess language comprehension processes and their dynamic interaction with those

  4. Face the hierarchy: ERP and oscillatory brain responses in social rank processing.

    Science.gov (United States)

    Breton, Audrey; Jerbi, Karim; Henaff, Marie-Anne; Cheylus, Anne; Baudouin, Jean-Yves; Schmitz, Christina; Krolak-Salmon, Pierre; Van der Henst, Jean-Baptiste

    2014-01-01

    Recognition of social hierarchy is a key feature that helps us navigate through our complex social environment. Neuroimaging studies have identified brain structures involved in the processing of hierarchical stimuli but the precise temporal dynamics of brain activity associated with such processing remains largely unknown. Here, we used electroencephalography to examine the effect of social hierarchy on neural responses elicited by faces. In contrast to previous studies, the key manipulation was that a hierarchical context was constructed, not by varying facial expressions, but by presenting neutral-expression faces in a game setting. Once the performance-based hierarchy was established, participants were presented with high-rank, middle-rank and low-rank player faces and had to evaluate the rank of each face with respect to their own position. Both event-related potentials and task-related oscillatory activity were investigated. Three main findings emerge from the study. First, the experimental manipulation had no effect on the early N170 component, which may suggest that hierarchy did not modulate the structural encoding of neutral-expression faces. Second, hierarchy significantly modulated the amplitude of the late positive potential (LPP) within a 400-700 ms time-window, with more a prominent LPP occurring when the participants processed the face of the highest-rank player. Third, high-rank faces were associated with the highest reduction of alpha power. Taken together these findings provide novel electrophysiological evidence for enhanced allocation of attentional resource in the presence of high-rank faces. At a broader level, this study brings new insights into the neural processing underlying social categorization.

  5. Value-added and Supporting - Inhibiting Factors for the Wet Processing of Coffee

    Directory of Open Access Journals (Sweden)

    Yuli Hariyati

    2014-01-01

    Full Text Available Coffee is one of the annual crops which are widely favored by coffee enjoyers. SidomulyoVillage is one of the fourth largest coffee producing villages in District of Silo with a land area of 180 ha in 2009. Coffee experiences a process of harvest and post harvest; one of the activities of post-harvest is coffee processing. Coffee processing is divided into two; wet processing and dry processing. The majority of farmers in SidomulyoVillage do dry processing; about 75% of farmers do dry processing and 25% of farmers do wet processing. This research was intended to: (1 to find out the value added coffee processed,(2 to identify supporting and inhibiting factors the farmers to do wet processing, and (3 to identify the income differences of farmers undertakingthe wet and dry processing. This research was carried out on purpose (purposive method in the Sidomulyo Village, District of Silo, by taking samples; that is the total sampling of farmer group of Sidomulyo 1. Data analysis used including value added, Force Field and financial analysis. The research results showed that: (1 value added of coffee beans processing turn to HS coffee was IDR 975,- whereas coffee beans processing turn to ose coffee was IDR 529,-. (2 The strongest supporting factor of wet processing was the ability to absorb workers, while the strongest inhibiting factor of wet processing was less adequate water facilities; (3 The coffee farmer incomescarrying out wet processing and dry processing were different. PerHa coffee income of wet processing was IDR 11,228,805,- and that of dry processing per ha was IDR 7,901,249,-

  6. Outcomes of social support programs in brain cancer survivors in an Australian community cohort: a prospective study

    Directory of Open Access Journals (Sweden)

    Khan F

    2013-03-01

    Full Text Available This study evaluated the impact of social support programs on improving cancer related disability, neuro-cognitive dysfunction and enhancing participation (quality of life (QoL, social reintegration in brain tumour (BT survivors. Participants (n=43 were recruited prospectively following definitive treatment in the community. Each BT survivor received an individualised social support program which comprised: face-to-face interview for education/counselling plus peer support program or community education/counselling sessions. The assessments were at baseline (T1, 6-week (T2 and 6-month (T3 post-intervention using validated questionnaires: depression anxiety stress scale (DASS, functional independence measure (FIM, perceived impact problem profile (PIPP, cancer rehabilitation evaluation system–short form (CARES-SF, a cancer survivor unmet needs measure (CaSUN, McGill quality of life questionnaire (MQOL and Brief COPE. Participants’ mean age was 53 years (range 31–72 years, the majority were female (72%; median time since BT diagnosis was 2.3 years and almost half (47% had high grade tumours. At T2, participants reported higher emotional well-being (DASS ‘anxiety’ and ‘stress’ subscales, p<0.05; FIM ‘cognition’ subscale, p<0.01, improved function (FIM ‘motor’ subscale, p<0.01 and higher QoL (CARES-SF ‘global’ score, p<0.05; MQOL ‘physical symptom’ subscale, p<0.05. At the T3 follow-up, most of these effects were maintained. The intervention effect for BT specific coping strategies emerged for the Brief COPE ‘self-distraction’ and ‘behavioural disengagement’ domains, (p<0.05 for both. There were no adverse effects reported. A post-treatment social support program can improve physical and cognitive function and enhancing overall QoL of BT survivors. Social support programs need further evaluation and should be encouraged by clinicians within cancer rehabilitative services.

  7. A Prototype for the Support of Integrated Software Process Development and Improvement

    Science.gov (United States)

    Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian

    An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.

  8. The impact of hunger on food cue processing: an event-related brain potential study.

    Science.gov (United States)

    Stockburger, Jessica; Schmälzle, Ralf; Flaisch, Tobias; Bublatzky, Florian; Schupp, Harald T

    2009-10-01

    The present study used event-related brain potentials to examine deprivation effects on visual attention to food stimuli at the level of distinct processing stages. Thirty-two healthy volunteers (16 females) were tested twice 1 week apart, either after 24 h of food deprivation or after normal food intake. Participants viewed a continuous stream of food and flower images while dense sensor ERPs were recorded. As revealed by distinct ERP modulations in relatively earlier and later time windows, deprivation affected the processing of food and flower pictures. Between 300 and 360 ms, food pictures were associated with enlarged occipito-temporal negativity and centro-parietal positivity in deprived compared to satiated state. Of main interest, in a later time window (approximately 450-600 ms), deprivation increased amplitudes of the late positive potential elicited by food pictures. Conversely, flower processing varied by motivational state with decreased positive potentials in the deprived state. Minimum-Norm analyses provided further evidence that deprivation enhanced visual attention to food cues in later processing stages. From the perspective of motivated attention, hunger may induce a heightened state of attention for food stimuli in a processing stage related to stimulus recognition and focused attention.

  9. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm.

    Science.gov (United States)

    Alluri, Vinoo; Toiviainen, Petri; Jääskeläinen, Iiro P; Glerean, Enrico; Sams, Mikko; Brattico, Elvira

    2012-02-15

    We investigated the neural underpinnings of timbral, tonal, and rhythmic features of a naturalistic musical stimulus. Participants were scanned with functional Magnetic Resonance Imaging (fMRI) while listening to a stimulus with a rich musical structure, a modern tango. We correlated temporal evolutions of timbral, tonal, and rhythmic features of the stimulus, extracted using acoustic feature extraction procedures, with the fMRI time series. Results corroborate those obtained with controlled stimuli in previous studies and highlight additional areas recruited during musical feature processing. While timbral feature processing was associated with activations in cognitive areas of the cerebellum, and sensory and default mode network cerebrocortical areas, musical pulse and tonality processing recruited cortical and subcortical cognitive, motor and emotion-related circuits. In sum, by combining neuroimaging, acoustic feature extraction and behavioral methods, we revealed the large-scale cognitive, motor and limbic brain circuitry dedicated to acoustic feature processing during listening to a naturalistic stimulus. In addition to these novel findings, our study has practical relevance as it provides a powerful means to localize neural processing of individual acoustical features, be it those of music, speech, or soundscapes, in ecological settings.

  10. Repeated head trauma is associated with smaller thalamic volumes and slower processing speed: the Professional Fighters' Brain Health Study.

    Science.gov (United States)

    Bernick, Charles; Banks, Sarah J; Shin, Wanyong; Obuchowski, Nancy; Butler, Sam; Noback, Michael; Phillips, Michael; Lowe, Mark; Jones, Stephen; Modic, Michael

    2015-08-01

    Cumulative head trauma may alter brain structure and function. We explored the relationship between exposure variables, cognition and MRI brain structural measures in a cohort of professional combatants. 224 fighters (131 mixed martial arts fighters and 93 boxers) participating in the Professional Fighters Brain Health Study, a longitudinal cohort study of licensed professional combatants, were recruited, as were 22 controls. Each participant underwent computerised cognitive testing and volumetric brain MRI. Fighting history including years of fighting and fights per year was obtained from self-report and published records. Statistical analyses of the baseline evaluations were applied cross-sectionally to determine the relationship between fight exposure variables and volumes of the hippocampus, amygdala, thalamus, caudate, putamen. Moreover, the relationship between exposure and brain volumes with cognitive function was assessed. Increasing exposure to repetitive head trauma measured by number of professional fights, years of fighting, or a Fight Exposure Score (FES) was associated with lower brain volumes, particularly the thalamus and caudate. In addition, speed of processing decreased with decreased thalamic volumes and with increasing fight exposure. Higher scores on a FES used to reflect exposure to repetitive head trauma were associated with greater likelihood of having cognitive impairment. Greater exposure to repetitive head trauma is associated with lower brain volumes and lower processing speed in active professional fighters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Supported employment and compensatory strategies for enhancing vocational outcome following traumatic brain injury.

    Science.gov (United States)

    Kreutzer, J S; Wehman, P; Morton, M V; Stonnington, H H

    1988-01-01

    Epidemiological research clearly indicates that traumatic head injury has reached epidemic proportions. Incidence rates for head injury are greater than those for cerebral palsy, multiple sclerosis, and spinal cord injury combined. Many victims suffer from long-term impairments in functional, neurological, medical, neuropsychological and linguistic status. Emotional and behavioural problems are common as well. Additionally, family problems often ensue as a consequence of the victim's dependency and concomitant emotional changes. Investigations of post-injury vocational status indicate that unemployment rates within the first 7 years post-injury range as high as 70% for those with moderate and severe injuries. Researchers have demonstrated that the emotional and neuropsychological changes arising from injury are the greatest contributors to reduced employability. Relatively high unemployment rates strongly suggest that traditional approaches to physical and vocational rehabilitation have been entirely inadequate. To complement existing services and enhance employment outcome, two approaches have been developed and refined for use with victims of head injury. Supported employment is a unique approach which assists the client to select, obtain and maintain suitable employment on the basis of his/her interests and abilities. Compensatory strategies have been developed to help the individual offset intellectual problems which would otherwise interfere with learning job skills and maintaining production levels. Often, compensatory strategies are used in the context of a comprehensive supported employment programme. The greater use of supported employment and compensatory strategies is likely to enhance employment outcomes for those with traumatic head injury. Nevertheless, additional research is needed to more clearly identify the types of techniques which work best for each unique set of problems.

  12. A service-oriented approach for flexible process support within enterprises: application on PLM systems

    Science.gov (United States)

    Hachani, Safa; Gzara, Lilia; Verjus, Hervé

    2013-02-01

    Manufacturing industries collaborating to develop new products need to implement an effective management of their design processes (DPs) and product information. Unfortunately, product lifecycle management (PLM) systems which are dedicated to support design activities are not efficient as it might be expected. Indeed, DPs are changing, emergent and non deterministic, due to the business environment under which they are carried out. PLM systems are currently based on workflow technology which does not support process agility. So, needs in terms of process support flexibility are necessary to facilitate the coupling with the environment reality. Furthermore, service-oriented approaches (SOA) enhances flexibility and adaptability of composed solutions. Systems based on SOA have the ability to inherently being evolvable. So, we can say that SOA can promote a support of flexible DPs. The aim of this work is to propose an alternative approach for flexible process support within PLM systems. The objective is to specify, design and implement business processes (BPs) in a very flexible way so that business changes can rapidly be considered in PLM solutions. Unlike existing approaches, the proposed one deal with a service-oriented perspectives rather than an activity-oriented one.

  13. Measuring information processing in a client with extreme agitation following traumatic brain injury using the Perceive, Recall, Plan and Perform System of Task Analysis.

    Science.gov (United States)

    Nott, Melissa T; Chapparo, Christine

    2008-09-01

    Agitation following traumatic brain injury is characterised by a heightened state of activity with disorganised information processing that interferes with learning and achieving functional goals. This study aimed to identify information processing problems during task performance of a severely agitated adult using the Perceive, Recall, Plan and Perform (PRPP) System of Task Analysis. Second, this study aimed to examine the sensitivity of the PRPP System to changes in task performance over a short period of rehabilitation, and third, to evaluate the guidance provided by the PRPP in directing intervention. A case study research design was employed. The PRPP System of Task Analysis was used to assess changes in task embedded information processing capacity during occupational therapy intervention with a severely agitated adult in a rehabilitation context. Performance is assessed on three selected tasks over a one-month period. Information processing difficulties during task performance can be clearly identified when observing a severely agitated adult following a traumatic brain injury. Processing skills involving attention, sensory processing and planning were most affected at this stage of rehabilitation. These processing difficulties are linked to established descriptions of agitated behaviour. Fluctuations in performance across three tasks of differing processing complexity were evident, leading to hypothesised relationships between task complexity, environment and novelty with information processing errors. Changes in specific information processing capacity over time were evident based on repeated measures using the PRPP System of Task Analysis. This lends preliminary support for its utility as an outcome measure, and raises hypotheses about the type of therapy required to enhance information processing in people with severe agitation. The PRPP System is sensitive to information processing changes in severely agitated adults when used to reassess performance

  14. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.

    Science.gov (United States)

    Berchicci, M; Pontifex, M B; Drollette, E S; Pesce, C; Hillman, C H; Di Russo, F

    2015-07-09

    The association between a fit body and a fit brain in children has led to a rise of behavioral and neuroscientific research. Yet, the relation of cardiorespiratory fitness on premotor neurocognitive preparation with early visual processing has received little attention. Here, 41 healthy, lower and higher fit preadolescent children were administered a modified version of the Eriksen flanker task while electroencephalography (EEG) and behavioral measures were recorded. Event-related potentials (ERPs) locked to the stimulus onset with an earlier than usual baseline (-900/-800 ms) allowed investigation of both the usual post-stimulus (i.e., the P1, N1 and P2) as well as the pre-stimulus ERP components, such as the Bereitschaftspotential (BP) and the prefrontal negativity (pN component). At the behavioral level, aerobic fitness was associated response accuracy, with higher fit children being more accurate than lower fit children. Fitness-related differences selectively emerged at prefrontal brain regions during response preparation, with larger pN amplitude for higher than lower fit children, and at early perceptual stages after stimulus onset, with larger P1 and N1 amplitudes in higher relative to lower fit children. Collectively, the results suggest that the benefits of being aerobically fit appear at the stage of cognitive preparation prior to stimulus presentation and the behavioral response during the performance of a task that challenges cognitive control. Further, it is likely that enhanced activity in prefrontal brain areas may improve cognitive control of visuo-motor tasks, allowing for stronger proactive inhibition and larger early allocation of selective attention resources on relevant external stimuli. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Human Immunodeficiency Virus-1 Alters Brain-derived Neurotrophic Factor Processing in neurons

    Science.gov (United States)

    Bachis, Alessia; Avdoshina, Valeriya; Zecca, Luigi; Parsadanian, Maia; Mocchetti, Italo

    2012-01-01

    The molecular mechanisms leading to synaptic simplification and neuronal apoptosis in human immunodeficiency virus type 1 (HIV) positive subjects are unknown. The HIV protein gp120 reduced the length of neuronal processes similarly to the proneurotrophin pro brain-derived neurotrophic factor (proBDNF). Intriguingly, the effects of both proBDNF and gp120 were blocked by inhibitors of the p75 neurotrophin receptor, suggesting that proBDNF and gp120 share a similar mechanism of neurotoxicity. Therefore, we tested the hypothesis that gp120 affects the release of proBDNF. Using rat primary neurons we observed that gp120 promotes a time-dependent intracellular and extracellular accumulation of proBDNF concomitantly with a decrease in mature BDNF. A similar imbalance in the ratio proBDNF/mature BDNF was confirmed in postmortem brains of HIV positive subjects cognitive and motor impaired. Therefore, it is conceivable to formulate the hypothesis that HIV neurotoxicity includes a gp120-mediated alteration of BDNF processing. To determine the cellular mechanism whereby gp120 produces an accumulation of proBDNF, we examined the levels of intracellular and extracellular enzymes that proteolytically cleave proBDNF, furin and tissue plasminogen, respectively. In rat neurons exposed to gp120, intracellular furin levels decreased prior to cell death whereas tissue plasminogen changed only during apoptosis. Our data suggest that HIV, through gp120, reduces proBDNF processing by affecting furin levels and therefore causes an altered balance between anti-apoptotic and pro-apoptotic neurotrophins. Our studies identify a new mechanism that may explain how HIV promotes neuronal injury. PMID:22787033

  16. Constrained Run-to-Run Optimization for Batch Process Based on Support Vector Regression Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.

  17. Utilizing product configuration systems for supporting the critical parts of the engineering processes

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    2016-01-01

    Engineering-To-Order (ETO) companies have to respond to increasing demands to provide highly customized and complex products with high quality at competitive prices. In order to respond to those challenges ETO companies have started to implement product configuration systems (PCS) to increase...... efficiency of the specification processes. As a result to complex products and processes in ETO companies, PCS are usually gradually implemented where only subsets of the products are included to support specific processes. However, a systematic way to identify and evaluate the products and the processes...... to be supported with the PCSs is not described in the current literature. This paper aims to pursue that research opportunity by presenting a framework, which aims to identifying the critical parts of the engineering processes in order to identify where it most beneficial to implement a PCSs and how to prioritize...

  18. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  19. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Soumya, I. [Department of E.I.E, GITAM University, Visakhapatnam (India); Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org [Department of E.C.E, K.L. University, Vaddeswaram, Green Fields, Guntur, Andhra Pradesh (India); Rama Koti Reddy, D. V. [Department of Instrumentation Engineering, College of Engineering, Andhra University, Visakhapatnam (India); Lay-Ekuakille, A. [Department of Innovation Engineering, University of Salento, Lecce (Italy)

    2015-03-15

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.

  20. Dynamic brain activation during processing of emotional intonation: influence of acoustic parameters, emotional valence, and sex.

    Science.gov (United States)

    Wildgruber, D; Pihan, H; Ackermann, H; Erb, M; Grodd, W

    2002-04-01

    Appreciation of the emotional tone of verbal utterances represents an important aspect of social life. It is still unsettled, however, which brain areas mediate processing of intonational information and whether the presumed right-sided superiority depends upon acoustic properties of the speech signal. Functional magnetic resonance imaging was used to disentangle brain activation associated with (i) extraction of specific acoustic cues and (ii) detection of specific emotional states. Stimulus material comprised pairs of emotionally intonated utterances, exclusively differing either in pitch range or in the length of stressed vowels. Hemodynamic responses showed a dynamic pattern of cerebral activation including sequenced bilateral responses of various cortical and subcortical structures. Activation associated with discrimination of emotional expressiveness predominantly emerged within the right inferior parietal lobule, within the bilateral mesiofrontal cortex and--with an asymmetry toward the right hemisphere--at the level of bilateral dorsolateral frontal cortex. Lateralization did not depend upon acoustic structure or emotional valence of stimuli. These findings might prove helpful in reconciling the controversial previous clinical and experimental data. (C)2002 Elsevier Science (USA).

  1. Effects of Informative and Confirmatory Feedback on Brain Activation During Negative Feedback Processing

    Directory of Open Access Journals (Sweden)

    Yeon-Kyoung eWoo

    2015-06-01

    Full Text Available The current study compared the effects of informative and confirmatory feedback on brain activation during negative feedback processing. For confirmatory feedback trials, participants were informed that they had failed the task, whereas informative feedback trials presented task relevant information along with the notification of their failure. Fourteen male undergraduates performed a series of spatial-perceptual tasks and received feedback while their brain activity was recorded. During confirmatory feedback trials, greater activations in the amygdala, dorsal anterior cingulate cortex, and the thalamus (including the habenular were observed in response to incorrect responses. These results suggest that confirmatory feedback induces negative emotional reactions to failure. In contrast, informative feedback trials elicited greater activity in the dorsolateral prefrontal cortex (DLPFC when participants experienced failure. Further psychophysiological interaction (PPI analysis revealed a negative coupling between the DLPFC and the amygdala during informative feedback relative to confirmatory feedback trials. These findings suggest that providing task-relevant information could facilitate implicit down-regulation of negative emotions following failure.

  2. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    Science.gov (United States)

    Soumya, I.; Zia Ur Rahman, M.; Rama Koti Reddy, D. V.; Lay-Ekuakille, A.

    2015-03-01

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.

  3. Fast PCA for processing calcium-imaging data from the brain of Drosophila melanogaster.

    Science.gov (United States)

    Strauch, Martin; Galizia, C Giovanni

    2012-04-30

    The calcium-imaging technique allows us to record movies of brain activity in the antennal lobe of the fruitfly Drosophila melanogaster, a brain compartment dedicated to information about odors. Signal processing, e.g. with source separation techniques, can be slow on the large movie datasets. We have developed an approximate Principal Component Analysis (PCA) for fast dimensionality reduction. The method samples relevant pixels from the movies, such that PCA can be performed on a smaller matrix. Utilising a priori knowledge about the nature of the data, we minimise the risk of missing important pixels. Our method allows for fast approximate computation of PCA with adaptive resolution and running time. Utilising a priori knowledge about the data enables us to concentrate more biological signals in a small pixel sample than a general sampling method based on vector norms. Fast dimensionality reduction with approximate PCA removes a computational bottleneck and leads to running time improvements for subsequent algorithms. Once in PCA space, we can efficiently perform source separation, e.g to detect biological signals in the movies or to remove artifacts.

  4. A Supply Chain Architecture Based on Multi-agent Systems to Support Decentralized Collaborative Processes

    Science.gov (United States)

    Hernández, Jorge E.; Poler, Raúl; Mula, Josefa

    In a supply chain management context, the enterprise architecture concept to efficiently support the collaborative processes among the supply chain members involved has been evolving. Each supply chain has an organizational structure that describes the hierarchical relationships among its members, ranging from centralized to decentralized organizations. From a decentralized perspective, each supply chain member is able to identify collaborative and non collaborative partners and the kind of information to be exchanged to support negotiation processes. The same concepts of organizational structure and negotiation rules can be applied to a multi-agent system. This paper proposes a novel supply chain architecture to support decentralized collaborative processes in supply chains by considering a multi-agent-based system modeling approach.

  5. Putting evaluation capacity building in context: Reflections on the Ontario Brain Institute's Evaluation Support Program.

    Science.gov (United States)

    King, Jean A

    2017-05-13

    This article, in three parts, reflects on the content of the six articles included in the forum. It begins with a description of the Evaluation Support Program, emphasizing its key attributes. Next, it raises two points regarding ECB theory: (1) the need to become clearer about the concepts and terms used to describe and study this phenomenon, and (2) the potential value of social science theory to understand ECB and improve its practice. The article concludes with practical ideas for improving ECB: (1) framing it as an educative act, which assigns the evaluator the critical role of evaluation teacher/coach; and (2) the importance of never assuming that an ECB effort begins in unchartered territory, but rather that it builds on people's knowledge, skills, attitudes, and previous experiences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. How children process over-regularizations: evidence from event-related brain potentials.

    Science.gov (United States)

    Clahsen, Harald; Lück, Monika; Hahne, Anja

    2007-08-01

    This study examines the mental processes involved in children's on-line recognition of inflected word forms using event-related potentials (ERPs). Sixty children in three age groups (20 six- to seven-year-olds, 20 eight- to nine-year-olds, 20 eleven- to twelve-year-olds) and 23 adults (tested in a previous study) listened to sentences containing correct or incorrect German noun plural forms. In the two older child groups, as well as in the adult group, over-regularized plural forms elicited brain responses that are characteristic of combinatorial (grammatical) violations. We also found that ERP components associated with language processing change from child to adult with respect to their onsets and their topography. The ERP violation effects obtained for over-regularizations suggest that children (aged eight years and above) and adults employ morphological computation for processing purposes, consistent with dual-mechanism models of inflection. The observed differences between children's and adults' ERP responses are argued to result from children's smaller lexicons and from slower and less efficient processing.

  7. Probing the brain substrates of cognitive processes responsible for context effects on recognition memory.

    Science.gov (United States)

    Vakil, Eli; Raz, Tal; Levy, Daniel A

    2010-09-01

    Context effects on episodic recognition memory involve separable contributions of target-context binding, additive familiarity, and configural constancy. Here we examine whether these factors reflect contributions of processes attributed to different brain substrates. First, we challenged frontal and medial temporal lobe-based cognitive capacities in healthy young adults, employing divided attention tasks at encoding and retrieval, and extended retrieval delay, respectively. Target-context binding effects were specifically attenuated by delay, but not by divided attention. In a second experiment, older adults were identified by neuropsychological testing as having different levels of frontal and medial temporal lobe-dependent cognitive functions. Consistent with Experiment 1, older adults with low medial temporal lobe function exhibited reduced target-context binding effects, but levels of frontal function did not modulate binding effects. These findings indicate that unlike source memory, context effects on memory are associated with the integrity of medial temporal lobe-based processes but not with the integrity of frontal lobe-based processes. Our findings also emphasize the importance of discriminating between functional subgroups in the attempt to characterize memory processes in older adults.

  8. The role of event-related brain potentials in assessing central auditory processing.

    Science.gov (United States)

    Alain, Claude; Tremblay, Kelly

    2007-01-01

    The perception of complex acoustic signals such as speech and music depends on the interaction between peripheral and central auditory processing. As information travels from the cochlea to primary and associative auditory cortices, the incoming sound is subjected to increasingly more detailed and refined analysis. These various levels of analyses are thought to include low-level automatic processes that detect, discriminate and group sounds that are similar in physical attributes such as frequency, intensity, and location as well as higher-level schema-driven processes that reflect listeners' experience and knowledge of the auditory environment. In this review, we describe studies that have used event-related brain potentials in investigating the processing of complex acoustic signals (e.g., speech, music). In particular, we examine the role of hearing loss on the neural representation of sound and how cognitive factors and learning can help compensate for perceptual difficulties. The notion of auditory scene analysis is used as a conceptual framework for interpreting and studying the perception of sound.

  9. How sound symbolism is processed in the brain: a study on Japanese mimetic words.

    Science.gov (United States)

    Kanero, Junko; Imai, Mutsumi; Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols.

  10. Supporting the transformative process: experiences of cancer patients receiving integrative care.

    Science.gov (United States)

    Mulkins, Andrea L; Verhoef, Marja J

    2004-09-01

    The purpose of this study is to describe the essential features of the transformative experience among people living with cancer who are seeking integrative care and to identify factors supporting this process. It is hoped that after establishing the nature and meaning of this change or shift, one will better understand what is most meaningful in terms of providing appropriate care and support to patients seeking integrative care. An interpretational, qualitative approach guided sampling, data collection, and analysis with 11 individuals. A purposeful sample was drawn from selected integrative care facilities according to sociodemographics and type of cancer. Due to the complexity of this subject, second interviews were conducted with 5 participants to enhance the richness and validity of the data. The experience of transformation is a dynamic 4-stage process in which participants learned about themselves and became more aware of who they are and how they relate to the world. Participants found that 4 dimensions of integrative medicine played a fundamental role in supporting this process. These dimensions include (1) having access to a range of appropriate therapies to support individual journeys, (2) care that focuses on one's overall well-being, (3) control over cancer management, and (4) developing healing relationships with care providers. Although practitioners may not be able to create transformative experiences for patients, they may be able to establish and maintain conditions that support this process.

  11. FPGA implementation of hardware processing modules as coprocessors in brain-machine interfaces.

    Science.gov (United States)

    Wang, Dong; Hao, Yaoyao; Zhu, Xiaoping; Zhao, Ting; Wang, Yiwen; Chen, Yaowu; Chen, Weidong; Zheng, Xiaoxiang

    2011-01-01

    Real-time computation, portability and flexibility are crucial for practical brain-machine interface (BMI) applications. In this work, we proposed Hardware Processing Modules (HPMs) as a method for accelerating BMI computation. Two HPMs have been developed. One is the field-programmable gate array (FPGA) implementation of spike sorting based on probabilistic neural network (PNN), and the other is the FPGA implementation of neural ensemble decoding based on Kalman filter (KF). These two modules were configured under the same framework and tested with real data from motor cortex recording in rats performing a lever-pressing task for water rewards. Due to the parallelism feature of FPGA, the computation time was reduced by several dozen times, while the results are almost the same as those from Matlab implementations. Such HPMs provide a high performance coprocessor for neural signal computation.

  12. Fitting Curves by Fractal Interpolation: AN Application to the Quantification of Cognitive Brain Processes

    Science.gov (United States)

    Navascues, M. A.; Sebastian, M. V.

    Fractal interpolants of Barnsley are defined for any continuous function defined on a real compact interval. The uniform distance between the function and its approximant is bounded in terms of the vertical scale factors. As a general result, the density of the affine fractal interpolation functions of Barnsley in the space of continuous functions in a compact interval is proved. A method of data fitting by means of fractal interpolation functions is proposed. The procedure is applied to the quantification of cognitive brain processes. In particular, the increase in the complexity of the electroencephalographic signal produced by the execution of a test of visual attention is studied. The experiment was performed on two types of children: a healthy control group and a set of children diagnosed with an attention deficit disorder.

  13. Impact of Self-Explanation and Analogical Comparison Support on Learning Processes, Motivation, Metacognition, and Transfer

    Science.gov (United States)

    Richey, J. Elizabeth

    Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.

  14. Supporting users through integrated retrieval, processing, and distribution systems at the Land Processes Distributed Active Archive Center

    Science.gov (United States)

    Kalvelage, Thomas A.; Willems, Jennifer

    2005-01-01

    The US Geological Survey's EROS Data Center (EDC) hosts the Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC supports NASA's Earth Observing System (EOS), which is a series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. The EOS Data and Information Systems (EOSDIS) was designed to acquire, archive, manage and distribute Earth observation data to the broadest possible user community.

  15. Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, A.; Hartter, D.E.; Cho, G.; Bhasker, K.R.; Katz, B.M.; Edwards, M.D. (Univ. of Texas, Dallas (USA))

    1990-10-01

    We have previously demonstrated that hypothalmic slices obtained from adult male rats accumulate {sup 67}Cu by two ligand-dependent, saturable processes: a high and low affinity process. To further establish the generality of these uptake processes, we defined the ligand requirements and the saturation kinetics of {sup 67}Cu uptake by tissue slices obtained from the newborn hypothalamus (HT); adult male hypothalamus, hippocampus, cortex, median eminence, and caudate nucleus; hypothalamus and hippocampus of castrated (14 days) males and of pregnant (19 days) and ovariectomized (14 days) females. It was found that ionic {sup 67}Cu{sup 2}{sup +} was poorly taken up by newborn HT and adult caudate, complexation with His enhanced {sup 67}Cu uptake 3-4-fold, and complexation with albumin inhibited {sup 67}Cu uptake. These ligand requirements are identical to those we have previously shown for the adult HT. When {sup 67}Cu uptake was evaluated under conditions optimal for the high or the low affinity process, for each process the dose response curves generated from these various tissues were very similar. In addition, we assessed the uptake of both components of the CuHis2 complex by incubating tissues with {sup 67}Cu{sup 3 H}-His2 and found that the tissue ratio of {sup 67}Cu:{sup 3}H was a sigmoidal function of the concentration of the Cu complex such that at greater than 5 microM, the ratio was about 3-fold greater than the medium ratio; indicating preferential uptake of {sup 67}Cu relative to {sup 3}H-His. The changes in isotope ratios were observed in newborn HT and adult HT, as well as caudate. These similarities in the ligand requirements and saturation kinetics of {sup 67}Cu uptake establish the generality of these two processes of in vitro uptake of copper in the rat brain.

  16. Software Process Improvement: Supporting the Linking of the Software and the Business Strategies

    Science.gov (United States)

    Albuquerque, Adriano Bessa; Rocha, Ana Regina; Lima, Andreia Cavalcanti

    The market is becoming more and more competitive, a lot of products and services depend of the software product and the software is one of the most important assets, which influence the organizations’ businesses. Considering this context, we can observe that the companies must to deal with the software, developing or acquiring, carefully. One of the perspectives that can help to take advantage of the software, supporting effectively the business, is to invest on the organization’s software processes. This paper presents an approach to evaluate and improve the processes assets of the software organizations, based on internationally well-known standards and process models. This approach is supported by automated tools from the TABA Workstation and is part of a wider improvement strategy constituted of three layers (organizational layer, process execution layer and external entity layer). Moreover, this paper presents the experience of use and their results.

  17. Is the screening of product ideas supported by the NPD process design?

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    2007-01-01

    producing high and low-technology consumer products. Findings - Results reveal that the screening of product ideas is detached from the NPD process design, but significantly influenced by the market conditions facing companies. Research limitations/implications - To understand NPD in companies, NPD...... literature will benefit from knowledge of the process of implementing "best practices" of NPD. Companies follow guidelines, but how is the NPD process followed through? This paper supports the need for improved insight into the complexity of screening decisions as well as knowledge of the screening......Purpose - The purpose of this paper is to investigate whether the screening of product ideas is supported by the NPD (new product development) process design throughout the NPD phases. Design/methodology/approach - Data were collected with an internet survey questionnaire from 43 large companies...

  18. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  19. Federated Stream Processing Support for Real-Time Business Intelligence Applications

    Science.gov (United States)

    Botan, Irina; Cho, Younggoo; Derakhshan, Roozbeh; Dindar, Nihal; Haas, Laura; Kim, Kihong; Tatbul, Nesime

    In this paper, we describe the MaxStream federated stream processing architecture to support real-time business intelligence applications. MaxStream builds on and extends the SAP MaxDB relational database system in order to provide a federator over multiple underlying stream processing engines and databases. We show preliminary results on usefulness and performance of the MaxStream architecture on the SAP Sales and Distribution Benchmark.

  20. Effects of age, task performance, and structural brain development on face processing.

    Science.gov (United States)

    Cohen Kadosh, Kathrin; Johnson, Mark H; Dick, Frederic; Cohen Kadosh, Roi; Blakemore, Sarah-Jayne

    2013-07-01

    In this combined structural and functional MRI developmental study, we tested 48 participants aged 7-37 years on 3 simple face-processing tasks (identity, expression, and gaze task), which were designed to yield very similar performance levels across the entire age range. The same participants then carried out 3 more difficult out-of-scanner tasks, which provided in-depth measures of changes in performance. For our analysis we adopted a novel, systematic approach that allowed us to differentiate age- from performance-related changes in the BOLD response in the 3 tasks, and compared these effects to concomitant changes in brain structure. The processing of all face aspects activated the core face-network across the age range, as well as additional and partially separable regions. Small task-specific activations in posterior regions were found to increase with age and were distinct from more widespread activations that varied as a function of individual task performance (but not of age). Our results demonstrate that activity during face-processing changes with age, and these effects are still observed when controlling for changes associated with differences in task performance. Moreover, we found that changes in white and gray matter volume were associated with changes in activation with age and performance in the out-of-scanner tasks.

  1. Electrophysiological correlates of emotional face processing after mild traumatic brain injury in preschool children.

    Science.gov (United States)

    D'Hondt, Fabien; Lassonde, Maryse; Thebault-Dagher, Fanny; Bernier, Annie; Gravel, Jocelyn; Vannasing, Phetsamone; Beauchamp, Miriam H

    2017-02-01

    Evidence suggests that social skills are affected by childhood mild traumatic brain injury (mTBI), but the neural and affective substrates of these difficulties are still underexplored. In particular, nothing is known about consequences on the perception of emotional facial expressions, despite its critical role in social interactions and the importance of the preschool period in the development of this ability. This study thus aimed to investigate the electrophysiological correlates of emotional facial expressions processing after early mTBI. To this end, 18 preschool children (mean age 53 ± 8 months) who sustained mTBI and 15 matched healthy controls (mean age 55 ± 11 months) were presented with pictures of faces expressing anger, happiness, or no emotion (neutral) while event-related potentials (ERP) were recorded. The main results revealed that P1 amplitude was higher for happy faces than for angry faces, and that N170 latency was shorter for emotional faces than for neutral faces in the control group only. These findings suggest that preschool children who sustain mTBI do not present the early emotional effects that are observed in healthy preschool children at visuospatial and visual expertise stages. This study provides new evidence regarding the consequences of childhood mTBI on socioemotional processing, by showing alterations of emotional facial expressions processing, an ability known to underlie social competence and appropriate social interactions.

  2. Language/Culture Modulates Brain and Gaze Processes in Audiovisual Speech Perception

    Science.gov (United States)

    Hisanaga, Satoko; Sekiyama, Kaoru; Igasaki, Tomohiko; Murayama, Nobuki

    2016-01-01

    Several behavioural studies have shown that the interplay between voice and face information in audiovisual speech perception is not universal. Native English speakers (ESs) are influenced by visual mouth movement to a greater degree than native Japanese speakers (JSs) when listening to speech. However, the biological basis of these group differences is unknown. Here, we demonstrate the time-varying processes of group differences in terms of event-related brain potentials (ERP) and eye gaze for audiovisual and audio-only speech perception. On a behavioural level, while congruent mouth movement shortened the ESs’ response time for speech perception, the opposite effect was observed in JSs. Eye-tracking data revealed a gaze bias to the mouth for the ESs but not the JSs, especially before the audio onset. Additionally, the ERP P2 amplitude indicated that ESs processed multisensory speech more efficiently than auditory-only speech; however, the JSs exhibited the opposite pattern. Taken together, the ESs’ early visual attention to the mouth was likely to promote phonetic anticipation, which was not the case for the JSs. These results clearly indicate the impact of language and/or culture on multisensory speech processing, suggesting that linguistic/cultural experiences lead to the development of unique neural systems for audiovisual speech perception. PMID:27734953

  3. Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis

    Science.gov (United States)

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease. PMID:22347863

  4. Improving IT Service Management Processes: A Case Study on IT Service Support

    Science.gov (United States)

    Lahtela, Antti; Jäntti, Marko

    IT services and IT service management play a very important role in the today's IT industry. Software as service approach enables IT customers to focus on using the software while IT service providers take care of the installation, configuration, support and maintenance activities. Various process frameworks can be used to improve IT service management processes. The most widely used IT service management framework is the IT Infrastructure Library (ITIL) that provides best practices for IT service providers on how to design, manage and support IT services. Despite the IT service management process frameworks, implementing an effective service support interface between an IT service provider and an IT customer is a big challenge. The research problem in this study is: what types of challenges are related to the service support interface between an IT service provider and IT customers. The main contribution of this paper is present challenges in a service support interface identified during a case study with a large IT service provider company in Finland.

  5. Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    SONG Qiang; WANG Ai-min

    2009-01-01

    The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.

  6. Development traumatic brain injury computer user interface for disaster area in Indonesia supported by emergency broadband access network.

    Science.gov (United States)

    Sutiono, Agung Budi; Suwa, Hirohiko; Ohta, Toshizumi; Arifin, Muh Zafrullah; Kitamura, Yohei; Yoshida, Kazunari; Merdika, Daduk; Qiantori, Andri; Iskandar

    2012-12-01

    Disasters bring consequences of negative impacts on the environment and human life. One of the common cause of critical condition is traumatic brain injury (TBI), namely, epidural (EDH) and subdural hematoma (SDH), due to downfall hard things during earthquake. We proposed and analyzed the user response, namely neurosurgeon, general doctor/surgeon and nurse when they interacted with TBI computer interface. The communication systems was supported by TBI web based applications using emergency broadband access network with tethered balloon and simulated in the field trial to evaluate the coverage area. The interface consisted of demography data and multi tabs for anamnesis, treatment, follow up and teleconference interfaces. The interface allows neurosurgeon, surgeon/general doctors and nurses to entry the EDH and SDH patient's data during referring them on the emergency simulation and evaluated based on time needs and their understanding. The average time needed was obtained after simulated by Lenovo T500 notebook using mouse; 8-10 min for neurosurgeons, 12-15 min for surgeons/general doctors and 15-19 min for nurses. By using Think Pad X201 Tablet, the time needed for entry data was 5-7 min for neurosurgeon, 7-10 min for surgeons/general doctors and 12-16 min for nurses. We observed that the time difference was depending on the computer type and user literacy qualification as well as their understanding on traumatic brain injury, particularly for the nurses. In conclusion, there are five data classification for simply TBI GUI, namely, 1) demography, 2) specific anamnesis for EDH and SDH, 3) treatment action and medicine of TBI, 4) follow up data display and 5) teleneurosurgery for streaming video consultation. The type of computer, particularly tablet PC was more convenient and faster for entry data, compare to that computer mouse touched pad. Emergency broadband access network using tethered balloon is possible to be employed to cover the communications systems in

  7. Implementing clinical decision support for primary care professionals – the process

    DEFF Research Database (Denmark)

    Kortteisto, Tiina; Komulainen, Jorma; Kunnamo, Ilkka

    2012-01-01

    We describe the process of putting into practice a computer-based clinical decision support (eCDS) service integrated in the electronic patient record, and the actual use of eCDS after one year in a primary care organization with 48 health care professionals. Multiple methods were used to support...... the implementation. The actual use was measured by means of a questionnaire and statistical data. The implementation process consisted of three successive training rounds and lasted for 18 months. After 12 months the reported actual use of the eCDS functions was diverse. The study indicates that successful...... implementation of eCDS requires time and repeated supportive input. Primary care professionals need time and training for adapting eCDS in their daily routine. In addition, the eCDS content should be tailored to fulfil different professionals’ information needs in primary care practice....

  8. LANL Institutional Decision Support By Process Modeling and Analysis Group (AET-2)

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Steven Richard [Los Alamos National Laboratory

    2016-04-04

    AET-2 has expertise in process modeling, economics, business case analysis, risk assessment, Lean/Six Sigma tools, and decision analysis to provide timely decision support to LANS leading to continuous improvement. This capability is critical during the current tight budgetary environment as LANS pushes to identify potential areas of cost savings and efficiencies. An important arena is business systems and operations, where processes can impact most or all laboratory employees. Lab-wide efforts are needed to identify and eliminate inefficiencies to accomplish Director McMillan’s charge of “doing more with less.” LANS faces many critical and potentially expensive choices that require sound decision support to ensure success. AET-2 is available to provide this analysis support to expedite the decisions at hand.

  9. Tele-education Process Modelling supported by the ODP Enterprise Viewpoint Language

    NARCIS (Netherlands)

    Jones, Valerie M.; Volman, C.J.A.M.; van Sinderen, Marten J.; Widya, I.A.; Michiels, E.F.

    1997-01-01

    This paper reports on applying the ODP enterprise viewpoint in the domain of tele-education. The work is conducted as part of a research activity that aims at designing a tele-education system to support planning, execution and evaluation of dynamic distributed educational processes. We explore the

  10. Tele-education Process Modelling supported by the ODP Enterprise Viewpoint Language

    NARCIS (Netherlands)

    Volman, Cees; Jones, Val; Sinderen, van Marten; Widya, Ing; Michiels, Eddie

    1997-01-01

    This paper reports on applying the ODP enterprise viewpoint in the domain of tele-education. The work is conducted as part of a research activity that aims at designing a tele-education system to support planning, execution and evaluation of dynamic distributed educational processes. We explore the

  11. Process support in learning tasks for acquiring complex cognitive skills in the domain of law

    NARCIS (Netherlands)

    Nadolski, R.J.; Kirschner, P.A.; Merriënboer, J.J.G. van

    2006-01-01

    Whole tasks for acquiring complex skills are often too difficult for novices. To solve this problem, process support divides the problem solving into phases, offers driving questions, and provides feedback. A multimedia program was used to teach sophomore law students (N = 82) to prepare and carry

  12. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  13. A Grid Middleware for Distributed Java Computing with MPI Binding and Process Migration Supports

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin(陈琳); WANG ChoLi(王卓立); Francis C.M.Lau

    2003-01-01

    "Grid" computing has emerged as an important new research field. With years of efforts, grid researchers have successfully developed grid technologies including security solutions,resource management protocols, information query protocols, and data management services. However, as the ultimate goal of grid computing is to design an infrastructure which supports dynamic,cross-organizational resource sharing, there is a need of solutions for efficient and transparent task re-scheduling in the grid.In this research, a new grid middleware is proposed, called G-JavaMPI. This middleware adds the parallel computing capability of Java to the grid with the support of a Grid-enabled message passing interface (MPI) for inter-process communication between Java processes executed at different grid points. A special feature of the proposed G-JavaMPI is the support of Java process migration with post-migration message redirection. With these supports, it is possible to migrate executing Java process from site to site for continuous computation, if some site is scheduled to be turned down for system reconfiguration. Moreover, the proposed G-JavaMPI middleware is very portable since it requires no modification of underlying OS, Java virtual machine, and MPI package. Preliminary performance tests have been conducted. The proposed mechanisms have shown good migration efficiency in a simulated grid environment.

  14. Process support in learning tasks for acquiring complex cognitive skills in the domain of law

    NARCIS (Netherlands)

    Nadolski, R.J.; Kirschner, P.A.; Merriënboer, J.J.G. van

    2006-01-01

    Whole tasks for acquiring complex skills are often too difficult for novices. To solve this problem, process support divides the problem solving into phases, offers driving questions, and provides feedback. A multimedia program was used to teach sophomore law students (N = 82) to prepare and carry o

  15. Is the screening of product ideas supported by the NPD process design?

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    2007-01-01

    Purpose - The purpose of this paper is to investigate whether the screening of product ideas is supported by the NPD (new product development) process design throughout the NPD phases. Design/methodology/approach - Data were collected with an internet survey questionnaire from 43 large companies...

  16. Supporting Active Cognitive Processing in Collaborative Groups: The Potential of Bloom's Taxonomy as a Labeling Tool

    Science.gov (United States)

    Valcke, Martin; De Wever, Bram; Zhu, Chang; Deed, Craig

    2009-01-01

    Research in the field of computer supported collaborative learning stresses the need to foster the collaborative process in view of attaining optimal cognitive involvement of all participants, a higher level of metacognitive regulation and an increased level of affective involvement. The present study involved 80 third-year university students,…

  17. Medical Image Processing for Fully Integrated Subject Specific Whole Brain Mesh Generation

    Directory of Open Access Journals (Sweden)

    Chih-Yang Hsu

    2015-05-01

    Full Text Available Currently, anatomically consistent segmentation of vascular trees acquired with magnetic resonance imaging requires the use of multiple image processing steps, which, in turn, depend on manual intervention. In effect, segmentation of vascular trees from medical images is time consuming and error prone due to the tortuous geometry and weak signal in small blood vessels. To overcome errors and accelerate the image processing time, we introduce an automatic image processing pipeline for constructing subject specific computational meshes for entire cerebral vasculature, including segmentation of ancillary structures; the grey and white matter, cerebrospinal fluid space, skull, and scalp. To demonstrate the validity of the new pipeline, we segmented the entire intracranial compartment with special attention of the angioarchitecture from magnetic resonance imaging acquired for two healthy volunteers. The raw images were processed through our pipeline for automatic segmentation and mesh generation. Due to partial volume effect and finite resolution, the computational meshes intersect with each other at respective interfaces. To eliminate anatomically inconsistent overlap, we utilized morphological operations to separate the structures with a physiologically sound gap spaces. The resulting meshes exhibit anatomically correct spatial extent and relative positions without intersections. For validation, we computed critical biometrics of the angioarchitecture, the cortical surfaces, ventricular system, and cerebrospinal fluid (CSF spaces and compared against literature values. Volumina and surface areas of the computational mesh were found to be in physiological ranges. In conclusion, we present an automatic image processing pipeline to automate the segmentation of the main intracranial compartments including a subject-specific vascular trees. These computational meshes can be used in 3D immersive visualization for diagnosis, surgery planning with haptics

  18. Do words hurt? Brain activation during the processing of pain-related words.

    Science.gov (United States)

    Richter, Maria; Eck, Judith; Straube, Thomas; Miltner, Wolfgang H R; Weiss, Thomas

    2010-02-01

    Previous studies suggested that areas of the pain matrix of the human brain are recruited by the processing of pain-related environmental cues such as pain-related pictures or descriptors of pain. However, it is still sketchy whether those activations are specific to the pain-relevance of the stimuli or simply reflect a general effect of negative valence or increased arousal. The present study investigates the neural mechanisms underlying the processing of pain-related, negative, positive, and neutral words. Pain-related words were matched to negative words regarding valence and arousal, and to positive words regarding arousal. Sixteen healthy subjects were scanned during two tasks, imagination and distraction, using functional MRI. When subjects were instructed to image a situation associated with the word presented (imagination task), we found increased activation within dorsolateral prefrontal cortex (DLPFC), inferior patietal gyri (IPG), and precuneus when processing pain-related words compared to other words. However, when attention was focused on a foreground task and words were presented in the background (distraction task), we found a decrease in activation within dorsal anterior cingulum (dACC) and a relative increase in activation within the subgenual ventral anterior cingulum (sACC) when processing pain related words compared to other words. Thus, activations to pain-related words are strongly modulated by the attention demands of the task. Most remarkably, the differences in processing pain-related words compared to non-pain-related words are specific to the pain-relevance of the words and cannot simply be explained by their valence or arousal.

  19. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    Science.gov (United States)

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  20. Role of hormonal factor in development of primary and secondary tumorous process in the brain

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    .The present study was aimed at comparing the level of certain some hormones in tissue of glioblastomes, metastases of breast cancer into the brain and meningiomas, as well as the respective peritumoral zones.Materials and methods. Examined were samples of tissue obtained from a total of 56 patients admitted for operative treatment to our Department. Of these, 24 glioblastomas, 19 breast cancer metastases to the brain, 13 meningiomes without peritumoral edema. The histological control was carried out in all cases. The patients’ age varied form 35 to 72 years. During operative interventions we carried out removed neoplasms of the brain followed by biochemical study of the samples of tumor tissue and immediately adjoining to the tumorous foci tissue (perifocal zone. In 10 % of cytozolic fractions of tissue prepared on the potassium-phosphate buffer of pH 7.4 containing 0.15 of Tween-20 and 1 % of bovine serum albumin by means of immunoenzymatic assay (IEA using standard test systems we determined the level of steroid hormones – cortisole, testosterone, progesterone, estradiole, estriole, prolactine (IEA, HEMA, Russia estrone (IEA, DBC, Canada as well as sex-steroid-binding globulin (IEA, Alcor-Bio, Russia and hormones of adrenohypophysis – adrenocorticotropine (ACTH and somatotropic hormone (STH.Results. The obtained findings showed that the most hormonally saturated were metastases of breast cancer. In them along with elevated levels of cortisole, prolactine ACTH and STH concentrations whose concentrations increased virtually in any proliferative process we determined growth of saturation of tissues with estrone and free testosterone on the background of decrease level of active metabolite of estrogens – estriole. Besides, disorders of the steroid metabolism also touched the perifocal zone. Presence of glioblastoma turned out characteristic of identity of tumorous tissue and the perifocal zone by the level of cortizole, which is not found observed if tumors of other

  1. Brain Basics

    Medline Plus

    Full Text Available ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ... of DNA. Sometimes this copying process is imperfect, leading to a gene mutation that causes the gene ...

  2. Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing?

    Science.gov (United States)

    Sammler, Daniela; Koelsch, Stefan; Friederici, Angela D

    2011-06-01

    An increasing number of neuroimaging studies in music cognition research suggest that "language areas" are involved in the processing of musical syntax, but none of these studies clarified whether these areas are a prerequisite for normal syntax processing in music. The present electrophysiological experiment tested whether patients with lesions in Broca's area (N=6) or in the left anterior temporal lobe (N=7) exhibit deficits in the processing of structure in music compared to matched healthy controls (N=13). A chord sequence paradigm was applied, and the amplitude and scalp topography of the Early Right Anterior Negativity (ERAN) was examined, an electrophysiological marker of musical syntax processing that correlates with activity in Broca's area and its right hemisphere homotope. Left inferior frontal gyrus (IFG) (but not anterior superior temporal gyrus - aSTG) patients with lesions older than 4 years showed an ERAN with abnormal scalp distribution, and subtle behavioural deficits in detecting music-syntactic irregularities. In one IFG patient tested 7 months post-stroke, the ERAN was extinguished and the behavioural performance remained at chance level. These combined results suggest that the left IFG, known to be crucial for syntax processing in language, plays also a functional role in the processing of musical syntax. Hence, the present findings are consistent with the notion that Broca's area supports the processing of syntax in a rather domain-general way.

  3. Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations

    Science.gov (United States)

    Schwarzkopf, D. Samuel; Alvarez, Ivan; Lawson, Rebecca P.; Henriksson, Linda; Kriegeskorte, Nikolaus; Rees, Geraint

    2016-01-01

    Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather

  4. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2015-01-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  5. REPRESENTATIVE MODEL OF THE LEARNING PROCESS IN VIRTUAL SPACES SUPPORTED BY ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2014-10-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  6. Flavour exposures after conditioned aversion or preference trigger different brain processes in anaesthetised pigs.

    Science.gov (United States)

    Gaultier, A; Meunier-Salaün, M C; Malbert, C H; Val-Laillet, D

    2011-11-01

    We describe the behavioural consequences of conditioned flavour aversion and preference in pigs and have investigated the brain circuits involved in the representation of flavours with different hedonic values. The study was performed on eight 30-kg pigs. (i) Animals were negatively conditioned to an F- flavour added to a meal followed by LiCl intraduodenal (i.d.) injection, and positively conditioned to an F+ flavour added to a meal followed by NaCl i.d. injection. F+ and F- were thyme or cinnamon flavours. After each conditioning, the behavioural activities were recorded; (ii) One and 5 weeks later, animals were subjected to three two-choice food tests to investigate their preferences between F+, F- and a novel flavour (O); and (iii) Anaesthetised animals were subjected to three SPECT brain imaging sessions: control situation (no flavour) and exposure to F+ and to F-. The negative reinforcement induced a physical malaise and visceral illness. After a positive reinforcement, animals showed playing or feeding motivation and quietness. F+ was significantly preferred over O and F-, and O was significantly preferred over F-. Both F- and F+ induced some metabolic differences in neural circuits involved in sensory associative processes, learning and memory, emotions, reward and feeding motivation. Exposure to F+ induced a higher activity in corticolimbic and reward-related areas, while F- induced a deactivation of the basal nuclei and limbic thalamic nuclei. This study reveals the unconscious cognitive dimension evoked by food flavours according to the individual experience, and highlights the importance of the food sensory image on hedonism and anticipatory eating behaviour.

  7. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    Science.gov (United States)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  8. Assessing the Added Value of information systems supporting facilities management business processes

    DEFF Research Database (Denmark)

    Ebbesen, Poul; Jensen, Per Anker

    2017-01-01

    Purpose: To present a method for assessing the added value of Information Systems (IS), which are implemented to support the business processes in Facilities Management (FM). Theory: The method is based on a supply chain management model of FM, general value dimensions such as efficiency...... and effectiveness and the concepts of Value Adding Management (VAM) and Functional Affordances of IS. Design/methodology/approach: From case studies of IS implementation processes in FM in different countries, a general picture of the expressed added value of IS in FM was established. Based on this insight a method...... for assessing the added value of IS in FM was developed. The proposed method is applied to one of the cases. Findings: The paper analyses how a specific IS supports the management of a specific operational process – cleaning in an airport. The assessment shows that the IS definitely adds value to the cleaning...

  9. Brain emotional learning based Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Abdolreza Asadi Ghanbari

    2012-09-01

    Full Text Available A brain computer interface (BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain-computer interfaces (BCIs bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC, which is based on emotional learning process. The main purpose of this research is to use a structural model based on the limbic system of mammalian brain, for decision making and control engineering applications. We have adopted a network model developed by Moren and Balkenius, as a computational model that mimics amygdala, orbitofrontal cortex, thalamus, sensory input cortex and generally, those parts of the brain thought responsible for processing emotions. The developed method was compared with other methods used for EEG signals classification (support vector machine (SVM and two different neural network types (MLP, PNN. The result analysis demonstrated an efficiency of the proposed approach.

  10. Age-related vulnerability in the neural systems supporting semantic processing

    Directory of Open Access Journals (Sweden)

    Jonathan E Peelle

    2013-09-01

    Full Text Available Our ability to form abstract representations of objects in semantic memory is crucial to language and thought. The utility of this information relies both on the representations of sensory-motor feature knowledge stored in long-term memory and the executive processes required to retrieve, manipulate, and evaluate this semantic knowledge in a task-relevant manner. These complementary components of semantic memory can be differentially impacted by aging. We investigated semantic processing in normal aging using functional magnetic resonance imaging (fMRI. Young and older adults were asked to judge whether two printed object names match on a particular feature (for example, whether a tomato and strawberry have the same color. The task thus required both retrieval of relevant visual feature knowledge of object concepts and evaluating this information. Objects were drawn from either natural kinds or manufactured objects, and were queried on either color or shape in a factorial design. Behaviorally, all subjects performed well, but older adults could be divided into those whose performance matched that of young adults (better performers and those whose performance was worse (poorer performers. All subjects activated several cortical regions while performing this task, including bilateral inferior and lateral temporal cortex and left frontal and prefrontal cortex. Better performing older adults showed increased overall activity in bilateral premotor cortex and left lateral occipital cortex compared to young adults, and increased activity in these brain regions relative to poorer performing older adults who also showed gray matter atrophy in premotor cortex. These findings highlight the contribution of domain-general executive processing brain regions to semantic memory, and illustrate differences in how these regions are recruited in healthy older adults.

  11. Age-related vulnerability in the neural systems supporting semantic processing.

    Science.gov (United States)

    Peelle, Jonathan E; Chandrasekaran, Keerthi; Powers, John; Smith, Edward E; Grossman, Murray

    2013-01-01

    Our ability to form abstract representations of objects in semantic memory is crucial to language and thought. The utility of this information relies both on the representations of sensory-motor feature knowledge stored in long-term memory and the executive processes required to retrieve, manipulate, and evaluate this semantic knowledge in a task-relevant manner. These complementary components of semantic memory can be differentially impacted by aging. We investigated semantic processing in normal aging using functional magnetic resonance imaging (fMRI). Young and older adults were asked to judge whether two printed object names match on a particular feature (for example, whether a tomato and strawberry have the same color). The task thus required both retrieval of relevant visual feature knowledge of object concepts and evaluating this information. Objects were drawn from either natural kinds or manufactured objects, and were queried on either color or shape in a factorial design. Behaviorally, all subjects performed well, but older adults could be divided into those whose performance matched that of young adults (better performers) and those whose performance was worse (poorer performers). All subjects activated several cortical regions while performing this task, including bilateral inferior and lateral temporal cortex and left frontal and prefrontal cortex. Better performing older adults showed increased overall activity in bilateral premotor cortex and left lateral occipital cortex compared to young adults, and increased activity in these brain regions relative to poorer performing older adults who also showed gray matter atrophy in premotor cortex. These findings highlight the contribution of domain-general executive processing brain regions to semantic memory, and illustrate differences in how these regions are recruited in healthy older adults.

  12. Altered processing of sweet taste in the brain of diet soda drinkers.

    Science.gov (United States)

    Green, Erin; Murphy, Claire

    2012-11-05

    Artificially sweetened beverage consumption has been linked to obesity, and it has been hypothesized that considerable exposure to nonnutritive sweeteners may be associated with impaired energy regulation. The reward system plays an integral role in modulating energy intake, but little is known about whether habitual use of artificial sweetener (i.e., diet soda consumption) may be related to altered reward processing of sweet taste in the brain. To investigate this, we examined fMRI response after a 12-hour fast to sucrose (a nutritive sweetener) and saccharin (a nonnutritive sweetener) during hedonic evaluation in young adult diet soda drinkers and non-diet soda drinkers. Diet soda drinkers demonstrated greater activation to sweet taste in the dopaminergic midbrain (including ventral tegmental area) and right amygdala. Saccharin elicited a greater response in the right orbitofrontal cortex (Brodmann Area 47) relative to sucrose in non-diet soda drinkers. There was no difference in fMRI response to the nutritive or nonnutritive sweetener for diet soda drinkers. Within the diet soda drinkers, fMRI activation of the right caudate head in response to saccharin was negatively associated with the amount of diet sodas consumed per week; individuals who consumed a greater number of diet sodas had reduced caudate head activation. These findings suggest that there are alterations in reward processing of sweet taste in individuals who regularly consume diet soda, and this is associated with the degree of consumption. These findings may provide some insight into the link between diet soda consumption and obesity.

  13. Enhancing memory performance after organic brain disease relies on retrieval processes rather than encoding or consolidation.

    Science.gov (United States)

    Hildebrandt, Helmut; Gehrmann, Annika; Modden, Claudia; Eling, Paul

    2011-02-01

    Neuropsychological rehabilitation of memory performance is still a controversial topic, and rehabilitation studies have not analyzed to which stage of memory processing (encoding, consolidation, or retrieval) enhancement may be attributed. We first examined the efficacy of a computer training program for stroke patients, based on a previous study (Hildebrandt, Clausing, Janssen, & Modden, 2007a) for memory-impaired patients of a rehabilitation unit and compared it with the standard group treatment. In a second randomized controlled experiment, we trained two groups of 15 patients with mild to moderate memory disorders, caused by organic brain lesions, with the same two treatment approaches. We used several standard tests to analyze improvement of memory functions, focusing on separate parameters for encoding, consolidation, and retrieval. We developed for that purpose a new word-list learning test, which allowed assessment of response to novelty and a systematic comparison of free recall after learning of semantically structured and nonstructured word lists. The first treatment experiment showed significant improvement of verbal learning for patients treated with the computer software program. The second experiment showed that memory improvement was based exclusively on retrieval processes, whereas no specific change was found for encoding and consolidation. However, the two groups of the second experiment showed no significant differences for the treatment, although the absolute scores pointed in the same direction as in the first experiment.

  14. Neuroaffective processing in criminal psychopaths: brain event-related potentials reveal task-specific anomalies.

    Science.gov (United States)

    Howard, Rick; McCullagh, Paul

    2007-06-01

    This study aimed to confirm neuroaffective processing deficits in psychopaths by measuring late brain event-related potential (ERP) components and behavior in groups of psychopathic and nonpsychopathic inmates of a Singaporean prison while they performed two tasks. In a Categorization task, affective stimuli were task-relevant and required focused attention, while in a Vigilance task, affective pictures were presented in the background while participants discriminated vertical from oblique lines. Psychopaths showed differences in late positive ERPs that were sensitive to affective stimulus properties (valence and arousal) in the Categorization, but not in the Vigilance task, suggesting that only under conditions of focused attention did psychopaths show a neuroaffective processing deficit. In the Categorization task, psychopaths also showed a significantly larger prefrontal negative ERP (N350) whose amplitude correlated positively with the behavioral facet of psychopathy. In the Vigilance task, psychopaths both missed more targets and showed significantly smaller target-evoked parietal ERPs when viewing arousing pictures, suggesting their attentional focus was disrupted by the affective background.

  15. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    Science.gov (United States)

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes.

  16. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor and feedback processes

    Directory of Open Access Journals (Sweden)

    Daya Shankar Gupta

    2014-08-01

    Full Text Available The processing of time intervals in the sub- to supra-second range by the brain is critical for the interaction of primates with their surroundings in activities, such as foraging and hunting. For an accurate processing of time intervals by the brain, representation of the physical time within neuronal circuits is necessary. I propose that time-dimension of the physical surrounding is represented in the brain by different types of neuronal oscillators, generating spikes or spike bursts at regular intervals. The proposed oscillators include the pacemaker neurons, tonic inputs and synchronized excitation and inhibition of inter-connected neurons. Oscillators, which are built inside various circuits of brain, help to form modular clocks, processing time intervals or other temporal characteristics specific to functions of a circuit. Relative or absolute duration is represented within neuronal oscillators by ‘neural temporal unit’, defined as the interval between regularly occurring spikes or spike bursts. Oscillator output is processed to produce changes in activities of neurons, named frequency modulator neuron, wired within a separate module, represented by the rate of change in frequency, and frequency of activities, proposed to encode time intervals. Inbuilt oscillators are calibrated by (a feedback processes (b input of time intervals resulting from rhythmic external sensory stimulation and (c synchronous effects of feedback processes and evoked sensory activity. A single active clock is proposed per circuit, which is calibrated by one or more mechanisms. Multiple calibration mechanisms, inbuilt oscillators and the presence of modular connections prevent a complete loss of interval timing functions of the brain.

  17. Demand-based maintenance and operators support based on process models; Behovsstyrt underhaall och operatoersstoed baserat paa process modeller

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Widarsson, Bjoern; Tomas-Aparicio, Elena

    2012-02-15

    There is a strong demand for systems that can give early warnings on upcoming problems in process performance or sensor measurements. In this project we have developed and implemented such a system on-line. The goal with the system is to give warnings about both faults needing urgent actions, as well giving advice on roughly when service may be needed for specific functions. The use of process simulation models on-line can offer a significant tool for operators and process engineers to analyse the performance of the process and make the most correct and fastest decision when problems arise. In this project physical simulation models are used in combination with decision support tools. By using a physical model it is possible to compare the measured data to the data obtained from the simulation and give these deviations as input to a decision support tool with Bayesian Networks (BN) that will result in information about the probability for wrong measurement in the instruments, process problems and maintenance needs. The application has been implemented in a CFB boiler at Maelarenergi AB. After tuning the model the system has been used online during September - October 2010 and May - October 2011, showing that the system is working on-line with respect to running the simulation model but with batch runs with respect to the BN. Examples have been made for several variables where trends of the deviation between simulation results and measured data have been used as input to a BN, where the probability for different faults has been calculated. Combustion up in the separator/cyclones has been detected several times, problems with fuel feed on both sides of the boiler as well. A moisture sensor not functioning as it should and suspected malfunctioning temperature meters as well. Deeper investigations of the true cause of problems have been used as input to tune the BN

  18. Four Functionally Distinct Regions in the Left Supramarginal Gyrus Support Word Processing

    Science.gov (United States)

    Oberhuber, M.; Hope, T. M. H.; Seghier, M. L.; Parker Jones, O.; Prejawa, S.; Green, D. W.; Price, C. J

    2016-01-01

    We used fMRI in 85 healthy participants to investigate whether different parts of the left supramarginal gyrus (SMG) are involved in processing phonological inputs and outputs. The experiment involved 2 tasks (speech production (SP) and one-back (OB) matching) on 8 different types of stimuli that systematically varied the demands on sensory processing (visual vs. auditory), sublexical phonological input (words and pseudowords vs. nonverbal stimuli), and semantic content (words and objects vs. pseudowords and meaningless baseline stimuli). In ventral SMG, we found an anterior subregion associated with articulatory sequencing (for SP > OB matching) and a posterior subregion associated with auditory short-term memory (for all auditory > visual stimuli and written words and pseudowords > objects). In dorsal SMG, a posterior subregion was most highly activated by words, indicating a role in the integration of sublexical and lexical cues. In anterior dorsal SMG, activation was higher for both pseudoword reading and object naming compared with word reading, which is more consistent with executive demands than phonological processing. The dissociation of these four “functionally-distinct” regions, all within left SMG, has implications for differentiating between different types of phonological processing, understanding the functional anatomy of language and predicting the effect of brain damage. PMID:27600852

  19. A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces

    Science.gov (United States)

    Long, Jinyi; Yu, Zhuliang

    2010-01-01

    Parameter setting plays an important role for improving the performance of a brain computer interface (BCI). Currently, parameters (e.g. channels and frequency band) are often manually selected. It is time-consuming and not easy to obtain an optimal combination of parameters for a BCI. In this paper, motor imagery-based BCIs are considered, in which channels and frequency band are key parameters. First, a semi-supervised support vector machine algorithm is proposed for automatically selecting a set of channels with given frequency band. Next, this algorithm is extended for joint channel-frequency selection. In this approach, both training data with labels and test data without labels are used for training a classifier. Hence it can be used in small training data case. Finally, our algorithms are applied to a BCI competition data set. Our data analysis results show that these algorithms are effective for selection of frequency band and channels when the training data set is small. PMID:21886673

  20. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.

    Directory of Open Access Journals (Sweden)

    Angela Heck

    Full Text Available Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5 was observed (P(nominal combined=0.000001. The epistatic interaction was robust, as it was significant in a screening (P(nominal=0.0000012 and in a replication sample (P(nominal=0.01. Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal=0.001 supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.