WorldWideScience

Sample records for brain nicotine accumulation

  1. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory.

    Directory of Open Access Journals (Sweden)

    Olena Lykhmus

    Full Text Available Nicotinic acetylcholine receptors (nAChRs expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42, memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208 or injected with bacterial lipopolysaccharide (LPS for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208 resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1 neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2 α7(1-208 nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.

  2. Nicotine increases brain functional network efficiency.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  3. Effect Of Nicotine And Tobacco Consumption On Brain Acetyl ...

    African Journals Online (AJOL)

    The effect of nicotine and tobacco consumption on brain acetyl cholinesterase and serum alkaline phosphatase in rats was studied. Rats were divided into three groups and the first group was fed rat chow and water ad libitum and an oral administration of 2ml of 0.1%(v/v) nicotine per 100g body weight of rats per day.

  4. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    stress, excitotoxicity, amyloid-β toxicity, apoptosis, neuroinflammation, and perturb neurotrophic factors in the brain. Nicotine is an exogenous agonist of nicotinic acetylcholine receptors (nAChRs) and acts as a pharmacological chaperone in the regulation of nAChR expression, potentially intervening...... in age-related changes in diverse molecular pathways leading to pathology. Although nicotine has therapeutic potential, paradoxical effects have been reported, possibly due to its inverted U-shape dose-response effects or pharmacokinetic factors. Additionally, nicotine administration should result...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  5. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  6. Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells?

    Science.gov (United States)

    Shoji, Tsubasa; Hashimoto, Takashi

    2008-08-01

    Suspension-cultured cells of Nicotiana tabacum cv. Bright Yellow-2 (BY-2) grow rapidly in a highly homogenous population and still exhibit the general behavior of plant cells, and thus are often used as model systems in several areas of plant molecular and cellular biology, including secondary metabolism. While the parental tobacco variety synthesizes nicotine as a major alkaloid, the cultured tobacco cells mainly produce a related alkaloid anatabine, instead of nicotine, when elicited with jasmonates. We report here that cultured BY-2 cells scarcely express N-methylputrescine oxidase (MPO) genes even after jasmonate elicitation. MPO is the second enzyme in the biosynthetic pathway that supplies the pyrrolidine moiety of nicotine and nornicotine, but is predicted to be dispensable for the biosynthesis of anatabine, anabasine and anatalline, which do not contain the pyrrolidine moiety. When MPO was overexpressed in tobacco BY-2 cells, nicotine synthesis was dramatically enhanced while anatabine formation was effectively suppressed. As a complementary approach, we suppressed MPO expression by RNA interference in tobacco hairy roots that normally accumulate nicotine. In the MPO-suppressed roots, the contents of anatabine, anabasine and anatalline, as well as N-methylputrescine and putrescine, markedly increased to compensate for suppressed formation of nicotine and nornicotine. These results identify the transcriptional regulation of MPO as a critical rate-limiting step that restricts nicotine formation in cultured tobacco BY-2 cells.

  7. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    Brain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  8. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  9. The effects of nicotine and non-nicotine smoking factors on working memory and associated brain function.

    Science.gov (United States)

    McClernon, Francis Joseph; Froeliger, Brett; Rose, Jed E; Kozink, Rachel V; Addicott, Merideth A; Sweitzer, Maggie M; Westman, Eric C; Van Wert, Dana M

    2016-07-01

    Smoking abstinence impairs executive function, which may promote continued smoking behavior and relapse. The differential influence of nicotine and non-nicotine (i.e. sensory, motor) smoking factors and related neural substrates is not known. In a fully factorial, within-subjects design, 33 smokers underwent fMRI scanning following 24 hours of wearing a nicotine or placebo patch while smoking very low nicotine content cigarettes or remaining abstinent from smoking. During scanning, blood oxygenation level-dependent (BOLD) signal was acquired while participants performed a verbal N-back task. Following 24-hour placebo (versus nicotine) administration, accuracy on the N-back task was significantly worse and task-related BOLD signal lower in dorsomedial frontal cortex. These effects were observed irrespective of smoking. Our data provide novel evidence that abstinence-induced deficits in working memory and changes in underlying brain function are due in large part to abstinence from nicotine compared with non-nicotine factors. This work has implications both for designing interventions that target abstinence-induced cognitive deficits and for nicotine-reduction policy. © 2015 Society for the Study of Addiction.

  10. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    International Nuclear Information System (INIS)

    Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-01

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor ( 11 C)vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in ( 11 C)vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  11. Acetamiprid Accumulates in Different Amounts in Murine Brain Regions

    Directory of Open Access Journals (Sweden)

    Hayato Terayama

    2016-09-01

    Full Text Available Neonicotinoids such as acetamiprid (ACE belong to a new and widely used single class of pesticides. Neonicotinoids mimic the chemical structure of nicotine and share agonist activity with the nicotine acetylcholine receptor (nAchR. Neonicotinoids are widely considered to be safe in humans; however, they have recently been implicated in a number of human health disorders. A wide range of musculoskeletal and neuromuscular disorders associated with high doses of neonicotinoids administered to animals have also been reported. Consequently, we used a mouse model to investigate the response of the central nervous system to ACE treatment. Our results show that exposure to ACE-containing water for three or seven days (decuple and centuple of no observable adverse effect level (NOAEL/day caused a decrease in body weight in 10-week old A/JJmsSlc (A/J mice. However, the treatments did not affect brain histology or expression of CD34. ACE concentrations were significantly higher in the midbrain of ACE-treated mice than that of the normal and vehicle groups. Expression levels of α7, α4, and β2 nAChRs were found to be low in the olfactory bulb and midbrain of normal mice. Furthermore, in the experimental group (centuple ACE-containing water for seven days, β2 nAChR expression decreased in many brain regions. Information regarding the amount of accumulated ACE and expression levels of the acetylcholine receptor in each region of the brain is important for understanding any clinical symptoms that may be associated with ACE exposure.

  12. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenming, E-mail: chzhang2@vt.edu

    2016-09-15

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  13. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    International Nuclear Information System (INIS)

    Saylor, Kyle; Zhang, Chenming

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  14. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  15. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    International Nuclear Information System (INIS)

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression of spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of [ 3 H]-L-nicotine and [ 3 H]-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of [ 3 H]-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 μM nicotine and pempidine. Pempidine did not effectively displace [ 3 H]-L-nicotine binding

  16. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  17. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  18. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.

    2009-01-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  19. A Case Report of Successful Kidney Donation After Brain Death Following Nicotine Intoxication.

    Science.gov (United States)

    Räsänen, M; Helanterä, I; Kalliomäki, J; Savikko, J; Parry, M; Lempinen, M

    Nicotine intoxication is a rare cause of death and can lead to brain death after respiratory arrest and hypoxic-ischemic encephalopathy. To our knowledge, no previous reports regarding organ donation after nicotine intoxication have been described. We present a successful case of kidney donation after brain death caused by subcutaneous nicotine overdose from liquid nicotine from an e-cigarette cartridge in an attempted suicide. Both kidneys were transplanted successfully with immediate graft function, and both recipients were discharged at postoperative day 9 with normal plasma creatinine levels. Graft function has remained excellent in follow-up. This case suggests that kidneys from a donor with fatal nicotine intoxication may be successfully used for kidney transplantation in the absence of other contraindications for donation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  1. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  2. Evidence for thymopoietin and thymopoietin/α-bungarotoxin/nicotinic receptors within the brain

    International Nuclear Information System (INIS)

    Quik, M.; Babu, U.; Audhya, T.; Goldstein, G.

    1991-01-01

    Thymopoietin, a polypeptide hormone of the thymus that has pleiotropic actions on the immune, endocrine, and nervous systems, potently interacts with the neuromuscular nicotinic acetylcholine receptor. Thymopoietin binds to the nicotinic α-bungarotoxin (α-BGT) receptor in muscle and, like αBGT, inhibits cholinergic transmission at this site. Evidence is given that radiolabeled thymopoietin similarly binds to a nicotinic α-BGT-binding site within the brain and does so with the characteristics of a specific receptor ligand. Thus specific binding to neuronal membranes was saturable, of high affinity linear with increased tissue concentration, and readily reversible; half-time was ∼5 min for association and 10 min for dissociation. Binding of 125 I-labeled thymopoietin was displaced not only by unlabeled thymopoietin but also by α-BGT and the nicotinic receptor ligands d-tubocurarine and nicotine; various other receptor ligands (muscarinic, adrenergic, and dopaminergic) did not affect binding of 125 I-labeled thymopoietin. Thymopoietin was shown by ELISA to be present in brain extracts, displacement curves of thymus and brain extracts being parallel to the standard thymopoietin curve, and Western (immuno) blot identified in brain and thymus extracts a thymopoietin-immunoreactive polypeptide of the same molecular mass as purified thymopoietin polypeptide. The authors conclude that thymopoietin and thymopoietin-binding sites are present within the brain and that the receptor for thymopoietin is the previously identified nicotinic α-BGT-binding site of neuronal tissue

  3. Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin

    International Nuclear Information System (INIS)

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E.

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits

  4. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin

    International Nuclear Information System (INIS)

    Clarke, P.B.; Schwartz, R.D.; Paul, S.M.; Pert, C.B.; Pert, A.

    1985-01-01

    Three radioligands have been commonly used to label putative nicotinic cholinoceptors in the mammalian central nervous system: the agonists [ 3 H]nicotine and [ 3 H]acetylcholine ([ 3 H]ACh--in the presence of atropine to block muscarinic receptors), and the snake venom extract, [ 125 I]-alpha-bungarotoxin([ 125 I]BTX), which acts as a nicotinic antagonist at the neuromuscular junction. Binding studies employing brain homogenates indicate that the regional distributions of both [ 3 H]nicotine and [ 3 H]ACh differ from that of [ 125 I]BTX. The possible relationship between brain sites bound by [ 3 H]nicotine and [ 3 H]ACh has not been examined directly. The authors have used the technique of autoradiography to produce detailed maps of [ 3 H]nicotine, [ 3 H]ACh, and [ 125 I]BTX labeling; near-adjacent tissue sections were compared at many levels of the rat brain. The maps of high affinity agonist labeling are strikingly concordant, with highest densities in the interpeduncular nucleus, most thalamic nuclei, superior colliculus, medial habenula, presubiculum, cerebral cortex (layers I and III/IV), and the substantia nigra pars compacta/ventral tegmental area. The pattern of [ 125 I]BTX binding is strikingly different, the only notable overlap with agonist binding being the cerebral cortex (layer I) and superior colliculus. [ 125 I]BTX binding is also dense in the inferior colliculus, cerebral cortex (layer VI), hypothalamus, and hippocampus, but is virtually absent in thalamus. Various lines of evidence suggest that the high affinity agonist-binding sites in brain correspond to nicotinic cholinergic receptors similar to those found at autonomic ganglia; BTX-binding sites may also serve as receptors for nicotine and are possibly related to neuromuscular nicotinic cholinoceptors

  5. Potential contribution of aromatase inhibition to the effects of nicotine and related compounds on the brain

    Directory of Open Access Journals (Sweden)

    Anat eBiegon

    2012-11-01

    Full Text Available Cigarette smoking continues to be a major public health problem, and while smoking rates in men have shown some decrease over the last few decades, smoking rates among girls and young women are increasing. Practically all of the important aspects of cigarette smoking are sexually dimorphic. Women become addicted more easily than men, while finding it harder to quit. Nicotine replacement appears to be less effective in women. This may be linked to the observation that women are more sensitive than men to non-nicotine cues or ingredients in cigarettes. The reasons for these sex differences are mostly unknown. Several lines of evidence suggest that many of the reported sex differences related to cigarette smoking may stem from the inhibitory effects of nicotine and other tobacco alkaloids on estrogen synthesis via the enzyme aromatase (cyp19a gene product. Aromatase is the last enzyme in estrogen biosynthesis, catalyzing the conversion of androgens to estrogens. This review provides a summary of experimental evidence supporting brain aromatase as a potential mediator and/or modulator of nicotine actions in the brain, contributing to sex differences in smoking behavior. Additional research on the interaction between tobacco smoke, nicotine and aromatase may help devise new, sex specific methods for prevention and treatment of smoking addiction.

  6. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  7. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that

  8. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    International Nuclear Information System (INIS)

    Zielinska, Elzbieta; Kuc, Damian; Zgrajka, Wojciech; Turski, Waldemar A.; Dekundy, Andrzej

    2009-01-01

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks α7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-β-erythroidine, methyllycaconitine and mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 μg/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  9. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    Science.gov (United States)

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  11. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  12. Phenobarbital increases monkey in vivo nicotine disposition and induces liver and brain CYP2B6 protein

    Science.gov (United States)

    Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F

    2006-01-01

    CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (Pphenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792

  13. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    DEFF Research Database (Denmark)

    Wu, Jie; Liu, Qiang; Tang, Pei

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule...... governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co...... nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling....

  14. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  15. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  16. Determinants of iron accumulation in the normal aging brain.

    Science.gov (United States)

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata)

    International Nuclear Information System (INIS)

    Watson, J.T.; Adkins-Regan, E.; Whiting, P.; Lindstrom, J.M.; Podleski, T.R.

    1988-01-01

    We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors. Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by [125I]-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei

  18. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.

    Science.gov (United States)

    Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A

    2014-05-01

    Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.

  19. Brain indices of nicotine's effects on attentional bias to smoking and emotional pictures and to task-relevant targets.

    Science.gov (United States)

    Gilbert, David G; Sugai, Chihiro; Zuo, Yantao; Rabinovich, Norka E; McClernon, F Joseph; Froeliger, Brett

    2007-03-01

    Aversive and smoking-related stimuli are related to smoking urges and relapse and can be potent distractors of selective attention. It has been suggested that the beneficial effect of nicotine replacement therapy may be mediated partly by the ability of nicotine to reduce distraction by such stimuli and thereby to facilitate attention to task-relevant stimuli. The present study tested the hypothesis that nicotine reduces distraction by aversive and smoking-related stimuli as indexed by the parietal P3b brain response to a task-relevant target digit. We assessed the effect of nicotine on distraction by emotionally negative, positive, neutral, and smoking-related pictures immediately preceding target digits during a rapid visual information processing task in 16 smokers in a double-blind, counterbalanced, within-subjects design. The study included two experimental sessions. After overnight smoking deprivation (12+ hr), active nicotine patches were applied to participants during one of the sessions and placebo patches were applied during the other session. Nicotine enhanced P3b responses associated with target digits immediately subsequent to negative emotional pictures bilaterally and subsequent to smoking-related pictures only in the right hemisphere. No effects of nicotine were observed for P3bs subsequent to positive and neutral distractor pictures. Another measure of attention, contingent negative variation amplitude in anticipation of the target digits also was increased by nicotine, especially in the left hemisphere and at posterior sites. Together, these findings suggest that nicotine reduces the distraction by emotionally negative and smoking-related stimuli and promotes attention to task-related stimuli by modulating somewhat lateralized and task-specific neural networks.

  20. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    Science.gov (United States)

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  1. Nicotinic cholinergic receptor in brain detected by binding of. cap alpha. -(/sup 3/H)bungarotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Eterovic, V A; Bennett, E L

    1974-01-01

    ..cap alpha..-(/sup 3/H)bungarotoxin was prepared by catalytic reduction of iodinated ..cap alpha..-bungarotoxin with tritium gas. Crude mitochondrial fraction from rat cerebral cortex bound 40 x 10/sup -15/ to 60 x 10/sup -15/ moles of ..cap alpha..-(/sup 3/H)bungarotoxin per mg of protein. This binding was reduced by 50% in the presence of approx. 10/sup -6/ M d-tubocurarine or nicotine, 10/sup -5/ M acetylcholine, 10/sup -4/ M carbamylcholine or decamethonium or 10/sup -3/ M atropine. Hexamethonium and eserine were the least effective of the drugs tested. Crude mitochondrial fraction was separated into myelin, nerve endings, and mitochondria. The highest binding of toxin per mg of protein was found in nerve endings, as well as the greatest inhibition of toxin binding by d-tubocurarine. Binding of ..cap alpha..-(/sup 3/H)bungarotoxin to membranes obtained by osmotic shock of the crude mitochondrial fraction indicates that the receptor for the toxin is membrane bound. /sup 125/I-labeled ..cap alpha..-bungarotoxin, prepared with Na/sup 125/I and chloramine T, was highly specific for the acetylcholine receptor in diaphragm, however, it was less specific and less reliable than ..cap alpha..-(/sup 3/H)bungarotoxin in brain. It is concluded that a nicotinic cholinergic receptor exists in brain, and that ..cap alpha..-(/sup 3/H)bungarotoxin is a suitable probe for this receptor.

  2. Dystonia in neurodegeneration with brain iron accumulation : outcome of bilateral pallidal stimulation

    NARCIS (Netherlands)

    Timmermann, L.; Pauls, K. A. M.; Wieland, K.; Jech, R.; Kurlemann, G.; Sharma, N.; Gill, S. S.; Haenggeli, C. A.; Hayflick, S. J.; Hogarth, P.; Leenders, K. L.; Limousin, P.; Malanga, C. J.; Moro, E.; Ostrem, J. L.; Revilla, F. J.; Santens, P.; Schnitzler, A.; Tisch, S.; Valldeoriola, F.; Vesper, J.; Volkmann, J.; Woitalla, D.; Peker, S.

    Neurodegeneration with brain iron accumulation encompasses a heterogeneous group of rare neurodegenerative disorders that are characterized by iron accumulation in the brain. Severe generalized dystonia is frequently a prominent symptom and can be very disabling, causing gait impairment, difficulty

  3. Solid-phase extraction and HPLC assay of nicotine and cotinine in plasma and brain.

    Science.gov (United States)

    Dawson, Ralph; Messina, S M; Stokes, C; Salyani, S; Alcalay, N; De Fiebre, N C; De Fiebre, C M

    2002-01-01

    The aim of this study was to develop a simple and reliable assay for nicotine (NIC) and its major metabolite, cotinine (COT), in plasma and brain. A method was developed that uses an extraction method compatible with reverse-phase high-performance liquid chromatography (HPLC) separation and ultraviolet (UV) detection. Sequential solid-phase extraction on silica columns followed by extraction using octadecyl (C18) columns resulted in mean percent recovery (n = 5) of 51 +/- 5, 64 +/- 10, and 52 +/- 10% for NIC, COT, and phenylimidazole (PI), respectively, in spiked 1-mL serum samples. Recovery (mean +/- SEM) of the internal standard (PI) from spiked samples of nicotine-injected rats averaged 64.1 +/- 1.5% (n = 138) from plasma, and 20.7+/-0.8% (n = 128) from brain. The limits of detection of NIC in plasma samples were approximately 8 ng per mL, and of COT, 13.6 ng per mL. Further optimization of our extraction method, using slower flow rates and solid-phase extraction on silica columns, followed by C18 column extraction, yielded somewhat better recoveries (38 +/-3%) for 1-mL brain homogenates. Interassay precision (coefficient of variation) was determined on the basis of daily calibrations for 2 months and was found to be 7%, 9%, and 9% for NIC, COT, and PI, respectively, whereas intra-assay variability was 3.9% for both NIC and COT. Limited studies were performed on analytical columns for comparison of retention, resolution, asymmetry, and column capacity. We concluded that a simple two-step solid-phase extraction method, coupled with HPLC separation and UV detection, can be used routinely to measure NIC and COT in biological fluids and tissues.

  4. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates

    International Nuclear Information System (INIS)

    Slotkin, Theodore A.

    2004-01-01

    Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants

  5. Noninvasive evaluation of nicotinic acetylcholine receptor availability in mouse brain using single-photon emission computed tomography with [123I]5IA

    International Nuclear Information System (INIS)

    Matsuura, Yuki; Ueda, Masashi; Higaki, Yusuke; Watanabe, Keiko; Habara, Shogo; Kamino, Shinichiro; Saji, Hideo; Enomoto, Shuichi

    2016-01-01

    Introduction: Nicotinic acetylcholine receptors (nAChRs) are of great interest because they are implicated in higher brain functions. Nuclear medical imaging is one of the useful techniques for noninvasive evaluation of physiological and pathological function in living subjects. Recent progress in nuclear medical imaging modalities enables the clear visualization of the organs of small rodents. Thus, translational research using nuclear medical imaging in transgenic mice has become possible and helps to elucidate human disease pathology. However, imaging of α4β2 nAChRs in the mouse brain has not yet been performed. The purpose of this study was to assess the feasibility of single-photon emission computed tomography (SPECT) with 5-[ 123 I]iodo-3-[2(S)-azetidinylmethoxy]pyridine ([ 123 I]5IA) for evaluating α4β2 nAChR availability in the mouse brain. Methods: A 60-min dynamic SPECT imaging session of α4β2 nAChRs in the mouse brain was performed. The regional distribution of radioactivity in the SPECT images was compared to the density of α4β2 nAChRs measured in an identical mouse. Alteration of nAChR density in the brains of Tg2576 mice was also evaluated. Results: The mouse brain was clearly visualized by [ 123 I]5IA-SPECT and probe accumulation was significantly inhibited by pretreatment with (−)-nicotine. The regional distribution of radioactivity in SPECT images showed a significant positive correlation with α4β2 nAChR density measured in an identical mouse brain. Moreover, [ 123 I]5IA-SPECT was able to detect the up-regulation of α4β2 nAChRs in the brains of Tg2576 transgenic mice. Conclusions: [ 123 I]5IA-SPECT imaging would be a promising tool for evaluating α4β2 nAChR availability in the mouse brain and may be useful in translational research focused on nAChR-related diseases.

  6. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor α7 subtype imaging agent

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Tatsumi, Ryo; Fujio, Masakazu; Katayama, Jiro; Magata, Yasuhiro

    2006-01-01

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) α 7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for α 7 nAChRs. Therefore we synthesized (R)-3'-(5-[ 125 I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([ 125 I]I-TSA) and evaluated its potential for the in vivo detection of α 7 nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [ 125 I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 μl, i.c.v.) or nonradioactive I-TSA (50 μmol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the α 7 nAChR (K i for α 7 nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (α 7 nAChR-rich region) and was rather rapid in the cerebellum (α 7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [ 125 I]I-TSA does not appear to be a suitable tracer for in vivo α 7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed

  7. Chronic oral nicotine increases brain [3H]epibatidine binding and responsiveness to antidepressant drugs, but not nicotine, in the mouse forced swim test

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Nielsen, Elsebet O; Redrobe, John P

    2009-01-01

    Smoking rates among depressed individuals is higher than among healthy subjects, and nicotine alleviates depressive symptoms. Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. In mice, acute nicotine administration enhances...... the activity of antidepressants in the mouse forced swim (mFST) and tail suspension tests. Here, we investigated if this action of nicotine is also reflected in a chronic treatment regimen....

  8. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  9. Nicotine poisoning

    Science.gov (United States)

    Nicotine is found in: Chewing tobacco Cigarettes E-cigarettes Liquid nicotine Nicotine gum (Nicorette) Nicotine patches (Habitrol, Nicoderm) Pipe tobacco Some insecticides Tobacco leaves Note: This list may not be all-inclusive.

  10. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  11. Treatment with a nicotine vaccine does not lead to changes in brain activity during smoking cue exposure or a working memory task.

    Science.gov (United States)

    Havermans, Anne; Vuurman, Eric F; van den Hurk, Job; Hoogsteder, Philippe; van Schayck, Onno C P

    2014-08-01

    To assess whether immunization attenuates nicotinic stimulation of the brain and elucidate brain and behavioural responses during exposure to smoking cues and a working memory task. Randomized, placebo-controlled parallel-group, repeated-measures design. Maastricht University, the Netherlands. Forty-eight male smokers were randomized to receive five injections with either 400 μg/ml of the 3'-aminomethylnicotine Pseudomonas aeruginosa r-Exoprotein-conjugated vaccine or placebo. Subjects were tested on two occasions, once after a nicotine challenge and once after a placebo challenge, and were asked to refrain from smoking 10 hours before testing. Reaction-times and accuracies were recorded during an n-back task. Moreover, regional blood oxygenated level-dependent (BOLD) response was measured during this task and during smoking cue exposure. Greater activation was found in response to smoking cues compared to neutral cues in bilateral trans-occipital sulcus (P cues between the treatment groups and no effects of acute nicotine challenge were established. For the n-back task we found working memory load-sensitive increases in brain activity in several frontal and parietal areas (P < 0.0025). However, no effects of immunization or nicotine challenge were observed. No significant effects of immunization on brain activity in response to a nicotine challenge were established. Therefore this vaccine is not likely to be an effective aid in smoking cessation. © 2014 Society for the Study of Addiction.

  12. Reduced number of (/sup 3/H)nicotine and (/sup 3/H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A; Winblad, B

    1986-12-03

    Nicotinic cholinergic receptors were measured in human frontal cortex using (/sup 3/H)nicotine and (/sup 3/H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (/sup 3/H)nicotine (52%, P<0.01) and (/sup 3/H)acetylcholine (-55%, P<0.05) binding was found in the frontal cortex of Alzheimer brains (AD/SDAT) when compared to age-matched control brains. As a comparison the number of muscarinic receptors was quantified using (/sup 3/H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. 26 refs.

  13. A Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand

    Directory of Open Access Journals (Sweden)

    Rodrigo Teodoro

    2015-10-01

    Full Text Available Changes in the expression of α7 nicotinic acetylcholine receptors (α7 nAChRs in the human brain are widely assumed to be associated with neurological and neurooncological processes. Investigation of these receptors in vivo depends on the availability of imaging agents such as radioactively labelled ligands applicable in positron emission tomography (PET. We report on a series of new ligands for α7 nAChRs designed by the combination of dibenzothiophene dioxide as a novel hydrogen bond acceptor functionality with diazabicyclononane as an established cationic center. To assess the structure-activity relationship (SAR of this new basic structure, we further modified the cationic center systematically by introduction of three different piperazine-based scaffolds. Based on in vitro binding affinity and selectivity, assessed by radioligand displacement studies at different rat and human nAChR subtypes and at the structurally related human 5-HT3 receptor, we selected the compound 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl-2-fluorodibenzo-[b,d]thiophene 5,5-dioxide (10a for radiolabeling and further evaluation in vivo. Radiosynthesis of [18F]10a was optimized and transferred to an automated module. Dynamic PET imaging studies with [18F]10a in piglets and a monkey demonstrated high uptake of radioactivity in the brain, followed by washout and target-region specific accumulation under baseline conditions. Kinetic analysis of [18F]10a in pig was performed using a two-tissue compartment model with arterial-derived input function. Our initial evaluation revealed that the dibenzothiophene-based PET radioligand [18F]10a ([18F]DBT-10 has high potential to provide clinically relevant information about the expression and availability of α7 nAChR in the brain.

  14. Nicotine Lozenges

    Science.gov (United States)

    Nicotine lozenges are used to help people stop smoking. Nicotine lozenges are in a class of medications called smoking cessation aids. They work by providing nicotine to your body to decrease the withdrawal symptoms ...

  15. Effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats.

    Science.gov (United States)

    Rylkova, Daria; Boissoneault, Jeffrey; Isaac, Shani; Prado, Melissa; Shah, Hina P; Bruijnzeel, Adrie W

    2008-06-01

    Tobacco addiction is a chronic disorder that is characterized by dysphoria upon smoking cessation and relapse after periods of abstinence. Previous research suggests that Neuropeptide Y (NPY) and Y1 receptor agonists attenuate negative affective states and somatic withdrawal signs. The aim of the present experiments was to investigate the effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats. The intracranial self-stimulation procedure was used to assess the effects of nicotine withdrawal on brain reward function as this procedure can provide a quantitative measure of emotional states in rodents. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. In the first experiment, NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Similar to NPY, [D-His(26)]-NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Neither NPY nor [D-His(26)]-NPY affected the response latencies. In a separate experiment, it was demonstrated that the specific Y1 receptor antagonist BIBP-3226 prevented the NPY-induced elevations in brain reward thresholds. NPY attenuated the overall somatic signs associated with precipitated nicotine withdrawal. [D-His(26)]-NPY did not affect the overall somatic signs associated with precipitated nicotine withdrawal, but decreased the number of abdominal constrictions. Both NPY and [D-His(26)]-NPY attenuated the overall somatic signs associated with spontaneous nicotine withdrawal. These findings indicate that NPY and [D-His(26)]-NPY attenuate somatic nicotine withdrawal signs, but do not prevent the deficit in brain reward function associated

  16. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... brains NAPE accumulation could not be detected (detection limit 0.09 %)]; and 2) this age pattern of accumulation can be explained by a combination of the decreased activity of N- acyltransferase and the increased activity of NAPE-PLD during development. These results point out that it would...

  17. Chemical fate of the nicotinic acetylcholinergic radiotracer [123I]5-IA-85380 in baboon brain and plasma

    International Nuclear Information System (INIS)

    Baldwin, Ronald M.; Zoghbi, Sami S.; Staley, Julie K.; Brenner, Eric; Al-Tikriti, Mohammed S.; Amici, Louis; Fujita, Masahiro; Innis, Robert B.; Tamagnan, Gilles

    2006-01-01

    The fate of the nicotinic acetylcholinergic receptor radiotracer [ 123 I]5-IA-85380 ([ 123 I]5-IA) was studied in baboon by analyzing the chemical composition of brain tissue and plasma after intravenous administration of the tracer. Acetonitrile denaturation and high-performance liquid chromatography (HPLC) analysis showed predominantly unchanged (91-98%) parent tracer in all brain tissues examined, compared to significant metabolism (23% parent) in the plasma at 90 min postinjection, and control tissue recovery of 95-98%. [ 123 I]5-IA was distributed to the thalamus with a standardized uptake value of 9.2 (0.04% dose/g) or a concentration 5.8 times higher than that of the cerebellum. The HPLC behavior of a synthesized sample of one hypothesized metabolite, 5-iodo-3-pyridinol (5-IP), was consistent with plasma radiometabolite fraction. Since only parent radiotracer compound was found in brain tissue, these results add confidence that information derived from single photon emission computed tomography images of 123 I activity in the brain after [ 123 I]5-IA administration can be interpreted as distribution of an intact radiotracer

  18. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain.

    Science.gov (United States)

    Cumming, Paul; Rosa-Neto, Pedro; Watanabe, Hideaki; Smith, Donald; Bender, Dirk; Clarke, Paul B S; Gjedde, Albert

    2003-07-01

    Positive reinforcing properties of nicotine and the psychostimulants have been attributed to elevated dopamine release in the basal ganglia. It is well known that the specific binding of [(11)C]raclopride to dopamine D(2,3) receptors in living striatum is reduced by cocaine and amphetamines, revealing increased competition between endogenous dopamine and [(11)C]raclopride for dopamine D(2,3) receptors. However, the sensitivity of [(11)C]raclopride binding to nicotine-induced dopamine release is less well documented. In order to provide the basis for mapping effects of nicotine, we first optimized reference tissue methods for quantifying [(11)C]raclopride binding sites in striatum of living pigs (n = 16). In the same animals, the rate of cerebral blood flow (CBF) was mapped using [(15)O]water. Neither a low dose of nicotine (50 mu kg(-1), iv) nor a high dose of nicotine (500 microg kg(-1), iv) altered CBF in the pig brain, an important condition for calculating the binding of radioligands when using a reference tissue to estimate the free ligand concentration. The methods of Logan and of Lammertsma were compared using the cerebellum or the occipital cortex as reference tissues for calculating the binding potential (pB) of [(11)C]raclolpride in brain. Irrespective of the method used, the mean undrugged baseline pB in striatum (ca. 2.0) was significantly asymmetric, with highest binding in the left caudate and right putamen. Test-retest estimates of pB were stable. Subtraction of Logan pB maps revealed that the low dose of nicotine reduced the pB of [(11)C]raclopride by 10% in a cluster of voxels in the left anteroventral striatum, but this effect did not persist after correction for multiple comparisons. The high dose of nicotine (n = 9) acutely reduced pB by 10% bilaterally in the ventral striatum; 3 h after the high nicotine dose, the reductions had shifted dorsally and caudally into the caudate and putamen. Evidently, nicotine challenge enhances the competition

  19. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response.

    Science.gov (United States)

    McMillan, Douglas M; Tyndale, Rachel F

    2017-12-01

    Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; pnicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  1. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    Science.gov (United States)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  2. Nicotinic plant poisoning.

    Science.gov (United States)

    Schep, Leo J; Slaughter, Robin J; Beasley, D Michael G

    2009-09-01

    A wide range of plants contain nicotinic and nicotinic-like alkaloids. Of this diverse group, those that have been reported to cause human poisoning appear to have similar mechanisms of toxicity and presenting patients therefore have comparable toxidromes. This review describes the taxonomy and principal alkaloids of plants that contain nicotinic and nicotinic-like alkaloids, with particular focus on those that are toxic to humans. The toxicokinetics and mechanisms of toxicity of these alkaloids are reviewed and the clinical features and management of poisoning due to these plants are described. This review was compiled by systematically searching OVID MEDLINE and ISI Web of Science. This identified 9,456 papers, excluding duplicates, all of which were screened. Reviewed plants and their principal alkaloids. Plants containing nicotine and nicotine-like alkaloids that have been reported to be poisonous to humans include Conium maculatum, Nicotiana glauca and Nicotiana tabacum, Laburnum anagyroides, and Caulophyllum thalictroides. They contain the toxic alkaloids nicotine, anabasine, cytisine, n-methylcytisine, coniine, n-methylconiine, and gamma-coniceine. These alkaloids act agonistically at nicotinic-type acetylcholine (cholinergic) receptors (nAChRs). The nicotinic-type acetylcholine receptor can vary both in its subunit composition and in its distribution within the body (the central and autonomic nervous systems, the neuromuscular junctions, and the adrenal medulla). Agonistic interaction at these variable sites may explain why the alkaloids have diverse effects depending on the administered dose and duration of exposure. Nicotine and nicotine-like alkaloids are absorbed readily across all routes of exposure and are rapidly and widely distributed, readily traversing the blood-brain barrier and the placenta, and are freely distributed in breast milk. Metabolism occurs predominantly in the liver followed by rapid renal elimination. Following acute exposure

  3. Synthesis and evaluation of [{sup 125}I]I-TSA as a brain nicotinic acetylcholine receptor {alpha}{sub 7} subtype imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Mikako [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan); Tatsumi, Ryo [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Fujio, Masakazu [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Katayama, Jiro [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Magata, Yasuhiro [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan)]. E-mail: magata@hama-med.ac.jp

    2006-04-15

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) {alpha}{sub 7} subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for {alpha}{sub 7} nAChRs. Therefore we synthesized (R)-3'-(5-[{sup 125}I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([{sup 125}I]I-TSA) and evaluated its potential for the in vivo detection of {alpha}{sub 7} nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [{sup 125}I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 {mu}l, i.c.v.) or nonradioactive I-TSA (50 {mu}mol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the {alpha}{sub 7} nAChR (K {sub i} for {alpha}{sub 7} nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) and was rather rapid in the cerebellum ({alpha}{sub 7} nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [{sup 125}I]I-TSA does not appear to be a suitable tracer for in vivo {alpha}{sub 7} nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  4. Assessment of {alpha}7 nicotinic acetylcholine receptor availability in juvenile pig brain with [{sup 18}F]NS10743

    Energy Technology Data Exchange (ETDEWEB)

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Funke, Uta; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Leipzig (Germany); Becker, Georg; Sabri, Osama [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Cumming, Paul; Xiong, Guoming [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Peters, Dan [NeuroSearch A/S, Ballerup (Denmark)

    2011-08-15

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [{sup 18}F]NS10743, a novel diazabicyclononane derivative targeting {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [{sup 18}F]NS10743 under baseline conditions (n = 3) and after blocking of the {alpha}7 nAChR with NS6740 (3 mg.kg{sup -1} bolus + 1 mg.kg{sup -1}.h{sup -1} continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [{sup 18}F]NS10743 passed readily into the brain, with peak uptake occurring in {alpha}7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUV{sub max} was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUV{sub max} 1.53 {+-} 0.32). Administration of NS6740 significantly decreased [{sup 18}F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BP{sub ND}. The baseline BP{sub ND} ranged from 0.39 {+-} 0.08 in the cerebellum to 0.76 {+-} 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BP{sub ND} in regions with high [{sup 18}F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BP{sub ND} in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [{sup 18}F]NS10743 as a target-specific radiotracer for the molecular imaging of central {alpha}7 nAChRs by PET. (orig.)

  5. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor.

    Directory of Open Access Journals (Sweden)

    Feng Chi

    Full Text Available Alpha7 nicotinic acetylcholine receptor (nAChR, an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/- mouse brain microvascular endothelial cells (BMEC and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN transmigration across the blood-brain barrier (BBB were significantly reduced in α7(-/- BMEC and α7(-/- mice. Stimulation by nicotine was abolished in the α7(-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist. The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES and adhesion molecules (CD44 and ICAM-1 were significantly reduced in the cerebrospinal fluids of the α7(-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.

  6. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  7. Long-term observations on calcium accumulation in postischemic gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Araki, T.; Kato, H.; Inoue, T.; Kogure, K. (Department of Neurology, Institute of Brain Diseases, Tohoku University School of Medicine, Sendai (Japan))

    1991-01-01

    We studied delayed postischemic calcium accumulation and neuronal damage in the gerbil brain, using {sup 45}Ca autoradiography as a marker for detection of injured tissue and light microscopy. Transient cerebral ischemia was induced for 15 min. Sham-operated gerbils showed no abnormal calcium accumulation and neuronal damage throughout the brain. At 2 and 7 days following 15 min of ischemia, marked calcium accumulation and mild to severe neuronal damage were found in the selectively vulnerable areas such as neocortex, striatum, hippocampus and thalamus, and brainstem such as medial geniculate body, substantia nigra and inferior colliculus. After 1-2 months of recirculation, the calcium accumulation was not recognized in the brainstem. But, the accumulation was still detectable in the striatum, the hippocampus and the thalamus. Morphological study showed that marked proliferation of glia cells was rapid in the inferior colliculus and was relatively slow in the striatum and the hippocampus, although these structures were severely damaged after ischemia. The result suggests that the speed of restoration of injured tissue and the mechanisms for the damage after cerebral ischemia may be different between the selectively vulnerable areas and the brainstem. Furthermore, they suggest that {sup 45}Ca autoradiographic technique may provide a useful approach for diagnosis of the restoration of injured tissue at chronic stage following cerebral ischemia. (author).

  8. Nicotine Vapor Method to Induce Nicotine Dependence in Rodents.

    Science.gov (United States)

    Kallupi, Marsida; George, Olivier

    2017-07-05

    Nicotine, the main addictive component of tobacco, induces potentiation of brain stimulation reward, increases locomotor activity, and induces conditioned place preference. Nicotine cessation produces a withdrawal syndrome that can be relieved by nicotine replacement therapy. In the last decade, the market for electronic cigarettes has flourished, especially among adolescents. The nicotine vaporizer or electronic nicotine delivery system is a battery-operated device that allows the user to simulate the experience of tobacco smoking without inhaling smoke. The device is designed to be an alternative to conventional cigarettes that emits vaporized nicotine inhaled by the user. This report describes a procedure to vaporize nicotine in the air to produce blood nicotine levels in rodents that are clinically relevant to those that are observed in humans and produce dependence. We also describe how to construct the apparatus to deliver nicotine vapor in a stable, reliable, and consistent manner, as well as how to analyze air for nicotine content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine

    NARCIS (Netherlands)

    Fagen, Z.M.; Mansvelder, H.D.; Keath, R.; McGehee, D.S.

    2003-01-01

    Dopamine signaling in brain reward areas is a key element in the development of drug abuse and dependence. Recent anatomical and electrophysiological research has begun to elucidate both complexity and specificity In synaptic connections between ventral tegmental neurons and their inputs.

  10. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-04-01

    Full Text Available Brain cells expend large amounts of energy sequestering calcium (Ca2+, while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P, a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA. Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (1-10 mM. The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity

  11. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    International Nuclear Information System (INIS)

    Kasalicky, J.; Konopkova, M.; Melichar, F.

    2001-01-01

    To study the effect of lipid depressing drugs on 18 FDG myocardial concentration. The changes of 18 FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18 FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18 FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18 FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18 FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18 FDG). The animals were killed 45 minutes following 18 FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18 FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18 FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18 FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18 FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18 FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  12. Gene co-expression networks shed light into diseases of brain iron accumulation.

    Science.gov (United States)

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. 3H-dopamine accumulation by rat brain synaptic vesicles in a membrane-impermeable medium.

    Science.gov (United States)

    Gershten, M J; Disbrow, J K; Ruth, J A

    1983-07-25

    3H-Dopamine (DA) accumulation by storage vesicles from whole rat brain was significantly stablized in a buffer system based upon the membrane-impermeant D-potassium tartrate. 3H-DA uptake saturated by twenty minutes (Km 2.1 X 10(-5)M) and remained stable for periods of 40-60 minutes. Accumulated DA was rapidly exchangeable with exogenous DA. Total levels of accumulation (pmol/mg protein) were 41.7 +/- 2.9 (37 degrees), 11.9 +/- 2.5 (4 degrees), 31.3 +/- 1.8 (absence of ATP), 26.3 +/- 2.7 (reserpine, 10(-6)M), 26.1 +/- 0.67 (no ATP + reserpine 10(-6), and 14.6 +/- 2.4 (carbonylcyanide-p-triflouromethoxyphenylhydrazone, FCCP, 10(-6)M). Depletion of endogenous DA levels by pretreatment of the animals with alpha-methyl-p-tyrosine greatly diminished the reserpine-insensitive DA accumulation. After depletion of endogenous DA, ATP-independent uptake was significantly retarded, but eventually reached near-control levels. This uptake was abolished in the presence of FCCP (10(-6)M). The results suggest that endogenous levels of DA and ATP contribute to the reserpine- and ATP-insensitive DA accumulation observed in vesicles from untreated animals. HPLC analysis demonstrated no conversion of DA to norepinephrine (NE) in the course of the experiments.

  14. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies.

    Science.gov (United States)

    Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins

    2013-01-01

    Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.

  15. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deschauer, M; Gaul, C; Behrmann, C; Prokisch, H; Zierz, S; Haack, T B

    2012-11-01

    Mutations in C19orf12 have been recently identified as the molecular genetic cause of a subtype of neurodegeneration with brain iron accumulation (NBIA). Given the mitochondrial localization of the gene product the new NBIA subtype was designated mitochondrial membrane protein-associated neurodegeneration. Frequent features in the patients described so far included extrapyramidal signs and pyramidal tract involvement. Here, we report three C19orf12-mutant patients from two families presenting with predominant upper and lower motor neuron dysfunction mimicking amyotrophic lateral sclerosis with juvenile onset. While extrapyramidal signs were absent, all patients showed neuropsychological abnormalities with disinhibited or impulsive behavior. Optic atrophy was present in the simplex case. T2-weighted cranial MRI showed hypointensities suggestive of iron accumulation in the globi pallidi and the midbrain in all patients. Sequence analysis of C19orf12 revealed a novel mutation, p.Gly66del, compound heterozygous with known mutations in all patients. These patients highlight that C19orf12 defects should be considered as a differential diagnosis in patients with juvenile onset motor neuron diseases. Patients have to be examined carefully for neuropsychological abnormalities, optic neuropathy, and signs of brain iron accumulation in MRI.

  16. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  17. β-Amyloid accumulation in the human brain after one night of sleep deprivation.

    Science.gov (United States)

    Shokri-Kojori, Ehsan; Wang, Gene-Jack; Wiers, Corinde E; Demiral, Sukru B; Guo, Min; Kim, Sung Won; Lindgren, Elsa; Ramirez, Veronica; Zehra, Amna; Freeman, Clara; Miller, Gregg; Manza, Peter; Srivastava, Tansha; De Santi, Susan; Tomasi, Dardo; Benveniste, Helene; Volkow, Nora D

    2018-04-24

    The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18 F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep. Copyright © 2018 the Author(s). Published by PNAS.

  18. The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen

    2013-04-01

    Internet gaming addiction (IGA) has been classified as an addictive disorder in the proposed DSM 5 draft. However, whether its underlying addiction mechanism is similar to other substance use disorders has not been confirmed. The present functional magnetic resonance images study is aimed at evaluating the brain correlates of cue-induced gaming urge or smoking craving in subjects with both IGA and nicotine dependence to make a simultaneous comparison of cue induced brain reactivity for gaming and smoking. For this purpose, 16 subjects with both IGA and nicotine dependence (comorbid group) and 16 controls were recruited from the community. All subjects were made to undergo 3-T fMRIs scans while viewing images associated with online games, smoking, and neutral images, which were arranged according to an event-related design. The resultant image data was analyzed with full factorial and conjunction analysis of SPM5. The results demonstrate that anterior cingulate, and parahippocampus activates higher for both cue-induced gaming urge and smoking craving among the comorbid group in comparison to the control group. The conjunction analysis demonstrates that bilateral parahippocampal gyrus activates to a greater degree for both gaming urge and smoking craving among the comorbid group in comparison to the control group. Accordingly, the study demonstrates that both IGA and nicotine dependence share similar mechanisms of cue-induced reactivity over the fronto-limbic network, particularly for the parahippocampus. The results support that the context representation provided by the parahippocampus is a key mechanism for not only cue-induced smoking craving, but also for cue-induced gaming urge. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. On the blood-brain barrier to peptides: [3H]gonadotropin-releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary

    International Nuclear Information System (INIS)

    Ermisch, A.; Ruehle, H.J.; Klauschenz, E.; Kretzschmar, R.

    1984-01-01

    After intracarotid injection of [ 3 H]gonadotropin-releasing hormone ([ 3 H]GnRH) the mean accumulation of radioactivity per unit wet weight of 18 brain samples investigated and the anterior pituitary was 0.38 +- 0.11% g -1 of the injected tracer dose. This indicates a low but measurable brain uptake of the peptide. The brain uptake of [ 3 H]GnRH in blood-brain barrier (BBB)-protected regions is 5% of that of separately investigated [ 3 H]OH. In BBB-free regions the accumulation of radioactivity was more than 25-fold higher than in BBB-protected regions. The accumulation of [ 3 H]GnRH among regions with BBB varies less than among regions with leaky endothelia. The data presented for [ 3 H]GnRH are similar to those for other peptides so far investigated. (author)

  20. Nicotine Gum

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavioral change techniques. Nicotine gum ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  1. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    How can we accumulate knowledge on brain functions? How can we leverage years of research in functional MRI to analyse finer-grained psychological constructs, and build a comprehensive model of the brain? Researchers usually rely on single studies to delineate brain regions recruited by mental processes. They relate their findings to previous works in an informal way by defining regions of interest from the literature. Meta-analysis approaches provide a more principled way to build upon the literature. This thesis investigates three ways to assemble knowledge using activation maps from a large amount of studies. First, we present an approach that uses jointly two similar fMRI experiments, to better condition an analysis from a statistical standpoint. We show that it is a valuable data-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledge on a large scale. Because of the difficulty to associate multiple studies, we resort to using a single dataset sampling a large number of stimuli for our second contribution. This method estimates functional networks associated with functional profiles, where the functional networks are interacting brain regions and the functional profiles are a weighted set of cognitive descriptors. This work successfully yields known brain networks and automatically associates meaningful descriptions. Its limitations lie in the unsupervised nature of this method, which is more difficult to validate, and the use of a single dataset. It however brings the notion of cognitive labels, which is central to our last contribution. Our last contribution presents a method that learns functional atlases by combining several datasets. [Henson 2006] shows that forward inference, i.e. the probability of an activation given a cognitive process, is often not sufficient to conclude on the engagement of brain regions for a cognitive process

  2. Arsenic and nicotine co-exposure lead to some synergistic effects on oxidative stress and apoptotic markers in young rat blood, liver, kidneys and brain

    Directory of Open Access Journals (Sweden)

    Anshu Jain

    2015-01-01

    Full Text Available Arsenic and nicotine exposure has been a major health concern globally. Individually both these toxicants increase the risk to various diseases including cancers. However, limited information exists on the co-exposure. In this study, we evaluate the effects of their individual and combined exposure and if co-exposure to these toxicants might have a synergism or antagonism. Male rats were exposed to a very low dose of arsenic (25 ppm in drinking water or nicotine (0.25 mg/kg, sub-cutaneously for a period of 5 months and post exposure various biochemical variables indicative of oxidative stress and apoptosis evaluated. Almost all glutathione linked enzymes showed marked alteration in individual as well as co-exposure treated groups. While serum creatinine and apoptosis indicator, lactate dehydrogenase (LDH were significantly increased in both treatments, an additive effect was noted in co-exposure group. A similar trend was also seen in brain and liver but not in kidneys. Gene expression studies showed marked reduction in catalase, Cu-Zn SOD, GST, there was a significant up regulation in Bax, caspase 3 in various tissues along with urinary 8-OHdG levels, indicative of DNA damage and apoptosis. Interestingly, a decrease in liver arsenic concentration was noted in co-exposed group compared to arsenic alone exposed group. In conclusion, the present study suggests that arsenic and nicotine exhibited significant toxicity during individual exposure whereas co-exposure to these toxins showed variable conditions (indicative of both synergism and antagonism in male rats.

  3. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

    Directory of Open Access Journals (Sweden)

    Chiu Catherine

    2012-01-01

    Full Text Available Abstract Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD and is seen in normal aging. Alterations in cerebrospinal fluid (CSF dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p p p p -1 to 12 months (11.30 day-1 and then a decrease to 20 months (10.23 day-1 and 30 months (6.62 day-1. Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid.

  4. [11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available BACKGROUND: The alpha7 nicotinic acetylcholine receptors (nAChRs play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. However, there are currently no suitable positron emission tomography (PET radioligands for imaging alpha7 nAChRs in the intact human brain. Here we report the novel PET radioligand [11C]CHIBA-1001 for in vivo imaging of alpha7 nAChRs in the non-human primate brain. METHODOLOGY/PRINCIPAL FINDINGS: A receptor binding assay showed that CHIBA-1001 was a highly selective ligand at alpha7 nAChRs. Using conscious monkeys, we found that the distribution of radioactivity in the monkey brain after intravenous administration of [11C]CHIBA-1001 was consistent with the regional distribution of alpha7 nAChRs in the monkey brain. The distribution of radioactivity in the brain regions after intravenous administration of [11C]CHIBA-1001 was blocked by pretreatment with the selective alpha7 nAChR agonist SSR180711 (5.0 mg/kg. However, the distribution of [11C]CHIBA-1001 was not altered by pretreatment with the selective alpha4beta2 nAChR agonist A85380 (1.0 mg/kg. Interestingly, the binding of [11C]CHIBA-1001 in the frontal cortex of the monkey brain was significantly decreased by subchronic administration of the N-methyl-D-aspartate (NMDA receptor antagonist phencyclidine (0.3 mg/kg, twice a day for 13 days; which is a non-human primate model of schizophrenia. CONCLUSIONS/SIGNIFICANCE: The present findings suggest that [11C]CHIBA-1001 could be a novel useful PET ligand for in vivo study of the receptor occupancy and pathophysiology of alpha7 nAChRs in the intact brain of patients with neuropsychiatric diseases such as schizophrenia and Alzheimer's disease.

  5. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes

    International Nuclear Information System (INIS)

    Geppert, Mark; Petters, Charlotte; Thiel, Karsten; Dringen, Ralf

    2013-01-01

    Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic applications. Such particles are able to cross the blood–brain barrier and are taken up into brain cells. To test whether serum components affect the properties of IONPs and/or their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic IONPs without and with fetal calf serum (FCS) and have exposed cultured brain astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a concentration-dependent increase in the average hydrodynamic diameter of the particles and of their zeta-potential. In the presence of 10 % FCS, the diameter of the IONPs increased from 57 ± 2 to 107 ± 6 nm and the zeta-potential of the particles from −22 ± 5 to −9 ± 1 mV. FCS affected also strongly the uptake of IONPs by cultured astrocytes. The efficient time- and temperature-dependent cellular accumulation of IONPs was lowered with increasing concentration of FCS by up to 90 %. In addition, in the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and macropinocytosis are involved in astrocytic IONP uptake from serum-containing medium. These data demonstrate that the presence of FCS strongly affects the properties of IONPs as well as their accumulation by cultured brain cells.

  6. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    Science.gov (United States)

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  7. Nicotine response and nicotinic receptors in long-sleep and short-sleep mice.

    Science.gov (United States)

    De Fiebre, C M; Medhurst, L J; Collins, A C

    1987-01-01

    Nicotine response and nicotinic receptor binding were characterized in long-sleep (LS) and short-sleep (SS) mice which have been selectively bred for differential "sleep-time" following ethanol administration. LS mice are more sensitive than SS mice to nicotine as measured by a battery of behavioral and physiological tests and as measured by sensitivity to nicotine-induced seizures. The greater sensitivity of the LS mice is not due to differences in binding of [3H]nicotine. Unlike inbred mouse strains which differ in sensitivity to nicotine-induced seizures, these selected mouse lines do not differ in levels of binding of [125I]alpha-bungarotoxin (BTX) in the hippocampus. Significant differences in BTX binding were found in the cerebellum and striatum. Although these two mouse lines do not differ in blood levels of nicotine following nicotine administration, they differ slightly in brain levels of nicotine indicating differential distribution of the drug. Since this distribution difference is much smaller than the observed behavioral differences, these mice probably differ in CNS sensitivity to nicotine; however, follow-up studies are necessary to test whether the differential response of these mice is due to subtle differences in distribution of nicotine to the brain.

  8. (S)- and (R)-[11C]nicotine and the metabolite (R/S)-[11C]cotinine. Preparation, metabolite studies and in vivo distribution in the human brain using PET

    International Nuclear Information System (INIS)

    Halldin, C.; Swahn, C.-G.; Nybaeck, H.; Naagren, K.; Laangstroem, B.

    1992-01-01

    In order to investigate [ 11 C]nicotine binding and metabolism in the living human brain by PET, routine protocols were developed for the preparation and purification of (S)-and (R)-[ 11 C]nicotine and the metabolite (R/S)-[ 11 C]cotinine. (S)- and (R)-[ 11 C]nicotine were prepared by N-methylation with [ 11 C]methyl iodide of the appropriate secondary amine, which was liberated in situ by 2,2,6,6,-tetramethylpiperidine (TMP) from its corresponding biscamsylate-salt. (R/S)-[ 11 C]Cotinine was prepared by N-methylation of the amide precursor using tetrabutylammonium hydroxide as a phase transfer catalyst. Straight-phase semipreparative HPLC was in all purifications found to be superior to reversed-phase since the contamination by the norcompounds was eliminated. Reaction in acetonitrile for both (S)- and (R)-[ 11 C]nicotine and (R/S)-[ 11 C]cotinine with subsequent straight-phase HPLC purification resulted in 35-45% radiochemical yield with a total synthesis time of 30-35 min, a specific radioactivity of 1000-1500 Ci/mmol (37-55 GBq/μmol, EOS) and a radiochemical purity >99%. The uptake and distribution of these tracers in the human brain was studied in healthy volunteers by PET. The metabolite (R/S)-[ 11 C]cotinine did not cross the blood-brain barrier to any significant degree. (author)

  9. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  10. Nicotine Addiction

    NARCIS (Netherlands)

    Andel I van; Rambali AB; Amsterdam JGC van; Wolterink G; Aerts LAGJM van; Vleeming W; TOX; SIR; BMT

    2003-01-01

    This report discusses the current knowledge on nicotine dependence, devoting a special chapter to smoking among youths, given that most smoking careers start in adolescence. The transition period, in which youths go from elementary to high school (ages 13-14), showes to be particularly risky for

  11. Adolescents' understanding and use of nicotine in e-cigarettes.

    Science.gov (United States)

    Pepper, Jessica K; Farrelly, Matthew C; Watson, Kimberly A

    2018-07-01

    Nicotine harms adolescent brain development and contributes to addiction. Some adolescents report using nicotine-free e-cigarettes, but the accuracy of their reporting is unclear. We explored adolescents' use of nicotine-free e-cigarettes and understanding of chemicals in e-cigarettes, including nicotine. Using social media, we recruited 1589 US adolescents (aged 15-17) who reported past 30-day use of e-cigarettes in 2016. We assessed perceptions of the nicotine source in e-liquid and whether e-cigarette aerosol is just "water vapor." We explored differences among adolescents who usually used e-cigarettes with nicotine (n = 473) and without nicotine (n = 452). We used weights to calibrate our sample to the Youth Risk Behavior Survey. Twenty-nine percent usually used e-cigarettes without nicotine, 28% with nicotine, 39% with "both," and 5% were "not sure." Few participants (17% of non-nicotine users vs. 34% of nicotine users, p e-cigarette aerosol was just water vapor were more likely to usually use without nicotine. Older adolescents and current tobacco users were less likely to usually use without nicotine. The adolescents who reported usually using e-cigarettes without nicotine had poorer knowledge of e-cigarettes. This lack of understanding could contribute to inaccurate reporting of nicotine use. Most youth thought the nicotine in e-cigarettes was artificial, potentially indicating a belief that this nicotine is "safer." The US Food & Drug Administration will require nicotine warnings on e-cigarettes in 2018; a complementary educational campaign could address youths' misperceptions about nicotine and other chemicals in e-cigarette aerosol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  13. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-01-01

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  14. Nicotine replacement therapy

    Science.gov (United States)

    Smoking cessation - nicotine replacement; Tobacco - nicotine replacement therapy ... Before you start using a nicotine replacement product, here are some things to know: The more cigarettes you smoke, the higher the dose you may need to ...

  15. Possible link between Hg and Cd accumulation in the brain of long-finned pilot whales (Globicephala melas)

    Energy Technology Data Exchange (ETDEWEB)

    Gajdosechova, Zuzana [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Brownlow, Andrew [SAC Wildlife Unit, Inverness (United Kingdom); Cottin, Nicolas T.; Fernandes, Mariana [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Read, Fiona L. [Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA (United Kingdom); Urgast, Dagmar S.; Raab, Andrea; Feldmann, Jörg; Krupp, Eva M. [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-03-01

    The bioaccumulation of metals was investigated by analysis of liver, kidney, muscle and brain tissue of a pod of 21 long-finned pilot whales (Globicephala melas) of all ages stranded in Scotland, UK. The results are the first to report cadmium (Cd) passage through the blood–brain barrier of pilot whales and provide a comprehensive study of the long-term (up to 35 years) mammalian exposure to the environmental pollutants. Additionally, linear accumulation of mercury (Hg) was observed in all studied tissues, whereas for Cd this was only observed in the liver. Total Hg concentration above the upper neurochemical threshold was found in the sub-adult and adult brains and methylmercury (MeHg) of 2.2 mg/kg was found in the brain of one individual. Inter-elemental analysis showed significant positive correlations of Hg with selenium (Se) and Cd with Se in all studied tissues. Furthermore, differences in the elemental concentrations in the liver and brain tissues were found between juvenile, sub-adult and adult groups. The highest concentrations of manganese, iron, zinc, Se, Hg and MeHg were noted in the livers, whereas Cd predominantly accumulated in the kidneys. High concentrations of Hg and Cd in the tissues of pilot whales presented in this study reflect ever increasing toxic stress on marine mammals. - Highlights: • Trace elements were measured in a pod of 21 pilot whales stranded in Scotland. • Bioaccumulation of mercury and methyl mercury was found in all studied tissues. • Cadmium age related accumulation was observed in the liver and brain tissues. • Cadmium-selenium correlations suggest formation of cadmium-selenium complexes.

  16. Possible link between Hg and Cd accumulation in the brain of long-finned pilot whales (Globicephala melas)

    International Nuclear Information System (INIS)

    Gajdosechova, Zuzana; Brownlow, Andrew; Cottin, Nicolas T.; Fernandes, Mariana; Read, Fiona L.; Urgast, Dagmar S.; Raab, Andrea; Feldmann, Jörg; Krupp, Eva M.

    2016-01-01

    The bioaccumulation of metals was investigated by analysis of liver, kidney, muscle and brain tissue of a pod of 21 long-finned pilot whales (Globicephala melas) of all ages stranded in Scotland, UK. The results are the first to report cadmium (Cd) passage through the blood–brain barrier of pilot whales and provide a comprehensive study of the long-term (up to 35 years) mammalian exposure to the environmental pollutants. Additionally, linear accumulation of mercury (Hg) was observed in all studied tissues, whereas for Cd this was only observed in the liver. Total Hg concentration above the upper neurochemical threshold was found in the sub-adult and adult brains and methylmercury (MeHg) of 2.2 mg/kg was found in the brain of one individual. Inter-elemental analysis showed significant positive correlations of Hg with selenium (Se) and Cd with Se in all studied tissues. Furthermore, differences in the elemental concentrations in the liver and brain tissues were found between juvenile, sub-adult and adult groups. The highest concentrations of manganese, iron, zinc, Se, Hg and MeHg were noted in the livers, whereas Cd predominantly accumulated in the kidneys. High concentrations of Hg and Cd in the tissues of pilot whales presented in this study reflect ever increasing toxic stress on marine mammals. - Highlights: • Trace elements were measured in a pod of 21 pilot whales stranded in Scotland. • Bioaccumulation of mercury and methyl mercury was found in all studied tissues. • Cadmium age related accumulation was observed in the liver and brain tissues. • Cadmium-selenium correlations suggest formation of cadmium-selenium complexes.

  17. Accumulation of neuronal DNA damage as an early covariate of determinant of death after whole-brain irradiaton

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Weinstein, R.E.

    1979-01-01

    The state of the DNA from cerebellar neurons of male Sprague-Dawley rats after whole-brain irradiation with 2000 rad of x rays was determined at various times by obtaining DNA sedimentation profiles using alkaline sucrose gradients in slow reorienting zonal rotors. It took more than 4 weeks after irradiation for the neuronal DNA distributions to return to those obtained from the unirradiated controls. At 7 weeks, the DNA from irradiated neurons sedimented more rapidly than that from unirradiated neurons. Accumulation of the neuronal DNA damage (degradation.) which led to slower sedimenting DNA species began by Week 10 and continued until the majority of the irradiated rats began to die at Week 20. We propose as a working hypothesis that the accumulation of neuronal DNA damage initially observed 10 weeks after 2000 rad of whole-brain irradiation may reflect or cause changes in the central nervous system that later result in the death of the animal

  18. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2016-06-01

    Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.

  19. The influence of L-DOPA on the accumulation of lipid peroxidation products in some brain structures affected by radiation

    International Nuclear Information System (INIS)

    Babaev, R.A.; Kocharli, R.Kh.; Akhmedova, G.Sh.; Gasanova, A.A.; Babaev, Kh.F.

    1990-01-01

    A study was made of the effect of L-DOPA on the dynamics of changes in lipid peroxidation products (LPP) and the content of various types of SH-groups in certain brain structures (oblongata, cerebellum, visual and sensorimotor cortex) and their synaptosomal fractions upon irradiation. The preadministration of L-DOPA to irradiated rats inhibited LPP accumulation, prevented the decrease in the content of various types of thiols and thus exerted an antioxidant effect

  20. Differences in Nicotine Metabolism of Two Nicotiana attenuata Herbivores Render Them Differentially Susceptible to a Common Native Predator

    Science.gov (United States)

    Kumar, Pavan; Rathi, Preeti; Schöttner, Matthias; Baldwin, Ian T.; Pandit, Sagar

    2014-01-01

    Background Nicotiana attenuata is attacked by larvae of both specialist (Manduca sexta) and generalist (Spodoptera exigua) lepidopteran herbivores in its native habitat. Nicotine is one of N. attenuata's important defenses. M. sexta is highly nicotine tolerant; whether cytochrome P450 (CYP)-mediated oxidative detoxification and/or rapid excretion is responsible for its exceptional tolerance remains unknown despite five decades of study. Recently, we demonstrated that M. sexta uses its nicotine-induced CYP6B46 to efflux midgut-nicotine into the hemolymph, facilitating nicotine exhalation that deters predatory wolf spiders (Camptocosa parallela). S. exigua's nicotine metabolism is uninvestigated. Methodology/Principal Findings We compared the ability of these two herbivores to metabolize, tolerate and co-opt ingested nicotine for defense against the wolf spider. In addition, we analyzed the spider's excretion to gain insights into its nicotine metabolism. Contrary to previous reports, we found that M. sexta larvae neither accumulate the common nicotine oxides (cotinine, cotinine N-oxide and nicotine N-oxide) nor excrete them faster than nicotine. In M. sexta larvae, ingestion of nicotine as well as its oxides increases the accumulation of CYP6B46 transcripts. In contrast, S. exigua accumulates nicotine oxides and exhales less (66%) nicotine than does M. sexta. Spiders prefer nicotine-fed S. exigua over M. sexta, a preference reversed by topical or headspace nicotine supplementation, but not ingested or topically-coated nicotine oxides, suggesting that externalized nicotine but not the nicotine detoxification products deter spider predation. The spiders also do not accumulate nicotine oxides. Conclusions Nicotine oxidation reduces S. exigua's headspace-nicotine and renders it more susceptible to predation by spiders than M. sexta, which exhales unmetabolized nicotine. These results are consistent with the hypothesis that generalist herbivores incur costs of

  1. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    International Nuclear Information System (INIS)

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-01-01

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain

  2. (S)- and (R)-[[sup 11]C]nicotine and the metabolite (R/S)-[[sup 11]C]cotinine. Preparation, metabolite studies and in vivo distribution in the human brain using PET

    Energy Technology Data Exchange (ETDEWEB)

    Halldin, C.; Swahn, C.-G.; Nybaeck, H. (Karolinska Hospital, Stockholm (Sweden)); Naagren, K. (Turku Univ. (Finland). Medical Cyclotron-PET Centre/Radiochemistry Lab.); Laangstroem, B. (Uppsala Univ. (Sweden). Dept. of Organic Chemistry)

    1992-11-01

    In order to investigate [[sup 11]C]nicotine binding and metabolism in the living human brain by PET, routine protocols were developed for the preparation and purification of (S)-and (R)-[[sup 11]C]nicotine and the metabolite (R/S)-[[sup 11]C]cotinine. (S)- and (R)-[[sup 11]C]nicotine were prepared by N-methylation with [[sup 11]C]methyl iodide of the appropriate secondary amine, which was liberated in situ by 2,2,6,6,-tetramethylpiperidine (TMP) from its corresponding biscamsylate-salt. (R/S)-[[sup 11]C]Cotinine was prepared by N-methylation of the amide precursor using tetrabutylammonium hydroxide as a phase transfer catalyst. Straight-phase semipreparative HPLC was in all purifications found to be superior to reversed-phase since the contamination by the norcompounds was eliminated. Reaction in acetonitrile for both (S)- and (R)-[[sup 11]C]nicotine and (R/S)-[[sup 11]C]cotinine with subsequent straight-phase HPLC purification resulted in 35-45% radiochemical yield with a total synthesis time of 30-35 min, a specific radioactivity of 1000-1500 Ci/mmol (37-55 GBq/[mu]mol, EOS) and a radiochemical purity >99%. The uptake and distribution of these tracers in the human brain was studied in healthy volunteers by PET. The metabolite (R/S)-[[sup 11]C]cotinine did not cross the blood-brain barrier to any significant degree. (author).

  3. Dietary guanidinoacetic acid does not accumulate in the brain of healthy men

    DEFF Research Database (Denmark)

    Ostojic, Sergej M.; Ostojic, Jelena

    2018-01-01

    analyzed for brain GAA and glutamate concentrations using TARQUIN 4.3.10 software. Brain GAA levels remained essentially unchanged at follow-up (an increase of 7.7% from baseline levels; 95% confidence interval, - 24.1% to 39.5%; P = 0.88) when averaged across 12 white and grey matter voxel locations......We conducted a secondary analysis of a previously completed trial to determine the effects of 8-week guanidinoacetic acid (GAA) loading on brain GAA levels in five healthy men. Brain magnetic resonance spectroscopy (1H-MRS) was taken at baseline and post-administration, with spectra additionally....... No significant changes were found for brain glutamate levels during the study (P = 0.64). Supplemental GAA appears to be safe intervention concerning brain GAA deposition, at least with GAA dosages used....

  4. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  5. Mercury accumulation and its distribution to metallothionein in mouse brain after sub-chronic pulse exposure to mercury vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, A. [Biochemistry Section, National Institute for Minamata Disease, Minamata, Kumamoto 867-0008 (Japan); Sawada, M.; Shimada, A. [Department of Veterinary Pathology, Tottori University, 4-101 Koyamacho, Minami, Tottori 680-0945 (Japan); Satoh, M. [Department of Hygienics, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan); Tohyama, C. [Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2004-09-01

    Previously we found that exposure to mercury vapor effectively induced metallothionein (MT) biosynthesis in rat brain. Although the induction of not only MT-I/II but also MT-III was evident, the induction rate of the latter was much lower than that of the former. The brain of an MT-null mouse lacks MT-I/II, but has MT-III. Here we examined the effects of sub-chronic pulse exposure to mercury vapor on the brain MT in MT-null mice and their wild type controls. MT-null and wild type mice were preliminarily exposed to mercury vapor for 2 weeks at 0.1 mg Hg/m{sup 3} for 1 h/day for 3 days a week, and then exposed for 11 weeks at 4.1 mg Hg/m{sup 3} for 30 min/day for 3 days a week. This exposure caused no toxic signs such as abnormal behavior or loss of body weight gain in the mice of either strain throughout the experimental period. Twenty-four hours after the termination of the exposure, mice were sacrificed and brain samples were subjected to mercury analysis, MT assay, and pathological examination. The MT-null mice showed lower accumulation of mercury in the brain than the wild type mice. Mercury exposure resulted in a 70% increase of brain MT in the wild type mice, which was mostly accounted for by the increase in MT-I/II. On the other hand, the brain MT in the MT-null mice increased by 19%, suggesting less reactivity of the MT-III gene to mercury vapor. Although histochemical examination revealed silver-mercury grains in the cytoplasm of nerve cells and glial cells throughout the brains of both strains, no significant difference was observed between the two strains. (orig.)

  6. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  7. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  8. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products.

    Directory of Open Access Journals (Sweden)

    Emily S Mohn

    Full Text Available Lutein, a carotenoid with anti-oxidant functions, preferentially accumulates in primate brain and is positively related to cognition in humans. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (PUFA, is also beneficial for cognition, but is susceptible to oxidation. The present study characterized the membrane distribution of lutein in brain regions important for different domains of cognitive function and determined whether membrane lutein was associated with brain PUFA oxidation.Adult rhesus monkeys were fed a stock diet (~2 mg/day lutein or ~0.5 μmol/kg body weight/day (n = 9 or the stock diet plus a daily supplement of lutein (~4.5 mg/day or~1 μmol/kg body weight/day and zeaxanthin (~0.5 mg/day or 0.1 μmol/kg body weight/day for 6-12 months (n = 4. Nuclear, myelin, mitochondrial, and neuronal plasma membranes were isolated using a Ficoll density gradient from prefrontal cortex (PFC, cerebellum (CER, striatum (ST, and hippocampus (HC. Carotenoids, PUFAs, and PUFA oxidation products were measured using HPLC, GC, and LC-GC/MS, respectively.All-trans-lutein (ng/mg protein was detected in all regions and membranes and was highly variable among monkeys. Lutein/zeaxanthin supplementation significantly increased total concentrations of lutein in serum, PFC and CER, as well as lutein in mitochondrial membranes and total DHA concentrations in PFC only (P<0.05. In PFC and ST, mitochondrial lutein was inversely related to DHA oxidation products, but not those from arachidonic acid (P <0.05.This study provides novel data on subcellular lutein accumulation and its relationship to DHA oxidation in primate brain. These findings support the hypothesis that lutein may be associated with antioxidant functions in the brain.

  9. Development of quantitative analysis method for stereotactic brain image. Assessment of reduced accumulation in extent and severity using anatomical segmentation

    International Nuclear Information System (INIS)

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-01-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA), we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-stereotactic surface projections (SSP) program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution. (author)

  10. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy.

    Science.gov (United States)

    Kanda, Tomonori; Fukusato, Toshio; Matsuda, Megumi; Toyoda, Keiko; Oba, Hiroshi; Kotoku, Jun'ichi; Haruyama, Takahiro; Kitajima, Kazuhiro; Furui, Shigeru

    2015-07-01

    To use inductively coupled plasma mass spectroscopy (ICP-MS) to evaluate gadolinium accumulation in brain tissues, including the dentate nucleus (DN) and globus pallidus (GP), in subjects who received a gadolinium-based contrast agent (GBCA). Institutional review board approval was obtained for this study. Written informed consent for postmortem investigation was obtained either from the subject prior to his or her death or afterward from the subject's relatives. Brain tissues obtained at autopsy in five subjects who received a linear GBCA (GBCA group) and five subjects with no history of GBCA administration (non-GBCA group) were examined with ICP-MS. Formalin-fixed DN tissue, the inner segment of the GP, cerebellar white matter, the frontal lobe cortex, and frontal lobe white matter were obtained, and their gadolinium concentrations were measured. None of the subjects had received a diagnosis of severely compromised renal function (estimated glomerular filtration rate brain regions. Gadolinium was detected in all specimens in the GBCA agent group (mean, 0.25 µg per gram of brain tissue ± 0.44 [standard deviation]), with significantly higher concentrations in each region (P = .004 vs the non-GBCA group for all regions). In the GBCA group, the DN and GP showed significantly higher gadolinium concentrations (mean, 0.44 µg/g ± 0.63) than other regions (0.12 µg/g ± 0.16) (P = .029). Even in subjects without severe renal dysfunction, GBCA administration causes gadolinium accumulation in the brain, especially in the DN and GP.

  11. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements.

    Science.gov (United States)

    Demirkaya, K; Demirdöğen, B Can; Torun, Z Öncel; Erdem, O; Çırak, E; Tunca, Y M

    2017-10-01

    Mineral trioxide aggregate (MTA) is a calcium silicate dental cement used for various applications in dentistry. This study was undertaken to test whether the presence of three commercial brands of calcium silicate dental cements in the dental extraction socket of rats would affect the brain aluminium (Al) levels and oxidative stress parameters. Right upper incisor was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex or Theracal LC, or left empty for the control group, were inserted into the extraction socket. Rats were killed 7, 30 or 60 days after operation. Brain tissues were obtained before killing. Al levels were measured by atomic absorption spectrometry. Thiobarbituric acid reactive substances (TBARS) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were determined using spectrophotometry. A transient peak was observed in brain Al level of MTA Angelus group on day 7, while MTA Fillapex and Theracal LC groups reached highest brain Al level on day 60. Brain TBARS level, CAT, SOD and GPx activities transiently increased on day 7 and then returned to almost normal levels. This in vivo study for the first time indicated that initial washout may have occurred in MTA Angelus, while element leaching after the setting is complete may have taken place for MTA Fillapex and Theracal LC. Moreover, oxidative stress was induced and antioxidant enzymes were transiently upregulated. Further studies to search for oxidative neuronal damage should be done to completely understand the possible toxic effects of calcium silicate cements on the brain.

  12. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of nitroimidazoles on glucose utilization and lactate accumulation in mouse brain

    International Nuclear Information System (INIS)

    Chao, C.F.; Subjeck, J.R.; Brody, H.; Shen, J.; Johnson, R.J.R.

    1984-01-01

    The radiation sensitizers misonidazole (MISO) and desmethylmisonidazole (DMM) can produce central and peripheral neuropathy in patients and laboratory animals. Nitroimidazoles can also interfere with glycolysis in vitro under aerobic and anaerobic conditions. In the present work, the authors studied the effect of MISO or DMM on lactate production and glucose utilization in mouse brain. It is observed that these compounds result in a 25% inhibition of lactate production in brain slices relative to the control at a 10 mM level. Additionally, MISO (1.0 mg/g/day) or DMM (1.4 mg/g/day) were administered daily (oral) for 1, 4, 7, or 14 days to examine the effect of these two drugs on the regional glucose utilization in C3Hf mouse brain. Five microcuries of 2-deoxy[ 14 C]glucose was given following the last drug dose and autoradiographs of serial brain sections were made and analyzed by a densitometer. Following a single dose of either MISO or DMM, no significant differences in glucose uptake were observed when compared with controls. However, following 4, 7, and 14 doses the rate of glucose utilization was significantly reduced in the intoxicated animals. Larger reductions were measured in specific regions including the posterior colliculus, cochlear nuclei, vestibular nuclei, and pons with increasing effects observed at later stages. These results share a degree of correspondence with the regional brain pathology produced by these nitroimidazoles

  14. Neurons in the brain of the male cynomolgus monkey accumulate 3H-medroxyprogesterone acetate (MPA)

    International Nuclear Information System (INIS)

    Michael, R.P.; Bonsall, R.W.; Rees, H.D.

    1986-01-01

    MPA is a synthetic progestin with androgen-depleting activity. It is used clinically to reduce sexual motivation and aggression in male sex offenders. The mechanisms for its behavioral effects are not known. The authors used steroid autoradiography to help identify sites where MPA may act in the brain of male primates. Twenty-four hours after castration, two adult male cynomolgus macaques, weighing 4.9 and 6.6 kg, were administered 5 mCi 3 H-MPA (NEN, 47.7 Ci/mmol) i.v., and were killed 1 h later. Left sides of the brains and samples of pituitary glands were frozen and 4-micron sections were cut and processed for thaw-mount autoradiography. Radioactivity was concentrated in the nuclei of many neutrons in the ventromedial hypothalamic nucleus (n.), arcuate n., medial preoptic n., and anterior hypothalamic area. Virtually no labeled cells were seen in the bed n. of stria terminalis, lateral septal n., amygdala, or pituitary gland. Right sides of the brains were analyzed by HPLC which demonstrated that 98% of the radioactivity in cell nuclei from the hypothalamus was in the form of unmetabolized 3 H-MPA. The distribution of labelling in the brain following 3 H-MPA administration resembled that previously seen following 3 H-ORG 2058 in female cynomolgus monkeys. These data indicate that MPA has a circumscribed localization in the brain

  15. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability

    Science.gov (United States)

    Fowler, Christie D.; Kenny, Paul J.

    2013-01-01

    Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. PMID:24055497

  16. Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, Harald S.; Jaroszewski, J.W.

    1999-01-01

    -phospho(N-acyl)-ethanolamine (NAPE(PLAS)), respectively, by spiking with authentic materials. Additionally, the identification was verified by thin-layer chromatography, which also showed the accumulation of N-acyl-ethanolamine phospholipids. The use of K-EDTA instead of the commonly used Cs...

  17. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy.......0 to 0.9 +/- 0.1 mM (P ratio from 6.0 +/- 0.3 to 2.8 +/- 0.2 (P

  18. Quantification of nicotinic acetylcholine receptors in human brain using [123I]5-I-A-85380 SPET

    International Nuclear Information System (INIS)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B.; Ichise, Masanori; Tipre, Dnyanesh; DeNucci, Christopher C.; Baldwin, Ronald M.; Dyck, Christopher H. van; Tamagnan, Gilles; Bozkurt, Ali; Zoghbi, Sami S.; Mukhin, Alexey G.; Vaupel, D. Bruce; Horti, Andrew G.; Kimes, Alane S.; Iida, Hidehiro; Koren, Andrei O.; London, Edythe D.; Seibyl, John P.

    2003-01-01

    The purpose of this study was to assess the utility of a new single-photon emission tomography ligand, [ 123 I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), to measure regional nAChR binding in human brain. Six healthy nonsmoker subjects (two men and four women, age 33±15 years) participated in both a bolus (dose: 317±42 MBq) and a bolus plus constant infusion (dose of bolus: 98±32 MBq, B/I=6.7±2.6 h, total dose: 331±55 MBq) study. The study duration was 5-8 h and 14 h in the former and the latter, respectively. Nonlinear least-squares compartmental analysis was applied to bolus studies to calculate total (V T ') and specific (V S ') distribution volumes. A two-tissue compartment model was applied to identify V S '. V T ' was also calculated in B/I studies. In bolus studies, V T ' was well identified by both one- and two-tissue compartment models, with a coefficient of variation of less than 5% in most regions. The two-compartment model gave V T ' values of 51, 22, 27, 32, 20, 19, 20, and 17 ml cm -3 in thalamus, cerebellum, putamen, pons, and frontal, parietal, temporal, and occipital cortices, respectively. The two-compartment model did not identify V S ' well. B/I studies provided poor accuracy of V T ' measurement, possibly due to deviations from equilibrium conditions. These results demonstrate the feasibility of quantifying high-affinity type nAChRs using [ 123 I]5-I-A-85380 in humans and support the use of V T ' measured by bolus studies. (orig.)

  19. Quantification of nicotinic acetylcholine receptors in human brain using [{sup 123}I]5-I-A-85380 SPET

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B. [Molecular Imaging Branch, National Inst. of Mental Health, Building 1, Room B3-10, 1 Center Drive, MSC-0135, Bethesda, MD 20892-0135 (United States)]|[Dept. of Psychiatry, Yale Univ. School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Ichise, Masanori; Tipre, Dnyanesh; DeNucci, Christopher C.; Baldwin, Ronald M. [Molecular Imaging Branch, National Inst. of Mental Health, Building 1, Room B3-10, 1 Center Drive, MSC-0135, Bethesda, MD 20892-0135 (United States); Dyck, Christopher H. van; Tamagnan, Gilles; Bozkurt, Ali [Dept. of Psychiatry, Yale Univ. School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Zoghbi, Sami S. [Molecular Imaging Branch, National Inst. of Mental Health, Building 1, Room B3-10, 1 Center Drive, MSC-0135, Bethesda, MD 20892-0135 (United States)]|[Yale Univ. School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Mukhin, Alexey G.; Vaupel, D. Bruce; Horti, Andrew G.; Kimes, Alane S. [Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD (United States); Iida, Hidehiro [Dept. of Investigative Radiology, National Cardiovascular Center Research Inst., Osaka (Japan); Koren, Andrei O. [Brain Imaging Center, Intramural Research Program, National Inst. on Drug Abuse, Baltimore, MD (United States)]|[Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA (United States); London, Edythe D. [Brain Imaging Center, Intramural Research Program, National Inst. on Drug Abuse, Baltimore, MD (United States)]|[David Geffen School of Medicine, UCLA, Los Angeles, CA (United States); Seibyl, John P. [Dept. of Radiology, Yale Univ. School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States)]|[Inst. for Neurodegenerative Disorders, New Haven, CT (United States)

    2003-12-01

    The purpose of this study was to assess the utility of a new single-photon emission tomography ligand, [{sup 123}I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), to measure regional nAChR binding in human brain. Six healthy nonsmoker subjects (two men and four women, age 33{+-}15 years) participated in both a bolus (dose: 317{+-}42 MBq) and a bolus plus constant infusion (dose of bolus: 98{+-}32 MBq, B/I=6.7{+-}2.6 h, total dose: 331{+-}55 MBq) study. The study duration was 5-8 h and 14 h in the former and the latter, respectively. Nonlinear least-squares compartmental analysis was applied to bolus studies to calculate total (V{sub T}') and specific (V{sub S}') distribution volumes. A two-tissue compartment model was applied to identify V{sub S}'. V{sub T}' was also calculated in B/I studies. In bolus studies, V{sub T}' was well identified by both one- and two-tissue compartment models, with a coefficient of variation of less than 5% in most regions. The two-compartment model gave V{sub T}' values of 51, 22, 27, 32, 20, 19, 20, and 17 ml cm{sup -3} in thalamus, cerebellum, putamen, pons, and frontal, parietal, temporal, and occipital cortices, respectively. The two-compartment model did not identify V{sub S}' well. B/I studies provided poor accuracy of V{sub T}' measurement, possibly due to deviations from equilibrium conditions. These results demonstrate the feasibility of quantifying high-affinity type nAChRs using [{sup 123}I]5-I-A-85380 in humans and support the use of V{sub T}' measured by bolus studies. (orig.)

  20. Pharmacological and immunochemical characterization of α2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

    Science.gov (United States)

    Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim

    2009-01-01

    Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions. Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol̇mg-1 protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits. PMID:19498420

  1. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1).

    Science.gov (United States)

    Kort, Anita; Durmus, Selvi; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2015-07-01

    Regorafenib is a novel multikinase inhibitor, currently approved for the treatment of metastasized colorectal cancer and advanced gastrointestinal stromal tumors. We investigated whether regorafenib is a substrate for the multidrug efflux transporters ABCG2 and ABCB1 and whether oral availability, brain and testis accumulation of regorafenib and its active metabolites are influenced by these transporters. We used in vitro transport assays to assess human (h)ABCB1- or hABCG2- or murine (m)Abcg2-mediated active transport at high and low concentrations of regorafenib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral regorafenib disposition and the impact of Cyp3a-mediated metabolism, we used appropriate knockout mouse strains. Regorafenib was transported well by mAbcg2 and hABCG2 and modestly by hABCB1 in vitro. Abcg2 and to a lesser extent Abcb1a/1b limited brain and testis accumulation of regorafenib and metabolite M2 (brain only) in mice. Regorafenib oral availability was not increased in Abcg2(-/-);Abcb1a/1b(-/-) mice. Up till 2 h, metabolite M5 was undetectable in plasma and organs. Brain and testis accumulation of regorafenib and brain accumulation of metabolite M2 are restricted by Abcg2 and Abcb1a/1b. Inhibition of these transporters may be of clinical relevance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.

  2. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n......AChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our...

  3. Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features.

    Science.gov (United States)

    Heidari, M; Johnstone, D M; Bassett, B; Graham, R M; Chua, A C G; House, M J; Collingwood, J F; Bettencourt, C; Houlden, H; Ryten, M; Olynyk, J K; Trinder, D; Milward, E A

    2016-11-01

    The 'neurodegeneration with brain iron accumulation' (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic emission spectroscopy demonstrated increased iron in the Hfe -/- × Tfr2 mut brain (P=0.002, n ≥5/group), primarily localized by Perls' staining to myelinated structures. Western immunoblotting showed increases of the iron storage protein ferritin light polypeptide and microarray and real-time reverse transcription-PCR revealed decreased transcript levels (Pgross myelin structure and integrity appear unaffected (P>0.05). Overlap (P0.05). These results implicate myelin-related systems involved in NBIA neuropathogenesis in early responses to iron loading. This may contribute to behavioral symptoms in NBIA and hemochromatosis and is relevant to patients with abnormal iron status and psychiatric disorders involving myelin abnormalities or resistant to conventional treatments.

  4. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Monnet-Tschudi, Florianne [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland); Hazekamp, Arno [Department of Plant Metabolomics, University of Leiden (Netherlands); Perret, Nicolas; Zurich, Marie-Gabrielle [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland); Mangin, Patrice; Giroud, Christian [Laboratory of Forensic Toxicology and Chemistry, Institute of Legal Medicine, University Hospital Center and University of Lausanne (Switzerland); Honegger, Paul [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland)

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  5. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    International Nuclear Information System (INIS)

    Monnet-Tschudi, Florianne; Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-01-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 μM in single treatment and of 1 μM and 2 μM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 μM of THC or JWH 015, whereas the expression of TNF-α remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation

  6. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA......). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...

  7. R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats

    Science.gov (United States)

    Wang, Xiao-Fei; Bi, Guo-Hua; He, Yi; Yang, Hong-Ju; Gao, Jun-Tao; Okunola-Bakare, Oluyomi M; Slack, Rachel D; Gardner, Eliot L; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-01-01

    (±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long–Evans rats. As Long–Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long–Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans. PMID:25613829

  8. Triethyllead treatment of cultured brain cells. Effect on accumulation of radioactive precursors in galactolipids

    International Nuclear Information System (INIS)

    Grundt, I.K.; Ammitzboll, T.; Clausen, J.

    1981-01-01

    Cultured cells from chick embryo brains were studied for their sensitivity to triethyllead. Triethyllead chloride (3.16 microM) was added to the nutrient medium and incubated for 48 hr with the cells. Morphological changes in light microscope and radioactive labeling of galactolipids were assayed. Triethyllead treatment reduced the number of neuronal cells with processes. Morphological changes were not observed in glial cells. The [ 35 S]sulfate labeling of sulfatides was reduced to 50%. The [ 3 H]serine labeling of cerebrosides with alpha-hydroxy fatty acids was not influenced, while the [ 3 H]serine labeling of cerebrosides with nonhydroxy fatty acids was inhibited 40% in one- and two- but not in three-week-old cultures. The results indicate that the nerve cell response to triethyllead in cultures is selective, since the neurons are more sensitive than the glia cells and the labeling of sulfatides is more sensitive than that of cerebrosides

  9. A study of neurotoxicity of BHC in relation to residual accumulation on the brain tissue of Heteropneustes fossilis (Bloch).

    Science.gov (United States)

    Hazarika, Ranjit

    2003-01-01

    Neurotoxic effect of BHC, the organochlorine pesticide in Heteropneustes fossilis has been studied exposing at the dose concentrations of 1 ppm, 5 ppm and 10 ppm in lab aquarium for 96 hours over a period of one year. The results showed the behavioural abnormalities in different exposure concentrations such as dysfunction of endocrine gland, excretion of mucus, dispigmentation, sign of restlessness, erratic swimming with rapid jurkey movement, spiralling and convolution showing severe effect in central nervous system. Therefore an attempt has been made for monitoring of BHC residues viz. alpha, beta, gamma isomers in the brain tissue exposed to different sublethal concentrations using Gas liquid chromatography. The mean values of isomers were found to be 1.587 microg/gm for 1 ppm, 2.993 microg/gm for 5 ppm and 3.78 microg/gm for 10 ppm test group. Severe behavioural abnormalities were recorded at high dose concentration of pesticides with higher accumulation of pesticide residues in brain tissue.

  10. Unrecognized Sleep Loss Accumulated in Daily Life Can Promote Brain Hyperreactivity to Food Cue.

    Science.gov (United States)

    Katsunuma, Ruri; Oba, Kentaro; Kitamura, Shingo; Motomura, Yuki; Terasawa, Yuri; Nakazaki, Kyoko; Hida, Akiko; Moriguchi, Yoshiya; Mishima, Kazuo

    2017-10-01

    Epidemiological studies have shown that sleep debt increases the risk of obesity. Experimental total sleep deprivation (TSD) has been reported to activate the reward system in response to food stimuli, but food-related responses in everyday sleep habits, which could lead to obesity, have not been addressed. Here, we report that habitual sleep time at home among volunteers without any sleep concerns was shorter than their optimal sleep time estimated by the 9-day extended sleep intervention, which indicates that participants had already been in sleep debt in their usual sleep habits. The amygdala and anterior insula, which are responsible for both affective responses and reward prediction, were found to exhibit significantly lowered activity in the optimal sleep condition. Additionally, a subsequent one-night period of TSD reactivated the right anterior insula in response to food images; however, the activity level of amygdala remained lowered. These findings indicate that (1) our brain is at risk of hyperactivation to food triggers in everyday life, which could be a risk factor for obesity and lifestyle diseases, and (2) optimal sleep appears to reduce this hypersensitivity to food stimuli. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  12. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking.

    Directory of Open Access Journals (Sweden)

    Islam Gamaleddin

    Full Text Available Over the last decade there have been significant advances in the discovery and understanding of the cannabinoid system along with the development of pharmacologic tools that modulate its function. Characterization of the crosstalk between nicotine addiction and the cannabinoid system may have significant implications on our understanding of the neurobiological mechanisms underlying nicotine dependence. Two types of cannabinoid receptors (CB1 and CB2 have been identified. CB1 receptors are expressed in the brain and modulate drug taking and drug seeking for various drugs of abuse, including nicotine. CB2 receptors have been recently identified in the brain and have been proposed to play a functional role in mental disorders and drug addiction. Our objective was to explore the role of CB2 receptors on intravenous nicotine self administration under two schedules of reinforcement (fixed and progressive ratio and on nicotine seeking induced by nicotine priming or by nicotine associated cues. For this, we evaluated the effects of various doses of the selective CB2 antagonist AM630 (1.25 to 5 mg/kg and CB2 agonist AM1241 (1 to 10 mg/kg on these behavioral responses in rats. Different groups of male Long Evans rats were trained to lever press for nicotine at a unit dose of 30 µg/kg/infusion. Subsequently, animals were randomized using a Latin-square design and injected with either AM1241 or AM630 using a counterbalanced within subject design. Administration of the CB2 ligands did not affect either nicotine-taking nicotine-seeking behavior. Our results do not support the involvement of CB2 receptors in nicotine-taking or nicotine-seeking behavior.

  13. Electronic Nicotine Delivery Systems.

    Science.gov (United States)

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.

  14. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier

  15. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  16. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    Science.gov (United States)

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  17. Cigarette nicotine yields and nicotine intake among Japanese male workers

    OpenAIRE

    Ueda, K; Kawachi, I; Nakamura, M; Nogami, H; Shirokawa, N; Masui, S; Okayama, A; Oshima, A

    2002-01-01

    Objectives: To analyse brand nicotine yield including "ultra low" brands (that is, cigarettes yielding ≤ 0.1 mg of nicotine by Federal Trade Commission (FTC) methods) in relation to nicotine intake (urinary nicotine, cotinine and trans-3'-hydroxycotinine) among 246 Japanese male smokers.

  18. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT

    International Nuclear Information System (INIS)

    Kassiou, Michael; Eberl, Stefan; Meikle, Steven R.; Birrell, Alex; Constable, Chris; Fulham, Michael J.; Wong, Dean F.; Musachio, John L.

    2001-01-01

    To quantify changes in neuronal nAChR binding in vivo, quantitative dynamic SPECT studies were performed with 5-[ 123 I]-iodo-A-85380 in baboons pre and post chronic treatment with (-)-nicotine or saline control. Infusion of (-)-nicotine at a dose of 2.0 mg/kg/24h for 14 days resulted in plasma (-)-nicotine levels of 27.3 ng/mL. This is equivalent to that found in an average human smoker (20 cigarettes a day). In the baboon brain the regional distribution of 5-[ 123 I]-iodo-A-85380 was consistent with the known densities of nAChRs (thalamus > frontal cortex > cerebellum). Changes in nAChR binding were estimated from the volume of distribution (V d ) and binding potential (BP) derived from 3-compartment model fits. In the (-)-nicotine treated animal V d was significantly increased in the thalamus (52%) and cerebellum (50%) seven days post cessation of (-)-nicotine treatment, suggesting upregulation of nAChRs. The observed 33% increase in the frontal cortex failed to reach significance. A significant increase in BP was seen in the thalamus. In the saline control animal no changes were observed in V d or BP under any experimental conditions. In this preliminary study, we have demonstrated for the first time in vivo upregulation of neuronal nAChR binding following chronic (-)-nicotine treatment

  19. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-01-01

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC 50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress

  20. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  1. Regional brain amyloid-β accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia.

    Science.gov (United States)

    Akhtar, Rizwan S; Xie, Sharon X; Chen, Yin J; Rick, Jacqueline; Gross, Rachel G; Nasrallah, Ilya M; Van Deerlin, Vivianna M; Trojanowski, John Q; Chen-Plotkin, Alice S; Hurtig, Howard I; Siderowf, Andrew D; Dubroff, Jacob G; Weintraub, Daniel

    2017-01-01

    Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative) by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2%) were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%). Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloid-β amyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.

  2. Regional brain amyloid-β accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia.

    Directory of Open Access Journals (Sweden)

    Rizwan S Akhtar

    Full Text Available Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2% were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%. Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloid-β amyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.

  3. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Directory of Open Access Journals (Sweden)

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  4. Chronic ethanol or nicotine treatment results in partial cross-tolerance between these agents.

    Science.gov (United States)

    Burch, J B; de Fiebre, C M; Marks, M J; Collins, A C

    1988-01-01

    Female DBA/2Ibg mice were treated chronically (21 days) with ethanol- or dextrin-containing liquid diets or infused chronically with nicotine (8 mg/kg/h) or saline for 10 days. The responses of these animals to challenge doses of ethanol (2.5 g/kg) or nicotine (1 or 2 mg/kg) were measured using a test battery consisting of respiration rate, acoustic startle response, Y-maze crosses and rears, heart rate and body temperature. Chronic ethanol-treated animals were tolerant to the effects elicited by a challenge dose of ethanol on four of the six measures and were cross-tolerant to nicotine's effects on the acoustic startle test. Chronic nicotine-treated animals were tolerant to nicotine's effects on five of the six measures and cross-tolerant to ethanol's effects on heart rate and body temperature. Thus, partial cross-tolerance between ethanol and nicotine exists. Chronic nicotine treatment resulted in significant increases in L-[3H]-nicotine binding in six of seven brain regions and in alpha-[125I]-bungarotoxin binding in three of seven brain regions. Chronic ethanol treatment failed to alter the binding of either ligand. Therefore, the cross-tolerance that develops between ethanol and nicotine is not totally dependent on alterations in the number of brain nicotinic receptors.

  5. Neuronal effects of nicotine during auditory selective attention.

    Science.gov (United States)

    Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R

    2015-06-01

    Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.

  6. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes.

    Science.gov (United States)

    Peterson, Daniel J; Gill, W Drew; Dose, John M; Hoover, Donald B; Pauly, James R; Cummins, Elizabeth D; Burgess, Katherine C; Brown, Russell W

    2017-05-15

    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. Copyright © 2017. Published by Elsevier B.V.

  7. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco.

    Science.gov (United States)

    Kajikawa, Masataka; Sierro, Nicolas; Hashimoto, Takashi; Shoji, Tsubasa

    2017-06-03

    In tobacco, the defense alkaloid nicotine is produced in roots and accumulates mainly in leaves. Signaling mediated by jasmonates (JAs) induces the formation of nicotine via a series of structural genes that constitute a regulon and are coordinated by JA-responsive transcription factors of the ethylene response factor (ERF) family. Early steps in the pyrrolidine and pyridine biosynthesis pathways likely arose through duplication of the polyamine and nicotinamide adenine dinucleotide (NAD) biosynthetic pathways, respectively, followed by recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon. Transcriptional regulation of nicotine biosynthesis by ERF and cooperatively-acting MYC2 transcription factors is implied by the frequency of cognate cis-regulatory elements for these factors in the promoter regions of the downstream structural genes. Indeed, a mutant tobacco with low nicotine content was found to have a large chromosomal deletion in a cluster of closely related ERF genes at the nicotine-controlling NICOTINE2 (NIC2) locus.

  8. Acute effects of high-dose intragastric nicotine on mucosal defense mechanisms

    DEFF Research Database (Denmark)

    Lindell, G; Bukhave, Klaus; Lilja, I

    1997-01-01

    Peptic ulcer disease is overrepresented among smokers; they also heal slowly and relapse frequently. Data are accumulating that smoking is detrimental to gastroduodenal mucosal cytoprotection. This study was designed to assess acute effects of high-dose intragastric nicotine, as it has been shown...... that nicotine is accumulated in gastric juice when smoking, Seven healthy smokers were given nicotine base (6 mg) as tablets, which yielded very high intragastric concentrations and plasma levels comparable to those seen when smoking. In addition to nicotine analysis, concentration levels of prostaglandin E(2......) (PGE(2)), phospholipase A(2) (PLA(2)), and phospholipid classes were measured before and after nicotine administration, Nicotine inhibited PGE(2) levels by 27-81%, whereas PLA(2) and total phospholipids were unaffected. Lysolecithin, a degradation product of the main constituent of gastric surfactant...

  9. In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C]MPA compared with [11C]ABT-418 and (S)(-)[11C]nicotine in Rhesus monkeys

    International Nuclear Information System (INIS)

    Sihver, Wiebke; Fasth, Karl-Johan; Oegren, Matthias; Lundqvist, Hans; Bergstroem, Mats; Watanabe, Yasuyoshi; Laangstroem, Bengt; Nordberg, Agneta

    1999-01-01

    The novel 11 C-labeled nicotinic agonist (R,S)-1-[ 11 C]methyl-2(3-pyridyl)azetidine ([ 11 C]MPA) was evaluated as a positron emission tomography (PET) ligand for in vivo characterization of nicotinic acetylcholine receptors in the brain of Rhesus monkeys in comparison with the nicotinic ligands (S)-3-methyl-5-(1-[ 11 C]methyl-2-pyrrolidinyl)isoxazol ([ 11 C]ABT-418) and (S)(-)[ 11 C]nicotine. The nicotinic receptor agonist [ 11 C]MPA demonstrated rapid uptake into the brain to a similar extent as (S)(-) [ 11 C]nicotine and [ 11 C]ABT-418. When unlabeled (S)(-)nicotine (0.02 mg/kg) was administered 5 min before the radioactive tracers, the uptake of [ 11 C]MPA was decreased by 25% in the thalamus, 19% in the temporal cortex, and 11% in the cerebellum, whereas an increase was found for the uptake of (S)(-)[ 11 C]nicotine and [ 11 C]ABT-418. This finding indicates specific binding of [ 11 C]MPA to nicotinic receptors in the brain in a simple classical displacement study. [ 11 C]MPA seems to be a more promising radiotracer than (S)(-)[ 11 C]nicotine or [ 11 C]ABT-418 for PET studies to characterize nicotinic receptors in the brain

  10. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  11. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  12. Belief about nicotine Modulates subjective craving and insula activity in Deprived smokers

    DEFF Research Database (Denmark)

    Gu, X. S.; Lohrenz, Terry; Salas, Ramiro

    2016-01-01

    Little is known about the specific neural mechanisms through which cognitive factors influence craving and associated brain responses, despite the initial success of cognitive therapies in treating drug addiction. In this study, we investigated how cognitive factors such as beliefs influence...... subjective craving and neural activities in nicotine-addicted individuals using model-based functional magnetic resonance imaging (fMRI) and neuropharmacology. Deprived smokers (N = 24) participated in a two-by-two balanced placebo design, which crossed beliefs about nicotine (told "nicotine" vs. told "no......, smokers demonstrated significantly reduced craving after smoking when told "nicotine in cigarette" but showed no change in craving when told "no nicotine." Second, neural activity in the insular cortex related to craving was only significant when smokers were told "nicotine" but not when told "no nicotine...

  13. Nicotine and tobacco

    Science.gov (United States)

    ... ease your withdrawal symptoms. Health experts warn that e-cigarettes are not a replacement therapy for cigarette smoking. ... not known exactly how much nicotine is in e-cigarette cartridges, because information on labels is often wrong.

  14. Nicotine Nasal Spray

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavior change techniques. Nicotine nasal ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  15. Nicotine Oral Inhalation

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavioral change techniques. Nicotine inhalation ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  16. Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea.

    Science.gov (United States)

    Margison, G P; Kleihues, P

    1975-01-01

    The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds. PMID:1200992

  17. Insight into nicotine addiction

    Directory of Open Access Journals (Sweden)

    Sahil Handa

    2017-01-01

    Full Text Available The emergence of the epidemic of nicotine addiction in India and other nations is a global public health tragedy of untoward proportions. Smoking or chewing tobacco can seriously affect general, as well as oral health. Smoking-caused disease is a consequence of exposure to toxins in tobacco smoke and addiction to nicotine is the proximate cause of these diseases. This article focuses on nicotine as a determinant of addiction to tobacco and the pharmacologic effects of nicotine that sustain cigarette smoking. The pharmacologic reasons for nicotine use are an enhancement of mood, either directly or through relief of withdrawal symptoms and augmentation of mental or physical functions. Tobacco cessation is necessary to reduce morbidity and mortality related to tobacco use. Strategies for tobacco cessation involves 5A's and 5R's approach and pharmacotherapy. Dental professionals play an important role in helping patients to quit tobacco at the community and national levels, to promote tobacco prevention and control nicotine addiction. Dentists are in a unique position to educate and motivate patients concerning the hazards of tobacco to their oral and systemic health, and to provide intervention programs as a part of routine patient care.

  18. Synthesis of 4,4-ditritio-(+)-nicotine: comparative binding and distribution studies with natural enantiomer

    Energy Technology Data Exchange (ETDEWEB)

    Vincek, W.C.; Martin, B.R.; Aceto, M.D.; Tripathi, H.L.; May, E.L.; Harris, L.S.

    1981-11-01

    The preparation of 4,4-ditritio-(+)-nicotine (Vb) (specific activity 10.3 Ci/mmole)from (+)-nicotine (Ib) via (-) 4,4-dibromocotinine (IIIb) is described. Although Ib is 10-30 times less potent than (-)-nicotine (Ia) in the CNS, its binding affinity for the crude mitochondrial or nuclear fraction of whole rat brain is only three times less than that of Ia. However, distribution studies showed that the maximum brain levels of (-)-(3H) nicotine are nearly twice those of (+)-(3H)-nicotine following administration of a 2-micrograms/kg dose. Binding affinity and disposition of the stereoisomers account for a portion of the pharmacological stereospecificity of nicotine.

  19. The Yin and Yang of nicotine: harmful during development, beneficial in adult patient populations

    Directory of Open Access Journals (Sweden)

    Danielle S Counotte

    2012-10-01

    Full Text Available Nicotine has remarkably diverse effects on the brain. Being the main active compound in tobacco, nicotine can aversively affect brain development. However, it has the ability to act positively by restoring attentional capabilities in smokers. Here, we focus on nicotine exposure during the prenatal and adolescent developmental periods and specifically, we will review the long-lasting effects of nicotine on attention, both in humans and animal models. We discuss the reciprocal relation of the beneficial effects of nicotine, improving attention in smokers and in patients with neuropsychiatric diseases, such as schizophrenia and attention deficit/hyperactivity disorder, versus nicotine-related attention deficits already caused during adolescence. Given the need for research on the mechanisms of nicotine’s cognitive actions, we discuss some of the recent work performed in animals.

  20. Effects of Nicotine Metabolites on Nicotine Withdrawal Behaviors in Mice.

    Science.gov (United States)

    Elhassan, Sagi; Bagdas, Deniz; Damaj, M Imad

    2017-06-01

    Rodent studies suggest that nicotine metabolites and minor tobacco alkaloids such as nornicotine and cotinine may promote cigarette smoking by enhancing nicotine rewarding and reinforcing effects. However, there is little information on the effects of these minor tobacco alkaloids on nicotine withdrawal. The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine and cotinine exhibit nicotine-like behavioral effects in a mouse model of spontaneous nicotine withdrawal. Mice were infused with nicotine or saline for 14 days. Experiments were conducted on day 15, 18-24 hours after minipump removal. Ten minutes prior to testing, nicotine-dependent ICR male mice received an acute injection of nicotine (0.05 and 0.5 mg/kg), nornicotine (2.5 and 25 mg/kg), or cotinine (5 and 50 mg/kg) to determine effects on somatic signs, anxiety-like behaviors, and hyperalgesia spontaneous signs of withdrawal. Nicotine and the minor tobacco alkaloid nornicotine, but not cotinine, produced dose-dependent reversal of nicotine withdrawal signs in the mouse. The minor tobacco alkaloid and nicotine metabolite nornicotine at high doses have nicotinic like effects that may contribute to tobacco consumption and dependence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Waterpipe tobacco products: nicotine labelling versus nicotine delivery.

    Science.gov (United States)

    Vansickel, Andrea R; Shihadeh, Alan; Eissenberg, Thomas

    2012-05-01

    Waterpipe tobacco package labelling typically indicates "0.0% tar" and "0.05% or 0.5% nicotine". To determine the extent to which nicotine labeling is related to nicotine delivery. 110 waterpipe smokers engaged in a 45-minute waterpipe smoking session. Puff topography and plasma nicotine were measured. Three waterpipe tobacco brands were used: Nakhla (0.5% nicotine), Starbuzz (0.05% nicotine), and Al Fakher (0.05% nicotine). Data were analyzed by one-way ANOVA. Topography did not differ across brands. Peak plasma nicotine varied significantly across brands. Al Fakher had the highest nicotine delivery (11.4 ng/ml) followed by Nakhla (9.8 ng/ml) and Starbuzz (5.8 ng/ml). Nicotine labelling on waterpipe tobacco products does not reflect delivery; smoking a brand with a "0.05% nicotine" label led to greater plasma nicotine levels than smoking a brand with a "0.5% nicotine" label. Waterpipe tobacco products should be labelled in a manner that does not mislead consumers.

  2. Extraosseous accumulation of bone scanning agents in malignant brain tumors. Comparison to semi-quantitative evaluation with 99mTc SPECT/201Tl SPECT and histological findings

    International Nuclear Information System (INIS)

    Suzuki, Aya

    2003-01-01

    Although 201 Tl chloride (Tl) SPECT has been used in the differential diagnosis between recurrence of malignant brain tumor and necrosis after treatment, it is not generally recognized as a definite modality to distinguish them. We conducted a preliminary study using Tl SPECT and 99m Tc-MDP or 99m Tc-HMDP (Tc) SPECT because it has been said that extraosseous accumulation was caused by calcium deposits in necrotic tissues. In our study, for the purposes of clarifying the mechanism of extraosseous uptake and the correlation between extraosseous accumulation of bone-scanning agent and tumor viability in malignant brain tumors, we compared whether Tc uptake was correlated with the histopathological findings and further performed semi-quantitative evaluation between Tc SPECT and Tl SPECT. The correlation coefficients between the ratio of tumor to normal skull count obtained from Tc SPECT (Tc-T/N) and those of tumor to normal brain count (T/N) and to normal scalp count (T/S) both obtained from Tl SPECT were calculated. Using contrast enhanced CT (CE-CT) or contrast enhanced MRI (CE-MRI), 8 of 10 cases showed intensely ring-enhanced tumor with necrotic lesion. Histopathologically, 7 of 8 cases whose tumor had been resected before treatment had necrosis with increased vascularity or bleeding. Of the remaining 2 cases one case, malignant lymphoma had only hypervascularity by biopsy, while the other one was excluded for resection after treatment. Three of these 8 cases whose CE-CT or CE-MRI showed necrotic lesions exhibited Tc and Tl accumulations in the area corresponding to necrosis. In contrast, 2 showed no Tc nor Tl uptake. Tc-T/N had no significant correlation with any of early-, delayed-T/N or T/S. In conclusion, there was no significant correlation between Tc and Tl uptakes by malignant brain tumors in semi-quantitative evaluation. (author)

  3. Specific accumulation of 18F-deoxyglucose in three-dimensional long-term cultures of human and rodent brain tissue

    International Nuclear Information System (INIS)

    Hocke, C.; Prante, O.; Kuwert, T.; Bluemcke, I.; Jeske, I.; Romstoeck, J.; Stefan, H.

    2007-01-01

    Aim: Organotypic slice cultures (OSC) of human brain specimens represent an intriguing experimental model for translational studies addressing, e.g., stem cell transplantation in neurodegenerative diseases or targeting invasion by malignant glioma ex vivo. However, long-term viability and phenomena of structural reorganization of human OSC remain to be further characterized. Here, we report the use of 18 F-deoxyglucose (FDG) for evaluating the viability of brain slice preparations obtained either from postnatal rats or human hippocampal specimens. Methods: Anatomically well preserved human hippocampi obtained from epilepsy surgery and rat hippocampus slice cultures obtained from six day old Wistar rats were dissected into horizontal slices. The slices were incubated with FDG in phosphate buffered saline up to 1 h, either with or without supplementation of glucose at a concentration of 2.5 mg/ml. Radioactivity within the medium or slice cultures was measured using a gamma-counter. In addition, distribution of radioactivity was autoradiographically visualized and quantified as counts per mm 2 . Results: In rat hippocampal slices, FDG accumulated with 1 300 000 ± 68 000 counts/mm 2 , whereas the incorporation of the radioactive label in human slices was in the order of 1 500 000 ± 370 000 counts/mm 2 . The elevation of glucose concentration within the medium led to a significant three-fold decrease of FDG accumulation in rat slices and to a 2.4-fold decrease in human specimens. Conclusions: FDG accumulated in organotypic brain cultures of human or rodent origin. FDG is thus suited to investigate the viability of OSC. Furthermore, these preparations open new ways to study the factors governing cerebral FDG uptake in brain tissue ex vivo. (orig.)

  4. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system.

    Science.gov (United States)

    Kotagale, Nandkishor R; Walke, Sonali; Shelkar, Gajanan P; Kokare, Dadasaheb M; Umekar, Milind J; Taksande, Brijesh G

    2014-04-01

    The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of nicotine on homeostatic and hedonic components of food intake.

    Science.gov (United States)

    Stojakovic, Andrea; Espinosa, Enma P; Farhad, Osman T; Lutfy, Kabirullah

    2017-10-01

    Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis. © 2017 Society for Endocrinology.

  6. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    Directory of Open Access Journals (Sweden)

    Linzy M. Hendrickson

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  7. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  8. Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications.

    Science.gov (United States)

    D'Souza, Manoranjan S

    2016-01-01

    Morbidity and mortality associated with tobacco smoking constitutes a significant burden on healthcare budgets all over the world. Therefore, promoting smoking cessation is an important goal of health professionals and policy makers throughout the world. Nicotine is a major psychoactive component in tobacco that is largely responsible for the widespread addiction to tobacco. A majority of the currently available FDA-approved smoking cessation medications act via neuronal nicotinic receptors. These medications are effective in approximately half of all the smokers, who want to quit and relapse among abstinent smokers continues to be high. In addition to relapse among abstinent smokers, unpleasant effects associated with nicotine withdrawal are a major motivational factor in continued tobacco smoking. Over the last two decades, animal studies have helped in identifying several neural substrates that are involved in nicotine-dependent behaviors including those associated with nicotine withdrawal and relapse to tobacco smoking. In this review, first the role of specific brain regions/circuits that are involved in nicotine dependence will be discussed. Next, the review will describe the role of specific nicotinic receptor subunits in nicotine dependence. Finally, the review will discuss the role of classical neurotransmitters (dopamine, serotonin, noradrenaline, glutamate, and γ-aminobutyric acid) as well as endogenous opioid and endocannabinoid signaling in nicotine dependence. The nicotinic and nonnicotinic neural substrates involved in nicotine-dependent behaviors can serve as possible targets for future smoking cessation medications. © 2016 Elsevier B.V. All rights reserved.

  9. Nicotine Withdrawal Disrupts Contextual Learning but Not Recall of Prior Contextual Associations: Implications for Nicotine Addiction

    OpenAIRE

    Portugal, George S.; Gould, Thomas J.

    2008-01-01

    Interactions between nicotine and learning could contribute to nicotine addiction. Although previous research indicates that nicotine withdrawal disrupts contextual learning, the effects of nicotine withdrawal on contextual memories acquired before withdrawal are unknown. The present study investigated whether nicotine withdrawal disrupted recall of prior contextual memories by examining the effects of nicotine withdrawal on recall of nicotine conditioned place preference (CPP) and contextual...

  10. Tribute to: Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area [William Corrigall, Kathleen Coen and Laurel Adamson, Brain Res. 653 (1994) 278-284].

    Science.gov (United States)

    Leri, Francesco; Vaccarino, Franco J

    2016-08-15

    In this paper, Dr. Corrigall and collaborators described elegant experiments designed to elucidate the neurobiology of nicotine reinforcement. The nicotinic receptor antagonist dihydro-β-erythroidine (DHβE) was infused in the ventral tegmental area (VTA) or nucleus accumbens (NAC) of rats trained to self-administer nicotine intravenously. Additionally, DHβE was infused in the VTA of rats trained to self-administer food or cocaine, and nicotine self-administration was assessed in rats with lesions to the peduculopontine tegmental nucleus (PPT). A number of key themes emerged from this fundamental study that remain relevant today. The primary finding was that infusions of DHβE in the VTA, but not in the NAC, lowered nicotine self-administration, suggesting that nicotinic receptors in VTA are involved in the reinforcing action of nicotine. This conclusion has been confirmed by subsequent findings, and the nature of the nicotinic receptors has also been elucidated. The authors also reported that DHβE in the VTA had no effect on food or cocaine self-administration, and that lesions to the PPT did not alter nicotine self-administration. Since this initial investigation, the question of whether nicotinic receptors in the VTA are necessary for the reinforcing action of other stimuli, and by which mechanisms, has been extensively explored. Similarly, many groups have further investigated the role of mesopontine cholinergic nuclei in reinforcement. This paper not only contributed in important ways to our understanding of the neurochemical basis of nicotine reinforcement, but was also a key catalyst that gave rise to several research themes central to the neuropharmacology of substance abuse. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The selectively bred high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats differ in sensitivity to nicotine.

    Science.gov (United States)

    de Fiebre, NancyEllen C; Dawson, Ralph; de Fiebre, Christopher M

    2002-06-01

    Studies in rodents selectively bred to differ in alcohol sensitivity have suggested that nicotine and ethanol sensitivities may cosegregate during selective breeding. This suggests that ethanol and nicotine sensitivities may in part be genetically correlated. Male and female high alcohol sensitivity (HAS), control alcohol sensitivity, and low alcohol sensitivity (LAS) rats were tested for nicotine-induced alterations in locomotor activity, body temperature, and seizure activity. Plasma and brain levels of nicotine and its primary metabolite, cotinine, were measured in these animals, as was the binding of [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin in eight brain regions. Both replicate HAS lines were more sensitive to nicotine-induced locomotor activity depression than the replicate LAS lines. No consistent HAS/LAS differences were seen on other measures of nicotine sensitivity; however, females were more susceptible to nicotine-induced seizures than males. No HAS/LAS differences in nicotine or cotinine levels were seen, nor were differences seen in the binding of nicotinic ligands. Females had higher levels of plasma cotinine and brain nicotine than males but had lower brain cotinine levels than males. Sensitivity to a specific action of nicotine cosegregates during selective breeding for differential sensitivity to a specific action of ethanol. The differential sensitivity of the HAS/LAS rats is due to differences in central nervous system sensitivity and not to pharmacokinetic differences. The differential central nervous system sensitivity cannot be explained by differences in the numbers of nicotinic receptors labeled in ligand-binding experiments. The apparent genetic correlation between ethanol and nicotine sensitivities suggests that common genes modulate, in part, the actions of both ethanol and nicotine and may explain the frequent coabuse of these agents.

  12. Delivery of nicotine aerosol to mice via a modified electronic cigarette device.

    Science.gov (United States)

    Lefever, Timothy W; Lee, Youn O K; Kovach, Alexander L; Silinski, Melanie A R; Marusich, Julie A; Thomas, Brian F; Wiley, Jenny L

    2017-03-01

    Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    AChR binding sites in several brain regions, particularly in the prefrontal cortex. The alpha7 nAChR agonists SSR180711 and PNU-282987 also increase [(125)I]-BTX binding, suggesting that this is a general consequence of alpha7 nAChR agonism. Interestingly, the alpha7 nAChR positive allosteric modulators PNU......The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n...

  14. Difference in 201TlCl accumulation mechanism in brain tumors. A comparison of their Na+-K+ ATPase activities

    International Nuclear Information System (INIS)

    Sugo, Nobuo; Kuroki, Takao; Nemoto, Masaaki; Mito, Toshiaki; Seiki, Yoshikatsu; Shibata, Iekado

    2000-01-01

    The accumulation levels of 201 TlCl and Na + -K + ATPase activity in tumor tissue were compared among glioblastoma, benign glioma and meningioma to study the difference in the mechanism of 201 TlCl accumulation. The subjects were 19 cases comprised of 6 glioblastoma, 2 oligodendroglioma, 1 fibrillary astrocytoma, 1 pilocytic astrocytoma and 9 meningioma. Preoperative 201 TlCl SPECT was performed in all the cases, and Thallium Index (TL index) was calculated by a ratio of 201 TlCl in the tumor area and the contralateral area. In addition, cell membrane was extracted from the tumor tissue collected intraoperatively to determine Na + -K + ATPase activity. No statistically significant difference in TL index was noted between the glioblastoma group (6.97±2.67) and the meningioma group (5.87±1.99). This fact showed that there was no difference in the accumulation level of 201 TlCl between the two groups. On the other hand, the glioblastoma group indicated a higher value of Na + -K + ATPase activity (49.13±43.76 μmole/hour/mg protein) than the meningioma group (7.73±13.84 μmol/hour/mg protein) (p + -K + ATPase activity in 201 TlCl accumulation in glioblastoma and the influences of other accumulation mechanism than Na + -K + ATPase activity such as the volume of intratumoral vascular bed in meningioma. (author)

  15. Lipopolysaccharide (LPS Accumulates in Neocortical Neurons of Alzheimer’s Disease (AD Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-12-01

    Full Text Available Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS, within Alzheimer’s disease (AD affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α-32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.

  16. Growth and development, nicotine concentrations and sources of nicotine-n in flue-cured tobacco plants influenced by basal n fertilization time and n fertilizer (15N)

    International Nuclear Information System (INIS)

    Xie Zhijian; Tu Shuxin; Li Jinping; Xu Rubing; Chen Zhenguo; Cao Shiming; Wang Xuelong

    2010-01-01

    A field experiment with 15 N isotope tracing micro-plots was carried out to study the effects of basal N fertilizer application time (15 d, 30 d before the transplanting) of flue-cured tobacco (FCT) seedlings and nitrogen fertilization (with N and without N) on growth and development, nicotine concentrations and sources of nicotine N of FCT in Laowan (N 31 degree 27', E 111 degree 14', 1 130 m above sea level), a main tobacco production area of Xiangfan city, Hubei province. The results showed that both dry matter accumulation and nicotine concentrations of different parts of FCT increased with growing of plants. The concentrations of nicotine decreased with the ascending of leaf position before topping period, but just opposite after the removal of apex. The proportion of nicotine N from fertilizer to total nicotine N decreased with growing of FCT plants and the rising of leaf position. Applying N fertilizer significantly increased dry matter accumulation of shoot and the nicotine concentrations of different poisional tobacco leaves by 2.1-2.7 fold and 0.1-0.7 fold respectively. Compared with the basal fertilization time 15 d before transplanting, applying basal fertilizer 30 d before transplanting increased the dry matter accumulation and nicotine concentrations of flue-cured tobacco by 2.2%-8.0% and 6.3%-18.5% respectively. There was no significant effects of basal N fertilization time on the proportion of nicotine-N from fertilizer in organs of FCT plants at mature stage. These results suggested that properly putting forward the basal N fertilization time before transplanting make for decrease of nicotine concentrations and improvement of quality of FCT leaves, so as to improve its industrial utilities. (authors)

  17. Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats.

    Science.gov (United States)

    Zhang, Yiqin; Rauch, Uwe; Perez, Maria-Thereza R

    2003-03-01

    To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.

  18. Accumulation of lactate in the rat brain during hyperammonaemia is not associated with impaired mitochondrial respiratory capacity

    DEFF Research Database (Denmark)

    Witt, Anne Møller; Larsen, Fin Stolze; Bjerring, Peter Nissen

    2017-01-01

    In acute liver failure (ALF) cerebral oedema and high intracranial pressure (ICP) are potentially deadly complications. Astrocytes cultured in ammonia have shown mitochondrial dysfunction and in rat models of liver failure, de novo lactate production in the brain has been observed and has led...... to a hypothesis of compromised brain metabolism during ALF. In contrast, normal lactate levels are found in cerebral microdialysate of ALF patients and the oxygen: glucose ratio of cerebral metabolic rates remains normal. To investigate this inconsistency we studied the mitochondrial function in brain tissue...... with respirometry in animal models of hyperammonaemia. Wistar rats with systemic inflammation induced by lipopolysaccharide or liver insufficiency induced by 90% hepatectomy were given ammonium or sodium acetate for 120 min. A cerebral cortex homogenate was studied with respirometry and substrates of the citric...

  19. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus.

    Science.gov (United States)

    Hunter, B E; de Fiebre, C M; Papke, R L; Kem, W R; Meyer, E M

    1994-02-28

    Long-term potentiation (LTP) can be modulated by a number of neurotransmitter receptors including muscarinic and GABAergic receptor types. We have found that a novel nicotinic agonist, 2,4-dimethoxybenzylidene anabaseine (DMXB), facilitated the induction of LTP in the hippocampus in a dose-dependent and mecamylamine-sensitive manner. DMXB displaced high affinity nicotinic [125I]alpha-bungarotoxin and [3H]acetylcholine binding in rat brain. Xenopus oocyte studies demonstrated that DMXB has agonist activity at alpha 7 but not alpha 4/beta 2 nicotinic receptor subtypes. These results indicated that DMXB is a novel nicotinic agonist with apparent specificity for the alpha 7/alpha-bungarotoxin nicotinic receptor subtype and indicate that nicotinic receptor activation is capable of modulating the induction of long-term potentiation.

  20. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  1. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization.

    Science.gov (United States)

    Zhao, Zongmin; Hu, Yun; Harmon, Theresa; Pentel, Paul; Ehrich, Marion; Zhang, Chenming

    2017-09-01

    A lipid-polymeric hybrid nanoparticle-based next-generation nicotine nanovaccine was rationalized in this study to combat nicotine addiction. A series of nanovaccines, which had nicotine-haptens localized on carrier protein (LPKN), nanoparticle surface (LPNK), or both (LPNKN), were designed to study the impact of hapten localization on their immunological efficacy. All three nanovaccines were efficiently taken up and processed by dendritic cells. LPNKN induced a significantly higher immunogenicity against nicotine and a significantly lower anti-carrier protein antibody level compared to LPKN and LPNK. Meanwhile, it was found that the anti-nicotine antibodies elicited by LPKN and LPNKN bind nicotine stronger than those elicited by LPKN, and LPNK and LPNKN resulted in a more balanced Th1-Th2 immunity than LPKN. Moreover, LPNKN exhibited the best ability to block nicotine from entering the brain of mice. Collectively, the results demonstrated that the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine could be enhanced by modulating hapten localization, providing a promising strategy to combatting nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeliki Lyssimachou

    Full Text Available Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT, which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR and peroxisome proliferator-activated receptor gamma (PPARγ. In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  3. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  4. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    2016-12-01

    Full Text Available This data article contains supporting information regarding the research article entitled “Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease” (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016 [1]. Triple-transgenic (3×Tg-Alzheimer׳s disease (AD model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI. Correspondingly, amyloid-β (Aβ deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  5. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  6. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    Science.gov (United States)

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  7. Vitamin E Nicotinate

    Directory of Open Access Journals (Sweden)

    Kimbell R. Duncan

    2017-03-01

    Full Text Available Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate.

  8. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.

    Science.gov (United States)

    Pluta, R

    2003-01-01

    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  9. Use of Nicotine in Electronic Nicotine and Non-Nicotine Delivery Systems by US Adults, 2015.

    Science.gov (United States)

    Weaver, Scott R; Kemp, Catherine B; Heath, J Wesley; Pechacek, Terry F; Eriksen, Michael P

    Nicotine in electronic nicotine and non-nicotine delivery systems (ENDS/ENNDS) may present a risk of harm to those with cardiovascular disease and the fetuses of pregnant women. We assessed the extent to which adult users of ENDS/ENNDS used these products with nicotine. We obtained data for this study from a national probability survey of 6051 US adults that was conducted in August and September 2015. Of 399 adult ENDS/ENNDS users who were current smokers, 337 (80.7%) used ENDS/ENNDS containing nicotine, whereas only 29 of 71 (36.9%) ENDS/ENNDS users who were never smokers used ENDS/ENNDS containing nicotine. Assessments of the population health impact of ENDS/ENNDS use among never smokers should take into account the extent to which use involves nicotine.

  10. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    Science.gov (United States)

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nicotine dependence and psychiatric disorders.

    Science.gov (United States)

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  12. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease.

    Science.gov (United States)

    Miners, J Scott; Schulz, Isabel; Love, Seth

    2018-01-01

    Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.

  13. Evaluation of nicotine in tobacco-free-nicotine commercial products.

    Science.gov (United States)

    Hellinghausen, Garrett; Lee, Jauh T; Weatherly, Choyce A; Lopez, Diego A; Armstrong, Daniel W

    2017-06-01

    Recently, a variety of new tobacco-free-nicotine, TFN, products have been commercialized as e-liquids. Tobacco-derived nicotine contains predominantly (S)-(-)-nicotine, whereas TFN products may not. The TFN products are said to be cleaner, purer substances, devoid of toxic components that come from the tobacco extraction process. A variety of commercial tobacco and TFN products were analyzed to identify the presence and composition of each nicotine enantiomer. A rapid and effective enantiomeric separation of nicotine has been developed using a modified macrocyclic glycopeptide bonded to superficially porous particles. The enantiomeric assay can be completed in nicotine, which is present in much greater quantities in commercial TFN products compared to commercial tobacco-derived products. Such studies are required by the FDA for new enantiomeric pharmacological products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick.

    Science.gov (United States)

    Forsyth, C S; Speth, R C; Wecker, L; Galey, F D; Frank, A A

    1996-12-31

    Coniine, an alkaloid from Conium maculatum (poison hemlock), is a known teratogen in many domestic species with maternal ingestion resulting in arthrogryposis of the offspring. We have previously shown that rats are not susceptible and rabbits only weakly susceptible to coniine-induced arthrogryposis. However, the chick embryo does provide a reproducible laboratory animal model of coniine-induced teratogenesis. The reason for this cross-species variation is unknown. The purpose of this study was to evaluate coniine binding to nicotinic receptors and to measure coniine metabolism in vitro between susceptible and non-susceptible species. Using the chick model, neither the peripheral nicotinic receptor antagonist d-tubocurarine chloride nor the central nicotinic receptor antagonist trimethaphan camsylate blocked the teratogenesis or lethality of 1.5% coniine (50 microliters/egg). Trimethaphan camsylate enhanced coniine-induced lethality in a dose-dependent manner. Neither nicotinic receptor blocker prevented nicotine sulfate-induced malformations but d-tubocurarine chloride did block lethality in a dose-dependent manner. Competition by coniine for [125I]-alpha-bungarotoxin to nicotinic receptors isolated from adult rat diaphragm and chick thigh muscle and competition by coniine for [3H]-cytisine to receptors from rat and chick brain were used to assess coniine binding to nicotinic receptors. The IC50 for coniine in rat diaphragm was 314 microM while that for chick leg muscle was 70 microM. For neuronal nicotinic receptors, the IC50s of coniine for maternal rat brain, fetal rat brain, and chick brain were 1100 microM, 820 microM, and 270 microM, respectively. There were no differences in coniine biotransformation in vitro by microsomes from rat or chick livers. Differences in apparent affinity of coniine for nicotinic receptors or differences in the quantity of the nicotinic receptor between the rat and chick may explain, in part, the differences in susceptibility of

  15. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M

    2016-01-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification....... Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 n...

  16. A common biological basis of obesity and nicotine addiction

    NARCIS (Netherlands)

    T.E. Thorgeirsson (Thorgeir); D.F. Gudbjartsson (Daniel); P. Sulem (Patrick); S. Besenbacher (Søren); U. Styrkarsdottir (Unnur); G. Thorleifsson (Gudmar); G.B. Walters (Bragi); H. Furberg (Helena); P. Sullivan (Patrick); J. Marchini (Jonathan); M.I. McCarthy (M.); V. Steinthorsdottir (Valgerdur); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); I. Surakka (Ida); J.M. Vink (Jacqueline); N. Amin (Najaf); F. Geller (Frank); T. Rafnar (Thorunn); T. Esko (Tõnu); S. Walter (Stefan); C. Gieger (Christian); R. Rawal (R.); M. Mangino (Massimo); I. Prokopenko (Inga); R. Mägi (Reedik); K. Keskitalo (Kaisu); I.H. Gudjonsdottir (Iris); S. Gretarsdottir (Solveig); H. Stefansson (Hreinn); Y.S. Aulchenko (Yurii); M. Nelis (Mari); K.K.H. Aben (Katja); M. den Heijer (Martin); N. Soranzo (Nicole); A.M. Valdes (Ana Maria); C.J. Steves (Claire); A.G. Uitterlinden (André); A. Hofman (Albert); A. Tönjes (Anke); P. Kovacs (Peter); J.J. Hottenga (Jouke Jan); G.A.H.M. Willemsen (Gonneke); N. Vogelzangs (Nicole); A. Döring (Angela); N. Dahmen (N.); B. Nitz (Barbara); S. Ripatti (Samuli); M. Perola (Markus); J. Kettunen (Johannes); A.L. Hartikainen; A. Pouta (Anneli); J. Laitinen (Jaana); M.K. Isohanni (Matti); S. Huei-Yi (Shen); M. Allen (Maxine); M. Krestyaninova (Maria); A. Hall (Anne); J.R. Thompson (John); H. Oskarsson (Hogni); T. Tyrfingsson (Thorarinn); L.A.L.M. Kiemeney (Bart); M.-R. Jarvelin (Marjo-Riitta); V. Salomaa (Veikko); M. Stumvoll (Michael); T.D. Spector (Timothy); H.E. Wichmann (Heinz Erich); A. Metspalu (Andres); N.J. Samani (Nilesh); B.W.J.H. Penninx (Brenda); B.A. Oostra (Ben); D.I. Boomsma (Dorret); H.W. Tiemeier (Henning); C.M. van Duijn (Cornelia); J. Kaprio (Jaakko); J.R. Gulcher (Jeffrey); Y. Kim (Yunjung); J. Dackor (Jennifer); E.A. Boerwinkle (Eric); N. Franceschini (Nora); D. Ardissino (Diego); L. Bernardinelli (Luisa); P.M. Mannucci (Pier); F. Mauri (Francesco); P.A. Merlini (Piera); D. Absher (Devin); T.L. Assimes (Themistocles); S.P. Fortmann (Stephen); C. Iribarren (Carlos); J.W. Knowles (Joshua); T. Quertermous (Thomas); L. Ferrucci (Luigi); T. Tanaka (Toshiko); J.C. Bis (Joshua); H. Furberg (Helena); T. Haritunians (Talin); B. McKnight (Barbara); B.M. Psaty (Bruce); K.D. Taylor (Kent); E.L. Thacker (Evan); P. Almgren (Peter); L. Groop (Leif); C. Ladenvall (Claes); M. Boehnke (Michael); A.U. Jackson (Anne); K.L. Mohlke (Karen); H.M. Stringham (Heather); J. Tuomilehto (Jaakko); E.J. Benjamin (Emelia); S.J. Hwang; D. Levy (Daniel); S.R. Preis; R.S. Vasan (Ramachandran Srini); J. Duan (Jubao); P.V. Gejman (Pablo); D.F. Levinson (Douglas); A.R. Sanders (Alan); J. Shi (Jianxin); E.H. Lips (Esther); J.D. McKay (James); A. Agudo (Antonio); L. Barzan (Luigi); V. Bencko (Vladimir); S. Benhamou (Simone); X. Castellsagué (Xavier); C. Canova (Cristina); D.I. Conway (David); E. Fabianova (Eleonora); L. Foretova (Lenka); V. Janout (Vladimir); C.M. Healy (Claire); I. Holcátová (Ivana); K. Kjaerheim (Kristina); P. Lagiou; J. Lissowska (Jolanta); R. Lowry (Ray); T.V. MacFarlane (Tatiana); D. Mates (Dana); L. Richiardi (Lorenzo); P. Rudnai (Peter); N. Szeszenia-Dabrowska (Neonilia); D. Zaridze; A. Znaor (Ariana); M. Lathrop (Mark); P. Brennan (Paul); S. Bandinelli (Stefania); T.M. Frayling (Timothy); J.M. Guralnik (Jack); Y. Milaneschi (Yuri); J.R.B. Perry (John); D. Altshuler (David); R. Elosua (Roberto); S. Kathiresan (Sekar); G. Lucas (Gavin); O. Melander (Olle); C.J. O'Donnell (Christopher); S.M. Schwartz (Stephen); B.F. Voight (Benjamin); G.D. Smith; E.J.C. de Geus (Eco); S.J. Chanock (Stephen); F. Gu (Fangyi); S.E. Hankinson (Susan); D. Hunter (David); D.I. Chasman (Daniel); B.M. Everett (Brendan); G. Paré (Guillaume); P.M. Ridker (Paul); M.D. Li (Ming); H.H. Maes (Hermine); J. Audrain-Mcgovern (Janet); D. Posthuma (Danielle); L.M. Thornton (Laura); C. Lerman (Caryn); J.E. Rose (Jed); J.P.A. Ioannidis (John); P. Kraft (Peter); D.Y. Lin (Dan); J. Liu (Jason); P. Muglia (Pierandrea); D. Waterworth (Dawn); A.D. Pillai (Ajay); P. Muglia (Pierandrea); L. Middleton (Lefkos); W. Berrettini (Wade); C.W. Knouff (Christopher); X. Yuan (Xin); G. Waeber (Gérard); P. Vollenweider (Peter); M. Preisig (Martin); N.J. Wareham (Nick); J.H. Zhao (Jing Hua); R.J.F. Loos (Ruth); I.E. Barroso (Inês); K-T. Khaw (Kay-Tee); S.M. Grundy (Scott); P. Barter (Phil); R. Mahley (Robert); Y.A. Kesaniemi (Antero); R. McPherson (Ruth); J. Vincent (John); J.S. Strauss (John S); J. Kennedy (James); A.E. Farmer (Anne E); P. Mcguffin (Peter); R.N. Day (Richard); K. Matthews (Keith); A.B. Bakke (Arnold B.); A. Gulsvik (Amund); S. Lucae (Susanne); M. Ising (Marcus); T. Brueckl (Tanja); S. Horstmann (Sonja); J. Heinrich (Joachim); C. Lamina (Claudia); O. Polasek (Ozren); L. Zgaga (Lina); J.E. Huffman (Jennifer); S. Campbell (Susan); J.S. Kooner (Jaspal); J.C. Chambers (John); M.S. Burnett; J. Devaney (Joseph); A.D. Pichard; K.M. Kent (Kenneth); L.F. Satler; J.M. Lindsay (Joseph); R. Waksman (Ron); S.E. Epstein (Stephen); J.F. Wilson (James); S.H. Wild (Sarah); H. Campbell (Harry); V. Vitart (Veronique); M.P. Reilly (Muredach); M. Li (Mingyao); L. Qu (Liming); A. Wilensky (Asaf); W. Matthai (William); H. Hakonarson (Hakon); D.J. Rader (Daniel); A. Franke (Andre); M. Wittig (Michael); A. Schäfer (Arne); M. Uda (Manuela); A. Terracciano; X. Xiao (Xiangjun); F. Busonero; P. Scheet (Paul); D. Schlessinger; D.S. Clair; D. Rujescu (Dan); G.R. Abecasis (Gonçalo); H.J. Grabe (Hans Jörgen); A. Teumer (Alexander); H. Völzke (Henry); A. Petersmann (Astrid); U. John (Ulrich); I. Rudan (Igor); C. Hayward (Caroline); A.F. Wright (Alan); I. Kolcic (Ivana); B.J. Wright (Benjamin); A.J. Balmforth (Anthony); C. Anderson (Carl); T. Ahmed (Tariq); J. Mathew (Joseph); M. Parkes (Miles); J. Satsangi (Jack); M. Caulfield (Mark); P. Munroe (Patricia); M. Farrall (Martin); A. Dominiczak (Anna); H. Worthington (Helen); W. Thomson (Wendy); D.S. Eyre (Dylan Samuel); A. Barton (Anne); V. Mooser (Vincent); C. Francks (Clyde)

    2013-01-01

    textabstractSmoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system

  17. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  18. A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain

    Science.gov (United States)

    Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.

    2008-10-01

    The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is

  19. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats.

    Science.gov (United States)

    Palmatier, Matthew I; Kellicut, Marissa R; Brianna Sheppard, A; Brown, Russell W; Robinson, Donita L

    2014-11-01

    Nicotine is a psychomotor stimulant with 'reinforcement enhancing' effects--the actions of nicotine in the brain increase responding for non-nicotine rewards. We hypothesized that this latter effect of nicotine depends on increased incentive properties of anticipatory cues; consistent with this hypothesis, multiple laboratories have reported that nicotine increases sign tracking, i.e. approach to a conditioned stimulus (CS), in Pavlovian conditioned-approach tasks. Incentive motivation and sign tracking are mediated by mesolimbic dopamine (DA) transmission and nicotine facilitates mesolimbic DA release. Therefore, we hypothesized that the incentive-promoting effects of nicotine would be impaired by DA antagonists. To test this hypothesis, separate groups of rats were injected with nicotine (0.4mg/kg base) or saline prior to Pavlovian conditioning sessions in which a CS (30s illumination of a light or presentation of a lever) was immediately followed by a sweet reward delivered in an adjacent location. Both saline and nicotine pretreated rats exhibited similar levels of conditioned approach to the reward location (goal tracking), but nicotine pretreatment significantly increased approach to the CS (sign tracking), regardless of type (lever or light). The DAD1 antagonist SCH-23390 and the DAD2/3 antagonist eticlopride reduced conditioned approach in all rats, but specifically reduced goal tracking in the saline pretreated rats and sign tracking in the nicotine pretreated rats. The non-selective DA antagonist flupenthixol reduced sign-tracking in nicotine rats at all doses tested; however, only the highest dose of flupenthixol reduced goal tracking in both nicotine and saline groups. The reductions in conditioned approach behavior, especially those by SCH-23390, were dissociated from simple motor suppressant effects of the antagonists. These experiments are the first to investigate the effects of dopaminergic drugs on the facilitation of sign-tracking engendered by

  20. Developmental hippocampal neuroplasticity in a model of nicotine replacement therapy during pregnancy and breastfeeding.

    Directory of Open Access Journals (Sweden)

    Ian Mahar

    Full Text Available The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP.Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15 and adolescent (P41 offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion.

  1. Reduced-Nicotine Cigarettes in Young Smokers: Impact of Nicotine Metabolism on Nicotine Dose Effects.

    Science.gov (United States)

    Faulkner, Paul; Ghahremani, Dara G; Tyndale, Rachel F; Cox, Chelsea M; Kazanjian, Ari S; Paterson, Neil; Lotfipour, Shahrdad; Hellemann, Gerhard S; Petersen, Nicole; Vigil, Celia; London, Edythe D

    2017-07-01

    The use of cigarettes delivering different nicotine doses allows evaluation of the contribution of nicotine to the smoking experience. We compared responses of 46 young adult smokers to research cigarettes, delivering 0.027, 0.110, 0.231, or 0.763 mg nicotine, and conventional cigarettes. On five separate days, craving, withdrawal, affect, and sustained attention were measured after overnight abstinence and again after smoking. Participants also rated each cigarette, and the nicotine metabolite ratio (NMR) was used to identify participants as normal or slow metabolizers. All cigarettes equally alleviated craving, withdrawal, and negative affect in the whole sample, but normal metabolizers reported greater reductions of craving and withdrawal than slow metabolizers, with dose-dependent effects. Only conventional cigarettes and, to a lesser degree, 0.763-mg nicotine research cigarettes increased sustained attention. Finally, there were no differences between ratings of lower-dose cigarettes, but the 0.763-mg cigarettes and (even more so) conventional cigarettes were rated more favorably than lower-dose cigarettes. The findings indicate that smoking-induced relief of craving and withdrawal reflects primarily non-nicotine effects in slow metabolizers, but depends on nicotine dose in normal metabolizers. By contrast, relief of withdrawal-related attentional deficits and cigarette ratings depend on nicotine dose regardless of metabolizer status. These findings have bearing on the use of reduced-nicotine cigarettes to facilitate smoking cessation and on policy regarding regulation of nicotine content in cigarettes. They suggest that normal and slow nicotine metabolizers would respond differently to nicotine reduction in cigarettes, but that irrespective of metabolizer status, reductions to <0.763 mg/cigarette may contribute to temporary attentional deficits.

  2. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J

    2018-03-01

    Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.

  3. Electronic Nicotine Delivery Systems (ENDS): What Nurses Need to Know.

    Science.gov (United States)

    Essenmacher, Carol; Naegle, Madeline; Baird, Carolyn; Vest, Bridgette; Spielmann, Rene; Smith-East, Marie; Powers, Leigh

    Efforts to decrease adverse effects of tobacco use are affected by emergence of new nicotine delivery products. Advertising, product promotion, and social media promote use of these products, yet a lack of evidence regarding safety leaves nurses unprepared to counsel patients. To critically evaluate current research, reviews of literature, expert opinion, and stakeholder policy proposals on use and safety of electronic nicotine delivery systems (ENDS). A targeted examination of literature generated by key stakeholders and subject matter experts was conducted using key words, modified by risk factors, and limited to the past 8 years. Current knowledge gaps in research literature and practice implications of the literature are discussed. The safety of ENDS is questionable and unclear. There are clear health risks of nicotine exposure to developing brains. Potential health risks of ENDS secondhand emissions exposure exist. Using ENDS to facilitate total tobacco cessation is not proven.

  4. Toward a comprehensive long term nicotine policy.

    Science.gov (United States)

    Gray, N; Henningfield, J E; Benowitz, N L; Connolly, G N; Dresler, C; Fagerstrom, K; Jarvis, M J; Boyle, P

    2005-06-01

    Global tobacco deaths are high and rising. Tobacco use is primarily driven by nicotine addiction. Overall tobacco control policy is relatively well agreed upon but a long term nicotine policy has been less well considered and requires further debate. Reaching consensus is important because a nicotine policy is integral to the target of reducing tobacco caused disease, and the contentious issues need to be resolved before the necessary political changes can be sought. A long term and comprehensive nicotine policy is proposed here. It envisages both reducing the attractiveness and addictiveness of existing tobacco based nicotine delivery systems as well as providing alternative sources of acceptable clean nicotine as competition for tobacco. Clean nicotine is defined as nicotine free enough of tobacco toxicants to pass regulatory approval. A three phase policy is proposed. The initial phase requires regulatory capture of cigarette and smoke constituents liberalising the market for clean nicotine; regulating all nicotine sources from the same agency; and research into nicotine absorption and the role of tobacco additives in this process. The second phase anticipates clean nicotine overtaking tobacco as the primary source of the drug (facilitated by use of regulatory and taxation measures); simplification of tobacco products by limitation of additives which make tobacco attractive and easier to smoke (but tobacco would still be able to provide a satisfying dose of nicotine). The third phase includes a progressive reduction in the nicotine content of cigarettes, with clean nicotine freely available to take the place of tobacco as society's main nicotine source.

  5. Nicotine demethylation in Nicotiana cell suspension cultures: N'-formylnornicotine is not involved.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Bhogal, Ramneek K; Molinié, Roland; Felpin, François-Xavier; Mathé-Allainmat, Monique; Meier, Anna-Carolin; Dräger, Birgit; Lebreton, Jacques; Roscher, Albrecht; Robins, Richard J; Mesnard, François

    2005-10-01

    Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.

  6. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  7. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  8. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    Science.gov (United States)

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  9. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target...

  10. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    Science.gov (United States)

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  11. Multimodal Neuroimaging Differences in Nicotine Abstinent vs. Satiated Smokers.

    Science.gov (United States)

    Chaarani, Bader; Spechler, Philip A; Ivanciu, Alexandra; Snowe, Mitchell; Nickerson, Joshua P; Higgins, Stephen T; Garavan, Hugh

    2018-04-06

    Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared to non-smokers when assessing neurobiological markers of nicotine dependence. Smokers(N=15) and sociodemographically matched non-smokers(N=15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence, and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudo-continuous arterial spin labeling to measure cerebral blood flow (CBF). Whole brain voxel-wise ANCOVAs were carried out on stop success and stop fail SST contrasts and CBF maps to assess differences among non-, abstinent and satiated smokers. Cluster-correction was performed using AFNI's 3dClustSim to achieve a significance of pSmokers exhibited higher brain activation in bilateral inferior frontal gyrus (IFG), a brain region known to be involved in inhibitory control, during successful response inhibitions relative to non-smokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral IFG than non-smokers. These hypo-perfusions were not different between abstinence and satiety. These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Our multi-modal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggest targets for assessing the efficacy of therapeutic interventions.

  12. Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention.

    Science.gov (United States)

    Kohlmeier, K A

    2015-06-01

    Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.

  13. The ''in vivo'' distribution of carbon 11 labeled-nicotine in animals. A method suitable for use in man

    International Nuclear Information System (INIS)

    Maziere, M.; Berger, G.; Plummer, D.; Comar, D.; Masse, R.

    1978-01-01

    A method is described to label nicotine with carbon 11. A hundred millicuries can be obtained, in 45 minutes, with a high specific activity. This labeling of nicotine has allowed an ''in vivo'' study of the distribution of this very toxic drug in animals. Five minutes after injection in rabbits or monkeys, it was shown with a gamma camera or with a positron camera that the radioactivity was very rapidly distributed throughout the tissues especially in brain, lungs and kidneys. 11 C-nicotine readily penetrates the blood-brain barrier and the brain radioactivity decreases very sharply with time. The eyes however retained activity, possibly in the retina. Unfortunately the monkey is not the ideal subject for 11 C-nicotine brain study because: the brain is small, considering the resolution of the cameras and the cerebral lobes are also quite overlaped in this animal; Japanese authors have shown that compared with dogs the nicotine brain uptake is lower, due to the high affinity of nicotine for skeletal muscle which occupies approximately forty to fifty % of the body weight of the monkey. Also in monkeys, the nicotine destruction is faster than in dogs because there is a higher enzyme nicotine metabolizing activity in the liver of this animal. The differences observed between various animals studies using nicotine indicate that we should not draw any firm conclusions about the behaviour of this drug in humans. In order to do so, examinations must be conducted in man and the method described in spite of its limitations provides a means for such a study

  14. Effect of urinary pH and nicotine excretion rate on plasma nicotine during cigarette smoking and chewing nicotine gum

    Science.gov (United States)

    Feyerabend, C.; Russell, M. A. H.

    1978-01-01

    1 Plasma nicotine levels produced by chewing nicotine gum were compared with those obtained by cigarette smoking under conditions of controlled urinary pH. 2 Although absorption was slower, plasma levels comparable to cigarette smoking were built up on 4 mg (but not 2 mg) nicotine gum. 3 Urinary excretion of nicotine was influenced markedly by pH and the rate of urine flow. 4 Plasma nicotine was higher under alkaline compared to acidic conditions (P < 0.001) but the rate of urinary nicotine excretion appeared to have little effect on the plasma level.

  15. Neurodegeneration with Brain Iron Accumulation

    Science.gov (United States)

    ... or occupational therapy, exercise physiology, and/or speech pathology. Many medications are available to treat the primary symptoms of dystonia and spasticity, including oral medications, intrathecal baclofen pump (in which a small ...

  16. Discriminability of personality profiles in isolated and Co-morbid marijuana and nicotine users.

    Science.gov (United States)

    Ketcherside, Ariel; Jeon-Slaughter, Haekyung; Baine, Jessica L; Filbey, Francesca M

    2016-04-30

    Specific personality traits have been linked with substance use disorders (SUDs), genetic mechanisms, and brain systems. Thus, determining the specificity of personality traits to types of SUD can advance the field towards defining SUD endophenotypes as well as understanding the brain systems involved for the development of novel treatments. Disentangling these factors is particularly important in highly co morbid SUDs, such as marijuana and nicotine use, so treatment can occur effectively for both. This study evaluated personality traits that distinguish isolated and co-morbid use of marijuana and nicotine. To that end, we collected the NEO Five Factor Inventory in participants who used marijuana-only (n=59), nicotine-only (n=27), both marijuana and nicotine (n=28), and in non-using controls (n=28). We used factor analyses to identify personality profiles, which are linear combinations of the five NEO Factors. We then conducted Receiver Operating Characteristics (ROC) curve analysis to test accuracy of the personality factors in discriminating isolated and co-morbid marijuana and nicotine users from each other. ROC curve analysis distinguished the four groups based on their NEO personality patterns. Results showed that NEO Factor 2 (openness, extraversion, agreeableness) discriminated marijuana and marijuana+nicotine users from controls and nicotine-only users with high predictability. Additional ANOVA results showed that the openness dimension discriminated marijuana users from nicotine users. These findings suggest that personality dimensions distinguish marijuana users from nicotine users and should be considered in prevention strategies. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice.

    Science.gov (United States)

    Kotagale, Nandkishor R; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2015-05-05

    Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  19. Behavioral desensitization to nicotine is enhanced differentially by ethanol in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1989-01-01

    In order to assess the anticonvulsant potency of ethanol, male and female long-sleep (LS) and short-sleep (SS) mice were pretreated with ethanol 7.5 min prior to challenge with an ED80 dose of nicotine (LS: 4.25 mg/kg; SS: 6.25 mg/kg). LS mice were more sensitive to the anticonvulsant effects of ethanol than were SS mice. In order to assess the effect of ethanol on the nicotine-induced behavioral desensitization to nicotine observed previously in these mice, animals were pretreated with saline, nonanticonvulsant doses of ethanol (0.25 g/kg, 0.75 g/kg or 1.5 g/kg), a subseizure-producing dose of nicotine (2.0 mg/kg) or a combination of these two drugs 15 or 30 min prior to nicotine challenge. Ethanol enhanced the nicotine-induced behavioral desensitization in both mouse lines; however, this effect was seen at lower ethanol doses and was more pronounced in LS mice. Ethanol pretreatment did not affect brain nicotine concentrations; therefore, the ethanol effect probably involves changes in brain sensitivity to nicotine.

  20. Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues.

    Science.gov (United States)

    Clemens, Kelly J; Lay, Belinda P P; Holmes, Nathan M

    2017-03-01

    An array of pharmacological and environmental factors influence the development and maintenance of tobacco addiction. The nature of these influences likely changes across the course of an extended smoking history, during which time drug seeking can become involuntary and uncontrolled. The present study used an animal model to examine the factors that drive nicotine-seeking behavior after either brief (10 days) or extended (40 days) self-administration training. In Experiment 1, extended training increased rats' sensitivity to nicotine, indicated by a leftward shift in the dose-response curve, and their motivation to work for nicotine, indicated by an increase in the break point achieved under a progressive ratio schedule. In Experiment 2, extended training imbued the nicotine-paired cue with the capacity to maintain responding to the same high level as nicotine itself. However, Experiment 3 showed that the mechanisms involved in responding for nicotine or a nicotine-paired cue are dissociable, as treatment with the partial nicotine receptor agonist, varenicline, suppressed responding for nicotine but potentiated responding for the nicotine-paired cue. Hence, across extended nicotine self-administration, pharmacological and environmental influences over nicotine seeking increase such that nicotine seeking is controlled by multiple sources, and therefore highly resistant to change. © 2015 Society for the Study of Addiction.

  1. Do the metabolites of 6-[F-18]fluoro-L-dopa and of [F-18]fluoro-meta-L-tyrosine contribute to the F-18 accumulation in the human brain?

    International Nuclear Information System (INIS)

    Firnau, G.; Chirakal, R.; Nahmias, C.; Garnett, E.S.

    1990-01-01

    The purpose of this study was to determine if the metabolites of 6-[F-18]fluoro-L-dopa (F-dopa) and of [F-18]fluoro-meta-L-tyrosine (FmLtyr) contribute to the accumulation of fluorine-18 in the brain through unspecific retention. PET studies were conducted on a healthy human subject who was treated with both of the radiopharmaceuticals and their labelled metabolites. Results indicated that in contrast to F-dopa, the metabolite of FmLtyr does not 'contaminate' the brain with extraneous fluorine-18

  2. The Neuroprotective Effect of Curcumin Against Nicotine-Induced Neurotoxicity is Mediated by CREB-BDNF Signaling Pathway.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Faraji, Fahimeh; Mozaffari, Shiva

    2017-10-01

    Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with neuroprotective properties. The current study was designed to evaluate the role of CREB-BDNF signaling in mediating the neuroprotective effects of curcumin against nicotine-induced apoptosis, oxidative stress and inflammation in rats. Sixty adult male rats were divided randomly into six groups. Group 1 received 0.7 ml/rat normal saline, group 2 received 6 mg/kg nicotine. Groups 3, 4, 5 and 6 were treated concurrently with nicotine (6 mg/kg) and curcumin (10, 20, 40 and 60 mg/kg i.p. respectively) for 21 days. Open Field Test (OFT) was used to evaluate the motor activity. Hippocampal oxidative, anti-oxidant, inflammatory and apoptotic factors were evaluated. Furthermore, phosphorylated brain cyclic adenosine monophosphate (cAMP) response element binding protein (P-CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene and protein levels. We found that nicotine disturbed the motor activity in OFT and simultaneous treatment with curcumin (40 and 60 mg/kg) reduced the nicotine-induced motor activity disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of GSH, IL-1β, TNF-α and Bax, while reducing Bcl-2, P-CREB and BDNF levels in the hippocampus. Nicotine also reduced the activity of superoxide dismutase, glutathione peroxidase and glutathione reductase in hippocampus. In contrast, various doses of curcumin attenuated nicotine-induced apoptosis, oxidative stress and inflammation; while elevating P-CREB and BDNF levels. Thus, curcumin via activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced inflammation, apoptosis and oxidative stress.

  3. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats.

    Science.gov (United States)

    Feltenstein, Matthew W; Ghee, Shannon M; See, Ronald E

    2012-03-01

    Tobacco addiction is a relapsing disorder that constitutes a substantial worldwide health problem, with evidence suggesting that nicotine and nicotine-associated stimuli play divergent roles in maintaining smoking behavior in men and women. While animal models of tobacco addiction that utilize nicotine self-administration have become more widely established, systematic examination of the multiple factors that instigate relapse to nicotine-seeking have been limited. Here, we examined nicotine self-administration and subsequent nicotine-seeking in male and female Sprague-Dawley rats using an animal model of self-administration and relapse. Rats lever pressed for nicotine (0.03 and 0.05 mg/kg/infusion, IV) during 15 daily 2-h sessions, followed by extinction of lever responding. Once responding was extinguished, we examined the ability of previously nicotine-paired cues (tone+light), the anxiogenic drug yohimbine (2.5mg/kg, IP), a priming injection of nicotine (0.3mg/kg, SC), or combinations of drug+cues to reinstate nicotine-seeking. Both males and females readily acquired nicotine self-administration and displayed comparable levels of responding and intake at both nicotine doses. Following extinction, exposure to the previously nicotine-paired cues or yohimbine, but not the nicotine-prime alone, reinstated nicotine-seeking in males and females. Moreover, when combined with nicotine-paired cues, both yohimbine and nicotine enhanced reinstatement. No significant sex differences or estrous cycle dependent changes were noted across reinstatement tests. These results demonstrate the ability to reinstate nicotine-seeking with multiple modalities and that exposure to nicotine-associated cues during periods of a stressful state or nicotine can increase nicotine-seeking. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Influence of labelling with radiohalogens in 2-sup(18)F-,6-sup(18)F- and 6-sup(123)I-nicotinic acid diethylamide on biodistribution in mice

    International Nuclear Information System (INIS)

    Knust, E.J.; Machulla, H.-J.; Kafka, Ch.

    1985-01-01

    By comparison of three halogenated nicotinic acid derivatives, viz. 2-sup(18)F-, 6-sup(18)F- and 6-sup(123)I-nicotinic acid diethylamide (2-sup(18)F-NADA, 6-sup(18)F-NADA, 6-sup(123)I-NADA), the biodistribution of sup(18)F- and sup(123)I-radioactivity in mice was determined. For the two fluoro-compounds the results indicate nearly similar time-activity curves in almost all organs investigated, while the iodo-derivative exhibits significant differences: for the brain and the heart a complete elimination of sup(123)I-radioactivity takes place within 4 hours, time-activity curves of the liver and the kidneys show higher maximal accumulation compared to the fluorinated derivatives and activity in the stomach increases continuously. For the lung drastic differences can also be observed. De-fluorination reactions from the aromatic ring can be excluded as could be shown by the low accumulation of sup(18)F-radioactivity in bones after application of 6-sup(18)F-NADA. (author)

  5. Impulsive behavior and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  6. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  7. Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc), and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.

  8. Clinical and Imaging Presentation of a Patient with Beta-Propeller Protein-Associated Neurodegeneration, a Rare and Sporadic form of Neurodegeneration with Brain Iron Accumulation (NBIA).

    Science.gov (United States)

    Hattingen, Elke; Handke, Nikolaus; Cremer, Kirsten; Hoffjan, Sabine; Kukuk, Guido Matthias

    2017-12-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.

  9. Electronic cigarettes and nicotine clinical pharmacology.

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-05-01

    To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products' ability to support and maintain nicotine dependence. Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products' impact on public health.

  10. Electronic cigarettes and nicotine clinical pharmacology

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-01-01

    Objective To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Methods Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Results Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products’ ability to support and maintain nicotine dependence. Conclusions Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products’ impact on public health. PMID:24732160

  11. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  12. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    Science.gov (United States)

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  13. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  14. Smoking, nicotine and the kidney

    NARCIS (Netherlands)

    Agarwal, Pramod Kumar

    2012-01-01

    Terwijl roken schadelijk is voor de nieren, lijkt nicotine juist een beschermend effect op deze organen te hebben. Matige alcoholconsumptie lijkt positieve effecten te hebben na niertransplantatie: het vermindert het risico op overlijden en het ontstaan van diabetes. Dat blijkt uit onderzoek van

  15. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Science.gov (United States)

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prenatal Nicotine Exposure Disrupts Infant Neural Markers of Orienting.

    Science.gov (United States)

    King, Erin; Campbell, Alana; Belger, Aysenil; Grewen, Karen

    2017-08-17

    Prenatal nicotine exposure (PNE) from maternal cigarette-smoking is linked to developmental deficits, including impaired auditory processing, language, generalized intelligence, attention and sleep. Fetal brain undergoes massive growth, organization and connectivity during gestation, making it particularly vulnerable to neurotoxic insult. Nicotine binds to nicotinic acetylcholine receptors, which are extensively involved in growth, connectivity and function of developing neural circuitry and neurotransmitter systems. Thus, PNE may have long-term impact on neurobehavioral development. The purpose of this study was to compare the auditory K-complex, an event-related potential reflective of auditory gating, sleep preservation and memory consolidation during sleep, in infants with and without PNE and to relate these neural correlates to neurobehavioral development. We compared brain responses to an auditory paired-click paradigm in 3 to 5-month-old infants during Stage 2 sleep, when the K-complex is best observed. We measured component amplitude and delta activity during the K-complex. PNE may impair auditory sensory gating, which may contribute to disrupted sleep and to reduced auditory discrimination and learning, attention re-orienting and/or arousal during wakefulness reported in other studies. Links between PNE and reduced K-complex amplitude and delta power may represent altered cholinergic and GABAergic synaptic programming, and possibly reflect early neural bases for PNE-linked disruptions in sleep quality and auditory processing. These may pose significant disadvantage for language acquisition, attention, and social interaction necessary for academic and social success. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    OpenAIRE

    Yu, C.-J.; Debski, E. A.

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in sponta...

  18. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Nishiyama, Shingo; Tsukada, Hideo; Hatano, Kentaro; Fuchigami, Takeshi; Yamaguchi, Hiroshi; Matsushima, Yoshitaka; Ito, Kengo; Magata, Yasuhiro

    2010-01-01

    Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α 7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α 7 nAChR ligands, (R)-2-[ 11 C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([ 11 C](R)-MeQAA) and its isomer (S)-[ 11 C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[ 11 C]MeQAA for in vivo imaging of α 7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α 7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α 7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([ 11 C](R)-MeQAA: 7.68 and [ 11 C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [ 11 C](R)-MeQAA was slow in the hippocampus (α 7 nAChR-rich region) but was rapid in the cerebellum (α 7 nAChR-poor region). On the other hand, the clearance was fast for [ 11 C](S)-MeQAA in all regions. The brain uptake of [ 11 C](R)-MeQAA was decreased by methyllycaconitine (α 7 nAChR antagonist) treatment. In monkeys, α 7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [ 11 C](R)-MeQAA, while the uptake was rather homogeneous for [ 11 C](S)-MeQAA. Conclusions: [ 11 C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α 7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α 7 nAChRs in vivo.

  19. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism.

    Science.gov (United States)

    Maggio, R; Riva, M; Vaglini, F; Fornai, F; Racagni, G; Corsini, G U

    1997-01-01

    The repeated finding of an apparent protective effect of cigarette smoking on the risk of Parkinson's disease is one of the few consistent results in the epidemiology of this disorder. Among the innumerous substances that originate from tobacco smoke, nicotine is by far the most widely studied, and the most likely candidate for a protective effect against neuronal degeneration in Parkinson's disease. Nicotine is a natural alkaloid that has considerable stimulatory effects on the central nervous system (CNS). Its effects on the CNS are mediated by the activation of neuronal heteromeric acetylcholine-gated ion channel receptors (nAChR, also termed nicotinic acetylcholine receptors). In the present study, we describe the neuroprotective effects of (-)nicotine in two animal models of parkinsonism: the diethyldithiocarbamate (DDC)-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice, and the methamphetamine-induced neurotoxicity in rats and mice. In parallel experiments, we found that (-)nicotine induces the basic fibroblast growth factor (FGF-2) and the brain-derived neurotrophic factor (BDNF) in rat striatum. As FGF-2 and BDNF have been reported to be neuroprotective for dopaminergic cells, our data indicate that the increase in neurotrophic factors is a possible mechanism by which (-)nicotine protects from experimental parkinsonisms. Moreover, they suggest that nAChR agonists could be of potential benefit in the progression of Parkinson's disease.

  20. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    Science.gov (United States)

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  1. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus)

    DEFF Research Database (Denmark)

    Pedersen, Kathrine Eggers; Basu, Niladri; Letcher, Robert J.

    2015-01-01

    to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate...... if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO...... regions, whereas GS activity was positively correlated with PFASs primarily in occipital lobe. Results from the present study support the hypothesis that PFAS concentrations in polar bears from East Greenland have exceeded the threshold limits for neurochemical alterations. It is not known whether...

  2. Association Between Smoking, Nicotine Dependence, and BDNF Val(66)Met Polymorphism with BDNF Concentrations in Serum

    NARCIS (Netherlands)

    Jamal, Mumtaz; Van der Does, Willem; Elzinga, Bernet M.; Molendijk, Marc L.; Penninx, Brenda W. J. H.

    Introduction: Nicotine use is associated with the upregulation of brain-derived neurotrophic factor (BDNF) in serum. An association between smoking and the BDNF Val(66)Met polymorphism has also been found. The aim of this study is to examine the levels of serum BDNF in never-smokers, former smokers,

  3. Nicotinic acetylcholine receptor β2-subunits in the medial prefrontal cortex control attention

    NARCIS (Netherlands)

    Guillem, K.; Bloem, B.; Poorthuis, R.B.; Loos, M.; Smit, A.B.; Maskos, U.; Spijker, S.; Mansvelder, H.D.

    2011-01-01

    More than one-third of all people are estimated to experience mild to severe cognitive impairment as they age. Acetylcholine (ACh) levels in the brain diminish with aging, and nicotinic ACh receptor (nAChR) stimulation is known to enhance cognitive performance. The prefrontal cortex (PFC) is

  4. Direct and Passive Prenatal Nicotine Exposure and the Development of Externalizing Psychopathology

    Science.gov (United States)

    Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.

    2007-01-01

    The association between maternal smoking during pregnancy and childhood antisocial outcomes has been demonstrated repeatedly across a variety of outcomes. Yet debate continues as to whether this association reflects a direct programming effect of nicotine on fetal brain development, or a phenotypic indicator of heritable liability passed from…

  5. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Flores, África; Maldonado, Rafael; Berrendero, Fernando

    2012-02-01

    Hypocretin (orexin) signaling is involved in drug addiction. In this study, we investigated the role of these hypothalamic neuropeptides in nicotine withdrawal by using behavioral and neuroanatomical approaches. Nicotine withdrawal syndrome was precipitated by mecamylamine (2 mg/kg, subcutaneous) in C57BL/6J nicotine-dependent mice (25 mg/kg/day for 14 days) pretreated with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 (5 and 10 mg/kg, intraperitoneal), the hypocretin receptor 2 antagonist TCSOX229 (5 and 10 mg/kg, intraperitoneal), and in preprohypocretin knockout mice. c-Fos expression was analyzed in several brain areas related to nicotine dependence by immunofluorescence techniques. Retrograde tracing with rhodamine-labeled fluorescent latex microspheres was used to determine whether the hypocretin neurons project directly to the paraventricular nucleus of the hypothalamus (PVN), and SB334867 was locally administered intra-PVN (10 nmol/side) to test the specific involvement of Hcrtr-1 in this brain area during nicotine withdrawal. Somatic signs of nicotine withdrawal were attenuated in mice pretreated with SB334867 and in preprohypocretin knockout mice. No changes were found in TCSOX229 pretreated animals. Nicotine withdrawal increased the percentage of hypocretin cells expressing c-Fos in the perifornical, dorsomedial, and lateral hypothalamus. In addition, the increased c-Fos expression in the PVN during withdrawal was dependent on hypocretin transmission through Hcrtr-1 activation. Hypocretin neurons directly innervate the PVN and the local infusion of SB334867 into the PVN decreased the expression of nicotine withdrawal. These data demonstrate that hypocretin signaling acting on Hcrtr-1 in the PVN plays a crucial role in the expression of nicotine withdrawal. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Nicotine Dependence and Urinary Nicotine, Cotinine and Hydroxycotinine Levels in Daily Smokers

    OpenAIRE

    Van Overmeire, Ilse P. I.; De Smedt, Tom; Dendale, Paul; Nackaerts, Kristiaan; Vanacker, Hilde; Vanoeteren, Jan F. A.; Van Laethem, Danny M. G.; Van Loco, Joris; De Cremer, Koen A. J.

    2016-01-01

    Nicotine dependence and smoking frequency are critical factors for smoking cessation. The aims of this study are (1) to determine if nicotine dependence Fagerstrom Test for Nicotine Dependence (FTND) scores are associated with urinary levels of nicotine metabolites, (2) to assess the relationship of hydroxycotinine/cotinine ratio with FTND score and cigarettes smoked per day (CPD), and (3) to identify significant predictors of cigarettes per day among biomarker concentrations and individual F...

  7. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    Science.gov (United States)

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and

  8. Selection of a novel anti-nicotine vaccine: influence of antigen design on antibody function in mice.

    Directory of Open Access Journals (Sweden)

    David C Pryde

    Full Text Available Anti-nicotine vaccines may aid smoking cessation via the induction of anti-nicotine antibodies (Ab which reduce nicotine entering the brain, and hence the associated reward. Ab function depends on both the quantity (titer and the quality (affinity of the Ab. Anti-nicotine vaccines tested previously in clinical studies had poor efficacy despite high Ab titer, and this may be due to inadequate function if Ab of low affinity were induced. In this study, we designed and synthesized a series of novel nicotine-like haptens which were all linked to diphtheria toxoid (DT as carrier, but which differed in the site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. The resulting hapten conjugates were evaluated in a mouse model, using CpG (a TLR9 agonist and aluminum hydroxide (Al(OH3 as adjuvants, whereby Ab titers, affinity and function were evaluated using a radiolabeled nicotine challenge model. A series of additional linkers varying in length, rigidity and polarity were used with a single hapten to generate additional DT-conjugates, which were also tested in mice. Conjugates made with different haptens resulted in various titers of anti-nicotine Ab. Several haptens gave similarly high Ab titers, but among these, Ab affinity and hence function varied considerably. Linker also influenced Ab titer, affinity and function. These results demonstrate that immune responses induced in mice by nicotine-conjugate antigens are greatly influenced by hapten design including site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. While both Ab titer and affinity contributed to function, affinity was more sensitive to antigen differences.

  9. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  10. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease?

    International Nuclear Information System (INIS)

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-01-01

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of ( 3 H)-ketanserin to serotonin receptors in frontal cortex and of ( 3 H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of ( 3 H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens

  11. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Kwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Chlorpyrifos (CPF) is one of the most studied and widely used broad spectrum organophosphorus (OP) insecticides. The neurotoxicity of CPF results from inhibition of cholinesterase (ChE) by its metabolite, chlorpyrifos-oxon (CPF-oxon), which subsequently leads to cholinergic hyperstimulation. The routine consumption of alcoholic beverages and tobacco products will modify a number of metabolic and physiological processes which may impact the metabolism and pharmacokinetics of other xenobiotics including pesticides. The objective of this study was to evaluate the influence of repeated ethanol and nicotine co-exposure on in vivo CPF pharmacokinetics and pharmacodynamics. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine along with changes in plasma and brain AChE activities were measured in male Sprague-Dawley (S-D) rats. Animals were repeatedly treated with either saline or ethanol (1 g/kg/day, po) and nicotine (1 mg/kg/day, sc) in addition to CPF (1 or 5 mg/kg/day, po) for 7 days. Rats were sacrificed at times from 1 to 24 hr post-last dosing of CPF. There were apparent differences in blood TCPy pharmacokinetics following ethanol and nicotine pretreatments in both CPF dose groups, which showed higher TCPy peak concentrations and increased blood TCPy AUC in ethanol and nicotine groups over CPF-only (~1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain acetylcholinesterase (AChE) activities from both ethanol and nicotine-treated groups showed substantially less inhibition following repeated 5 mg CPF/kg dosing compared to CPF-only controls (96 ± 13 and 66 ± 7% of naïve at 4 hr post-last CPF dosing, respectively). Inhibition of brain AChE activities was minimal in both 1 mg CPF/kg/day dosing groups, but a similar trend indicating less inhibition following ethanol/nicotine pretreatment was apparent. No differences were observed in plasma ChE activities due to the combined alcohol and nicotine treatments. In vitro, CPF

  12. Discriminability of Personality Profiles in Isolated and Co-Morbid Marijuana and Nicotine Users

    OpenAIRE

    Ketcherside, Ariel; Jeon-Slaughter, Haekyung; Baine, Jessica L.; Filbey, Francesca M

    2016-01-01

    Specific personality traits have been linked with substance use disorders (SUDs), genetic mechanisms, and brain systems. Thus, determining the specificity of personality traits to types of SUD can advance the field towards defining SUD endophenotypes as well as understanding the brain systems involved for the development of novel treatments. Disentangling these factors is particularly important in highly co-morbid SUDs, such as marijuana and nicotine use, so treatment can occur effectively fo...

  13. The role of the polymorphic efflux transporter P-glycoprotein on the brain accumulation of d-methylphenidate and d-amphetamine.

    Science.gov (United States)

    Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S

    2006-07-01

    The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p brain-to-plasma ratios (p brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.

  14. Difference in {sup 201}TlCl accumulation mechanism in brain tumors. A comparison of their Na{sup +}-K{sup +} ATPase activities

    Energy Technology Data Exchange (ETDEWEB)

    Sugo, Nobuo; Kuroki, Takao; Nemoto, Masaaki; Mito, Toshiaki; Seiki, Yoshikatsu; Shibata, Iekado [Toho Univ., Tokyo (Japan). Omori Hospital

    2000-07-01

    The accumulation levels of {sup 201}TlCl and Na{sup +} -K{sup +} ATPase activity in tumor tissue were compared among glioblastoma, benign glioma and meningioma to study the difference in the mechanism of {sup 201}TlCl accumulation. The subjects were 19 cases comprised of 6 glioblastoma, 2 oligodendroglioma, 1 fibrillary astrocytoma, 1 pilocytic astrocytoma and 9 meningioma. Preoperative {sup 201}TlCl SPECT was performed in all the cases, and Thallium Index (TL index) was calculated by a ratio of {sup 201}TlCl in the tumor area and the contralateral area. In addition, cell membrane was extracted from the tumor tissue collected intraoperatively to determine Na{sup +} -K{sup +} ATPase activity. No statistically significant difference in TL index was noted between the glioblastoma group (6.97{+-}2.67) and the meningioma group (5.87{+-}1.99). This fact showed that there was no difference in the accumulation level of {sup 201}TlCl between the two groups. On the other hand, the glioblastoma group indicated a higher value of Na{sup +} -K{sup +} ATPase activity (49.13{+-}43.76 {mu}mole/hour/mg protein) than the meningioma group (7.73{+-}13.84 {mu}mol/hour/mg protein) (p<0.05, t test). These results suggested the involvement of Na{sup +} -K{sup +} ATPase activity in {sup 201}TlCl accumulation in glioblastoma and the influences of other accumulation mechanism than Na{sup +} -K{sup +} ATPase activity such as the volume of intratumoral vascular bed in meningioma. (author)

  15. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  16. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  17. Impact of acetylcholine and nicotine on human osteoclastogenesis in vitro.

    Science.gov (United States)

    Ternes, Sebastian; Trinkaus, Katja; Bergen, Ivonne; Knaack, Sven; Gelinsky, Michael; Kilian, Olaf; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Recent studies showed that the non-neuronal cholinergic system (NNCS) is taking part in bone metabolism. Most studies investigated its role in osteoblasts, but up to now, the involvement of the NNCS in human osteoclastogenesis remains relatively unclear. Thus, aim of the present study was to determine whether the application of acetylcholine (ACh, 10(−4) M), nicotine (10(−6) M), mineralized collagen membranes or brain derived neurotrophic factor (BDNF, 40 ng/mL) influences the mRNA regulation of molecular components of the NNCS and the neurotrophin family during osteoclastogenesis. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of young healthy donors (n = 8) and incubated with bone fragments and osteoclast differentiation media for 21 days. All the results are based on the measurement of RNA. Real-time RT-PCR analysis demonstrated a down-regulation of nicotinic acetylcholine receptor (nAChR) subunit α2 and muscarinic acetylcholine receptor (mAChR) M3by osteoclastogenesis while BDNF mRNA expression was not regulated. Application of ACh, nicotine, BDNF or collagen membranes did not affect osteoclastic differentiation.No regulation was detected for nAChR subunit α7, tropomyosin-related kinase receptor B (TrkB), and cholineacetyl transferase (ChAT). Taken together, we assume that the transcriptional level of osteoclastogenesis of healthy young humans is not regulated by BDNF, ACh, and nicotine. Thus, these drugs do not seem to worsen bone degradation and might therefore be suitable as modulators of bone substitution materials if having a positive effect on bone formation.

  18. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal...

  19. Cue exposure treatment in a virtual environment to reduce nicotine craving: a functional MRI study.

    Science.gov (United States)

    Moon, Jiyoon; Lee, Jang-Han

    2009-02-01

    Smokers show an increase in cue reactivity during exposure to smoking-related cues. CET aims at extinguishing cue reactivity by repeated presentation of substance-related cues and has been claimed a potentially effective method of treating addictive behaviors, including cigarette smoking. We applied CET to eight late-adolescent smokers in virtual environments (VEs). When comparing pre-CET regions to those of post-CET, the inferior frontal gyrus and superior frontal gyrus were detected. These regions are consistent with previous studies of activated brain regions related to nicotine craving, and VE-CET seems to be an effective method of treating nicotine craving.

  20. The Influence of Puff Characteristics, Nicotine Dependence, and Rate of Nicotine Metabolism on Daily Nicotine Exposure in African American Smokers.

    Science.gov (United States)

    Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon; Delucchi, Kevin; Benowitz, Neal L

    2016-06-01

    African American (AA) smokers experience greater tobacco-related disease burden than Whites, despite smoking fewer cigarettes per day (CPD). Understanding factors that influence daily nicotine intake in AA smokers is an important step toward decreasing tobacco-related health disparities. One factor of interest is smoking topography, or the study of puffing behavior. (i) to create a model using puff characteristics, nicotine dependence, and nicotine metabolism to predict daily nicotine exposure, and (ii) to compare puff characteristics and nicotine intake from two cigarettes smoked at different times to ensure the reliability of the puff characteristics included in our model. Sixty AA smokers smoked their preferred brand of cigarette at two time points through a topography device. Plasma nicotine, expired CO, and changes in subjective measures were measured before and after each cigarette. Total nicotine equivalents (TNE) was measured from 24-hour urine collected during ad libitum smoking. In a model predicting daily nicotine exposure, total puff volume, CPD, sex, and menthol status were significant predictors (R(2) = 0.44, P smokers. Cancer Epidemiol Biomarkers Prev; 25(6); 936-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Accumulation and aberrant composition of cholesteryl esters in Scrapie-infected N2a cells and C57BL/6 mouse brains

    Directory of Open Access Journals (Sweden)

    Di Bari Michele A

    2011-08-01

    Full Text Available Abstract Objective Cholesterol changes have been described in prion-cell models and in experimental rodent scrapie; yet, the pattern of this association is still controversial. Methods To shed light on the matter, we analysed and compared cholesterol variations in ScN2a cells and in brains of Scrapie-infected C57Bl/6 mice, using two different methods: a fluorimetric-enzymatic cholesterol assay, and high performance liquid chromatography-mass spectroscopy (HPLC-MS. Results Compared to uninfected controls, similar cholesterol metabolism anomalies were observed in infected cells and brains by both methods; however, only HPLC-MS revealed statistically significant cholesterol variations, particularly in the cholesteryl esters (CE fraction. HPLC-MS analyses also revealed different fatty acid composition of the CE fraction in cells and brains. In N2a cells, their profile reflected that of serum, while in normal brains cholesteryl-linoleate only was found at detectable levels. Following prion infection, most CE species were increased in the CE pool of ScN2a cells, whereas a conspicuous amount of cholesteryl-arachidonate only was found to contribute to the cerebral increase of CE. Of interest, oral pravastatin administration to Scrapie-infected mice, was associated with a significant reduction of cerebral free cholesterol (FC along with a concomitant further increase of the CE pool, which included increased amounts of both cholesteryl-linoleate and cholesteryl-arachidonate. Conclusion Although mechanistic studies are needed to establish the pathophysiological relevance of changes in cerebral CE concentrations, to the best of our knowledge this is the first report to provide evidence of increased cholesterol esterification in brains of prion-infected mice, untreated and treated with pravastatin.

  2. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  3. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  4. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    Science.gov (United States)

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biosynthesis of NAD from nicotinic acid and nicotinamide by resting cells of Arthrobacter globiformis

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1978-01-01

    Isotopically labeled nicotinic acid and nicotinamide were incorporated into the metabolites of nicotinic acid-dependent pathway (Preiss-Handler pathway) of the NAD biosynthesis by resting cells of Arthrobacter globiformis. Azaserine and adenosine markedly stimulated the accumulation of NAD in the cells. Radioactive nicotinic acid and nicotinamide were also incorporated into an unknown compound when the cells were incubated in the presence of azaserine. Cell-free extract of the organism showed the NAD synthetase activity, which required ammonium ion and ATP for the amidation of deamido-NAD. Adenosine inhibited the enzyme activity. The organism possessed nicotinamidase, suggesting deamidation is the first step in the biosynthesis of NAD from nicotinamide. The activity was inhibited by NAD, NADP and NMN. (auth.)

  6. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy*

    Science.gov (United States)

    Grebenstein, Patricia E.; Burroughs, Danielle; Roiko, Samuel A.; Pentel, Paul R.; LeSage, Mark G.

    2015-01-01

    Background The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. Methods The present study examined these issues in a rodent nicotine self- administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Results Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. Conclusions These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. PMID:25891231

  7. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues.

    Directory of Open Access Journals (Sweden)

    Karine Guillem

    Full Text Available Nicotine self-administration (SA is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively. Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1 excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2 a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.

  8. Effects of nicotine and nicotine expectancy on attentional bias for emotional stimuli.

    Science.gov (United States)

    Adams, Sally; Attwood, Angela S; Munafò, Marcus R

    2015-06-01

    Nicotine's effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of nicotine abstinence (Experiment 1), and nicotine challenge and expectancy (Experiment 2) on attentional bias towards facial emotional stimuli differing in emotional valence. In Experiment 1, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In Experiment 2, 96 nicotine-deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. In Experiment 1, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In Experiment 2, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine's modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  10. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  11. Influence of Methionine Supplementation on Nicotine Teratogenicity ...

    African Journals Online (AJOL)

    Human and animal studies have shown that maternal tobacco smoking during pregnancy adversely affects pre and postnatal growth and increases the risk of fetal mortality. The aim of the present study was to determine the toxicity of nicotine and protective effect of methionine on the toxic effects of nicotine. Pregnant ...

  12. VOLTAMMETRIC DETERMINATION OF NICOTINE IN CIGARETTE ...

    African Journals Online (AJOL)

    Preferred Customer

    determination of nicotine in two brands of commercial cigarettes and ... to disruption of arteries and cardiovascular risk factors [8, 9]. Smoking .... e d. Figure 2. Cyclic voltammetric response (scan rate of 100 mV/s) of 1.0 mM nicotine at AGCE in.

  13. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  14. Stereoselectivity of the demethylation of nicotine piperidine homologues by Nicotiana plumbaginifolia cell suspension cultures.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Molinié, Roland; Roscher, Albrecht; Felpin, François-Xavier; Gillet, Françoise; Lebreton, Jacques; Mesnard, François; Robins, Richard J

    2005-08-01

    The metabolism of (R,S)-N-methylanabasine and (R,S)-N-methylanatabine has been studied in a cell suspension culture of Nicotiana plumbaginifolia. Both substrates are effectively demethylated, anabasine or anatabine, respectively, accumulating in the medium. Similarly, there is strong stereoselectivity for the (R)-isomers of both substrates. The kinetics of metabolism of (R,S)-N-methylanabasine differ significantly from those of nicotine in that no further degradation of the initial demethylation product occurs. (R,S)-N-Methylanatabine, however, shows kinetics closer to those of nicotine, with loss of alkaloid from the system. Further more, (R,S)-N-methylanabasine does not diminish (S)-nicotine demethylation, indicating a lack of competition. However, the metabolism of (S)-nicotine is affected by the presence of (R,S)-N-methylanabasine. Hence, the demethylation of the piperidine homologues of nicotine is seen to be similar but not identical to that of the pyridine analogues. The implications of these different metabolic profiles in relation to the demethylation activity are discussed.

  15. Nicotine Contamination in Particulate Matter Sampling

    Directory of Open Access Journals (Sweden)

    Eric Garshick

    2009-02-01

    Full Text Available We have addressed potential contamination of PM2.5 filter samples by nicotine from cigarette smoke. We collected two nicotine samples – one nicotine sampling filter was placed in-line after the collection of PM2.5 and the other stood alone. The overall correlation between the two nicotine filter levels was 0.99. The nicotine collected on the “stand-alone” filter was slightly greater than that on the “in-line” filter (mean difference = 1.10 μg/m3, but the difference was statistically significant only when PM2.5 was low (≤ 50 μg/m3. It is therefore important to account for personal and secondhand smoke exposure while assessing occupational and environmental PM.

  16. The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats.

    Science.gov (United States)

    Hajós, M; Hurst, R S; Hoffmann, W E; Krause, M; Wall, T M; Higdon, N R; Groppi, V E

    2005-03-01

    Schizophrenic patients are thought to have an impaired ability to process sensory information. This deficit leads to disrupted auditory gating measured electrophysiologically as a reduced suppression of the second of paired auditoryevoked responses (P50) and is proposed to be associated with decreased function and/or expression of the homomeric alpha7 nicotinic acetylcholine receptor (nAChR). Here, we provide evidence that N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), a novel selective agonist of the alpha7 nAChR, evoked whole-cell currents from cultured rat hippocampal neurons that were sensitive to the selective alpha7 nAChR antagonist methyllycaconitine (MLA) and enhanced GABAergic synaptic activity when applied to hippocampal slices. Amphetamine-induced sensory gating deficit, determined by auditory-evoked potentials in hippocampal CA3 region, was restored by systemic administration of PNU-282987 in chloral hydrate-anesthetized rats. Auditory gating of rat reticular thalamic neurons was also disrupted by amphetamine; however, PNU-282987 normalized gating deficit only in a subset of tested neurons (6 of 11). Furthermore, PNU-282987 improved the inherent hippocampal gating deficit occurring in a subpopulation of anesthetized rats, and enhanced amphetamine-induced hippocampal oscillation. We propose that the alpha7 nAChR agonist PNU-282987, via modulating/enhancing hippocampal GABAergic neurotransmission, improves auditory gating and enhances hippocampal oscillatory activity. These results provide further support for the concept that drugs that selectively activate alpha7 nAChRs may offer a novel, potential pharmacotherapy in treatment of schizophrenia.

  17. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  18. Littered cigarette butts as a source of nicotine in urban waters

    Science.gov (United States)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

    2014-11-01

    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

  19. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.

    Science.gov (United States)

    Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L

    2016-01-01

    Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions. Copyright © 2016. Published by Elsevier Inc.

  20. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Nicotine concentration of e-cigarettes used by adolescents.

    Science.gov (United States)

    Morean, Meghan E; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra

    2016-10-01

    E-cigarettes are popular among youth, but little is known about the nicotine concentrations of e-liquids used by adolescents. In Spring, 2014, we conducted cross-sectional surveys in four Connecticut high schools and two middle schools. Among past-30-day e-cigarette users (n=513, 45% female, mean age 15.9 [SD=1.4]), we examined what nicotine concentration adolescents typically used in their e-cigarettes (range 0-30mg/mL and "I don't know"). We first examined whether age, sex, smoking status, e-cigarette use frequency, and/or e-cigarette acquisition source were associated with using nicotine-free e-liquid, nicotine e-liquid, or not knowing the e-liquid nicotine concentration. Among nicotine users (n=185), we then examined whether the aforementioned variables were associated with using higher nicotine concentrations. Adolescents reported using nicotine-free e-liquid (28.5%), nicotine e-liquid (37.4%), or not knowing their e-liquid nicotine concentration (34.1%). Nicotine users comprised more smokers and heavier e-cigarette users compared to nicotine-free e-liquid users and those who did not know their nicotine concentration. Nicotine users also comprised more males and were more likely to purchase e-cigarettes online or from tobacco shops compared to those who did not know their nicotine concentration. Among nicotine users, cigarette smoking, male sex, and purchasing e-cigarettes from tobacco shops predicted using higher nicotine concentrations. Adolescents reported using e-liquids with variable nicotine concentrations. Smokers, males, and those who purchased their own e-cigarettes reported using the highest nicotine levels. Of concern, many adolescents were unaware of the nicotine concentration in their e-liquid, raising concerns about inadvertent nicotine exposure among youth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. α-4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    Background: Smoking behavior is influenced by both genetic and environmental factors. Nicotine is the major addictive substance in cigarettes. Nicotinic acetylcholine receptors (nAChRs) are thought to play an important role in nicotine addiction of smokers. One of the genes, α-4 subunit of nicotinic acetylcholine receptor ...

  3. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    NARCIS (Netherlands)

    de Kloet, S.F.; Mansvelder, H.D.; de Vries, T.J.

    2015-01-01

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are

  4. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S-I; Yoo, C-H [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of); Song, K-H; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Woo, D-C [Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.

  5. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    International Nuclear Information System (INIS)

    Lim, S-I; Yoo, C-H; Song, K-H; Choe, B-Y; Woo, D-C

    2016-01-01

    Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.

  6. Application of carbon-11 labelled nicotine in the measurement of human cerebral blood flow and other physiological parameters

    International Nuclear Information System (INIS)

    Yokoi, Fuji; Hayashi, Tokishi; Iio, Masaaki; Hara, Toshihiko

    1993-01-01

    Using positron emission tomography (PET), we measured the regional cerebral blood flow (rCBF) in five normal human subjects after intravenous injection of carbon-11 labelled (R)nicotine. The rCBF of the same subjects was measured by PET using the C 15 O 2 inhalation steady-state method. The distribution of 11 C activity in the brain after injection of 11 C-(R)nicotine was almost equivalent to the CBF image obtaines with C 15 O 2 inhalation steady-state method. The kinetics of 11 C-(R)nicotine in the brain was analysed using a two-compartment model consisting of vascular and brain tissue compartments. The rCBF values obtained with 11 C-(R)nicotine were higher than with C 15 O 2 gas. It is possible that the relatively long fixed distribution of 11 C-(R)nicotine with a short uptake period allows stimulation studies by measurement of CBF to be performed with better photon flux and a longer imaging time than are possible with H 2 15 O. (orig.)

  7. Phosphorylation of Akt by SC79 Prevents Iron Accumulation and Ameliorates Early Brain Injury in a Model of Experimental Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Shuangying Hao

    2016-03-01

    Full Text Available Previous studies have demonstrated that activation of Akt may alleviate early brain injury (EBI following subarachnoid hemorrhage (SAH. This study is undertaken to determine whether iron metabolism is involved in the beneficial effect of Akt activation after SAH. Therefore, we used a novel molecule, SC79, to activate Akt in an experimental Sprague–Dawley rat model of SAH. Rats were randomly divided into four groups as follows: sham, SAH, SAH + vehicle, SAH + SC79. The results confirmed that SC79 effectively enhanced the defense against oxidative stress and alleviated EBI in the temporal lobe after SAH. Interestingly, we found that phosphorylation of Akt by SC79 reduced cell surface transferrin receptor-mediated iron uptake and promoted ferroportin-mediated iron transport after SAH. As a result, SC79 administration diminished the iron content in the brain tissue. Moreover, the impaired Fe-S cluster biogenesis was recovered and loss of the activities of the Fe-S cluster-containing enzymes were regained, indicating that injured mitochondrial functions are restored to healthy levels. These findings suggest that disrupted iron homeostasis could contribute to EBI and Akt activation may regulate iron metabolism to relieve iron toxicity, further protecting neurons from EBI after SAH.

  8. Nicotine Reduction Revisited: Science and Future Directions

    Science.gov (United States)

    Hatsukami, Dorothy K.; Perkins, Kenneth A.; LeSage, Mark G.; Ashley, David L.; Henningfield, Jack E.; Benowitz, Neal L.; Backinger, Cathy; Zeller, Mitch

    2015-01-01

    Regulation of nicotine levels in cigarettes and other tobacco products is now possible with the passage of the Family Smoking Prevention and Tobacco Control Act (FSPTCA) in 2009 giving the U.S. Food and Drug Administration authority to regulate tobacco products, and with Articles 9-11 of the World Health Organization Framework Convention on Tobacco Control.[1-2] Both regulatory approaches allow establishing product standards for tobacco constituents, including nicotine. The FSPTCA does not allow nicotine levels to be decreased to zero, although FDA has the authority to reduce nicotine yields to very low, presumably non-addicting levels. The proposal to reduce levels of nicotine to a level that is non-addicting was originally suggested in 1994.[3] Reduction of nicotine in tobacco products could potentially have a profound impact on reducing tobacco-related morbidity and mortality. To examine this issue, two meetings were convened in the United States with non-tobacco-industry scientists of varied disciplines, tobacco control policy-makers and representatives of government agencies. This article provides an overview of the current science in the area of reduced nicotine content cigarettes and key conclusions and recommendations for research and policy that emerged from the deliberations of the meeting members. PMID:20876072

  9. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  10. Bioelectronic sniffer for nicotine using enzyme inhibition.

    Science.gov (United States)

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  11. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balasubramaniam; Collins, Daphne; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Potkin, Steven G.; Mukherjee, Jogeshwar

    2006-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3 H-cytisine exhibited a K i =0.50 nM for the α4β2 sites. The radiosynthesis of 2- 18 F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ( 18 F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18 F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18 F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18 F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18 F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  12. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    Science.gov (United States)

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  13. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    Science.gov (United States)

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  14. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists

  15. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain

    DEFF Research Database (Denmark)

    Jacobsen, Julie; Hansen, Henrik H; Kiss, Alexander

    2012-01-01

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We...... or indirectly involved in acute stress regulation after a single dose of ispronicline, supports earlier studies that the α4β2 receptors are strongly involved in nicotine-dependent activation of the hypothalamo-pituitary adrenocortical axis....

  16. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    OpenAIRE

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael; Pallanck, Leo

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neur...

  17. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor {alpha}{sub 7} subtype

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Nishiyama, Shingo; Tsukada, Hideo [PET Center, Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu (Japan); Hatano, Kentaro [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Fuchigami, Takeshi [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Yamaguchi, Hiroshi [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Matsushima, Yoshitaka [Department of Chemistry, Hamamatsu University School of Medicine, Hamamatsu (Japan); Ito, Kengo [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan)], E-mail: magata@hama-med.ac.jp

    2010-04-15

    Introduction: The nicotinic acetylcholine receptor (nAChR) {alpha}7 subtype ({alpha}{sub 7} nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled {alpha}{sub 7} nAChR ligands, (R)-2-[{sup 11}C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([{sup 11}C](R)-MeQAA) and its isomer (S)-[{sup 11}C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[{sup 11}C]MeQAA for in vivo imaging of {alpha}{sub 7} nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for {alpha}{sub 7} nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for {alpha}{sub 7} nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([{sup 11}C](R)-MeQAA: 7.68 and [{sup 11}C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [{sup 11}C](R)-MeQAA was slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) but was rapid in the cerebellum ({alpha}{sub 7} nAChR-poor region). On the other hand, the clearance was fast for [{sup 11}C](S)-MeQAA in all regions. The brain uptake of [{sup 11}C](R)-MeQAA was decreased by methyllycaconitine ({alpha}{sub 7} nAChR antagonist) treatment. In monkeys, {alpha}{sub 7} nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [{sup 11}C](R)-MeQAA, while the uptake was rather homogeneous for [{sup 11}C](S)-MeQAA. Conclusions: [{sup 11}C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for {alpha}{sub 7} nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain {alpha}{sub 7} nAChRs in vivo.

  18. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  19. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    Science.gov (United States)

    1989-09-30

    of chicken neurona .4receptor subunits. Sequences of al and a2 are from Net .Ot al. -l Sequences of a3 and a4 were determintl from clones described...Sucrose gradient analysis of neurona & nicotinic receptors was conducted as follows. Chicken ind rat brain receptors were extracted from crude

  20. Slower nicotine metabolism among postmenopausal Polish smokers.

    Science.gov (United States)

    Kosmider, Leon; Delijewski, Marcin; Koszowski, Bartosz; Sobczak, Andrzej; Benowitz, Neal L; Goniewicz, Maciej L

    2018-06-01

    A non-invasive phenotypic indicator of the rate of nicotine metabolism is nicotine metabolite ratio (NMR) defined as a ratio of two major metabolites of nicotine - trans-3'-hydroxycotinine/cotinine. The rate of nicotine metabolism has important clinical implications for the likelihood of successful quitting with nicotine replacement therapy (NRT). We conducted a study to measure NMR among Polish smokers. In a cross-sectional study of 180 daily cigarette smokers (42% men; average age 34.6±13.0), we collected spot urine samples and measured trans-3'-hydroxycotinine (3-HC) and cotinine levels with LC-MS/MS method. We calculated NMR (molar ratio) and analyzed variations in NMR among groups of smokers. In the whole study group, an average NMR was 4.8 (IQR 3.4-7.3). The group of women below 51 years had significantly greater NMR compared to the rest of the population (6.4; IQR 4.1-8.8 vs. 4.3; IQR 2.8-6.4). No differences were found among group ages of male smokers. This is a first study to describe variations in nicotine metabolism among Polish smokers. Our findings indicate that young women metabolize nicotine faster than the rest of population. This finding is consistent with the known effects of estrogen to induce CYP2A6 activity. Young women may require higher doses of NRT or non-nicotine medications for most effective smoking cessation treatment. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Electronic cigarettes and nicotine clinical pharmacology

    OpenAIRE

    Schroeder, Megan J; Hoffman, Allison C

    2014-01-01

    Objective To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Methods Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abst...

  2. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Schoenbaechler, R.; Westera, G.; Nan-Horng Lin

    2002-01-01

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (K i ) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [ 11 C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [ 11 C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [ 11 C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [ 11 C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  3. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Otręba, Michał; Buszman, Ewa

    2016-01-01

    Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.

  4. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Otręba, Michał; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2016-11-15

    Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.

  5. Effect of nicotine on negative affect among more impulsive smokers.

    Science.gov (United States)

    Doran, Neal; McChargue, Dennis; Spring, Bonnie; VanderVeen, Joe; Cook, Jessica Werth; Richmond, Malia

    2006-08-01

    In the present study, the authors tested the hypothesis that nicotine would provide greater relief from negative affect for more impulsive smokers than for less impulsive smokers. Euthymic adult smokers (N=70) participated in 2 laboratory sessions, during which they underwent a negative mood induction (music + autobiographical memory), then smoked either a nicotinized or de-nicotinized cigarette. Mixed-effects regression yielded a significant Impulsivity x Condition (nicotinized vs. de-nicotinized) x Time interaction. Simple effects analyses showed that heightened impulsivity predicted greater negative affect relief after smoking a nicotinized cigarette but not after smoking a de-nicotinized cigarette. These data suggest that nicotine may be a disproportionately powerful negative reinforcer for highly impulsive smokers, promoting higher levels of nicotine dependence and inhibiting smoking cessation.

  6. Nicotine, auditory sensory memory and attention in a human ketamine model of schizophrenia: moderating influence of a hallucinatory trait

    Directory of Open Access Journals (Sweden)

    Verner eKnott

    2012-09-01

    Full Text Available Background: The procognitive actions of the nicotinic acetylcholine receptor (nAChR agonist nicotine are believed, in part, to motivate the excessive cigarette smoking in schizophrenia, a disorder associated with deficits in multiple cognitive domains, including low level auditory sensory processes and higher order attention-dependent operations. Objectives: As N-methyl-D-aspartate receptor (NMDAR hypofunction has been shown to contribute to these cognitive impairments, the primary aims of this healthy volunteer study were to: a to shed light on the separate and interactive roles of nAChR and NMDAR systems in the modulation of auditory sensory memory (and sustained attention, as indexed by the auditory event-related brain potential (ERP – mismatch negativity (MMN, and b to examine how these effects are moderated by a predisposition to auditory hallucinations/delusions (HD. Methods: In a randomized, double-blind, placebo controlled design involving a low intravenous dose of ketamine (.04 mg/kg and a 4 mg dose of nicotine gum, MMN and performance on a rapid visual information processing (RVIP task of sustained attention were examined in 24 healthy controls psychometrically stratified as being lower (L-HD, n = 12 or higher (H-HD for HD propensity. Results: Ketamine significantly slowed MMN, and reduced MMN in H-HD, with amplitude attenuation being blocked by the co-administration of nicotine. Nicotine significantly enhanced response speed (reaction time and accuracy (increased % hits and d΄ and reduced false alarms on the RIVIP, with improved performance accuracy being prevented when nicotine was administered with ketamine. Both % hits and d΄, as well as reaction time were poorer in H-HD (vs. L-HD and while hit rate and d΄ was increased by nicotine in H-HD, reaction time was slowed by ketamine in L-HD. Conclusions: Nicotine alleviated ketamine-induced sensory memory impairments and improved attention, particularly in individuals prone to HD.

  7. Inside-out neuropharmacology of nicotinic drugs.

    Science.gov (United States)

    Henderson, Brandon J; Lester, Henry A

    2015-09-01

    Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats.

    Science.gov (United States)

    Qi, Xiaoli; Guzhva, Lidia; Yang, Zhihui; Febo, Marcelo; Shan, Zhiying; Wang, Kevin K W; Bruijnzeel, Adriaan W

    2016-09-01

    Smoking cessation leads to dysphoria and anxiety, which both increase the risk for relapse. This negative affective state is partly mediated by an increase in activity in brain stress systems. Recent studies indicate that prolonged viral vector-mediated overexpression of stress peptides diminishes stress sensitivity. Here we investigated whether the overexpression of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST) diminishes nicotine withdrawal symptoms in rats. The effect of nicotine withdrawal on brain reward function was investigated with an intracranial self-stimulation (ICSS) procedure. Anxiety-like behavior was investigated in the elevated plus maze test and a large open field. An adeno-associated virus (AAV) pseudotype 2/5 vector was used to overexpress CRF in the lateral BNST and nicotine dependence was induced using minipumps. Administration of the nicotinic receptor antagonist mecamylamine and cessation of nicotine administration led to a dysphoria-like state, which was prevented by the overexpression of CRF in the BNST. Nicotine withdrawal also increased anxiety-like behavior in the elevated plus maze test and large open field test and slightly decreased locomotor activity in the open field. The overexpression of CRF in the BNST did not prevent the increase in anxiety-like behavior or decrease in locomotor activity. The overexpression of CRF increased CRF1 and CRF2 receptor gene expression and increased the CRF2/CRF1 receptor ratio. In conclusion, the overexpression of CRF in the BNST prevents the dysphoria-like state associated with nicotine withdrawal and increases the CRF2/CRF1 receptor ratio, which may diminish the negative effects of CRF on mood. Published by Elsevier B.V.

  9. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula.

    Science.gov (United States)

    Shih, Pei-Yu; Engle, Staci E; Oh, Gyeon; Deshpande, Purnima; Puskar, Nyssa L; Lester, Henry A; Drenan, Ryan M

    2014-07-16

    Neuronal nAChRs in the medial habenula (MHb) to the interpeduncular nucleus (IPN) pathway are key mediators of nicotine's aversive properties. In this paper, we report new details regarding nAChR anatomical localization and function in MHb and IPN. A new group of knock-in mice were created that each expresses a single nAChR subunit fused to GFP, allowing high-resolution mapping. We find that α3 and β4 nAChR subunit levels are strong throughout the ventral MHb (MHbV). In contrast, α6, β2, β3, and α4 subunits are selectively found in some, but not all, areas of MHbV. All subunits were found in both ChAT-positive and ChAT-negative cells in MHbV. Next, we examined functional properties of neurons in the lateral and central part of MHbV (MHbVL and MHbVC) using brain slice patch-clamp recordings. MHbVL neurons were more excitable than MHbVC neurons, and they also responded more strongly to puffs of nicotine. In addition, we studied firing responses of MHbVL and MHbVC neurons in response to bath-applied nicotine. Cells in MHbVL, but not those in MHbVC, increased their firing substantially in response to 1 μm nicotine. Additionally, MHbVL neurons from mice that underwent withdrawal from chronic nicotine were less responsive to nicotine application compared with mice withdrawn from chronic saline. Last, we characterized rostral and dorsomedial IPN neurons that receive input from MHbVL axons. Together, our data provide new details regarding neurophysiology and nAChR localization and function in cells within the MHbV. Copyright © 2014 the authors 0270-6474/14/349789-14$15.00/0.

  10. Recalled first reactions to inhaling nicotine predict the level of physical dependence.

    Science.gov (United States)

    Wellman, Robert J; DiFranza, Joseph R; O'Loughlin, Jennifer

    2014-10-01

    The level of physical dependence is a measure of addiction that correlates highly with addiction-associated changes in brain structure. We sought to determine whether age at first inhalation and initial reactions to inhaling nicotine are related to level of physical dependence in early adulthood. Young adults (n=312; mean age=24 years; 51% female) from the Nicotine Dependence in Teens study who had smoked at least once in the preceding three months completed self-report questionnaires in 2011-12. We assessed level of physical dependence with three validated self-report items assessing 'wanting,' 'craving' and 'needing' triggered by nicotine deprivation. Survey items assessed smoking behavior, including age at first inhalation, and recalled first reactions to inhaling nicotine. After adjusting for covariates, experiencing relaxation, heart racing/pounding, rush or "buzz" (OR=1.45; 95% CI: 1.08, 1.94) and dizziness (OR=1.58; 95% CI: 1.15, 2.18) at first nicotine inhalation were associated with an increased odds of being at a higher level of physical dependence in young adulthood; the association for experiencing relaxation (OR=1.78; 95% CI: 1.20, 2.64) and heart racing/pounding (OR=1.51; 95% CI: 1.00, 2.28) persisted after additionally controlling for all other first reactions. Neither age at first inhalation nor unpleasant first reactions predicted level of physical dependence. In accordance with prior research, our findings suggest that smokers who are particularly sensitive to the pleasant, "buzz-related" and generally arousing effects of nicotine may be more likely to attain higher levels of physical dependence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine

    NARCIS (Netherlands)

    Poorthuis, R.B.; Bloem, B.R.; Verhoog, M.B.; Mansvelder, H.D.

    2013-01-01

    Adolescence is a period in which the developing prefrontal cortex (PFC) is sensitive to maladaptive changes when exposed to nicotine. Nicotine affects PFC function and repeated exposure to nicotine during adolescence impairs attention performance and impulse control during adulthood. Nicotine

  12. [Effects of excess nicotinic acid on growth and the urinary excretion of B-group vitamins and the metabolism of tryptophan in weaning rats].

    Science.gov (United States)

    Fukuwatari, Tsutomu; Kurata, Kaori; Shibata, Katsumi

    2009-04-01

    To determine the tolerable upper intake level of nicotinic acid in humans, we investigated the effects of excess nicotinic acid administration on body weight gain, food intake, and urinary excretion of water-soluble vitamins and the metabolism of tryptophan in weaning rats. The weaning rats were freely fed a niacin-free 20% casein diet (control diet) or the same diet with 0.1%, 0.3% or 0.5% nicotinic acid for 23 days. The excess nicotinic acid intake did not affect body weight gain, food intake, serotonin contents in the brain, stomach and small intestine, or the urinary excretions of water-soluble vitamins. Although excess nicotinic acid did not affect the upper part of the tryptophan-nicotinamide pathway, 0.5% nicotinic acid diet increased the urinary excretion of quinolinic acid. The diet containing more than 0.3% nicotinic acid also increased the urinary excretion of nicotinic acid, which is usually below the limit of detection. As determined from the results of body weight gain and food intake as indices for apparent adverse effects, the no-observed-adverse-effect-level (NOAEL) for nicotinic acid was 0.5% in diet, corresponding to 450 mg/kg body weight/day. As judged from in increase of urinary quinolinic acid and nicotinic acid as indices of metabolic change, NOAEL was 0.1% in diet, corresponding to 90 mg/kg body weight/day, and the lowest-observed-adverse-effect-level (LOAEL) was 0.3% in diet, corresponding to 270 mg/kg body weight/day.

  13. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  14. The effects of Nicotinic Acid and Xanthinol Nicotinate on human memory in different categories of age

    NARCIS (Netherlands)

    Loriaux, S.M.; Deijen, J.B.; Orlebeke, J.F.; de Swart, J.H.

    1985-01-01

    The treatment effect of nicotinic acid and xanthinol nicotinate on human memory was compared with placebo in 96 healthy subjects. Forty-three subjects were young (35-45 years), 30 subjects middle aged (55-65 years) and 23 subjects were old aged (75-85 years). Pre- and post-treatment scores were

  15. Opname van nicotine door kippen en overdracht naar eieren bij toepassing van nicotine tegen bloedluis

    NARCIS (Netherlands)

    Traag, W.A.; Rijk, de T.C.; Zomer, P.; Vos Van Avezathe, A.; Kan, C.A.; Zeilmaker, M.; Hoogenboom, L.A.P.

    2005-01-01

    Uit onderzoek van de AID blijkt nicotine gebruikt te worden voor de bestrijding van bloedluis bij kippen. Dit levert mogelijk gezondheidsrisico's op voor de consument van het kippenvlees of de eieren. Omdat niet duidelijk is of het nicotine na de bestrijding van bloedluis in het vlees of eieren

  16. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  17. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier.

    Directory of Open Access Journals (Sweden)

    Keith D Miller

    Full Text Available Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH, we have synthesized a short trimeric coiled-coil peptide (TCC that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg from reaching the brain.

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  20. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy.

    Science.gov (United States)

    Grebenstein, Patricia E; Burroughs, Danielle; Roiko, Samuel A; Pentel, Paul R; LeSage, Mark G

    2015-06-01

    The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. The present study examined these issues in a rodent nicotine self-administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1.

    Directory of Open Access Journals (Sweden)

    Yanghui Liu

    Full Text Available Management of solid wastes with high nicotine content, such as those accumulated during tobacco manufacturing, poses a major challenge, which can be addressed by using bacteria such as Pseudomonas and Arthrobacter. In this study, a new species of Pseudomonas geniculata, namely strain N1, which is capable of efficiently degrading nicotine, was isolated and identified. The optimal growth conditions for strain N1 are a temperature of 30°C, and a pH 6.5, at a rotation rate of 120 rpm min(-1 with 1 g l(-1 nicotine as the sole source of carbon and nitrogen. Myosmine, cotinine, 6-hydroxynicotine, 6-hydroxy-N-methylmyosmine, and 6-hydroxy-pseudooxynicotine were detected as the five intermediates through gas chromatography-mass and liquid chromatography-mass analyses. The identified metabolites were different from those generated by Pseudomonas putida strains. The analysis also highlighted the bacterial metabolic diversity in relation to nicotine degradation by different Pseudomonas strains.

  2. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sympathomimetic Effects of Acute E-Cigarette Use: Role of Nicotine and Non-Nicotine Constituents.

    Science.gov (United States)

    Moheimani, Roya S; Bhetraratana, May; Peters, Kacey M; Yang, Benjamin K; Yin, Fen; Gornbein, Jeffrey; Araujo, Jesus A; Middlekauff, Holly R

    2017-09-20

    Chronic electronic (e) cigarette users have increased resting cardiac sympathetic nerve activity and increased susceptibility to oxidative stress. The purpose of the present study is to determine the role of nicotine versus non-nicotine constituents in e-cigarette emissions in causing these pathologies in otherwise healthy humans. Thirty-three healthy volunteers who were not current e-cigarette or tobacco cigarette smokers were studied. On different days, each participant used an e-cigarette with nicotine, an e-cigarette without nicotine, or a sham control. Cardiac sympathetic nerve activity was determined by heart rate variability, and susceptibility to oxidative stress was determined by plasma paraoxonase activity. Following exposure to the e-cigarette with nicotine, but not to the e-cigarette without nicotine or the sham control, there was a significant and marked shift in cardiac sympathovagal balance towards sympathetic predominance. The decrease in high-frequency component and the increases in the low-frequency component and the low-frequency to high-frequency ratio were significantly greater following exposure to the e-cigarette with nicotine compared with exposure to the e-cigarette without nicotine or to sham control. Oxidative stress, as estimated by plasma paraoxonase, did not increase following any of the 3 exposures. The acute sympathomimetic effect of e-cigarettes is attributable to the inhaled nicotine, not to non-nicotine constituents in e-cigarette aerosol, recapitulating the same heart rate variability pattern associated with increased cardiac risk in multiple populations with and without known cardiac disease. Evidence of oxidative stress, as estimated by plasma paraoxonase activity, was not uncovered following acute e-cigarette exposure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Tobacco and Nicotine Product Testing

    Science.gov (United States)

    Biener, Lois; Leischow, Scott J.; Zeller, Mitch R.

    2012-01-01

    Introduction: Tobacco product testing is a critical component of the Family Smoking Prevention and Tobacco Control Act (FSPTCA), which grants the Food and Drug Administration the authority to regulate tobacco products. The availability of methods and measures that can provide accurate data on the relative health risks across types of tobacco products, brands, and subbrands of tobacco products on the validity of any health claims associated with a product, and on how consumers perceive information on products toxicity or risks is crucial for making decisions on the product's potential impact on public health. These tools are also necessary for making assessments of the impact of new indications for medicinal products (other than cessation) but more importantly of tobacco products that may in the future be marketed as cessation tools. Objective: To identify research opportunities to develop empirically based and comprehensive methods and measures for testing tobacco and other nicotine-containing products so that the best science is available when decisions are made about products or policies. Methods: Literature was reviewed to address sections of the FSPTCA relevant to tobacco product evaluation; research questions were generated and then reviewed by a committee of research experts. Results: A research agenda was developed for tobacco product evaluation in the general areas of toxicity and health risks, abuse liability, consumer perception, and population effects. Conclusion: A cohesive, systematic, and comprehensive assessment of tobacco products is important and will require building consensus and addressing some crucial research questions. PMID:21460383

  5. Effects of BMS-902483, an α7 nicotinic acetylcholine receptor partial agonist, on cognition and sensory gating in relation to receptor occupancy in rodents.

    Science.gov (United States)

    Pieschl, Rick L; Miller, Regina; Jones, Kelli M; Post-Munson, Debra J; Chen, Ping; Newberry, Kimberly; Benitex, Yulia; Molski, Thaddeus; Morgan, Daniel; McDonald, Ivar M; Macor, John E; Olson, Richard E; Asaka, Yukiko; Digavalli, Siva; Easton, Amy; Herrington, James; Westphal, Ryan S; Lodge, Nicholas J; Zaczek, Robert; Bristow, Linda J; Li, Yu-Wen

    2017-07-15

    The α7 nicotinic acetylcholine receptor is thought to play an important role in human cognition. Here we describe the in vivo effects of BMS-902483, a selective potent α7 nicotinic acetylcholine receptor partial agonist, in relationship to α7 nicotinic acetylcholine receptor occupancy. BMS-902483 has low nanomolar affinity for rat and human α7 nicotinic acetylcholine receptors and elicits currents in cells expressing human or rat α7 nicotinic acetylcholine receptors that are about 60% of the maximal acetylcholine response. BMS-902483 improved 24h novel object recognition memory in mice with a minimal effective dose (MED) of 0.1mg/kg and reversed MK-801-induced deficits in a rat attentional set-shifting model of executive function with an MED of 3mg/kg. Enhancement of novel object recognition was blocked by the silent α7 nicotinic acetylcholine receptor agonist, NS6740, demonstrating that activity of BMS-902483 was mediated by α7 nicotinic acetylcholine receptors. BMS-902483 also reversed ketamine-induced deficits in auditory gating in rats, and enhanced ex vivo hippocampal long-term potentiation examined 24h after dosing in mice. Results from an ex vivo brain homogenate binding assay showed that α7 receptor occupancy ranged from 64% (novel object recognition) to ~90% (set shift and gating) at the MED for behavioral and sensory processing effects of BMS-902483. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nicotinic modulaton of neuronal networks: from receptors to cognition

    NARCIS (Netherlands)

    Mansvelder, H.D.; van Aerde, K.I.; Couey, J.J.; Brussaard, A.B.

    2006-01-01

    Rationale: Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and

  7. Design, formulation and evaluation of nicotine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2012-01-01

    Conclusion: Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  8. Low Nicotine Content Descriptors Reduce Perceived Health Risks and Positive Cigarette Ratings in Participants Using Very Low Nicotine Content Cigarettes.

    Science.gov (United States)

    Denlinger-Apte, Rachel L; Joel, Danielle L; Strasser, Andrew A; Donny, Eric C

    2017-10-01

    Understanding how smokers perceive reduced nicotine content cigarettes will be important if the FDA and global regulatory agencies implement reduced nicotine product standards for cigarettes. Prior research has shown that some smokers incorrectly believe "light" cigarettes are less harmful than regular cigarettes. Similar misunderstandings of health risk could also apply to reduced nicotine cigarettes. To date, most studies of reduced nicotine cigarettes have blinded subjects to the nicotine content. Therefore, little is known about how smokers experience reduced nicotine content cigarettes when they are aware of the reduced content, and how use may be impacted. The present study was a within-subjects experiment with 68 adult daily smokers who smoked two identical very low nicotine content Quest 3 (0.05 mg nicotine yield) cigarettes. Subjects were told that one cigarette contained "average" nicotine content, and the other contained "very low" nicotine content. After smoking each cigarette, subjects completed subjective measures about their smoking experience. Subjects rated the "very low" nicotine cigarette as less harmful to their health overall compared to the "average" nicotine cigarette; this effect held true for specific smoking-related diseases. Additionally, they rated the "very low" nicotine cigarette as having less desirable subjective effects than the "average" nicotine cigarette and predicted having greater interest in quitting smoking in the future if only the "very low" nicotine cigarette was available. Explicit knowledge of very low nicotine content changes smokers' perceptions of very low nicotine content cigarettes, resulting in reduced predicted harm, subjective ratings and predicted future use. Before a reduced nicotine product standard for cigarettes can be implemented, it is important to understand how product information impacts how smokers think about and experience very low nicotine content cigarettes. Prior research has shown that smokers

  9. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Compound list: nicotinic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Hum...an/in_vitro/nicotinic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/R...at/in_vitro/nicotinic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat.../in_vivo/Liver/Single/nicotinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc

  11. Design, formulation and evaluation of nicotine chewing gum

    OpenAIRE

    Abolfazl Aslani; Sahar Rafiei

    2012-01-01

    Background: Nicotine replacement therapy (NRT) can help smokers to quit smoking. Nicotine chewing gum has attracted the attention from pharmaceutical industries to offer it to consumers as an easily accessible NRT product. However, the bitter taste of such gums may compromise their acceptability by patients. This study was, therefore, designed to develop 2 and 4 mg nicotine chewing gums of pleasant taste, which satisfy the consumers the most. Materials and Methods: Nicotine, sugar, liquid...

  12. The metabolic fate of nectar nicotine in worker honey bees.

    Science.gov (United States)

    du Rand, Esther E; Pirk, Christian W W; Nicolson, Susan W; Apostolides, Zeno

    2017-04-01

    Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance. We examined the metabolic fate of nicotine in newly emerged worker bees using radiolabeled nicotine and LC-MS/MS analysis to determine the kinetic distribution profile of nicotine as well as the absence or presence and identity of any nicotine-derived metabolites. Nicotine metabolism was extensive; virtually no unmetabolised nicotine were recovered from the rectum. The major metabolite found was 4-hydroxy-4-(3-pyridyl) butanoic acid, the end product of 2'C-oxidation of nicotine. It is the first time that 4-hydroxy-4-(3-pyridyl) butanoic acid has been identified in an insect as a catabolite of nicotine. Lower levels of cotinine, cotinine N-oxide, 3'hydroxy-cotinine, nicotine N-oxide and norcotinine were also detected. Our results demonstrated that formation of 4-hydroxy-4-(3-pyridyl) butanoic acid is quantitatively the most significant pathway of nicotine metabolism in honey bees and that the rapid excretion of unmetabolised nicotine does not contribute significantly to nicotine tolerance in honey bees. In nicotine-tolerant insects that do not rely on the rapid excretion of nicotine like the Lepidoptera, it is possible that the 2'C-oxidation of nicotine is the conserved metabolic pathway instead of the generally assumed 5'C-oxidation pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Wipe sampling for nicotine as a marker of thirdhand tobacco smoke contamination on surfaces in homes, cars, and hotels.

    Science.gov (United States)

    Quintana, Penelope J E; Matt, Georg E; Chatfield, Dale; Zakarian, Joy M; Fortmann, Addie L; Hoh, Eunha

    2013-09-01

    Secondhand smoke contains a mixture of pollutants that can persist in air, dust, and on surfaces for months or longer. This persistent residue is known as thirdhand smoke (THS). Here, we detail a simple method of wipe sampling for nicotine as a marker of accumulated THS on surfaces. We analyzed findings from 5 real-world studies to investigate the performance of wipe sampling for nicotine on surfaces in homes, cars, and hotels in relation to smoking behavior and smoking restrictions. The intraclass correlation coefficient for side-by-side samples was 0.91 (95% CI: 0.87-0.94). Wipe sampling for nicotine reliably distinguished between private homes, private cars, rental cars, and hotels with and without smoking bans and was significantly positively correlated with other measures of tobacco smoke contamination such as air and dust nicotine. The sensitivity and specificity of possible threshold values (0.1, 1, and 10 μg/m(2)) were evaluated for distinguishing between nonsmoking and smoking environments. Sensitivity was highest at a threshold of 0.1 μg/m(2), with 74%-100% of smoker environments showing nicotine levels above threshold. Specificity was highest at a threshold of 10 μg/m(2), with 81%-100% of nonsmoker environments showing nicotine levels below threshold. The optimal threshold will depend on the desired balance of sensitivity and specificity and on the types of smoking and nonsmoking environments. Surface wipe sampling for nicotine is a reliable, valid, and relatively simple collection method to quantify THS contamination on surfaces across a wide range of field settings and to distinguish between nonsmoking and smoking environments.

  14. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    Science.gov (United States)

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which could lead to dermal exposure to nicotine. Short-term e-cigarette use produced elevated PM2.5 and ultrafine particles, which could lead to secondhand inhalation of these particles and any chemicals associated with them by bystanders. We measured significant differences in PM2.5 and ultrafine particles between disposable e-cigarettes and tank-style e-cigarettes, suggesting a difference in the exposure profiles of e-cigarette products. Published by Oxford University Press on behalf of Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics.

    Science.gov (United States)

    Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun

    2012-07-01

    Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.

  17. What Are Tobacco, Nicotine, and E-Cigarette Products?

    Science.gov (United States)

    ... Drug Facts / Tobacco, Nicotine, & E-Cigarettes Tobacco, Nicotine, & E-Cigarettes Street names: Chew, Dip, Snuff Print Expand All Revised July 2017 What are tobacco, nicotine, and e-cigarette products? ©Shutterstock/ CatherineL-Prod Also known as: Cigarettes: ...

  18. Hormones, Nicotine and Cocaine: Clinical Studies

    Science.gov (United States)

    Mello, Nancy K.

    2009-01-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels, and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (two min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine’s sustained positive effects (hormones on nicotine dependence and cocaine abuse, and implications for treatment of these addictive disorders is discussed. PMID:19835877

  19. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  20. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice.

    Science.gov (United States)

    Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A

    2015-12-01

    Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For

  1. Nicotine facilitates memory consolidation in perceptual learning.

    Science.gov (United States)

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  3. A comparison of the development of tolerance to ethanol and cross-tolerance to nicotine after chronic ethanol treatment in long- and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1993-09-01

    Previous studies have shown that inbred mouse strains differ in the development of tolerance to both nicotine and ethanol, indicating that genetic factors regulate tolerance development. Those mouse strains that are most sensitive to an acute challenge dose of either drug develop the most tolerance to that drug. The ethanol-sensitive long-sleep (LS) mice are more sensitive to several behavioral and physiological effects of nicotine than are the ethanol-resistant short-sleep (SS) mice. The experiments reported here assessed whether the LS and SS mice develop tolerance to ethanol after chronic treatment with ethanol-containing liquid diets and whether cross-tolerance to nicotine also developed. Tolerance and cross-tolerance were measured by assessing the effects of acute challenge doses of drug on Y-maze crossing and rearing activities, heart rate and body temperature. The LS mice developed tolerance to ethanol's effects on three of the four measures and were cross-tolerant to nicotine on all of the measures. In contrast, the SS mice developed tolerance to ethanol for only two of the measures, but failed to develop cross-tolerance to any action of nicotine. These findings support the hypothesis that ethanol and nicotine share sites of action and that common genes regulate responses to these two drugs. Evidence suggests that tolerance to nicotine may be related to an up-regulation of brain nicotinic receptors, at least in some inbred mouse strains, but chronic ethanol treatment did not reproducibly change either [3H]nicotine or alpha-[125I]bungarotoxin binding. Therefore, other mechanisms must underlie the tolerance and cross-tolerance that was seen.

  4. NICOTINE EFFECTS ON THE MOTOR ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...

  5. Animal Research on Nicotine Reduction: Current Evidence and Research Gaps.

    Science.gov (United States)

    Smith, Tracy T; Rupprecht, Laura E; Denlinger-Apte, Rachel L; Weeks, Jillian J; Panas, Rachel S; Donny, Eric C; Sved, Alan F

    2017-09-01

    A mandated reduction in the nicotine content of cigarettes may improve public health by reducing the prevalence of smoking. Animal self-administration research is an important complement to clinical research on nicotine reduction. It can fill research gaps that may be difficult to address with clinical research, guide clinical researchers about variables that are likely to be important in their own research, and provide policy makers with converging evidence between clinical and preclinical studies about the potential impact of a nicotine reduction policy. Convergence between clinical and preclinical research is important, given the ease with which clinical trial participants can access nonstudy tobacco products in the current marketplace. Herein, we review contributions of preclinical animal research, with a focus on rodent self-administration, to the science of nicotine reduction. Throughout this review, we highlight areas where clinical and preclinical research converge and areas where the two differ. Preclinical research has provided data on many important topics such as the threshold for nicotine reinforcement, the likelihood of compensation, moderators of the impact of nicotine reduction, the impact of environmental stimuli on nicotine reduction, the impact of nonnicotine cigarette smoke constituents on nicotine reduction, and the impact of nicotine reduction on vulnerable populations. Special attention is paid to current research gaps including the dramatic rise in alternative tobacco products, including electronic nicotine delivery systems (ie, e-cigarettes). The evidence reviewed here will be critical for policy makers as well as clinical researchers interested in nicotine reduction. This review will provide policy makers and clinical researchers interested in nicotine reduction with an overview of the preclinical animal research conducted on nicotine reduction and the regulatory implications of that research. The review also highlights the utility of

  6. Binding, uptake, and release of nicotine by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-01-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3 H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3 H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3 H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  7. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.

    Science.gov (United States)

    Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M

    2017-03-01

    Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.

  8. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  9. Decreased sensitivity to nicotine-induced seizures as a consequence of nicotine pretreatment in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1988-01-01

    Male and female long-sleep (LS) and short-sleep (SS) mice were pretreated with a subseizure-producing dose of nicotine (2.0 mg/kg) 7.5, 15 and 30 minutes prior to challenge with seizure-producing doses of this drug. Nicotine pretreated animals were less susceptible to nicotine-induced seizures than were saline pretreated animals. The latency to seizure following nicotine challenge was greater in nicotine pretreated animals than in saline controls. Nicotine pretreated LS mice show a greater decrease in nicotine-induced seizure susceptibility than do nicotine pretreated SS mice. This decrease in seizure susceptibility is consistent with induction of nicotinic receptor desensitization via nicotine pretreatment. It is hypothesized that LS and SS mice might differ in sensitivity to nicotine in part because they differ in baseline levels of desensitized versus functional nicotinic receptors.

  10. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation

    Directory of Open Access Journals (Sweden)

    Tasnim S. Mohamed

    2015-11-01

    Full Text Available Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

  12. Caffeine plus nicotine improves motor function, spatial and non-spatial working memory and functional indices in BALB/c male mice.

    Science.gov (United States)

    Adeniyi, P A; Omatsuli, E P; Akinyemi, A J; Ishola, A O

    2016-12-01

    There is a greater prevalence of cigarette smoking among caffeine dependent individuals. This study therefore sought to assess the effect of nicotine and/or caffeine on some key biochemical indices and neurobehavioural parameters associated with brain function in male mice. Forty male BALB/c mice were divided into 4 groups of 10 animals each; Group A serve as the control and received normal saline (s.c), Group B received 2mg/kg body weight of nicotine (s.c), Group C received 2mg/kg body weight of caffeine (s.c) and Group D received 2mg/kg of nicotine and 2mg/kg of caffeine (s.c). The experiment lasted for 21 days, and then the animals were subjected to behavioral test. Thereafter the animals were sacrificed and their brain isolated for the determination of endothelial nitric oxide (NO) level, acetylcholinesterase (AChE), arginase (Arg) and adenosine deaminase (ADA) activities; as well as some antioxidant indices. Administration of nicotine or caffeine caused a significant (Pcaffeine cognitive properties through a significant increase in non-spatial working memory whereas; it was otherwise on the spatial working memory and motor coordination. Therefore, we can suggest from our present study that caffeine enhances the effect of nicotine either synergistically or additively on memory and motor function and some key biochemical indices associated with brain function in male mice. Copyright © 2016. Published by Elsevier B.V.

  13. Nicotine Dependence and Urinary Nicotine, Cotinine and Hydroxycotinine Levels in Daily Smokers.

    Science.gov (United States)

    Van Overmeire, Ilse P I; De Smedt, Tom; Dendale, Paul; Nackaerts, Kristiaan; Vanacker, Hilde; Vanoeteren, Jan F A; Van Laethem, Danny M G; Van Loco, Joris; De Cremer, Koen A J

    2016-09-01

    Nicotine dependence and smoking frequency are critical factors for smoking cessation. The aims of this study are (1) to determine if nicotine dependence Fagerström Test for Nicotine Dependence (FTND) scores are associated with urinary levels of nicotine metabolites, (2) to assess the relationship of hydroxycotinine/cotinine ratio with FTND score and cigarettes smoked per day (CPD), and (3) to identify significant predictors of cigarettes per day among biomarker concentrations and individual FTND items. Urine samples and questionnaire data of 239 daily smokers were obtained. Nicotine, cotinine and hydroxycotinine urinary levels were determined by UPLC MS/MS.Multiple linear regression models were developed to explore the relationship between nicotine, cotinine, hydroxycotinine levels and separate FTND scores (for all six items). We found significant correlations between the different urinary biomarker concentrations, and the FTND score. The time before the first cigarette after waking (TTFC) was significantly associated with the nicotine, cotinine and hydroxycotinine concentrations. No association was found between the ratio of hydroxycotinine to cotinine and either the FTND or the CPD. A model including four FTND questions, sex, age, and the cotinine concentration, accounted for 45% of the variance of CPD. There are significant relationships between urinary levels of nicotine, cotinine, and hydroxycotinine and the FTND score. Especially the FTND question about TTFC is relevant for explaining the biomarker concentrations. CPD (below 15) was significantly explained by four FTND dependence items and urinary cotinine levels in a regression model. We investigated associations between urinary levels of nicotine, cotinine, and hydroxycotinine in daily smokers and the FTND scores for nicotine dependence. We did not find association between the hydroxycotinine/cotinine ratio and CPD. We developed a model that explains the cigarettes smoked daily (CPD) in a group of light

  14. Nicotinic and iso nicotinic acids: interactions with gamma radiation and acid-base equilibrium

    International Nuclear Information System (INIS)

    Ribeiro, Z.A.

    1984-01-01

    The values of pKa 1 and pKa 2 for nicotinic and iso nicotinic acids in aqueous medium were determined. The effects of gamma radiation about these acids by infrared and ultraviolet spectrophotometry and thermal gravimetric analysis were also studied. It was verified that the radiolysis of acids occurred by the two process of first order, determining the degradation constant and the degradation factors for each one of the solutions. (C.G.C.)

  15. Reduced Nicotine Content Expectancies Affect Initial Responses to Smoking.

    Science.gov (United States)

    Mercincavage, Melissa; Smyth, Joshua M; Strasser, Andrew A; Branstetter, Steven A

    2016-10-01

    We sought to determine if negative responses to reduced nicotine content (RNC) cigarettes during open-label trials result from smokers' (negative) expectancies. We examined the effects of nicotine content description - independent of actual nicotine content - on subjective responses (craving reduction, withdrawal suppression, mood changes, and sensory ratings) and smoking behaviors (topography measures and carbon monoxide [CO] boost). Thirty-six 12-hour-abstinent daily smokers completed a 3-session crossover trial. During each session, participants smoked their preferred brand cigarette - blinded and described as containing "usual," "low," and "very low" nicotine content - through a topography device and completed CO and subjective response assessments. Although nicotine content was identical, compared to the "usual" content cigarette, participants experienced less craving reduction after smoking the "very low" nicotine cigarette, and rated its smoke as weaker (p marketing and labeling are likely important considerations if a federal nicotine reduction policy is initiated.

  16. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  17. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  18. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    Science.gov (United States)

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  19. Reinforcement enhancing effects of acute nicotine via electronic cigarettes.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L; Michael, Valerie C

    2015-08-01

    Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. We assessed acute effects of nicotine via electronic cigarettes ("e-cigarettes") on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled "36mg/ml") or placebo ("0″) e-cigarette, or no e-cigarette use. A fourth session involved smoking one's own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Detoxification and elimination of nicotine by nectar-feeding birds.

    Science.gov (United States)

    Lerch-Henning, S; Du Rand, E E; Nicolson, S W

    2017-05-01

    Many dilute nectars consumed by bird pollinators contain secondary metabolites, potentially toxic chemicals produced by plants as defences against herbivores. Consequently, nectar-feeding birds are challenged not only by frequent water excess, but also by the toxin content of their diet. High water turnover, however, could be advantageous to nectar consumers by enabling them to excrete secondary metabolites or their transformation products more easily. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences osmoregulation in white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens. We also examined the metabolic fate of nicotine in these two species to shed more light on the post-ingestive mechanisms that allow nectar-feeding birds to tolerate nectar nicotine. A high concentration of nicotine (50 µM) decreased cloacal fluid output and increased its osmolality in both species, due to reduced food intake that led to dehydration. White-eyes excreted a higher proportion of the ingested nicotine-containing diet than sunbirds. However, sugar concentration did not affect nicotine detoxification and elimination. Both species metabolised nicotine, excreting very little unchanged nicotine. Cape white-eyes mainly metabolised nicotine through the cotinine metabolic pathway, with norcotinine being the most abundant metabolite in the excreta, while white-bellied sunbirds excreted mainly nornicotine. Both species also utilized phase II conjugation reactions to detoxify nicotine, with Cape white-eyes depending more on the mercapturic acid pathway to detoxify nicotine than white-bellied sunbirds. We found that sunbirds and white-eyes, despite having a similar nicotine tolerance, responded differently and used different nicotine-derived metabolites to excrete nicotine.

  1. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    Science.gov (United States)

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  2. Neurocomputational models of brain disorders

    NARCIS (Netherlands)

    Cutsuridis, Vassilis; Heida, Tjitske; Duch, Wlodek; Doya, Kenji

    2011-01-01

    Recent decades have witnessed dramatic accumulation of knowledge about the genetic, molecular, pharmacological, neurophysiological, anatomical, imaging and psychological characteristics of brain disorders. Despite these advances, however, experimental brain science has offered very little insight

  3. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  4. Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse.

    Science.gov (United States)

    Holliday, Erica; Gould, Thomas J

    2016-06-01

    In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.

    Science.gov (United States)

    Dawkins, Lynne; Cox, Sharon; Goniewicz, Maciej; McRobbie, Hayden; Kimber, Catherine; Doig, Mira; Kośmider, Leon

    2018-06-07

    To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. London and the South East, England. Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a 'Nautilus Aspire' tank over four weeks (one week per condition). Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Use of a lower nicotine concentration e-liquid may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases

  6. Cigarette smoking and brain regulation of energy homeostasis

    OpenAIRE

    Hui eChen; Hui eChen; Sonia eSaad; Shaun eSandow; Paul eBertrand

    2012-01-01

    Cigarette smoking is an addictive behaviour, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causin...

  7. Cigarette Smoking and Brain Regulation of Energy Homeostasis

    OpenAIRE

    Chen, Hui; Saad, Sonia; Sandow, Shaun L.; Bertrand, Paul P.

    2012-01-01

    Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing...

  8. Nicotine pharmacokinetics and its application to intake from smoking.

    Science.gov (United States)

    Feyerabend, C; Ings, R M; Russel, M A

    1985-01-01

    Five subjects were given 25 micrograms/kg nicotine intravenously over 1 min, before and after a loading period involving the smoking of six cigarettes. Plasma nicotine concentrations declined in a biphasic manner, the half-lives of the initial and terminal phases averaging 9 min and 133 min respectively. Terminal half-lives before and after the loading period were essentially the same suggesting the absence of saturation kinetics at nicotine concentrations that build up during smoking. The plasma clearance of nicotine and the volume of distribution were very high averaging 915 ml/min and 1731, respectively. Two approaches were used to calculate the nicotine intake from smoking. The average dose of nicotine absorbed from one cigarette was 1.06 mg which was 82% of the standard machine-smoked yield of 1.3 mg. To illustrate their potential use in 'nicotine titration' studies, these approaches were used to compare nicotine intake from smoking a high (2.4 mg) and low (0.6 mg) nicotine cigarette. The dose of nicotine absorbed averaged 1.14 mg and 0.86 mg per cigarette respectively, being 48% and 143% of the machine-smoked yields. PMID:3986082

  9. Serotonergic modulation of nicotine-induced kinetic tremor in mice

    Directory of Open Access Journals (Sweden)

    Naofumi Kunisawa

    2017-06-01

    Full Text Available We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT, significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist. In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist. The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist or SB-258585 (5-HT6 antagonist. These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.

  10. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    Science.gov (United States)

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.

  11. Electronic cigarettes are a source of thirdhand exposure to nicotine.

    Science.gov (United States)

    Goniewicz, Maciej L; Lee, Lily

    2015-02-01

    Substances remaining on the surfaces in areas where people have smoked contribute to thirdhand exposure. Nicotine from tobacco smoke has been shown to react with oxidizing chemicals in the air to form secondary pollutants, such as carcinogenic nitrosamines. While previous studies have demonstrated thirdhand exposure to nicotine from tobacco smoke, none have investigated whether nicotine from electronic cigarettes (e-cigarettes) can also be deposited on various surfaces. Three brands of e-cigarettes were refilled with varying nicotine concentrations. We released 100 puffs from each product directly into an exposure chamber. Surface wipe samples were taken from 5 indoor 100 cm(2) surfaces (window, walls, floor, wood, and metal) pre- and post-release of vapors. Nicotine was extracted from the wipes and was analyzed using gas chromatography. Three of the 4 experiments showed significant increases in the amount of nicotine on all five surfaces. The floor and glass windows had the greatest increases in nicotine, on average by a factor of 47 and 6, respectively (p risk for thirdhand exposure to nicotine from e-cigarettes. Thirdhand exposure levels differ depending on the surface and the e-cigarette brand. Future research should explore the potential risks of thirdhand exposure to carcinogens formed from the nicotine that is released from e-cigarettes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Surveillance of smokeless tobacco nicotine, pH, moisture, and unprotonated nicotine content.

    Science.gov (United States)

    Richter, Patricia; Spierto, Francis W

    2003-12-01

    Smokeless tobacco is a complex chemical mixture, including not only the components of the tobacco leaf but also chemicals added during the manufacturing process. Smokeless tobacco contains the addictive chemical nicotine and more than 20 cancer-causing chemicals, including the potent tobacco-specific nitrosamines. The National Toxicology Program of the National Institutes of Health has concluded that oral use of smokeless tobacco is a human carcinogen. Therefore, smokeless tobacco is not a safe alternative to cigarettes. In fact, smokeless tobacco use begins primarily during early adolescence and can lead to nicotine dependence and increased risk of becoming a cigarette smoker. Under the Comprehensive Smokeless Tobacco Health Education Act of 1986 (15 U.S.C. 4401 et seq., Pub. L. 99-252), tobacco manufacturers report annually to the Centers for Disease Control and Prevention (CDC) on the total nicotine, unprotonated nicotine, pH, and moisture content of their smokeless tobacco products. This information is considered "trade secret," or confidential, in accordance with 5 U.S.C. 552(b)(4) and 18 U.S.C. 1905 and cannot be released to the public. In an effort to provide consumers and researchers with information on the nicotine content of smokeless tobacco, CDC arranged for the analysis of popular brands of smokeless tobacco. The results of this CDC study show that pH is a primary factor in the amount of nicotine that is in the most readily absorbable, unprotonated form. Furthermore, this study found that the brands of moist snuff smokeless tobacco with the largest amount of unprotonated nicotine also are the most frequently sold brands.

  13. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  14. Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2011-04-01

    The present quantitative meta-analysis set out to test whether cue-reactivity responses in humans differ across drugs of abuse and whether these responses constitute the biological basis of drug craving as a core psychopathology of addiction. By means of activation likelihood estimation, we investigated the concurrence of brain regions activated by cue-induced craving paradigms across studies on nicotine, alcohol and cocaine addicts. Furthermore, we analysed the concurrence of brain regions positively correlated with self-reported craving in nicotine and alcohol studies. We found direct overlap between nicotine, alcohol and cocaine cue reactivity in the ventral striatum. In addition, regions of close proximity were observed in the anterior cingulate cortex (ACC; nicotine and cocaine) and amygdala (alcohol, nicotine and cocaine). Brain regions of concurrence in drug cue-reactivity paradigms that overlapped with brain regions of concurrence in self-reported craving correlations were found in the ACC, ventral striatum and right pallidum (for alcohol). This first quantitative meta-analysis on drug cue reactivity identifies brain regions underlying nicotine, alcohol and cocaine dependency, i.e. the ventral striatum. The ACC, right pallidum and ventral striatum were related to drug cue reactivity as well as self-reported craving, suggesting that this set of brain regions constitutes the core circuit of drug craving in nicotine and alcohol addiction. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  16. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Zago, A.; Leão, R.M.; Carneiro-de-Oliveira, P.E.; Marin, M.T.; Cruz, F.C.; Planeta, C.S.

    2011-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  17. Effect of variation in BDNF Val(66)Met polymorphism, smoking, and nicotine dependence on symptom severity of depressive and anxiety disorders

    NARCIS (Netherlands)

    Jamal, Mumtaz; Van der Does, Willem; Penninx, Brenda W. J. H.

    2015-01-01

    Background: Smoking, especially nicotine dependence is associated with more severe symptoms of depression and anxiety disorders. However, the mechanisms underlying this association are unclear. We investigated the effect of brain-derived neurotrophic factor (BDNF) VaI(66)Met polymorphism on the

  18. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  19. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  1. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Simone eBrusco

    2015-09-01

    Full Text Available Regulation of the ‘neuronal’ nicotinic acetylcholine receptors (nAChRs is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine-1-(3-pyridyl-1-butanone (NNK and N’-nitrosonornicotine (NNN on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16 % of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.

  2. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    Science.gov (United States)

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  3. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A.L.C.S. do; Caires, F.J., E-mail: caires.flavio@yahoo.com.br; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-10

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L){sub 2}·nH{sub 2}O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds.

  4. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  5. Genotoxicity study on nicotine and nicotine-derived nitrosamine by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Li, X.S.; Wang, H.F.; Shi, J.Y.; Wang, X.Y.; Liu, Y.F.; Li, K.; Lu, X.Y.; Wang, J.J.; Liu, K.X.; Guo, Z.Y.

    1997-01-01

    The authors have studied DNA adduction with 14 C-labelled nicotine and nicotine-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by accelerator mass spectrometry (AMS) in mouse liver at doses equivalent to low-level exposure of humans. The dose ranges of nicotine and NNK administered were from 0.4 μg to 4.0 x 10 2 μg·kg -1 , and from 0.1 μg to 2.0 x 10 4 μg·kg -1 , respectively. In the exposure of mice to either nicotine or NNK, the number of DNA adducts increased linearly with increasing dose. The detection limit of DNA adducts was 1 adduct per 10 11 nucleotide molecules. This limit is 1-4 orders of magnitude lower than that of other techniques used for quantification of DNA adducts. The results of the animal experiments enabled us to speculate that nicotine is a potential carcinogen. According to the procedure for 14 C-labelled-NNK synthesis, the authors discuss the ultimate chemical speciation of NNK bound to DNA. From the animal tests the authors derived a directly perceivable relation between tobacco consumption and DNA adduction as the carcinogenic risk assessment

  6. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    International Nuclear Information System (INIS)

    Nascimento, A.L.C.S. do; Caires, F.J.; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-01

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L) 2 ·nH 2 O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn 3 O 4 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds

  7. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M

    2013-01-01

    The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacologi......The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh...

  8. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Zaidi, I.M.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  9. T-type calcium channel antagonism decreases motivation for nicotine and blocks nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine.

    Science.gov (United States)

    Uslaner, Jason M; Vardigan, Joshua D; Drott, Jason M; Uebele, Victor N; Renger, John J; Lee, Ariel; Li, Zhaoxia; Lê, A D; Hutson, Pete H

    2010-10-15

    Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse. We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group). Furthermore, we examined the specificity of the TTA-A2 effects by characterizing its influence on PR responding for food (in the absence or presence of nicotine-potentiated responding), food- versus nicotine-induced cue-potentiated reinstatement for a response previously reinforced by food administration (n = 11 or 12 Wistar Hannover rats/group), and its ability to induce a conditioned place aversion. TTA-A2 dose-dependently decreased self-administration of nicotine on a PR schedule and the ability of both nicotine and a cue paired with nicotine to reinstate responding. The effects were specific for nicotine's incentive motivational properties, as TTA-A2 did not influence responding for food on a PR schedule but did attenuate the ability of nicotine to potentiate responding for food. Likewise, TTA-A2 did not alter food-induced cue-potentiated reinstatement for a response previously reinforced by food but did decrease nicotine-induced cue-potentiated reinstatement. Finally, TTA-A2 did not produce an aversive state, as indicated by a lack of ability to induce conditioned place aversion. These data suggest that T-type calcium channel antagonists have potential for alleviating nicotine addiction by selectively decreasing the incentive motivational properties of nicotine. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Eliciting nicotine craving with virtual smoking cues.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Baptista, André; Morais, Diogo; Lopes, Paulo; Rosa, Pedro; Santos, Nuno; Brito, Rodrigo

    2014-08-01

    Craving is a strong desire to consume that emerges in every case of substance addiction. Previous studies have shown that eliciting craving with an exposure cues protocol can be a useful option for the treatment of nicotine dependence. Thus, the main goal of this study was to develop a virtual platform in order to induce craving in smokers. Fifty-five undergraduate students were randomly assigned to two different virtual environments: high arousal contextual cues and low arousal contextual cues scenarios (17 smokers with low nicotine dependency were excluded). An eye-tracker system was used to evaluate attention toward these cues. Eye fixation on smoking-related cues differed between smokers and nonsmokers, indicating that smokers focused more often on smoking-related cues than nonsmokers. Self-reports of craving are in agreement with these results and suggest a significant increase in craving after exposure to smoking cues. In sum, these data support the use of virtual environments for eliciting craving.

  11. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  12. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  13. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  14. Degradation of Nicotine in Chlorinated Water: Pathways and ...

    Science.gov (United States)

    Report The objective of the study is to illustrate how drinking water would affect alkaloid pesticides, and to address the issue by (a) investigating the fate of nicotine in chlorinated drinking water and deionized water, (b) determining the reaction rate and pathway of the reaction between nicotine and aqueous chlorine, (c) identifying nicotine’s degradation products, and (d) providing data that can be used to assess the potential threat from nicotine in drinking water.

  15. Adsorption of nicotine on different zeolite types, from aqueous solutions

    OpenAIRE

    Stošić Dušan K.; Dondur Vera T.; Rac Vladislav A.; Rakić Vesna M.; Zakrzewska Joanna S.

    2007-01-01

    The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg) is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nico...

  16. Mitochondrial accumulation of APP and Abeta

    DEFF Research Database (Denmark)

    Pavlov, Pavel F; Petersen, Anna Camilla Hansson; Glaser, Elzbieta

    2009-01-01

    Accumulating evidence suggest that alterations in energy metabolism are among the earliest events that occur in the Alzheimer disease (AD) affected brain. Energy consumption is drastically decreased in the AD-affected regions of cerebral cortex and hippocampus pointing towards compromised mitocho...

  17. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.

    Science.gov (United States)

    Becker, Jérôme A J; Kieffer, Brigitte L; Le Merrer, Julie

    2017-09-01

    Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse. © 2016 Society for the Study of Addiction.

  18. Use of Electronic Nicotine Delivery Systems Among Adolescents: Status of the Evidence and Public Health Recommendations.

    Science.gov (United States)

    Kamat, Aarti D; Van Dyke, Alison L

    2017-02-01

    Although the prevalence of tobacco smoking has been declining in recent years, the use of electronic nicotine delivery systems (ENDS) such as of electronic cigarettes, vaporizers, and hookahs has been steadily rising, especially among adolescents. ENDS are not only advertised to children, but their sale via the Internet has made them easily accessible to youth. In general, children perceive ENDS as safe, or at least safer than smoking traditional combustible tobacco products; however, exposure to nicotine may have deleterious effects on the developing brain. Concern also persists that ENDS may be a "starter" drug that may lead to further tobacco, drug, and/or alcohol use. In contrast to this precautionary stance that is associated with calls for legislative oversight of ENDS marketing and sales, harm reductionists claim that the risks posed by ENDS are minor in comparison with those of combustible tobacco products and that ENDS may be used as a means of nicotine replacement for smoking cessation, despite no concrete evidence to support this assertion. Many medical and health-related organizations have produced position statements concerning ENDS use, including among adolescents. This article summarizes the advantages and disadvantages of using ENDS espoused in these position statements, especially as they relate to use among adolescents. [Pediatr Ann. 2017;46(2):e69-e77.]. Copyright 2017, SLACK Incorporated.

  19. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    Science.gov (United States)

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  20. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Stable isotope studies of nicotine kinetics and bioavailability

    International Nuclear Information System (INIS)

    Benowitz, N.L.; Jacob, P. III; Denaro, C.; Jenkins, R.

    1991-01-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine

  2. Nasal nicotine solution: a potential aid to giving up smoking?

    Science.gov (United States)

    Russell, M A; Jarvis, M J; Feyerabend, C; Fernö, O

    1983-01-01

    A nasal solution was developed containing 2 mg nicotine for use as a kind of liquid snuff. Its absorption was studied in three subjects. An average peak of plasma nicotine concentrations of 86.9 nmol/l (14.1 ng/ml) was reached seven and a half minutes after taking the solution. This compared with an average peak of 158.4 nmol/l (25.7 ng/ml) one and a half minutes after completing (but seven and a half minutes after starting) a middle tar cigarette (1.4 mg nicotine) and an average peak of 52.4 nmol/l (8.5 ng/ml) after chewing nicotine gum (2 mg nicotine) for 30 minutes. The more rapid and efficient absorption of nicotine from the nasal nicotine solution than from nicotine chewing gum suggests that it might prove a useful aid to giving up smoking. Nasal nicotine solution might be particularly useful in smokers for whom the gum is less suitable on account of dentures or peptic ulcers or who experience nausea and dyspeptic symptoms from the gum. PMID:6402202

  3. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  4. Molecular imaging of {alpha}7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [{sup 18}F]NS10743

    Energy Technology Data Exchange (ETDEWEB)

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig (Germany); Oestergaard Nielsen, Elsebet; Brunicardi Timmermann, Daniel; Peters, Dan [NeuroSearch A/S, Ballerup (Denmark); Steinbach, Joerg [Institute of Interdisciplinary Isotope Research, Leipzig (Germany); Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, Dresden (Germany); Sabri, Osama [Universitaet Leipzig, Department of Nuclear Medicine, Leipzig (Germany)

    2009-05-15

    The outstanding diversity of cellular properties mediated by neuronal and nonneuronal {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChR) points to the diagnostic potential of quantitative nuclear molecular imaging of {alpha}7 nAChR in neurology and oncology. It was our goal to radiolabel the {alpha}7 nAChR agonist 4-[5-(4-fluoro-phenyl)-[1,3,4]oxadiazol-2-yl]-1,4-diaza-bicyclo[3.2.2]nonane (NS10743) and to assess the selectivity of [{sup 18}F]NS10743 binding site occupancy in animal experiments. [{sup 18}F]NS10743 was synthesized by nucleophilic substitution of the nitro precursor. In vitro receptor affinity and selectivity were assessed by radioligand competition and autoradiography. The radiotracer properties were evaluated in female CD-1 mice by brain autoradiography and organ distribution. Target specificity was validated after treatment with SSR180711 (10 mg/kg, intraperitoneal), and metabolic stability was investigated using radio-HPLC. The specific activity of [{sup 18}F]NS10743 exceeded 150 GBq/{mu}mol at a radiochemical purity >99%. In vitro, NS10743 and [{sup 18}F]NS10743 showed high affinity and specificity towards {alpha}7 nAChR. The brain permeation of [{sup 18}F]NS10743 was fast and sufficient with values of 4.83 and 1.60% injected dose per gram and brain to plasma ratios of 3.83 and 2.05 at 5 and 60 min after radiotracer administration. Brain autoradiography and organ distribution showed target-specific accumulation of [{sup 18}F]NS10743 in brain substructures and various {alpha}7 nAChR-expressing organs. The radiotracer showed a high metabolic stability in vivo with a single polar radiometabolite, which did not cross the blood-brain barrier. The good in vitro and in vivo features of [{sup 18}F]NS10743 make this radioligand a promising candidate for quantitative in vivo imaging of {alpha}7 nAChR expression and encourage further investigations. (orig.)

  5. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.

    Science.gov (United States)

    Uspenska, Kateryna; Lykhmus, Olena; Gergalova, Galyna; Chernyshov, Volodymyr; Arias, Hugo R; Komisarenko, Sergiy; Skok, Maryna

    2017-08-24

    Several nicotinic acetylcholine receptor (nAChR) subtypes are expressed in mitochondria to regulate the internal pathway of apoptosis in ion channel-independent manner. However, the mechanisms of nAChR activation in mitochondria and targeting to mitochondria are still unknown. Nicotine has been shown to favor nAChR pentamer assembly, folding, and maturation on the way of biosynthesis. The idea of the present work was to determine whether nicotine affects the content, glycosylation, and function of mitochondrial nAChRs. Experiments were performed in isolated liver mitochondria from mice, that either consumed or not nicotine with the drinking water (200μL/L) for 7days. Mitochondria detergent lysates were studied by sandwich or lectin ELISA for the presence and carbohydrate composition of different nAChR subunits. Intact mitochondria were examined by flow cytometry for the binding of fluorescently labeled α-cobratoxin and were tested in functional assay of cytochrome c release under the effect of either Ca 2+ or wortmannin in the presence or absence of nAChR-selective ligands, including PNU-282987 (1nM), dihydro-β-erythroidine (DhβE, 1μM), PNU-120596 (0.3, 3, or 10μM) and desformylflustrabromine hydrochloride (dFBr, 0.001, 0.3, or 1μM). It was found that nicotine consumption increased the ratio of mitochondrial vs non-mitochondrial nAChRs in the liver, enhanced fucosylation of mitochondrial nAChRs, but prevented the binding of α-cobratoxin and the cytochrome c release-attenuating effects of nAChR-specific agonists, antagonists, or positive allosteric modulators. It is concluded that nicotine consumption in vivo favors nAChR glycosylation and trafficking to mitochondria but makes them less susceptible to the effects of specific ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    Science.gov (United States)

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  7. Association of nicotine metabolism and sex with relapse following varenicline and nicotine replacement therapy.

    Science.gov (United States)

    Glatard, Anaïs; Dobrinas, Maria; Gholamrezaee, Mehdi; Lubomirov, Rubin; Cornuz, Jacques; Csajka, Chantal; Eap, Chin B

    2017-10-01

    Nicotine is metabolized into cotinine and then into trans-3'-hydroxycotinine, mainly by cytochrome P450 2A6. Recent studies reported better effectiveness of varenicline in women and in nicotine normal metabolizers phenotypically determined by nicotine-metabolite ratio. Our objective was to study the influence of nicotine-metabolite ratio, CYP2A6 genotype and sex on the response to nicotine replacement therapy and varenicline. Data were extracted from a longitudinal study which included smokers participating in a smoking cessation program. Response to treatment was defined by the absence of relapse when a set threshold of reduction in cigarettes per day relative to the week before the study was no more reached. The analysis considered total and partial reduction defined by a diminution of 100% and of 90% in cigarettes per day, respectively. The hazard ratio of relapsing was estimated in multivariate Cox regression models including the sex and the nicotine metabolism determined by the phenotype or by CYP2A6 genotyping (rs1801272 and rs28399433). In the normal metabolizers determined by phenotyping and in women, the hazard ratio for relapsing was significantly lower with varenicline for a partial decrease (HR = 0.33, 95% CI [0.12, 0.89] and HR = 0.20, 95% CI [0.04, 0.91], respectively) and nonsignificantly lower for a total cessation (HR = 0.45, 95% CI [0.20, 1.0] and HR = 0.38, 95% CI [0.14, 1.0]). When compared with the normal metabolizers determined by phenotyping, the hazard ratio for a partial decrease was similar in the normal metabolizers determined by genotyping (HR = 0.42, 95% CI [0.18, 0.94]) while it was significantly lower with varenicline for a total cessation (HR = 0.50, 95% CI [0.26, 0.98]). Women and normal nicotine metabolizers may benefit more from varenicline over nicotine replacement therapy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  9. Nicotinic cholinergic antagonists: a novel approach for the treatment of autism.

    Science.gov (United States)

    Lippiello, P M

    2006-01-01

    Evidence supports the hypothesis that normalization of cholinergic tone by selective antagonism of neuronal nicotinic acetylcholine receptors (NNRs) may ameliorate the core symptoms of autism. As often is the case, epidemiology has provided the first important clues. It is well recognized that psychiatric patients are significantly more often smokers than the general population. The only known exceptions are obsessive-compulsive disorder (OCD), catatonic schizophrenia and interestingly, autism. In this regard, clinical studies with nicotine have demonstrated amelioration of symptoms of a number of diseases and disorders, including Alzheimer's disease, Parkinson's disease, ADHD and Tourette's syndrome. Nicotine's agonist properties at CNS NNRs have been implicated in these effects and support the concept of self-medication as a strong motivation for smoking in cognitively compromised individuals. On the other hand, the inverse correlation between autism and smoking suggests that smoking does not provide symptomatic relief and may actually be indicative of an active avoidance of nicotine's agonist effects in this disorder. Neuroanatomical evidence is consistent with this idea based on the presence of hypercholinergic architecture in the autistic brain, particularly during the first few years of development, making the avoidance of further stimulation of an already hyperactive cholinergic system plausible. This may also explain why stimulants (known to increase dopamine levels as do NNR agonists) appear to aggravate autistic symptoms and why studies with cholinesterase inhibitors that increase acetylcholine levels in the brain have yielded variable effects in autism. Taken together, the evidence suggests the possibility that nicotinic cholinergic antagonism may in fact be palliative. Pharmacological evidence supports this hypothesis. For example, antidepressants, many of which are now known to be non-competitive NNR antagonists, have been used successfully to treat a

  10. Environmental fate and effects of nicotine released during cigarette production.

    Science.gov (United States)

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  11. An fMRI study of nicotine-deprived smokers' reactivity to smoking cues during novel/exciting activity.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Xu

    Full Text Available Engaging in novel/exciting ("self-expanding" activities activates the mesolimbic dopamine pathway, a brain reward pathway also associated with the rewarding effects of nicotine. This suggests that self-expanding activities can potentially substitute for the reward from nicotine. We tested this model among nicotine-deprived smokers who, during fMRI scanning, played a series of two-player cooperative games with a relationship partner. Games were randomized in a 2 (self-expanding vs. not x 2 (cigarette cue present vs. absent design. Self-expansion conditions yielded significantly greater activation in a reward region (caudate than did non-self-expansion conditions. Moreover, when exposed to smoking cues during the self-expanding versus the non-self-expanding cooperative games, smokers showed less activation in a cigarette cue-reactivity region, a priori defined [temporo-parietal junction (TPJ] from a recent meta-analysis of cue-reactivity. In smoking cue conditions, increases in excitement associated with the self-expanding condition (versus the non-self-expanding condition were also negatively correlated with TPJ activation. These results support the idea that a self-expanding activity promoting reward activation attenuates cigarette cue-reactivity among nicotine-deprived smokers. Future research could focus on the parameters of self-expanding activities that produce this effect, as well as test the utility of self-expansion in clinical interventions for smoking cessation.

  12. Discriminating nicotine and non-nicotine containing e-liquids using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Bothy, J L; Barhdadi, S; Courselle, P

    2016-02-20

    In a few countries, including Belgium, nicotine-containing e-cigarettes and e-liquids are considered medicines, and therefore cannot freely be sold, but should be distributed in a pharmacy. The fact that in the neighbouring countries these products are freely available, poses a problem for custom personnel, the more the nicotine content of the products is not always labelled, especially when they are bought through internet. Therefore there is a need for easy-to-use equipment and methods to perform a first on site screening of intercepted samples, both for border control as to check label compliance of the sample. The use of attenuated total reflectance-infrared spectroscopy (ATR-IR) and near infrared spectroscopy (NIR), combined with chemometrics was evaluated for the discrimination between nicotine containing and non-nicotine containing samples. It could be concluded that both ATR-IR and NIR could be used for the discrimination when combined with the appropriate chemometric techniques. The presented techniques do not need sample preparation and result in models with a minimum of false negative samples. If a large enough training set can be established the interpretation can be fully automated, making the presented approach suitable for on-site screening of e-liquid samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of Electronic Cigarette Liquid Nicotine Concentration on Plasma Nicotine and Puff Topography in Tobacco Cigarette Smokers: A Preliminary Report.

    Science.gov (United States)

    Lopez, Alexa A; Hiler, Marzena M; Soule, Eric K; Ramôa, Carolina P; Karaoghlanian, Nareg V; Lipato, Thokozeni; Breland, Alison B; Shihadeh, Alan L; Eissenberg, Thomas

    2016-05-01

    Electronic cigarettes (ECIGs) aerosolize a liquid that usually contains propylene glycol and/or vegetable glycerin, flavorants, and the dependence-producing drug nicotine in various concentrations. This study examined the extent to which ECIG liquid nicotine concentration is related to user plasma nicotine concentration in ECIG-naïve tobacco cigarette smokers. Sixteen ECIG-naïve cigarette smokers completed four laboratory sessions that differed by the nicotine concentration of the liquid (0, 8, 18, or 36 mg/ml) that was placed into a 1.5 Ohm, dual coil "cartomizer" powered by a 3.3V battery. In each session, participants completed two, 10-puff ECIG use bouts with a 30-second inter-puff interval; bouts were separated by 60 minutes. Venous blood was sampled before and after bouts for later analysis of plasma nicotine concentration; puff duration, volume, and average flow rate were measured during each bout. In bout 1, relative to the 0mg/ml nicotine condition (mean = 3.8 ng/ml, SD = 3.3), plasma nicotine concentration increased significantly immediately after the bout for the 8 (mean = 8.8 ng/ml, SD = 6.3), 18 (mean = 13.2 ng/ml, SD = 13.2), and 36 mg/ml (mean = 17.0 ng/ml, SD = 17.9) liquid concentration. A similar pattern was observed after bout 2. Average puff duration in the 36 mg/ml condition was significantly shorter compared to the 0mg/ml nicotine condition. Puff volume increased during the second bout for 8 and 18 mg/ml conditions. For a given ECIG device, nicotine delivery may be directly related to liquid concentration. ECIG-naïve cigarette smokers can, from their first use bout, attain cigarette-like nicotine delivery profiles with some currently available ECIG products. Liquid nicotine concentration can influence plasma nicotine concentration in ECIG-naïve cigarette smokers, and, at some concentrations, the nicotine delivery profile of a 3.3V ECIG with a dual coil, 1.5-Ohm cartomizer approaches that of a combustible tobacco cigarette in this

  14. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    Science.gov (United States)

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  15. Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    Joan Y. Holgate

    2015-06-01

    Full Text Available Stress is a major driving force in alcohol use disorders (AUDs. It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.

  16. Knowledge and Perceptions about Nicotine, Nicotine Replacement Therapies and Electronic Cigarettes among Healthcare Professionals in Greece

    Directory of Open Access Journals (Sweden)

    Anastasia Moysidou

    2016-05-01

    Full Text Available Introduction. The purpose of this study was to evaluate the knowledge and perceptions of Greek healthcare professionals about nicotine, nicotine replacement therapies and electronic cigarettes. Methods. An online survey was performed, in which physicians and nurses working in private and public healthcare sectors in Athens-Greece were asked to participate through email invitations. A knowledge score was calculated by scoring the correct answers to specific questions with 1 point. Results. A total of 262 healthcare professionals were included to the analysis. Most had daily contact with smokers in their working environment. About half of them considered that nicotine has an extremely or very important contribution to smoking-related disease. More than 30% considered nicotine replacement therapies equally or more addictive than smoking, 76.7% overestimated their smoking cessation efficacy and only 21.0% would recommend them as long-term smoking substitutes. For electronic cigarettes, 45.0% considered them equally or more addictive than smoking and 24.4% equally or more harmful than tobacco cigarettes. Additionally, 35.5% thought they involve combustion while the majority responded that nicotine in electronic cigarettes is synthetically produced. Only 14.5% knew about the pending European regulation, but 33.2% have recommended them to smokers in the past. Still, more than 40% would not recommend electronic cigarettes to smokers unwilling or unable to quit smoking with currently approved medications. Cardiologists and respiratory physicians, who are responsible for smoking cessation therapy in Greece, were even more reluctant to recommend electronic cigarettes to this subpopulation of smokers compared to all other participants. The knowledge score of the whole study sample was 7.7 (SD: 2.4 out of a maximum score of 16. Higher score was associated with specific physician specialties. Conclusions. Greek healthcare professionals appear to overestimate

  17. Dermal uptake of nicotine from air and clothing: Experimental verification

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Morrison, G.; Weschler, Charles J.

    2017-01-01

    several days. Absorbed nicotine was significantly lower after showering in 1 subject but not the other. Differences in the normalized uptakes and in the excretion patterns were observed among the participants. The observed cotinine half-lives suggest that non-smokers exposed to airborne nicotine may...

  18. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  19. Adrenergic Component of Nicotine Antinociception in Rats | Ibironke ...

    African Journals Online (AJOL)

    African Journal of Biomedical Research ... Abstract. It has been widely established that nicotine , the active pharmacological agent in tobacco has antinociceptive effects , but the mechanism of this activity is yet to be fully ... These findings suggest the involvement of the adrenergic system in nicotine induced antinociception .

  20. A Critical Evaluation of Nicotine Replacement Therapy for Teenage Smokers.

    Science.gov (United States)

    Patten, Christi A.

    2000-01-01

    Evaluates the appropriateness and feasibility of nicotine replacement therapy (NRT) in teenage smokers. Available forms of NRT, theoretical rationale and efficacy of NRT, ethical considerations, and the feasibility of NRT in teenage smokers are addressed. Several characteristics similar to adult nicotine dependent smokers have been found in teen…

  1. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  2. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  3. Pulse radiolysis study on aqueous solution of nicotine

    International Nuclear Information System (INIS)

    Wang Shilong; Mei Wang; Ni Yaming; Yao Side; Wang Wenfeng

    2004-01-01

    Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hydrated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neutral radicals, respectively, and the related rate constants have been determined. (authors)

  4. Protective Effect of Vitamin E on Nicotine Induced Reproductive ...

    African Journals Online (AJOL)

    The current study assessed the protective role of vitamin E in alleviating the detrimental effect of nicotine on reproductive functions in male rats. Twenty four male albino rats were divided into four groups of six rats. Control group was treated orally with 1.1 ml/kg body weight normal saline, nicotine treated group received 1.0 ...

  5. The role of adrenergic receptors in nicotine-induced hyperglycemia ...

    African Journals Online (AJOL)

    The role of adrenergic receptors in nicotine-induced hyperglycaemia has not been well studied in amphibians. Thus, this study investigates the effects of alpha and beta adrenergic receptor blockers in nicotine-induced hyperglycaemia in the common African toad Bufo regularis. Toads fasted for 24 h were anaesthetized with ...

  6. Voltammetric determination of nicotine in cigarette tobacco at ...

    African Journals Online (AJOL)

    The electrochemical behavior of nicotine was investigated using cyclic and square wave voltammetric techniques. Electrochemical activation of glassy carbon electrode significantly increased the oxidation peak current of nicotine compared to the bare glassy carbon. At the activated glassy carbon electrode, the square ...

  7. Effect Of Nicotine Administration On Weight And Histology Of Some ...

    African Journals Online (AJOL)

    Summary: It has been emphasized that cigarette smoking is not always synonymous with nicotine administration but the toxic effect of cigarette has often been associated with the nicotine content in cigarette. Epidemiologic studies have clearly indicated that cigarette smoking have many deleterious effects on visceral ...

  8. Counterfeit Electronic Cigarette Products with Mislabeled Nicotine Concentrations.

    Science.gov (United States)

    Omaiye, Esther E; Cordova, Iliana; Davis, Barbara; Talbot, Prue

    2017-07-01

    We compared nicotine concentrations in one brand of refill fluids that were purchased in 4 countries and labeled 0 mg of nicotine/mL. We then identified counterfeit e-cigarette products from these countries. Overall, 125 e-cigarette refill fluids were purchased in Nigeria, the United States (US), England, and China. Nicotine concentrations were measured using high performance liquid chromatography and compared to labeled concentrations. Refill fluids were examined to identify physical differences and grouped into authentic and counterfeit products. Whereas nicotine was in 51.7% (15/29) of the Nigerian, 3.7% (1/27) of the Chinese and 1.6% (1/61) of the American refill fluids (range = 0.4 - 20.4 mg/mL), 8 British products did not contain nicotine. Products from China, the US, and Nigeria with trace amounts of nicotine (0.4 to 0.6 mg/mL) were authentic; however, all products from Nigeria with more than 3.7 mg/mL were counterfeit. We introduce 2 novel issues in the e-cigarette industry, the production of counterfeit refill fluids under a brandjacked label and inclusion of nicotine in 81.3% of the counterfeit products labeled 0 mg/mL. This study emphasizes the need for better control and monitoring of nicotine containing products and sales outlets.

  9. Epidemiology, radiology, and genetics of nicotine dependence in COPD

    Directory of Open Access Journals (Sweden)

    Hokanson John E

    2011-01-01

    Full Text Available Abstract Background Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers. Methods Current smokers with COPD (GOLD stage ≥ 2 or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND. Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung Results Among 842 currently smoking subjects (335 COPD cases and 507 controls, 329 subjects (39.1% showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p Conclusions Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes. Trial registration ClinicalTrials (NCT: NCT00608764

  10. Racial differences in hair nicotine concentrations among smokers.

    Science.gov (United States)

    Apelberg, Benjamin J; Hepp, Lisa M; Avila-Tang, Erika; Kim, Sungroul; Madsen, Camille; Ma, Jiemin; Samet, Jonathan M; Breysse, Patrick N

    2012-08-01

    In the United States, race/ethnicity is a strong determinant of tobacco use patterns, biomarkers of tobacco smoke components and metabolites, and likelihood of successful cessation. Although Black smokers tend to smoke fewer cigarettes than White smokers, they have higher cotinine levels and disease risk and lower cessation success. We examined racial differences in hair nicotine concentrations among daily tobacco smokers (n = 103) in Baltimore, Maryland. Participants completed a survey, and hair samples were collected and analyzed for nicotine concentration using gas chromatography coupled with mass spectrometry. After adjustment, hair nicotine concentrations among Black smokers were more than 5 times higher than among White smokers (95% CI 3.0, 10.5). Smokers reporting hair treatments other than coloring (bleaching, permanent, or straightening) in the past 12 months had 66% lower (95% CI 32%, 83%) hair nicotine concentrations. Smokers reporting smoking their first cigarette within 30 min of waking had twice the hair nicotine concentrations of those whose time to first cigarette was greater than 30 min after waking (95% CI 1.1, 4.2). For every additional cigarette smoked per day up to 20, mean hair nicotine concentration among all smokers increased by 4% (95% CI -1%, 9%). This study demonstrates that Black smokers have substantially higher hair nicotine levels than White smokers, after controlling for cigarettes smoked per day and other exposure sources. Time to first cigarette, cigarettes smoked per day, and use of hair treatments other than coloring were also associated with hair nicotine concentrations among smokers.

  11. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.

    Science.gov (United States)

    Loprinzi, Paul D; Walker, Jerome F

    2015-03-01

    Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.

  12. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  13. The Activity and Enthalpy of Vaporization of Nicotine from Tobacco at Moderate Temperatures

    Directory of Open Access Journals (Sweden)

    St.Charles F. Kelley

    2016-01-01

    Full Text Available The vapor pressure of nicotine has been reported for unprotonated nicotine and for nicotine-water solutions. Yet no published values exist for nicotine in any commercially relevant matrix or for protonated forms (e.g., tobacco, smoke, electronic cigarette solutions, nicotine replacement products, nicotine salts. Therefore a methodology was developed to measure nicotine activity (defined as the vapor pressure from a matrix divided by the vapor pressure of pure nicotine. The headspace concentration of nicotine was measured for pure nicotine and tobacco stored at 23, 30, and 40 °C which allowed for conversion to vapor pressure and nicotine activity and for the estimation of enthalpy of vaporization. Burley, Flue-cured, Oriental, and cigarette blends were tested. Experiments were conducted with pure nicotine initially until the storage and sampling techniques were validated by comparison with previously published values. We found that the nicotine activity from tobacco was less than 1% with Burley > Flue-cured > Oriental. At 23 °C the nicotine vapor pressure averaged by tobacco type was 0.45 mPa for Oriental tobacco, 1.8 mPa for Flue-cured, 13 mPa for Burley while pure nicotine was 2.95 Pa. In general, the nicotine activity increased as the (calculated unprotonated nicotine concentration increased. The nicotine enthalpy of vaporization from tobacco ranged from 77 kJ/mol to 92 kJ/mol with no obvious trends with regard to tobacco origin, type, stalk position or even the wide range of nicotine activity. The mean value for all tobacco types was 86.7 kJ/mol with a relative standard deviation of 6.5% indicating that this was an intrinsic property of the nicotine form in tobacco rather than the specific tobacco properties. This value was about 30 kJ/mol greater than that of pure nicotine and is similar to the energy needed to remove a proton from monoprotonated nicotine.

  14. T100. NICOTINE USE IMPACTS NEGATIVE SYMPTOMS SEVERITY IN SCHIZOPHRENIA

    Science.gov (United States)

    Oliveira, Hianna; Coutinho, Luccas; Higuchi, Cinthia; Noto, Cristiano; Bressan, Rodrigo; Gadelha, Ary

    2018-01-01

    Abstract Background Nicotine use is higher among patients with schizophrenia (50–98%) than in general population (25–30%). This association can reflect a non-specific liability to substance use or specific effects of tobacco on symptoms severity or side effects. Studies about nicotine use and schizophrenia symptoms dimensions are controversial. Some of them showed a relation between severe nicotine use and higher positive symptoms and others presented a correlation between lower negative symptoms and nicotine use. That is why we aimed to verify whether nicotine use is associated with symptoms dimensions in patients with schizophrenia. Methods Two hundred and seven outpatients were enrolled from the Programa de Esquizofrenia da Universidade Federal de São Paulo (PROESQ/UNIFESP). Schizophrenia diagnosis was confirmed by Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). Dimensional psychopathology was assessed with Positive and Negative Syndrome Scale (PANSS) and Fagerstrom Test for Nicotine Dependence. The PANSS items were grouped in five dimensions: positive, negative, disorganized/cognitive, mood/depression and excitement/hostility. The total score of Fagerstrom Test for Nicotine Dependence was the index used for severity in nicotine dependence. We used Wilcoxon-mann- whitney test to compare the means of PANSS dimensions between nicotine users versus non nicotine use. Results The patients mean age was 36.75 (SD 10.648), 69.1% were male, 48.3% reported lifetime tobacco use and 34.3% reported current tobacco use. Lower scores on negative dimension were associated with nicotine use (W = 5642.5, p-value = 0.046, effect size = 0.446). All p-values were corrected by Bonferroni test. Tests that evaluated the relationship between nicotine use and the total PANSS score or other dimensions were not statistically significant. Discussion This study shows that nicotine use impacts negative symptoms of schizophrenia. Increase in hepatic metabolism leading

  15. E-cigarette versus nicotine inhaler: comparing the perceptions and experiences of inhaled nicotine devices.

    Science.gov (United States)

    Steinberg, Michael B; Zimmermann, Mia Hanos; Delnevo, Cristine D; Lewis, M Jane; Shukla, Parth; Coups, Elliot J; Foulds, Jonathan

    2014-11-01

    Novel nicotine delivery products, such as electronic cigarettes (e-cigarettes), have dramatically grown in popularity despite limited data on safety and benefit. In contrast, the similar U.S. Food and Drug Administration (FDA)-approved nicotine inhaler is rarely utilized by smokers. Understanding this paradox could be helpful to determine the potential for e-cigarettes as an alternative to tobacco smoking. To compare the e-cigarette with the nicotine inhaler in terms of perceived benefits, harms, appeal, and role in assisting with smoking cessation. A cross-over trial was conducted from 2012 to 2013 PARTICIPANTS/INTERVENTIONS: Forty-one current smokers age 18 and older used the e-cigarette and nicotine inhaler each for 3 days, in random order, with a washout period in between. Thirty-eight participants provided data on product use, perceptions, and experiences. The Modified Cigarette Evaluation Questionnaire (mCEQ) measured satisfaction, reward, and aversion. Subjects were also asked about each product's helpfulness, similarity to cigarettes, acceptability, image, and effectiveness in quitting smoking. Cigarette use was also recorded during the product-use periods. The e-cigarette had a higher total satisfaction score (13.9 vs. 6.8 [p e-cigarette received higher ratings for helpfulness, acceptability, and "coolness." More subjects would use the e-cigarette to make a quit attempt (76 %) than the inhaler (24 %) (p e-cigarette vs. 10 % (4/38) using the inhaler (p = 0.18). The e-cigarette was more acceptable, provided more satisfaction, and had higher perceived benefit than the inhaler during this trial. E-cigarettes have the potential to be important nicotine delivery products owing to their high acceptance and perceived benefit, but more data are needed to evaluate their actual efficacy and safety. Providers should be aware of these issues, as patients will increasingly inquire about them.

  16. Radiosynthesis and in vitro validation of 3H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand

    DEFF Research Database (Denmark)

    Magnussen, Janus H.; Ettrup, Anders; Donat, Cornelius K.

    2015-01-01

    The neuronal alpha 7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer's disease and schizophrenia. We have previously described 11C-NS14492 as a suitable agonist radioligand for in vivo positron...... emission tomography (PET) occupancy studies of the alpha 7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, 3H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding...... assays in pig frontal cortex. 3H-NS14492 showed specific binding to alpha 7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1 ± 0.7 nM and a maximum number of binding sites (Bmax) of 15.7±2.0 fmol/mg tissue equivalent. Binding distribution was similar...

  17. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known....... The present study was therefore aimed at determining binding affinities of nicotinic ligands to the alpha 4-alpha 4 interface. Given that epibatidine shows large functional potency differences at alpha 4-beta 2 vs. alpha 4-alpha 4 interfaces, biphasic binding properties would be expected at (alpha 4)(3)(beta...

  18. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  19. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  20. The impact of nicotine on bone healing and osseointegration

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H

    2005-01-01

    OBJECTIVES: To examine the short-term effect of nicotine on bone healing and osseointegration. MATERIAL AND METHODS: Sixteen female rabbits were divided into two groups. The test group was exposed to nicotine tartrate for 8 weeks and the control group was exposed to placebo. Nicotine or placebo...... was administered via a miniosmotic pump and plasma cotinine levels were measured weekly. The pump delivered 15 mg of nicotine/day for the animals in the test group. All rabbits had three tibial bone preparations. In the proximal and distal bone bed, implants were placed after 4 weeks (right tibia) and after 6...... and the control group. CONCLUSION: Nicotine exposure in a short period of time did not have a significant impact on bone healing or implant osseointegration in rabbits....