WorldWideScience

Sample records for brain microsomal nasup

  1. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Sangiah, S. (Oklahoma State Univ., Stillwater, OK (United States))

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomal Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.

  2. Calendula officinalis L. (Asteraceae) possess antioxidant properties on Fe2+-initiated peroxidation of rat brain microsomes

    OpenAIRE

    Palacios, Alejandro; Barberón, Javier; Leaden, Patricio; Zeinsteger, Pedro

    2016-01-01

    In this study the effects of Calendula officinalis L. (Asteraceae) extract (CO) on the polyunsaturated fatty acid composition, chemiluminescence and unsaturation index of microsomes isolated from brain rat, are presented. After incubation of microsomes in an ascorbate (0.4 mM)-Fe2+ (2.15 μM) system (180 min at 37 °C) it was observed that the total cpm/mg protein originated from light emission:chemiluminescence was lower in brain microsomes obtained from CO group compared to the control group ...

  3. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  4. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.

    Science.gov (United States)

    Morita, Masashi; Kawamichi, Misato; Shimura, Yusuke; Kawaguchi, Kosuke; Watanabe, Shiro; Imanaka, Tsuneo

    2015-12-01

    The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin. PMID:26108493

  5. Protective effects of riboflavin and selenium on brain microsomal Ca2+-ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model.

    Science.gov (United States)

    Nazıroğlu, Mustafa; Çelik, Ömer; Uğuz, Abdulhadi Cihangir; Bütün, Ayşe

    2015-03-01

    Migraine headaches are considered to be associated with increased mitochondrial energy metabolism. Mitochondrial oxidative stress is also important in migraine headache pathophysiology although riboflavin and selenium (Se) induced a modulator role on mitochondrial oxidative stress in the brain. The current study aimed to determine the effects of Se with/without riboflavin on the microsomal membrane Ca(2+)-ATPase (MMCA), lipid peroxidation, antioxidant, and electroencephalography (EEG) values in glyceryl trinitrate (GTN)-induced brain injury rats. Thirty-two rats were randomly divided into four groups. The first group was used as the control, and the second group was the GTN group. Se and Se plus oral riboflavin were administered to rats constituting the third and fourth groups for 10 days prior to GTN administration. The second, third, and fourth groups received GTN to induce headache. Ten hours after the administration of GTN, the EEG records and brain cortex samples were obtained for all groups. Brain cortex microsomes were obtained from the brain samples. The brain and microsomal lipid peroxidation levels were higher in the GTN group compared to the control group, whereas they were decreased by selenium and selenium + riboflavin treatments. Vitamin A, vitamin C, vitamin E, and reduced glutathione (GSH) concentrations of the brain and MMCA, GSH and glutathione peroxidase values of microsomes were decreased by the GTN administration, although the values and β-carotene concentrations were increased by Se and Se + riboflavin treatments. There was no significant change in EEG records of the four groups. In conclusion, Se with/without riboflavin administration protected against GTN-induced brain oxidative toxicity by inhibiting free radicals and the modulation of MMCA activity and supporting the antioxidant redox system.

  6. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate.

    Science.gov (United States)

    Bütün, Ayşe; Nazıroğlu, Mustafa; Demirci, Serpil; Çelik, Ömer; Uğuz, Abdulhadi Cihangir

    2015-04-01

    The essential use of riboflavin is the prevention of migraine headaches, although its effect on migraines is considered to be associated with the increased mitochondrial energy metabolism. Oxidative stress is also important in migraine pathophysiology. Vitamin E is a strong antioxidant in nature and its analgesic effect is not completely clear in migraines. The current study aimed to investigate the effects of glyceryl trinitrate (GTN)-sourced exogen nitric oxide (NO), in particular, and also riboflavin and/or vitamin E on involved in the headache model induced via GTN-sourced exogen NO on oxidative stress, total brain calcium levels, and microsomal membrane Ca(2+)-ATPase levels. GTN infusion is a reliable method to provoke migraine-like headaches in experimental animals and humans. GTN resulted in a significant increase in brain cortex and microsomal lipid peroxidation levels although brain calcium, vitamin A, vitamin C, and vitamin E, and brain microsomal-reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and plasma-membrane Ca(2+)-ATPase values decreased through GTN. The lipid peroxidation, GSH, vitamin A, β-carotene, vitamin C, and vitamin E, and calcium concentrations, GSH-Px, and the Ca(2+)-ATPase activities were increased both by riboflavin and vitamin E treatments. Brain calcium and vitamin A concentrations increased through riboflavin only. In conclusion, riboflavin and vitamin E had a protective effect on the GTN-induced brain injury by inhibiting free radical production, regulation of calcium-dependent processes, and supporting the antioxidant redox system. However, the effects of vitamin E on the values seem more important than in riboflavin.

  7. Electron spin resonance study of free radicals produced from ethanol and acetaldehyde after exposure to a Fenton system or to brain and liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, B.; Jeunet, A.; Barret, L. (Departement de Toxicologie, C.H.R.U. de Grenoble, (France))

    1991-09-01

    Free radical formation from ethanol and acetaldehyde was studied in the presence of a spin-trap and a NADPH generating system with a chemical model, Fenton's reagent, or by enzymatic oxidation of these solvents by rat liver and brain microsomes. The free radicals were detected by electron spin resonance spectroscopy (E.S.R.), using the spin-trapping agent, alpha-(4-pyridyl l-oxide)-N-tertbutyl-nitrone (POBN). Under such conditions, the hydroxyethyl radical derived from ethanol was obtained after both incubation in liver and brain microsomes as well as after exposure to the Fenton system. Enzymatic inhibition and activation showed that the mixed function oxidase system plays an important role in the generation of such a radical, even in the brain. Under all the experimental conditions acetaldehyde could also generate a free radical deriving directly from the parent molecule and modified by enzymatic activation or inhibition. A second, longer lasting radical was also observed in the presence of acetaldehyde. On the basis of a comparative study to a known process causing lipoperoxidation, its lipidic origin was suggested.

  8. Paracetamol hepatotoxicity and microsomal function.

    Science.gov (United States)

    Kaushal, R; Dave, K R; Katyare, S S

    1999-03-01

    The effect of paracetamol-induced hepatotoxicity in rats (650 mg/kg) on microsomal function was examined. Paracetamol treatment resulted in lowered Na(+),K(+)-ATPase activity in the microsomes with decrease in V(max) of the low affinity high V(max) component II. However, the temperature kinetics was not influenced significantly. The total phospholipid and cholesterol contents as well as lipid peroxidation in the microsomes were unchanged. However, content of acidic phospholipids: phosphatidylserine and phosphatidylinositol decreased by 50% with a reciprocal increase in the sphingomyelin content; the lysophosphoglyceride content increased by 12-fold. The microsomal membrane appeared to be more fluidized following paracetamol treatment. Paracetamol treatment also resulted in a significant reduction in the sulfhydryl groups content. PMID:21781911

  9. Effect of an extract of Aloe vera on the biodistribution of sodium pertechnetate (Na{sup 99m}TcO{sub 4}) in rats

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Cecilia Maria de Carvalho Xavier [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Microbiology and Parasitology. Experimental Radiobiology and Antiparasitic Assays Lab.], e-mail: cechol@ufrnet.br; Costa, Monique Batista da; Silva, Natalia Chilinque Zambao da; Silva Junior, Mauricio Ferreira da; Barbosa, Vanessa Santos de Arruda; Silva, Roseane Pereira da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Nucleus of Experimental Surgery

    2009-07-01

    Purpose: Aloe vera is a tropical plant popularly known in Brazil as babosa. We have investigated the effect of aqueous extract of Aloe vera on the biodistribution of Na{sup 99m}TcO{sub 4} and laboratorial parameters in Wistar rats. Methods: twelve animals were divided into treated and control groups. In the treated group, Aloe vera was given by gavage (5mg/mL/day) during 10 days. The control group received sorbitol by the same way and period. One hour after the last dose, we injected 0.1mL of Na{sup 99m}TcO{sub 4} by orbital plexus. After 60 min, all the animals were killed. Samples were harvested from the brain, liver, heart, muscle, pancreas, stomach, femur, kidneys, blood, testis and thyroid and the percentage of radioactivity (% ATI/g) was determined. Biochemical dosages were performed. Results: there was a significant increase of %ATI/g in blood, femur, kidneys, liver, stomach, testis and thyroid and also in blood levels of AST and ALT. A significant decrease in levels of glucose, cholesterol, triglycerides, creatinine and urea occurred. The statistical analyses were performed by Mann-Whitney test and T-Student test (p<0.05). Conclusion: The aqueous extract of Aloe vera facilitated the uptake of Na{sup 99m}TcO{sub 4} in organs of rats and it was responsible to a high increase of levels of AST and ALT. (author)

  10. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sopjani, Mentor [Department of Physiology, University of Tuebingen (Germany); Department of Chemistry, University of Prishtina, Kosovo (Country Unknown); Alesutan, Ioana; Wilmes, Jan [Department of Physiology, University of Tuebingen (Germany); Dermaku-Sopjani, Miribane [Department of Physiology, University of Tuebingen (Germany); Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Lam, Rebecca S. [Department of Physiology, University of Tuebingen (Germany); Department of Molecular Neurogenetics, Max Planck Institute of Biophysics, Frankfurt/Main (Germany); Koutsouki, Evgenia [Department of Physiology, University of Tuebingen (Germany); Jakupi, Muharrem [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Foeller, Michael [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  11. Effect of TGFβ on Na{sup +}/K{sup +} ATPase activity in megakaryocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Zohreh; Schmid, Evi; Shumilina, Ekaterina [Department of Physiology, University of Tübingen (Germany); Laufer, Stefan [Pharmaceutical Chemistry, University of Tübingen (Germany); Borst, Oliver; Gawaz, Meinrad [Cardiology and Cardiovascular Medicine, University of Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen (Germany)

    2014-09-26

    Highlights: • TGFß1 markedly up-regulates Na{sup +}/K{sup +} ATPase in megakaryocytes. • The effect is abrogated by p38-MAP kinase inhibitor skepinone. • The effect is abrogated by SGK inhibitor EMD638683. • The effect is abrogated by NF-κB inhibitor wogonin. - Abstract: The Na{sup +}/K{sup +} ATPase generates the Na{sup +} and K{sup +} concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na{sup +}/K{sup +} ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/β), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFβ influences Na{sup +}/K{sup +} ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na{sup +}/K{sup +} ATPase activity determined from K{sup +} induced current utilizing whole cell patch clamp. The pump current (I{sub pump}) was determined in the absence and presence of Na{sup +}/K{sup +} ATPase inhibitor ouabain (100 μM). TGFß1 (60 ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) or NF-κB inhibitor wogonin (50 nM). As a result, the I{sub pump} was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24 h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion

  12. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity

    International Nuclear Information System (INIS)

    Aminoglycoside antibiotics achieve bacterial killing by binding to bacterial ribosomes and inhibiting protein synthesis. To examine whether similar mechanisms could be present in renal tubular cells prior to the onset of overt proximal tubular necrosis due to these drugs, we isolated microsomes from Fischer rats given 20 mg/kg gentamicin every 12 h subcutaneously for 2 days and from vehicle-injected controls. Concomitant studies of renal structure, function, and mitochondrial respiration were carried out. [3H]leucine incorporation into renal microsomes of treated animals was reduced by 21.9% (P less than 0.01), whereas brain and liver microsomes from the same animals were unaffected. Gentamicin concentration in the renal microsomal preparation was 56 micrograms/ml, a value 7- to 10-fold above concentrations necessary to inhibit bacterial growth. Conventional renal function studies were normal (blood urea, serum creatinine, creatinine clearance). Treated animals showed only a mild reduction of inulin clearance, 0.71 compared with 0.93 ml.min-1.100 g-1 in controls (P less than 0.05), and an increase in urinary excretion of N-acetylglucosaminidase of 20 compared with 14.8 units/l (P less than 0.05). Renal slice transport of p-aminohippuric acid, tetraethylammonium, and the fractional excretion of sodium were well preserved. There was no evidence, as seen by light microscopy, of proximal tubular necrosis. Mitochondrial cytochrome concentrations were normal and respiratory activities only slightly reduced. Processes similar to those responsible for bacterial killing could be involved in experimental gentamicin nephrotoxicity before overt cellular necrosis

  13. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.M.; Mela-Riker, L.M.; Houghton, D.C.; Gilbert, D.N.; Buss, W.C.

    1988-08-01

    Aminoglycoside antibiotics achieve bacterial killing by binding to bacterial ribosomes and inhibiting protein synthesis. To examine whether similar mechanisms could be present in renal tubular cells prior to the onset of overt proximal tubular necrosis due to these drugs, we isolated microsomes from Fischer rats given 20 mg/kg gentamicin every 12 h subcutaneously for 2 days and from vehicle-injected controls. Concomitant studies of renal structure, function, and mitochondrial respiration were carried out. (3H)leucine incorporation into renal microsomes of treated animals was reduced by 21.9% (P less than 0.01), whereas brain and liver microsomes from the same animals were unaffected. Gentamicin concentration in the renal microsomal preparation was 56 micrograms/ml, a value 7- to 10-fold above concentrations necessary to inhibit bacterial growth. Conventional renal function studies were normal (blood urea, serum creatinine, creatinine clearance). Treated animals showed only a mild reduction of inulin clearance, 0.71 compared with 0.93 ml.min-1.100 g-1 in controls (P less than 0.05), and an increase in urinary excretion of N-acetylglucosaminidase of 20 compared with 14.8 units/l (P less than 0.05). Renal slice transport of p-aminohippuric acid, tetraethylammonium, and the fractional excretion of sodium were well preserved. There was no evidence, as seen by light microscopy, of proximal tubular necrosis. Mitochondrial cytochrome concentrations were normal and respiratory activities only slightly reduced. Processes similar to those responsible for bacterial killing could be involved in experimental gentamicin nephrotoxicity before overt cellular necrosis.

  14. Inhibition of rat microsomal lipid peroxidation by the oral administration of D002

    Directory of Open Access Journals (Sweden)

    Menéndez R.

    2000-01-01

    Full Text Available The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS. When D002 (5-100 mg/kg body weight was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46% occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40% and brain (28-44% microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.

  15. Microsomal metabolism of NDMA and analogs

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.; Yang, C.S.

    1987-05-01

    The metabolism of N-nitrosodimethylamine (NDMA), dimethylamine (DMA), N-nitro-DMA (N x NO/sub 2/ x DMA), N-nitrosodiethylamine (NDEA), and diethylamine (DEA) was studied using control, acetone (Ac)-, butylated hydroxytoluene (BHT)-, pregnenolone 16- ..cap alpha..-carbonitrile (PCN)-, and phenobarbital (PB)-induced rat liver microsomes. At low substrate concentrations, the NDMA demethylase activity of Ac-induced microsomes was 5-fold greater than that of control, BHT-, and PCN-induced microsomes. The rate of NDMA denitrosation was ca. 10% that of demethylation. N x NO/sub 2/ x DMA was metabolized to HCHO, but not to NO/sub 2//sup -/, and the rate of metabolism was greatest with Ac-induced microsomes; the K/sub m/ and V/sub max/ of Ac-induced microsomes were similar to those of NDMA. For the dealkylation of NDEA, Ac- and BHT-induced microsomes were twice as active as the control. Ratios of dealkylation/denitrosation for NDEA remained constant over a broad range of low substrate concentrations. BHT- or Ac-treatment appeared to cause a selective increase in the ability of microsomes to denitrosate NDEA. The activity of all microsome preparations with the amines, DMA and DEA was less than that with the nitrosamine or nitramine substrates. The results suggest that both the N-nitroso and N-nitro compounds are good substrates for microsomal P-450; the amines, which bear positive charges, are not. Denitrosation appeared to be a more important pathway with NDEA than with NDMA.

  16. Effect of tripanossomicide benznidazole (Rochagan) on the biodistribution of sodium pertechnetate (Na{sup 99m}TcO4) in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Vanessa Santos de Arruda; Holanda, Cecilia Maria de Carvalho Xavier; Silva, Roseane Pereira da; Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias da Saude]. E-mail: vambio@oi.com.br; Oliveira, Daniel Pereira de; Silva Junior, Mauricio Ferreira da; Oliveira, Elias Herculano de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Biociencias. Dept. de Microbiologia e Parasitologia; Spyrides, Maria Helena Constantino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Estatistica

    2008-12-15

    Benznidazole, a drug with specific anti-Trypanosoma cruzi activity, is used in the treatment of Chagas' disease. The radiopharmaceutical sodium pertechnetate (Na{sup 99m}TcO{sub 4}) is used to obtain diagnostic images of the stomach, thyroid, parathyroids, salivary glands, brain and in the study of esophageal reflux and blood flow. This study aimed at evaluating in vivo the influence of benznidazole treatment on the sodium pertechnetate biodistribution in Wistar rats. The percentage of radioactivity per gram (%ATI/g) of various organs (brain, heart, esophagus, stomach, small intestine, large intestine, spleen, liver, muscle and blood) was determined. Comparing the treated rats with the controls, we observed that sodium pertechnetate biodistribution did not change when administered to rats treated for thirty days with benznidazole. (author)

  17. Radiolabelling of 4-iodo-N-(2-morpholinoethyl)benzamide with Na{sup 123}I and Na{sup 125}I

    Energy Technology Data Exchange (ETDEWEB)

    Tsopelas, C

    1999-07-01

    4-Iodo-N-(2-morpholinoethyl)benzamide (1) is a new benzamide that is an analogue of the antidepressant moclobemide. The synthesis of (1) is described and the radiolabelling conditions with Na{sup 123}I and Na{sup 125}I were optimized using the Cu(I)-added exchange labelling reaction. The reaction was found to perform best in the presence of Cu{sup +} and a stannous reducing agent, in the absence of Cu{sup 2+} and potassium iodide, and at [H{sup +}] = 1.8-7.9 mM with a ligand (1) concentration = 2.6-5.6 mg/mL cold kit. Above a [H{sup +}] of 7.9 mM, the hydrolysis of (1) gave 4-iodo[{sup 125}I]benzoic acid in high amounts. The radiochemical conversion was routinely >95% and >98% after anion exchange Sep-Pak treatment. The radiolabelled product is stable at room temperature for at least 4 h.

  18. Effect of cholera toxin on cAMP levels and Na/sup +/ influx in isolated intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, C.S.; Kimmich, G.A.

    1982-09-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 ..mu..g/ml cholera toxin (CT) at 37/sup 0/C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na/sup +/ influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na/sup +/ entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na/sup +/ uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na/sup +/ during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na/sup +/ influx suggest that the reactivation of the Na/sup +/ transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP.

  19. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  20. Biodistribution of the radiopharmaceutical sodium pertechnetate (Na{sup 99m}TcO{sub 4}) after massive small bowel resection in rats; Biodistribuicao do radiofarmaco pertecnetato de sodio (Na{sup 99m}TcO{sub 4}) em ratos submetidos a resseccao extensa de intestino delgado

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, Damaso de Araujo; Araujo-Filho, Irami; Villarim-Neto, Arthur; Brandao-Neto, Jose; Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude]. E-mail: damasochacon@uol.com.br; Rego, Amalia Cinthia Meneses [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Iniciacao Cientifica; Azevedo, Italo Medeiros [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Cirurgia; Bernardo-Filho, Mario [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Biofisica e Biometria

    2007-11-15

    Purpose: To evaluate the biodistribution of sodium pertechnetate (Na{sup 99m}TcO{sub 4}) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods:Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.1 mL of Na{sup 99m}TcO{sub 4}, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gamma Counter Wizard{sup TM} 1470, Perkin-Elmer. The percentage of radioactivity per gram of tissue (%ATI/g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as significant. Results: There were no significant differences in %ATI/g of the Na{sup 99m}TcO{sub 4} in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was significantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na{sup 99m}TcO{sub 4} was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation

  1. Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Fang Peng

    2012-01-01

    Full Text Available Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE. A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease.

  2. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  3. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  4. An ATP- and Ca/sup 2 +/-regulated Na/sup +/ channel in isolated intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimmich, G.A.; Randles, J.

    1982-09-01

    When isolated intestinal epithelial cells are treated with 2 mM ATP, the undirectional influx of Na/sup +/ to those cells increases from values near 50 to rates over 200 nmol.min/sup -1/.mg protein/sup -1/. Calcium influx increases from 1 to 40 nmol.min/sup -1/.mg protein/sup -1/. Within 2 min, the total cell Na/sup +/ increases two- to threefold, and total Ca/sup +/ increases about fivefold. The cells lose a major part of their capability for accumulating sugars during this interval. About 2 min after the time of ATP addition the normal permeability for Na/sup +/ and Ca/sup 2 +/ is restored, at which time the previously accumulated ions are rapidly extruded on a net basis until control levels are attained and the cells regain their usual sugar transport capability. The ''repair'' process requires Ca/sup 2 +/ in the incubation medium and is dependent on cellular uptake of Ca/sup 2 +/. Chlorpromazine (0.5 mM) blocks the Ca/sup 2 +/ entry route and the restoration of normal Na/sup +/ permeability. The Na/sup +/ entry route is selectively blocked by 4-acetamido-4'-isocyanostilbene-2,2'-disulfonic acid. The data show that ATP induces the influx of Na/sup +/ and Ca/sup 2 +/ by two different routes, which can be selectively inhibited. These ion flux routes may be involved in the events that allow intestinal tissue to convert from an absorptive state to a state in which net ion secretion occurs.

  5. Na/sup +/-dependent transport of /sup 14/C-L-lysine across bullfrog alveolar epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J.; Crandall, E.D.

    1986-03-01

    Transepithelial transport of the basic amino acid L-lysine has been studied utilizing the isolated intact bullfrog lung mounted in the Ussing chamber. Lungs were excised from doubly pithed bullfrogs and sandwiched between two hemichambers. /sup 14/C-(U)-L-lysine was added to the upstream reservoir of amphibian Ringer solution, while the tissue was short-circuited. Two lungs from the same animal were used simultaneously to determine the two opposite unidirectional fluxes. Downstream and upstream radioactivities were assayed and used to estimate the apparent permeability (P) of the labeled lysine. Results indicate that the apparent P of /sup 14/C-L-lysine measured in the alveolar (M) to the pleural (S) direction is 19.06 (+- 2.84) x 10/sup -7/ cm/s and P in the S to M direction is 3.29 (+- 0.02) x 10/sup -7/ cm/s. When the 100 mM NaCl in the bath was replaced by 110 mM choline chloride, the flux of /sup 14/C-L-lysine from the alveolar to the pleural side decreased to the same value as that in the opposite direction. The flux from the pleural to the alveolar direction in the absence of Na/sup +/ did not change. These results suggest that the alveolar epithelium exhibits Na/sup +/-dependent amino acid (L-lysine) transport in the M->S, but not in the S->M, direction.

  6. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  7. Lack of appreciable species differences in nonspecific microsomal binding.

    Science.gov (United States)

    Zhang, Ying; Yao, Lili; Lin, Jing; Gao, Hua; Wilson, Theresa C; Giragossian, Craig

    2010-08-01

    Species differences in microsomal binding were evaluated for 43 drug molecules in human, monkey, dog and rat liver microsomes, using a fixed concentration of microsomal protein. The dataset included 32 named drugs and 11 proprietary compounds encompassing a broad spectrum of physicochemical properties (11 acids, 24 bases, 8 neutral, c log D -1 to 7, MW 200 to 700 and free fraction astemizole, and tamoxifen, drugs with low to high microsomal binding. The mean fold species-difference in f(u,mic) for midazolam, clomipramine, astemizole, and tamoxifen was 1.1-, 1.2-, 1.3-, and 2.0-fold, respectively, and was independent of normalized microsomal protein concentration. For a fixed concentration of microsomal protein, greater than 76% and 90% of drugs examined in this study had preclinical species f(u,mic) within 1.5- and 2-fold, respectively, of experimentally measured human values. PMID:20229604

  8. Burn injury enhances brain prostaglandin E2 production through induction of cyclooxygenase2 and microsomal prostaglandin E synthase in cerebral vascular endothelial cells in rats%前列腺素E2(PGE2)在烧伤后大鼠血管内皮细胞分泌的机制研究

    Institute of Scientific and Technical Information of China (English)

    刘永林; 陈能彬

    2012-01-01

    目的 明确外周烧伤是否可引起中枢神经系统血管内皮细胞前列腺素E2增加及其发生机制.方法 试验大鼠(SD大鼠)接受约25%的全层(Ⅲ度)烧伤,并进行相关治疗,在36小时后,对大鼠脑脊液进行采样,测量其中的前列腺素E2(PGE2)含量,同时对大鼠脑和脊椎组织进行免疫组化研究,对其中与前列腺素合成有关的2种重要酶,环氧化酶2(COX-2)和微粒体前列腺E2合成酶(mPGES)进行分析.结果 在烧伤后的大鼠脑脊液中,前列腺素E2的含量明显增加,但可以被环氧化酶2的选择性抑制剂NS398所抑制.在烧伤后,对大鼠中枢神经系统血管内皮细胞的免疫组化研究可以发现COX-2和mPGES.双重免疫荧光法发现这2种酶主要集中在内皮细胞的核周.结论 外周的烧伤主要通过诱导中枢神经内皮细胞产生COX-2和mPGES.这些酶可以提高脑脊液中的前列腺素E2浓度,从而激活中枢神经系统前列腺素E2的受体,产生烧伤后的全身症状.适当的应用COX-2抑制剂,使烧伤患者的PGE2水平处在对机体有利的合适范围内,不仅可以减少患者的临床的不适症状,以减轻烧伤早期损害和第二次打击时机体失控的炎症反应,而且可以减少患者感染的发生率.%Objective Methods To examine whether peripheral burn injury in rats elevates prostaglandin EZ in the central nervous system and to determine where in the central nervous system enzymes responBible for prostaglandin E2 synthesis arc expressed. Subjects: Spraguc-Dawley rats. Interventions; Rats received either approximately 25% fullthickness burn injury or sham treatment. At 36 hrs after the injury, the cerebrospinal fluid was sampled to measure prostaglandin E2,and the brain and the spinal cord were sampled for immunohistochemical detection of cyclooxygcnasc-2 and microsomal-typc prostaglandin E2 synthasc,enzymes that arc responsible for prostaglandin E2 production. Measurements and Main. Results The

  9. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles.

    Science.gov (United States)

    Zhou, Yi-Ge; Mohamadi, Reza M; Poudineh, Mahla; Kermanshah, Leyla; Ahmed, Sharif; Safaei, Tina Saberi; Stojcic, Jessica; Nam, Robert K; Sargent, Edward H; Kelley, Shana O

    2016-02-10

    A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers. PMID:26707703

  10. Isolation and characterization of a specific endogenous Na/sup +/, K/sup +/-ATPase inhibitor from bovine adrenal

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M.; Lam, T.T.; Inagami, T.

    1988-06-14

    In order to identify a specific endogenous Na/sup +/,K/sup +/-ATPase inhibitor which could possibly be related to salt-dependent hypertension, the authors looked for substances in the methanol extract of bovine whole adrenal which show all of the following properties: (i) inhibitory activity for Na/sup +/,K/sup +/-ATPase; (ii) competitive displacing activity against (/sup 3/H)ouabain binding to the enzyme; (iii) inhibitory activity for /sup 86/Rb uptake into intact human erythrocytes; and (iv) cross-reactivity with sheep anti-digoxin-specific antibody. After stepwise fractionation of the methanol extract of bovine adrenal glands by chromatography on a C/sub 18/ open column, a 0-15% acetonitrile fraction was fractionated by high-performance liquid chromatography on a Zorbax octadecylsilane column. One of the most active fractions in 0-15% acetonitrile was found to exhibit all of the four types of the activities. It was soluble in water and was distinct from various substances which have been known to inhibit Na/sup +/,K/sup +/-ATPase. These results strongly suggest that this water-soluble nonpeptidic Na/sup +/,K/sup +/-ATPase inhibitor may be a specific endogenous regulator for the ATPase.

  11. Crystallization of the NADH-oxidizing domain of the Na{sup +}-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Minli [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Türk, Karin [School of Engineering and Science, International University Bremen, 28759 Bremen (Germany); Diez, Joachim [Swiss Light Source at Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Grütter, Markus G. [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Fritz, Günter, E-mail: guenter.fritz@uni-konstanz.de [Fachbereich Biologie, Universität Konstanz, Postfach M665, Universitätsstrasse 10, 78457 Konstanz (Germany); Steuber, Julia, E-mail: guenter.fritz@uni-konstanz.de [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2006-02-01

    The FAD domain of the NqrF subunit from the Na{sup +}-translocating NADH dehydrogenase from V. cholerae has been purified and crystallized. A complete data set was recorded at 3.1 Å. The Na{sup +}-translocating NADH:quinone oxidoreductase (Na{sup +}-NQR) from pathogenic and marine bacteria is a respiratory complex that couples the exergonic oxidation of NADH by quinone to the transport of Na{sup +} across the membrane. The NqrF subunit oxidizes NADH and transfers the electrons to other redox cofactors in the enzyme. The FAD-containing domain of NqrF has been expressed, purified and crystallized. The purified NqrF FAD domain exhibited high rates of NADH oxidation and contained stoichiometric amounts of the FAD cofactor. Initial crystallization of the flavin domain was achieved by the sitting-drop technique using a Cartesian MicroSys4000 robot. Optimization of the crystallization conditions yielded yellow hexagonal crystals with dimensions of 30 × 30 × 70 µm. The protein mainly crystallizes in long hexagonal needles with a diameter of up to 30 µm. Crystals diffract to 2.8 Å and belong to space group P622, with unit-cell parameters a = b = 145.3, c = 90.2 Å, α = β = 90, γ = 120°.

  12. Role for Na/sup +/, H/sup +/, and Ca/sup 2 +/ during (/sup 3/H)-serotonin release from rat basophilic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Stump, R.F.; Oliver, J.M.; Deanin, G.G.

    1986-03-05

    The authors have investigated the roles of Na/sup +/, pH, and Ca/sup 2 +/ in the release of (/sup 3/H)-serotonin from RBL-2H3 cells. The importance of extracellular Ca/sup 2 +/ for antigen-induced mediator release is well known. The authors report that mediator release also depends on extracellular Na/sup +/ and that the Na/sup +/ ionophore, monensin, like the Ca/sup 2 +/ ionophores A23187 and ionomycin, mimics antigen in causing release. Amiloride suppresses serotonin release, indicating that antigen activates the Na/sup +//H/sup +/ antiport. Antigen-stimulated Na/sup +//H/sup +/ exchange (and/or the resulting cytoplasmic alkalinization) may affect mediator release in part by controlling cytoplasmic free Ca/sup 2 +/ levels. The authors report that antigen normally causes a spike followed by a plateau of Ca/sup 2 +/-Quin 2 fluorescence. Only the spike occurs when cells are incubated with antigen in low Na/sup +/ medium. Conversely, monensin produces a Ca/sup 2 +/ plateau without a spike phase. In addition, cytoplasmic alkalinization due to increased Na/sup +//H/sup +/ exchange may directly cause secretion. Both NH/sub 4/Cl and monensin cause mediator release in Ca/sup 2 +/-free medium: these reagents increase pH by about 0.1 units as measured by the fluorescent dye, BCECF. TPA that stimulates Na/sup +//H/sup +/ exchange in other cells does not cause release directly but it potentiates both antigen and Ca/sup 2 +/ ionophore-induced release in RBL-2h3 cells. This further suggests synergistic roles for Na/sup +//H/sup +/ exchange and Ca/sup 2 +/ mobilization in the control of mediator release.

  13. Role of the Na{sup +}/H{sup +} exchanger on the development of diabetes mellitus and its chronic complications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Ming [Department of Cardiac Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Su, Ying [Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Jia; Tian, Ye [Department of Cardiac Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Wang, Lan-Feng, E-mail: wlfccu@126.com [Department of Cardiac Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer NHE protect against intracellular hydrogen overload. Black-Right-Pointing-Pointer NHE protect {beta}-cells against strong acidification. Black-Right-Pointing-Pointer NHE inhibitors improve myocardial ischemia and reperfusion. -- Abstract: Micro- and macrovascular complications are the main cause of morbidity and mortality in diabetes mellitus. The Na{sup +}/H{sup +} exchanger (NHE) is a family of proteins which exchange Na{sup +} for H{sup +} according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and diabetes mellitus, this review outlines the contribution of NHE to chronic complications of diabetes mellitus, such as diabetic nephropathy; diabetic cardiomyopathy.

  14. Microsomal lipid peroxidation as a mechanism of cellular damage. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Kornbrust, D.J.

    1979-01-01

    The NADPH/iron-dependent peroxidation of lipids in rat liver microsomes was found to be dependent on the presence of free ferrous ion and maintains iron in the reduced Fe/sup 2 +/ state. Chelation of iron by EDTA inhibited peroxidation. Addition of iron, after preincubation of microsomes in the absence of iron, did not enhance the rate of peroxidation suggesting that iron acts by initiating peroxidative decomposition of membrane lipids rather than by catalyzing the breakdown of pre-formed hydroperoxides. Liposomes also underwent peroxidation in the presence of ferrous iron at a rate comparable to intact microsomes and was stimulated by ascorbate. Carbon tetrachloride initiated lipid peroxidation in the absence of free metal ions. Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely between different tissues and species. The effects of paraquat on lipid peroxidation was also studied. (DC)

  15. Human liver microsomal metabolism of (+)-discodermolide.

    Science.gov (United States)

    Fan, Yun; Schreiber, Emanuel M; Day, Billy W

    2009-10-01

    The polyketide natural product (+)-discodermolide is a potent microtubule stabilizer that has generated considerable interest in its synthetic, medicinal, and biological chemistry. It progressed to early clinical oncology trials, where it showed some efficacy in terms of disease stabilization but also some indications of causing pneumotoxicity. Remarkably, there are no reports of its metabolism. Here, we examined its fate in mixed human liver microsomes. Due to limited availability of the agent, we chose a nanoflow liquid chromatography-electrospray ionization-mass spectrometry analytical approach employing quadrupolar ion trap and quadrupole-quadrupole-time-of-flight instruments for these studies. (+)-Discodermolide was rapidly converted to eight metabolites, with the left-side lactone (net oxidation) and the right-side diene (epoxidation followed by hydrolysis, along with an oxygen insertion product) being the most metabolically labile sites. Other sites of metabolism were the allylic and pendant methyl moieties in the C12-C14 region of the molecule. The results provide information on the metabolic soft spots of the molecule and can be used in further medicinal chemistry efforts to optimize discodermolide analogues.

  16. Effect of the dilution factor on {sup 18}FDG and Na{sup 18}F samples for bacterial endotoxin test using PTS (portable test system)

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Costa, Flavia M.; Ferreira, Soraya Z., E-mail: mbs@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Unidade de Pesquisa e Producao de Radiofarmacos

    2011-07-01

    {sup 18}FDG and Na{sup 18}F are radiopharmaceuticals produced as sterile solutions suitable for intravenous administration, which must contain no more than 175 EV/V. The most commonly used approach to detect endotoxins is the gelclot technique that requires 60 minutes for results. For radiopharmaceuticals containing short-life radionuclides, such as {sup 18}F, there is an increasing interest for faster quality control methods. FDA licensed the Endosafe, PTS, a kinetic chromogenic endotoxin detection system that takes about 15 minutes for results. As other techniques, PTS test is susceptible to interferences which can be solved by product dilution. The aim of this study was to establish the best dilution of {sup 18}FDG and Na{sup 18}F for PTS analysis. Two different dilution factors for {sup 18}FDG and 1:10 for Na{sup 18}F were essayed: 1:10 and 1:100. {sup 18}FDG and Na{sup 18} solutions were prepared by the addition of LAL reagent water. Considering the assay acceptance criteria, the best dilution factor was 1:100 for {sup 18}FDG and 1:10 for Na{sup 18}F. The recovery of the product positive control was 98-12% for {sup 18}FDG 1:100 and 104-120% for Na{sup 18}F 1:10, which were, in both cases, within the specification (50-200%) and very close to 100%. Results obtained with these dilution studies were important to establish the most appropriate and non-interfering dilution factor for {sup 18}FDG and Na{sup 18}F routine endotoxin test. (author)

  17. In vitro identification of metabolitesof verapamil in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    LuSUN; Shu-qiuZHANG; Da-fangZHONG

    2004-01-01

    AIM: To investigate the metabolism of verapamil at low concentrations in rat liver microsomes. METHODS: Liver microsomes of Wistar rats were prepared using ultracentrifuge method. The in vitro metabolism of verapamil was studied with the rat liver microsomal incubation at concentration of 1.0 μmol/L and 5.0 μmol/L. The metabolites were separated and assayed by liquid chromatography-ion trap mass spectrometry (LC/MSn), and further identified by comparison of their mass spectra and chromatographic behaviors with reference substances. RESULTS: Eightmetabolites, including two novel metabolites (M4 and MS), were found in rat liver microsomal incubates. They were identified as O-demethyl-verapamil isomers (M1 - M4), N-dealkylated derivatives of verapamil (MS-MT), and N, O-didemethyl-verapamil (MS). CONCLUSION: O-Demethylation and N-dealkylation were the main metabolic pathways of verapamil at low concentrations in rat liver microsomes, and the relative proportion of them in verapamil metabolism changed with different substrate concentrations.

  18. Stereoselective propranolol metabolism in two drug induced rat hepatic microsomes

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Su Zeng

    2000-01-01

    AIM To study the influence of inducers BNF and PB on the stereoselective metabolism of propranolol in rat hepatic microsomes.METHODS Phase Ⅰ metabolism of propranolol was studied by using the microsomes induced by BNF and PB and the non-induced microsome as the control. The enzymatic kinetic parameters of propranolol enantiomers were calculated by regression analysis of Lineweaver-Burk plots.Propranolol concentrations were assayed by HPLC.RESULTS A RP-HPLC method was developed to determine propranolol concentration in rat hepatic microsomes. The linearity equations for R( + )-propranolol and S ( - )-propranolol were A=705.7C+ 311.2C (R =0.9987) and A=697.2C +311.4C (R = 0.9970) respectively. Recoveries of each enantiomer were 98.9%, 99.5%, 101.0% at 60 μmol/L, 120 μmol/L, 240 μmol/L respectively. At the concentration level of 120 μmol/L, propranolol enantiomers were metabolized at different rates in different microsomes. The concentration ratio R (+)/S (-) of control and PB induced microsomes increased with time, whereas that of microsome induced by BNF decreased. The assayed enzyme parameters were: 1. Km. Control group: R( + )30±8, S( - )18 ± 5; BNF group: R( + )34 ± 3, S (-)39±7; PB group: R(+)38±17, S(-)36± 10.2. Vmax. Control group: R(+ )1.5 ±0.2, S( - )2.9±0.3; BNF group: R(+)3.8±0.3, S(-)3.3±0.5; PB group: R( + )0.07±0.03, S( - )1.94±0.07.3.Clint. Control group: R( + )60±3, S(- )170±30; BNF group: R( + )111.0 ±1, S(- ) 84±5; PB group: R(+)2.0 ± 2, S(- )56.0 ± 1. The enzyme parameters compared with unpaired t tests showed that no stereoselectivity was observed in enzymatic affinity of three microsomes to enantiomers and their catalytic abilitieswere quite different and had stereoselectivities. Compared with the control,microsome induced by BNF enhanced enzyme activity to propranolol R ( + )-enantiomer, and microsome induced by PB showed less enzyme activity to propranolol S(- )-enantiomer which remains the same stereoselectivities as

  19. TERATOGENICITY OF CYCLOPHOSPHAMIDE IN A COUPLED MICROSOMAL ACTIVATING/EMBRYO CULTURE SYSTEM

    Science.gov (United States)

    Using the coupled microsomal activating/embryo culture system, in vitro experiments were performed to establish the role of metabolism in the embryo toxicity and teratogenicity of cyclophosphamide. Cyclophosphamide in the coupled microsomal activating/embryo culture system produc...

  20. Two New Lactones Metabolized from Isoline by Rat Liver Microsomes

    Institute of Scientific and Technical Information of China (English)

    Jun TANG; Zheng Tao WANG; Teruaki AKAO; Norio NAKAMURA; Masao HATTORI

    2003-01-01

    Two new metabolites, namely bisline lactone and isolinecic acid lactone, were isolated from the resultant incubates after a scale-up incubation of isoline with rat liver microsomes. Their structures were determined by spectroscopic data, especially those from 1D and 2D NMR experiments.

  1. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. II. Changes in Na/sup +/ and Ca/sup 2 +/ fluxes, Na/sup +//K/sup +/ pump activity, and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, S.A.; Schneider, J.A.; Lopez-Rivas, A.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-06-01

    The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive /sup 86/Rb/sup +/ uptake (a measure of Na/sup +//K/sup +/ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na/sup +/ entry into the cells. The effect of bombesin on Na/sup +/ entry and Na/sup +//K/sup +/ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive /sup 86/Rb/sup +/ uptake; the relative potencies of these peptides in stimulating the Na/sup +//K/sup +/ pump were comparable to their potencies in increasing DNA synthesis. Bombesin increased Na/sup +/ influx, at least in part, through an Na/sup +//H/sup +/ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na/sup +/. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of /sup 45/Ca/sup 2 +/ from quiescent Swiss 3T3 cells. This Ca/sup 2 +/ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca/sup 2 +/. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity, greatly decreased the stimulation of /sup 86/Rb/sup +/ uptake and Na/sup +/ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.

  2. Ginkgo biloba extract alters the binding of the sodium [{sup 123}I] iodide (Na{sup 123}I) on blood constituents

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Luiz Claudio Martins [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Moreno, Silvana Ramos Farias, E-mail: srfmoreno@hotmail.com [Departamento de Patologia, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Programa de Pos-Graduacao em Ciencias Medicas, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Freitas, Rosimeire de Souza [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Thomaz, Helio [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Santos-Filho, Sebastiao David [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil)

    2012-01-15

    We evaluated the in vitro effect of an aqueous extract of Ginkgo biloba (EGb) on the distribution in blood cells (BC) and plasma (P) and on the binding of Na{sup 123}I to the blood constituents using precipitation with trichloroacetic acid. The radioactivity percentages insoluble (SF) and insoluble fraction (IF) of blood constituents were determined. The EGb interfered (p<0.05) on the distribution of Na{sup 123}I in the P (from 69.64 to 86.13) and BC (from 30.36 to 13.87) and altered the fixation of the Na{sup 123}I in IF-P and in IF-BC. - Highlights: Black-Right-Pointing-Pointer Interaction between the Ginkgo biloba and blood constituents radiolabeled. Black-Right-Pointing-Pointer Modification of the binding of sodium iodide (Na{sup 123}I) to the blood constituents. Black-Right-Pointing-Pointer This alteration should have influence in a diagnosis of nuclear medicine.

  3. Effects of abrasion and Na/sup +/ on dactyl-mediated chemoreception in mature kelp crabs, Pugettia producta (Randall)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, K.A.; Case, J.F.

    1983-01-01

    Extracellular recordings from the mixed sensory nerves innervating the abraded dactylopodites of the kelp crab, Pugettia producta (Randall), indicate that at least some chemoreceptors and mechanoreceptors remain functional. The chemoreceptors of the abraded dactyls are sensitive to both the concentration and chemical nature of the stimulants. The responses of the chemoreceptors, but not of the mechanoreceptors, are reduced when choline is substituted for sodium in the stimulant solutions. Only chemoreception is blocked by the topical application of tetrodotoxin (TTX) to the dactyls; partial reversal of the blockage occurs with time. The differential blockage of receptor activity by low Na/sup +/ and TTX is consistent with the idea that spike initiation occurs more distally in the dendrites of the chemosensory neurons than in the mechanosensory neurons. The relevance of this to the ability of at least some abraded dactyl setae to remain functional in a long-lived, nonmolting crab is considered.

  4. Na*(3p)-Formation under grazing scattering of Na[sup +]-ions at an Al(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, R. (Inst. fuer Kernphysik, Univ. Muenster (Germany)); Borisov, A.G. (Dept. of Physics, Moscow State Univ. (Russian Federation))

    1994-06-01

    Excited Na*(3p)-atoms are observed in grazing surface-collision experiments with Na[sup +]-beams. Such atoms can be formed beyond a certain threshold velocity via resonant electron transfer between atomic and metallic conduction band levels due to motion of the atom relative to the surface of the metal (''kinematic resonance''). This mechanism is studied here theoretically employing two different techniques: the nonperturbative ''Coupled Angular Mode'' (CAM) method and the approximate ''Transfer Hamiltonian'' (TH) method. The calculated Na*(3p)-populations agree well with recent experimental results. Moreover, the complete density matrix of the Na*(3p)-subspace has been computed with the TH-method for ion-energies between 10 and 300 keV. (orig.)

  5. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    Science.gov (United States)

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  6. Structure and Function of Microsomal Prostaglandin E Synthase-1

    OpenAIRE

    Pawelzik, Sven-Christian

    2010-01-01

    The glutathione-dependent enzyme microsomal prostaglandin E synthase-1 (MPGES1) plays a pivotal role in inflammatory diseases. MPGES1 is up-regulated by pro-inflammatory cytokines in concert with cyclooxygenase (COX) -2, and the concerted action of both enzymes leads to the production of induced prostaglandin E2 (PGE2), a potent lipid mediator of inflammation, pain, and fever. Non-steroidal anti-inflammatory drugs (NSAIDs) as well as COX-2 specific inhibitors (COXIBs) are widely u...

  7. Stereoselective glucuronidation of carvedilol by Chinese liver microsomes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To study the stereoselective glucuronidation of carvedilol (CARV) by three Chinese liver microsomes.Methods: The metabolites of CARV were identified by a hydrolysis reaction with β-glucuronidase and HPLC-MS/MS. The enzyme kinetics for CARV enantiomers glucuronidation was determined by a reversed phase-high pressure liquid chromatography (RP-HPLC) assay using (S)-propafenone as internal standard after precolumn derivatization with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylisothiocyanate. Results: Two CARV glucuronides were found in three Chinese liver microsomes incubated with CARV. The non-linear regression analysis showed that the values of Km and Vmax for (S)-CARV and (R)-CARV enantiomers were (118±44) μmol/L, (2 500±833) pmol/(min.mg protein) and (24±7) μmol/L, (953+399) pmol/(min.mg protein),respectively. Conclusion: These results suggested that there was a significant (P<0.05) stereoselective glucuronidation of CARV enantiomers in three Chinese liver microsomes, which might partly explain the enantioselective pharmacokinetics of CARV.

  8. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R;

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100...... microM. Inositol-1,4,5-trisphosphate (IP3) maximally inhibits 40% of the net Ca2+ accumulation by whole brain microsomes. Its effects are non-additive with thapsigargin suggesting that the IP3-sensitive Ca2+ pool is a subset of the thapsigargin sensitive Ca2+ pool. Marked regional differences occur...

  9. Effect of radioprotective biogenic amines on peroxide oxidation of lipids in rat small intestine mucosa microsomes

    International Nuclear Information System (INIS)

    The radioprotective biogenic amines, dopamine, histamine, and serotonin inhibited lipid peroxidation in rat small intestine mucosal microsomes. Possible mechanisms of these inhibitory effects are discussed

  10. Role of H{sub 2}O{sub 2} on the kinetics of low-affinity high-capacity Na{sup +}-dependent alanine transport in SHR proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Vanda; Pinho, Maria Joao [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal); Jose, Pedro A. [Center for Molecular Physiology Research, Children' s National Medical Center, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC (United States); Soares-da-Silva, Patricio, E-mail: pss@med.up.pt [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal)

    2010-07-30

    Research highlights: {yields} H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only. {yields} It is suggested that Na{sup +} binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H{sub 2}O{sub 2} on the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na{sup +} dependence of [{sup 14}C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na{sup +} removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H{sub 2}O{sub 2} levels in the extracellular medium significantly reduced Na{sup +}-K{sub m} and V{sub max} values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake. After removal of apocynin from the culture medium, H{sub 2}O{sub 2} levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na{sup +}-K{sub m} and V{sub max} of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only

  11. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    Science.gov (United States)

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S

    1990-04-30

    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  12. In vitro biotransformation of flavonoids by rat liver microsomes

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Breinholt, V.; Justesen, U.;

    1998-01-01

    1. Sixteen naturally occurring flavonoids were investigated as substrates for cytochrome P450 in uninduced and Aroclor 1254-induced rat liver microsomes. Naringenin, hesperetin, chrysin, apigenin, tangeretin, kaempferol, galangin and tamarixetin were all metabolized extensively by induced rat liver......-ring seemed to prevent further hydroxylation. The results indicate that demethylation only occurs in the B-ring when the methoxy group is positioned at C-4'-, and not at the C-3'-position. 3. The CYP1A isozymes were found to be the main enzymes involved in flavonoid hydroxylation, whereas other cytochrome P...

  13. Microsomal prostaglandin E synthase-1 in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Marina eKorotkova

    2011-01-01

    Full Text Available Microsomal prostaglandin E synthase-1 (mPGES-1 is a well recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis and inflammatory myopathies. Novel findings regarding regulation of mPGES1 cell expression as well as enzyme inhibitors are also summarized.

  14. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Muhammad M. [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Sonsalla, Patricia K. [Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  15. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    ATP-dependent 45Ca2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca2+. These results are consistent with the ER being an important site of intracellular Ca2+ regulation

  16. Studies on the transverse localization of lysophospholipase in bovine liver microsomes using proteolytic enzymes

    NARCIS (Netherlands)

    Moonen, J.H.E.; Bosch, H. van den

    1979-01-01

    1. 1. Sonication of bovine liver microsomes completely solubilized the membrane-bound lysophospholipase II (EC 3.1.1.5). Co-chromatography with purified 125I-labelled lysophospholipase indicated that the enzyme was solubilized from microsomes in a lipid-free state. 2. 2. In the presence of residual

  17. Studies on the transverse localization of lysophospholipase II in bovine liver microsomes by immunological techniques

    NARCIS (Netherlands)

    Moonen, H.; Bosch, H. van den

    1979-01-01

    1. 1. Lysophospholipase activity solubilized from bovine liver microsomes could be precipitated for more than 80% by antibodies evoked in rabbits against the purified bovine liver lysophospholipase II. 2. 2. After solubilization of the microsomes in 1.5% sodium deoxycholate, an immunoprecipitate co

  18. Analysis of the Inhibitory Effect of Gypenoside on Na+,K+-ATPase in Rats' Heart and Brain and Its Kinetics

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao-yan; WEI Hong-bo; ZHANG Fu-cheng

    2007-01-01

    ObjectiYe: To study the effects of gypenoside (Gyp) on the activity of microsomal Na+,K+-ATPase in rat's heart and brain in vitro. Methods: The microsomal Na+, K+-ATPase was prepared from rat's heart and brain by differential centrifugation. The activity of microsomal Na+, K+-ATPase was assayed by colorimetric technique. Enzyme kinetic analysis method was used to analyze the effect of Gyp on the microsomal Na+, K+-ATPase of rats. Results: Gyp reversibly inhibited the brain and heart's microsomal Na+, K+-ATPase in a concentration-dependent manner, and showed a more potent effect on enzyme in the brain. The IC50 of Gyp for the heart and brain were 58.79± 8.05 mg/L and 52.07 ±6.25 mg/L, respectively. The inhibition was enhanced by lowering the Na+, or K+ concentrations or increasing the ATP concentration. Enzyme kinetic studies indicated that the inhibitory effect of Gyp on the enzyme is like that of competitive antagonist of Na+, the counter-competitive inhibitor for the substrate ATP, and the mixed-type inhibitor for K+. Conclusion: Gyp displays its cardiotonic and central inhibitory effects by way of inhibiting heart and brain's microsomal Na+, K+-ATPase activities in rats.

  19. Ribonuclease-neutralized pancreatic microsomal membranes from livestock for in vitro co-translational protein translocation.

    Science.gov (United States)

    Vermeire, Kurt; Allan, Susanne; Provinciael, Becky; Hartmann, Enno; Kalies, Kai-Uwe

    2015-09-01

    Here, we demonstrate that pancreatic microsomal membranes from pigs, sheep, or cattle destined for human consumption can be used as a valuable and ethically correct alternative to dog microsomes for cell-free protein translocation. By adding adequate ribonuclease (RNase) inhibitors to the membrane fraction, successful in vitro co-translational translocation of wild-type and chimeric pre-prolactin into the lumen of rough microsomes was obtained. In addition, the human type I integral membrane proteins CD4 and VCAM-1 were efficiently glycosylated in RNase-treated microsomes. Thus, RNase-neutralized pancreatic membrane fractions from pig, cow, or sheep are a cheap, easily accessible, and fulfilling alternative to canine microsomes. PMID:26050631

  20. Fatty acid hydroxylation in rat kidney cortex microsomes.

    Science.gov (United States)

    Ellin, A; Orrenius, S

    1975-08-30

    Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The

  1. In Vitro Glucuronidation of Ochratoxin A by Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Zheng Han

    2013-12-01

    Full Text Available Ochratoxin A (OTA, one of the most toxic mycotoxins, can contaminate a wide range of food and feedstuff. To date, the data on its conjugates via glucuronidation request clarification and consolidation. In the present study, the combined approaches of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS, UHPLC-Orbitrap-high resolution mass spectrometry (HRMS and liquid chromatography-multiple stage mass spectrometry (LC-MSn were utilized to investigate the metabolic profile of OTA in rat liver microsomes. Three conjugated products of OTA corresponding to amino-, phenol- and acyl-glucuronides were identified, and the related structures were confirmed by hydrolysis with β-glucuronidase. Moreover, OTA methyl ester, OTα and OTα-glucuronide were also found in the reaction solution. Based on these results, an in vitro metabolic pathway of OTA has been proposed for the first time.

  2. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  3. Inorganic phosphate promotes redox cycling of iron in liver microsomes: effects on free radical reactions.

    Science.gov (United States)

    Reinke, L A; Moore, D R; Rau, J M; McCay, P B

    1995-02-01

    The phosphate buffer concentration used in spin trapping experiments with liver microsomes markedly influenced rates of free radical formation from ethanol and dimethylsulfoxide, but not from carbon tetrachloride. Effects of phosphate concentration on ethanol radical formation were abolished by addition of deferoxamine or bathophenanthrolene, indicating that an iron-phosphate complex might be involved. High concentrations of phosphate stimulated rates of microsomal Fe+3 reduction and facilitated the mobilization of microsomal nonheme iron, but had little effect on a variety of microsomal monooxygenase enzyme activities. Although microsomal oxygen utilization and superoxide production were relatively unaffected by phosphate, hydrogen peroxide concentrations were markedly decreased in the presence of high concentrations of phosphate. Taken together, the data suggest that a ferric-phosphate complex may be enzymatically reduced by microsomal enzymes and NADPH. Reoxidation of ferrous ion is nonenzymatically promoted by phosphate and/or H2O2 produced by the microsomes. During the process of reoxidation, one or more oxidizing intermediates may be formed which initiate secondary free radical reactions. Although the reactivity of the intermediate(s) is similar to that of the hydroxyl radical, no spin trapping evidence was obtained to support this assignment. PMID:7864631

  4. Glycerophosphate acylation by microsomes and mitochondria of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Olthoff, D

    1984-07-16

    The incorporation of [14C]glycerophosphate into phosphatidic acid, diacylglycerol, triacylglycerol and phosphatidylcholine by microsomes and mitochondria prepared from normal and dystrophic human muscle incubated in vitro in the presence of 0.3 mmol/l CDP-choline was measured. In mitochondria only phosphatidic acid and diacylglycerol are labelled; the rate of incorporation into these two compounds showed no difference between dystrophic and normal mitochondria. In dystrophic microsomes the incorporation into phosphatidic acid was delayed and decreased. No incorporation of glycerol into diacylglycerol, phosphatidylcholine and triacylglycerol could be measured. Thus in dystrophic muscle microsomes only PA was labelled during an incubation of up to 45 min. In both types of microsomes the concentration of endogenous free fatty acids and diacylglycerol was nearly identical. The level of phosphatidylcholine was 186 and 79 nmol/mg microsomal protein in normal and dystrophic muscle microsomes, respectively. Whether the results could be explained as secondary changes was discussed. Despite some unsolved problems the conclusion was drawn that a better explanation of the results is to assume a primary defect involving microsomal-bound phosphatidic acid phosphohydrolase and possibly glycerol-P-acyltransferases.

  5. Age-dependent changes in diastolic Ca{sup 2+} and Na{sup +} concentrations in dystrophic cardiomyopathy: Role of Ca{sup 2+} entry and IP{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mijares, Alfredo [Instituto Venezolano de Investigaciones Científicas, Centro de Biofísica y Bioquímica, Caracas (Venezuela, Bolivarian Republic of); Altamirano, Francisco [Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States); Kolster, Juan [Centro de Investigaciones Biomédicas, México D.F. (Mexico); Adams, José A. [Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140 (United States); López, José R., E-mail: jrlopez@ucdavis.edu [Instituto Venezolano de Investigaciones Científicas, Centro de Biofísica y Bioquímica, Caracas (Venezuela, Bolivarian Republic of); Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States)

    2014-10-03

    Highlights: • Age-dependent increase in [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} in mdx cardiomyocytes. • Gadolinium significantly reduced both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages. • IP{sub 3}-pathway inhibition reduced cations concentrations in dystrophic cardiomyocytes. - Abstract: Duchenne muscular dystrophy (DMD) is a lethal X-inherited disease caused by dystrophin deficiency. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with a dilated cardiomyopathy that leads to progressive heart failure at the end of the second decade. The aim of the present study was to characterize the diastolic Ca{sup 2+} concentration ([Ca{sup 2+}]{sub d}) and diastolic Na{sup +} concentration ([Na{sup +}]{sub d}) abnormalities in cardiomyocytes isolated from 3-, 6-, 9-, and 12-month old mdx mice using ion-selective microelectrodes. In addition, the contributions of gadolinium (Gd{sup 3+})-sensitive Ca{sup 2+} entry and inositol triphosphate (IP{sub 3}) signaling pathways in abnormal [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} were investigated. Our results showed an age-dependent increase in both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} in dystrophic cardiomyocytes compared to those isolated from age-matched wt mice. Gd{sup 3+} treatment significantly reduced both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages. In addition, blockade of the IP{sub 3}-pathway with either U-73122 or xestospongin C significantly reduced ion concentrations in dystrophic cardiomyocytes. Co-treatment with U-73122 and Gd{sup 3+} normalized both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages in dystrophic cardiomyocytes. These data showed that loss of dystrophin in mdx cardiomyocytes produced an age-dependent intracellular Ca{sup 2+} and Na{sup +} overload mediated at least in part by enhanced Ca{sup 2+} entry through Gd{sup 3+} sensitive transient receptor potential channels (TRPC), and by IP{sub 3} receptors.

  6. Duration of hexobarbital-induced sleep and monoamine oxidase activities in rat brain: Focus on the behavioral activity and on the free-radical oxidation.

    Science.gov (United States)

    Tseilikman, Vadim E; Kozochkin, Denis A; Manukhina, Eugenia B; Downey, H Fred; Tseilikman, Olga B; Misharina, Maria E; Nikitina, Anna A; Komelkova, Maria V; Lapshin, Maxim S; Kondashevskaya, Marina V; Lazuko, Svetlana S; Kusina, Oxana V; Sahabutdinov, Marat V

    2016-04-01

    The present study is focused on the relationship between monoamine oxidase (MAO) activity and hepatic content of cytochrome P450 (CYP), which reflects the status of microsomal oxidation. For vital integrative evaluation of hepatic microsomal oxidation in rats, the hexobarbital sleep test was used, and content of CYP was measured in hepatic microsomes. Rats with short hexobarbital sleep time (SHST) had higher content of microsomal CYP than rats with long hexobarbital sleep time (LHST). Whole brain MAO-A and MAO-B activities, serotonin and carbonylated protein levels were higher in SHST than in LHST rats. MAO-A and MAO-B activities were higher in brain cortex of SHST rats; MAO-A activity was higher only in hypothalamus and medulla of LHST. The same brain regions of LHST rats had higher concentrations of carbonylated proteins and lipid peroxidation products than in SHST rats. MAO activity was correlated with microsomal oxidation phenotype. Rats with higher hepatic content of CYP had higher activities of MAO-A and MAO-B in the brain and higher plasma serotonin levels than rats with lower microsomal oxidation. In conclusion, data obtained in this study showed a correlation between MAO activity and microsomal oxidation phenotype.

  7. The Na{sup +}/K{sup +} -pump in rat peritoneal mast cells: Some aspects of regulatio of activity and cellular fusion

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, T. [Odense Univ., Dept. of Pharmacology, Inst. of Medical Biology, The Faculty of Health Scineces (Denmark)

    1995-12-31

    The mast cell contains potent mediators of inflammation which are released after IgE-directed and non-IgE-directed stimulation of the cell. This highly specialized cell is therefore ascribed a role in the pathogenesis of disease states in which the inflammatory response plays a role for the development of the clinical symptoms. Thus, besides being of interest in basic research, studies of the cellular processes leading to release of inflammatory mediators from the mast cell also also have important clinical implications. The aim of the present work has been to document the existence of the Na{sup +}/K{sup +}-pump in rat peritoneal mast cells, to investigate the regulation of the pump activity and to explore whether modulation of the pump activity interferes with the cellular stimulus/secretion coupling mechanism. The Na{sup +}/K{sup +}-pump activity following stimulation of the mast cell was also investigated. The pump activity was assessed as the ouabain-sensitive cellular potassium uptake with {sup 86}Rb{sup +} as a tracer for potassium. The histamine release from the mast cell following IgE-directed and non-IgE-directed stimulation of the cell was used as a parameter of cellular degranulation. Histamine was measured by spectrofluorometry. Besides describing aspects of the function and regulation of the Na{sup +}/K{sup +}-pump in the rat peritoneal mast cell, this thesis points to the potential role of sodium transport mechanisms in mast cell physiology. Pharmacological manipulations of such transport mechanisms might in the future add to the treatment of allergic diseases. (au) 253 refs.

  8. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Science.gov (United States)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  9. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  10. A study of liver microsomal enzymes in rats following propoxur (Baygon) administration.

    Science.gov (United States)

    Nelson, D L; Lamb, D W; Mihail, F

    1984-08-01

    Groups of rats were given either propoxur, were left as untreated controls, or were given phenobarbital, DDT, chlordane or toxaphene which are known to induce liver microsomal detoxification enzymes. Microsomal enzyme activity was measured by testing the ability of liver homogenates to degrade EPN (O-ethyl O-(4-nitrophenyl) phenylphosphonothioate) to p-nitrophenol. The activity of aminopyrine-N-demethylase, cytochrome P-450 and p-nitroanisole-O-demethylase in liver homogenates of rats receiving propoxur was measured. Liver microsomal detoxification enzymes were not induced by propoxur exposure.

  11. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves, E-mail: camilab@icb.usp.br; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  12. Does de novo synthesis of lysophosphatidylcholine occur in rat lung microsomes?

    NARCIS (Netherlands)

    Aarsman, A.J.; Bosch, H. van den

    1980-01-01

    Incubation of rat lung microsomes with CDP[Me-14C]choline resulted in formation of radioactive lysophosphatidylcholine and phosphatidylcholine. Evidence is provided which suggests that lysophosphatidylcholine formation cannot be ascribed completely to phospholipase A degradation of phosphatidylcholi

  13. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    OpenAIRE

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2009-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogeni...

  14. Synergistic Metabolic Toxicity Screening Using Microsome/DNA Electrochemiluminescent Arrays and Nanoreactors

    OpenAIRE

    Krishnan, Sadagopan; Hvastkovs, Eli G.; Bajrami, Besnik; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2008-01-01

    Platforms based on thin enzyme/DNA films were used in two-tier screening of chemicals for reactive metabolites capable of producing toxicity. Microsomes were used for the first time as sources of cytochrome (cyt) P450 enzymes in these devices. Initial rapid screening involved electrochemiluminescent (ECL) arrays featuring spots containing ruthenium poly(vinylpyridine), DNA, and rat liver microsomes or bicistronically expressed human cyt P450 2E1 (h2E1). Cyt P450 enzymes were activated via the...

  15. Microsomal drug-metabolizing enzymes in the olive baboon (papio anabis)

    DEFF Research Database (Denmark)

    1975-01-01

    1.1. The activity of microsomal drug-metabolizing enzymes—azo reductase, nitroreductase, p-hydroxylation, N-demethylation, O-demethylation, NADPH cytochrome c reductase and cytochrome P P-450—in the olive baboon are lower than in other animal species, e.g. mouse, rat, guinea-pig. 2. 2. The level ...... and beta-glucuronidase is present more in the lysosomal than in the microsomal fraction....

  16. Synthesis and photoluminescence properties of LaAlO{sub 3}:Mn{sup 4+}, Na{sup +} deep red-emitting phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Renping; Ceng, Dong; Yu, Xiaoguang; Guo, Siling; Zheng, Guotai [Jinggangshan University, College of Mathematics and Physics, Ji' an (China); Liu, Pan [Jinggangshan University, Scientific Research Office, Ji' an (China)

    2016-04-15

    LaAlO{sub 3}:Mn{sup 4+} and LaAlO{sub 3}:Mn{sup 4+}, Na{sup +} deep red-emitting phosphors are synthesized by a solid-state reaction method in air. Their crystal structures, lifetimes, and luminescence properties are investigated, respectively. PLE spectrum monitored at 730 nm contains three PLE bands peaking at ∝276, 325, and 500 nm within the range 200-550 nm, and PL spectrum with excitation 325 nm exhibits two PL band peaks located at ∝703 and 730 nm owing to anti-stokes vibronic sidebands associated with the excited state {sup 2}E of Mn{sup 4+} ion and the {sup 2}E → {sup 4}A{sub 2} transition of Mn{sup 4+} ion, respectively. The optimal Mn{sup 4+} doping concentration is ∝0.8 mol%. Lifetime of LaAl{sub 0.992}O{sub 3}:0.8 %Mn{sup 4+} phosphor is ∝0.92 ms. Na{sup +} ion as charge compensator can improve obviously the luminescence properties of LaAlO{sub 3}:Mn{sup 4+} phosphor due to the charge compensation. The luminous mechanism of Mn{sup 4+} ion is explained by using Tanabe-Sugano diagram of Mn{sup 4+} ion in octahedral crystal field. The contents of this paper will be helpful to develop novel Mn{sup 4+}-doped materials and improve their luminescence properties. (orig.)

  17. Involvement of CYP2B6 in the biotransformation of propofol by human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    TANG Bing; WANG Jun-ke; FENG Wan-yu

    2008-01-01

    Objective To determine whether the cytochrome P4502B6 (CYP2B6) is involved in the oxidation of propofol by human liver microsomes. Methods The change of propofol concentration in an incubation mixture with human liver microsomes was monitored by the high performance liquid chromatography (HPLC), in order to calculate the rate constants of metabolism of propofol. The correlation between the rate constants and the rate of metabolism of CYP2B6 selective substrate bupropion, and the effect of two different CYP2B6 specific inhibitors on the propofol metabolism were examined. Results The mean rate constant of propofol metabolism by liver microsomes obtained from twelve individuals was 3.9 (95 % confidence intervals 3.3, 4.5) nmol·min-1·mg-1 protein. The rate constants of propofol metabolism by liver microsomes were significantly correlated with bupropion hydroxylation (r=0.888, P<0.001). Both selective chemical inhibitors of CYP2B6, orphenadrine and N, N′, N″-triethylenethiophosphoramide (thioTEPA), reduced the rate constants of propofol metabolism by 37.596 (P<0.001) and 42.796 (P<0.001)in liver microsomes, respectively. Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes.

  18. Expanding role of microsomal enzyme induction, and its implications for clinical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.M.

    1980-05-01

    Microsomal enzyme induction, a term denoting the ability of the substrate for a microsomal enzyme to enhance the activity of that enzyme and frequently of related enzymes, has been demonstrated in a wide range of tissues, notably the liver, placenta, small intestinal muccosa, and peripheral lymphocytes. The major agents that cause microsomal enzyme induction are drugs and xenobiotics. Factors modulating the extent of enzyme induction by a given agent include age and nutrition, and wide species variations are encountered with different inducing agents. Markers for microsomal enzyme induction include determination of the plasma half-life for conveniently measured drugs, and the measurement of endogenous metabolites such as 6;-hydroxycortisol and D-glucaric acid in 24-h urine collections. While these are valuable for monitoring enzyme induction in healthy patients, they are altered in certain forms of liver disease, and results must then be interpreted with caution. Microsomal enzyme induction may interfere with reference values, particularly for membrane-bound enzymes, in otherwise healthy populations, and may play a role in metabolic bone disease, drug interactions, carcinogenesis, and hypertriglyceridemia. Drug therapy of the neonatal and congenital hyperbilirubinemias has been inspired by the mechanism of hepatic microsomal enzyme induction, and ''markers'' for enzyme induction can be used to monitor drug compliance. The activity of serum <-glutamyltransferase seems to be especially valuable for this purpose.

  19. Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases.

    Science.gov (United States)

    Rodriguez, R J; Acosta, D

    1997-06-01

    Ketoconazole (KT) has been reported to cause hepatotoxicity, which is probably not mediated through an immunoallergic mechanism. Although KT is extensively metabolized by hepatic microsomal enzymes, the nature, route of formation, and toxicity of suspected metabolites are largely unknown. Recent reports indicate that N-deacetyl ketoconazole (DAK) is a major initial metabolite in mice, which, like lipophilic 4-alkylpiperazines, is susceptible to successive oxidative attacks on the N-1 position producing ring-opened dialdehydes. The rate of formation of DAK from hepatic rat microsomal incubations of KT was determined by HPLC. The rate of disappearance for KT was almost equal to the rate of DAK formation: 5.96 and 5.88 microM/hr, respectively. Also, the potential bioactivation of DAK was evaluated by measuring substrate activity of DAK with purified pig liver flavin-containing monooxygenase (FMO) and rat liver microsomes. Activity was measured by following DAK-dependent oxygen uptake polarographically at 37 degrees C in pyrophosphate buffer (pH 8.8) containing the glucose-6-phosphate NADPH-generating system. The K(M)'s of DAK were 34.6 and 77.4 microM for the purified FMO and rat microsomal FMO, respectively. Lastly, DAK was found to be metabolized by an NADPH-dependent rat liver microsomal monooxygenases at pH 8.8 to two metabolites as determined by HPLC. Heat inactivation of rat liver microsomal FMO abolished the formation of these metabolites from DAK. SKF-525A and anti-rat NADPH cytochrome P450 reductase did not inhibit this reaction. These results suggest that deacetylation of KT yields a major product, DAK, for further metabolism by microsomal monooxygenases that seem to be FMO-related.

  20. Xyloglucan galactosyl- and fucosyltransferase activity from pea epicotyl microsomes

    International Nuclear Information System (INIS)

    Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1 propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs

  1. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J. Shawn; Okoro, Emmanuel U.; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites

  2. Determination of microsomal CYP2A6 activity by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Lavhekar S

    2007-01-01

    Full Text Available Coumarin has been reported to be a reliable probe for the determination of human microsomal CYP2A6 activity. Coumarin is converted to 7-hydroxycoumarin by CYP2A6. A high pressure liquid chromatographic assay for the estimation of CYP2A6 activity in microsomes was evaluated. A RP C-18 Novapak Waters (15 cm x 3.9 mm, 5 µm column was used for the assay. The mobile phase composition was methanol : 1% glacial acetic acid (35:65 v/v (pH~3.1, with a flow rate of 0.6 ml/min, injection volume of 100 µl and detection at 320 nm. The retention times for coumarin and 7-hydroxycoumarin were 8.7 min and 5.3 min, respectively. The limit of detection (LOD was 0.05 µM, and the limit of quantitation (LOQ was 0.1 µM, for 7-hydroxycoumarin. The percent coefficient of variation associated with 7-hydroxycoumarin determination after duplicate estimation was found to be in the range 0.03 to 3.6% for buffer matrix and 0.1 to 6.5% for microsomal matrix. The mean rate of 7-hydroxycoumarin formation in guinea pig liver microsomes was 0.084 nmol/min/nmol P450. Coumarin 7-hydroxylase activity was absent in rat liver microsomes. No interference was observed from incubation mixture components.

  3. Investigation of the swelling behavior of cationic exchange resins saturated with Na{sup +} ions in a C{sub 3}S paste

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 place Jean Millier, 92084 Paris La Défense (France); Nonat, A. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2015-03-15

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. Spent products are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na{sup +} form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C–S–H, and very heterogeneous microstructure with zones of high porosity.

  4. Interaction between Na-type smectite and Fe{sup 2+} ions. Na{sup +}/Fe{sup 2+} ion exchange in the interlayer space of smectite

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Tomoko [ITC, Tokyo (Japan); Oda, Harue; Shibata, Masahiro; Kamei, Gento

    1998-02-01

    Adsorption-desorption tests for Fe{sup 2+} ions versus Na-type smectite were carried out in the solution under the controlled atmosphere (O{sub 2} < 0.1 ppm, CO{sub 2} < 2 ppm) in order to elucidate the interaction between bentonite and iron containers for underground waste disposal. Smectite after the adsorption test was subjected to the X-ray diffraction and X-ray photoelectron spectroscopy to study the Fe{sup 2+} adsorption site. As a result, the interaction between Fe{sup 2+} and smectite was shown to be reversible ion exchange between Na{sup +} and Fe{sup 2+} in the interlayer space of smectite. The ion exchange distribution coefficient was found to be log K = 1.08 {+-} 0.07 and 0.66 {+-} 0.19 for the ionic strength of 0.05 and 0.0016, respectively. (H. Baba)

  5. Changes induced by gamma radiation in microsomal membranes of storage of garlic

    International Nuclear Information System (INIS)

    This study evaluates the effects of the radio inhibition process on garlic bulbs in terms of phase properties of microsomal membranes and their lipid and fatty acid composition. Garlic bulbs were irradiated with an average dose of 60 Gy of 60Co gamma rays 30-40 days after harvest. The treatment was carried out in the facilities of the National Atomic Energy Commission (CNEA). Rough and smooth microsomal membranes were isolated by ultracentrifugation from tissues of irradiated and non-irradiated storage leaves. Wide angle X-ray diffractograms of both fractions were recorded along 270 days of storage. Lipids were separated by thin layer chromatography. The fatty acid composition of major lipid fractions was studied by gas-liquid chromatography. The diffractograms featured peaks at Bragg spacing of 4.15 Armstrong and 3.75 Armstrong, revealing the presence of a gel (crystalline) phase, while the characteristic peak of the liquid-crystalline phase (4.6 Armstrong) was not observed in both sorts of membranes. Irradiation was found to bring about modifications in the intensity of 4.15 Armstrong and 3.75 Armstrong peaks from smooth microsomal membranes, but not in the behaviour along the studied period. Data from the rough microsomal fraction were erratic. Parallel to these changes, radiation induced significant modifications in the level of smooth microsomal membrane triacylglycerols in relation to phospholipids and their fatty acids. These findings indicate that the storage leaf tissues of garlic are radiosensitive both in terms of physical and chemical properties of their microsomal membranes. From the practical point of view, these results could be the basis for the development of techniques to be applied to storage garlic to evaluate if it was irradiated. (author)

  6. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    The cytotoxicity of MEIC chemicals Nos, 11-30 was evaluated by determination of neutral red uptake in Balb/c 3T3 mouse fibroblasts with and without the addition of a microsomal activation mixture. The use of microsomes significantly decreased the cytotoxicity of malathion, 2,4-dichlorophenoxyacetic...... acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations in...... other studies on microsomal modulation of the cytotoxicity of the test substances. Moderate to good correlations were found between the cytotoxicity data and rodent lethality data, and the addition of microsomes slightly improved the in vitro/in vivo concordance. The evidence to support the relevance of...

  7. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.

    Science.gov (United States)

    Hu, Yongbo; Unwalla, Ray; Denny, R Aldrin; Bikker, Jack; Di, Li; Humblet, Christine

    2010-01-01

    High throughput microsomal stability assays have been widely implemented in drug discovery and many companies have accumulated experimental measurements for thousands of compounds. Such datasets have been used to develop in silico models to predict metabolic stability and guide the selection of promising candidates for synthesis. This approach has proven most effective when selecting compounds from proposed virtual libraries prior to synthesis. However, these models are not easily interpretable at the structural level, and thus provide little insight to guide traditional synthetic efforts. We have developed global classification models of rat, mouse and human liver microsomal stability using in-house data. These models were built with FCFP_6 fingerprints using a Naïve Bayesian classifier within Pipeline Pilot. The test sets were correctly classified as stable or unstable with satisfying accuracies of 78, 77 and 75% for rat, human and mouse models, respectively. The prediction confidence was assigned using the Bayesian score to assess the applicability of the models. Using the resulting models, we developed a novel data mining strategy to identify structural features associated with good and bad microsomal stability. We also used this approach to identify structural features which are good for one species but bad for another. With these findings, the structure-metabolism relationships are likely to be understood faster and earlier in drug discovery.

  8. Comparative azo reductase activity of red azo dyes through caecal and hepatic microsomal fraction in rats.

    Science.gov (United States)

    Singh, S; Das, M; Khanna, S K

    1997-09-01

    In order to study the rate of formation of toxic aromatic amines, anaerobic reduction of four red azo dyes viz. amaranth, carmoisine, fast Red E and ponceau 4R was investigated by incubating caecal content and hepatic microsomal fraction of rats with 37.5 microM concentration of dyes in sodium phosphate buffer pH 7.4 using NADPH generating system, glucose oxidase system and nitrogen as the gaseous phase. Caecal suspension exhibited higher azo reductase activity than that of hepatic microsomal fraction using any of the 4 azo dyes. Caecal microbes showed maximal azo reductase activity when ponceau 4R was used as a substrate followed by fast Red E and carmoisine, while with amaranth the activity was minimum. Similarly ponceau 4 R exhibited maximum hepatic microsomal azo reductase activity followed by fast Red E and carmoisine whereas, amaranth had minimum activity. Caecal flora possessed almost 17 fold higher degradative capability of ponceau 4 R and fast Red E colourants than the hepatic microsomal fraction. The higher reductive ability through caecal flora for ponceau 4R and fast Red E signifies the formation of more aromatic amines which may be re-absorbed through the intestine to be either eliminated through urine as conjugates or retained in the target tissues to elicit toxic effects.

  9. Isolation and structural elucidation of tiamulin metabolites formed in liver microsomes of pigs

    DEFF Research Database (Denmark)

    Lykkeberg, Anne Kruse; Cornett, Claus; Halling-Sørensen, Bent;

    2006-01-01

    Although the antimicrobial tiamulin is extensively metabolized in pigs, the metabolism is not well investigated. In this work the NADPH dependent metabolism of tiamulin in liver microsomes from pigs has been studied. The tiamulin metabolites formed in the incubations were analysed using LC-MS, and...

  10. Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes.

    Science.gov (United States)

    Miyazawa, Mitsuo; Marumoto, Shinsuke; Takahashi, Toshiyuki; Nakahashi, Hiroshi; Haigou, Risa; Nakanishi, Kyousuke

    2011-01-01

    The in vitro metabolism of (+)-(1S,3S,4R) and (-)-(1R,3R,4S)-menthol enantiomers was examined by incubation with human liver microsomes, and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry (GC-MS). The (+)- and (-)-menthols were found to be oxidized to the respective (+)-(1S,3S,4S)- and (-)-(1R,3R,4R)-trans-p-menthane-3,8-diol derivatives by human liver microsomal P450 enzymes. Cytochrome P450 (CYP) 2A6 was determined to be the major enzyme involved in the hydroxylation of (+)- and (-)-menthols by human liver microsomes on the basis of the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (+)- and (-)-menthols. Second, oxidation of (+)- and (-)-menthols was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, (+)- and (-)-menthol activities were found to correlate with contents of CYP2A6 in liver microsomes of 9 human samples. PMID:21343660

  11. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    Science.gov (United States)

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  12. Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS

    OpenAIRE

    Bajrami, Besnik; Krishnan, Sadagopan; Rusling, James F.

    2008-01-01

    Rat liver microsomes attached to nanoparticles were used for LC-MS studies of CYP3A and 2E1 enzymes in metabolism of N-nitroso compounds. Using these biocolloids, turnover rates were measured within 2 min. Inhibitor IC50 values for ketoconazole (KET) and 4-methylpyrazole (4-MEP) were estimated.

  13. Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS

    Science.gov (United States)

    Bajrami, Besnik; Krishnan, Sadagopan; Rusling, James F.

    2012-01-01

    Rat liver microsomes attached to nanoparticles were used for LC-MS studies of CYP3A and 2E1 enzymes in metabolism of N-nitroso compounds. Using these biocolloids, turnover rates were measured within 2 min. Inhibitor IC50 values for ketoconazole (KET) and 4-methylpyrazole (4-MEP) were estimated. PMID:19356087

  14. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  15. Biosynthesis of intestinal microvillar proteins. Processing of aminopeptidase N by microsomal membranes

    DEFF Research Database (Denmark)

    Danielsen, E M; Norén, Ove; Sjöström, H

    1983-01-01

    The biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane-bound rat......The biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane......-bound rather than a soluble form, indicating that synthesis of the enzyme takes place on ribosomes attached to the rough endoplasmic reticulum. The microsomal fractions process the Mr-115 000 polypeptide, which is the primary translation product of aminopeptidase N, to a polypeptide of Mr 140 000...... of microsomal fractions was found to be similar to that on one of the forms of the enzyme obtained from tunicamycin-treated organ-cultured intestinal explants....

  16. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo.

    Science.gov (United States)

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-12-04

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines.

  17. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  18. CYP3A4 mediated in vitro metabolism of vinflunine in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping ZHAO; Jiao ZHONG; Xiao-quan LIU; Guang-ji WANG

    2007-01-01

    Aim: To study the metabolism of vinflunine and the effects of selective cyto-chrome P-450 (CYP450) inhibitors on the metabolism of vinflunine in human liver microsomes. Methods: Individual selective CYP450 inhibitors were used to inves-tigate their effects on the metabolism of vinflunine and the principal CYP450 isoform involved in the formation of metabolites M1 and M2 in human liver microsomes.Results: Vinflunine was rapidly metabolized to 2 metabolites: M1 and M2 in human liver microsomes. M1 and M2 were tentatively presumed to be the N-oxide metabo-lite or hydroxylated metabolite and epoxide metabolite of vinflunine, respectively. Ketoconazole uncompetitively inhibited the formation of M1, and competitively inhibited the formation of M2, while α-naphthoflavone, sulfaphenazole, diethyl dithiocarbamate, tranylcypromine and quinidine had little or no inhibitory effect on the formation of M1 and M2. Conclusion: Vinflunine is rapidly metabolized in human liver microsomes, and CYP3A4 is the major human CYP450 involved in the metabolism of vinflunine.

  19. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    Science.gov (United States)

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species. PMID:27468999

  20. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    The authors have determined the ontogeny of vitamin D3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3H-vitamin D3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl2. Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D3 (250HD3) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D3 25-hydroxylase

  1. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    Science.gov (United States)

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  2. HNF-1B specifically regulates the transcription of the {gamma}a-subunit of the Na{sup +}/K{sup +}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Ferre, Silvia [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands); Veenstra, Gert Jan C. [Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen (Netherlands); Bouwmeester, Rianne; Hoenderop, Joost G.J. [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands); Bindels, Rene J.M., E-mail: r.bindels@fysiol.umcn.nl [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands)

    2011-01-07

    Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified in patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg{sup 2

  3. Activation of K{sup +} channels and Na{sup +}/K{sup +} ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Fiorim, Jonaina, E-mail: nanafiorim@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Ribeiro Júnior, Rogério Faustino, E-mail: faustino43@oi.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Azevedo, Bruna Fernades, E-mail: brunafernandes.azevedo@gmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Padilha, Alessandra Simão, E-mail: ale_spadilha@yahoo.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Stefanon, Ivanita, E-mail: ivanita@pq.cnpq.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Alonso, Maria Jesus, E-mail: mariajesus.alonso@urjc.es [Departamento de Ciencias de la Salud III, Universidad Rey Juan Carlos, Alcorcón (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPaz) (Spain); Vassallo, Dalton Valentim, E-mail: daltonv2@terra.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil)

    2012-07-01

    Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K{sup +} channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K{sup +} channels and Na{sup +}/K{sup +}-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O{sub 2}{sup −} production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K{sup +}-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K{sup +}-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K{sup +} channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress. -- Highlights: ► Increased free radicals production ► Increased Na{sup +}/K{sup +} ATPase activity ► Promotes activation of the K{sup +} channels and reduced vascular reactivity ► These effects preserve endothelial function against oxidative

  4. Diffusion of Tritiated Water (HTO) and {sup 22}Na{sup +}-Ions through Non-Degraded Hardened Cement Pastes - II. Modelling Results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2002-12-01

    In this report, the procedure and the results of an inverse modelling study on the through-diffusion of tritiated water (HTO) and {sup 2}2Na{sup +}-ions are presented using high-porous hardened cement pastes with a water/cement ratio of 1.3 in the first stage of the cement degradation. For the analysis two alternative models were applied: 1) a diffusion model where a possible sorption of the tracer was entirely neglected, and 2) a diffusion model with linear sorption. The analysis of the through-diffusion phase allowed extracting values for the effective diffusion coefficient (D{sub e}) and the rock-capacity factor ({alpha}). Both models could fit the breakthrough curves equally well, and also mass-balance considerations did not allow to clearly preferring one of the two competing models to the other. But blind-predictions for tracer out-diffusion using the best-fit parameter values deduced from analysing the former through-diffusion phase gave a clear indication that linear sorption had to be included in the diffusion model. The extracted K{sub d} values for HTO are in excellent agreement with values from batch sorption experiments and are of the order of 0.8. 10{sup -3} m{sup 3}/kg. Those for {sup 2}2Na{sup +} are of the order of 1.0. 10{sup -3} m{sup 3}/kg and are by a factor of two larger than values from batch sorption experiments. The values for the effective diffusion coefficients for HTO are of the order of (2-3).10{sup -1}0 m{sup 2}/s, and those for sodium are roughly by a factor of two smaller than values for HTO. On the one hand, the observed tracer uptake could only partially be addressed to isotope exchange; the most obvious process which could account for the remaining part of the uptaken tracer mass is diffusion into a second type of porosity, the dead-end pores. On the other hand, the results and conclusions drawn are encouraging for future investigations; therefore no major deficiency concerning the applied equipment and the modelling methodology

  5. In vitro metabolism of [14C]-toluene by human and rat liver microsomes and liver slices

    International Nuclear Information System (INIS)

    Toluene metabolites produced by liver microsomes from six human donors included benzylalcohol (Balc), benzaldehyde (Bald) and benzoic acid (Bacid). Microsomes from only one human donor metabolized toluene to p-cresol and o-cresol. Human liver microsomes also metabolized Balc to Bald. Balc metabolism required NADPH, was inhibited by carbon monoxide, and was decreased at a buffer pH of 10. Balc metabolism was not inhibited by ADP-ribose or sodium azide. These results suggest that cytochrome P450 is responsible for the in vitro metabolism of Balc by human liver microsomes. Toluene metabolites formed by human liver slices and released into the incubation media included hippuric acid, and Bacid. Cresols or cresol-conjugates were not detected in liver slice incubation media from any human donor. Toluene metabolism by human liver was compared to metabolism by comparable liver preparations from male Fischer F344 rats. Rates of toluene metabolism by human liver microsomes and liver slices were 9-fold and 1.3-fold greater than for rat liver, respectively. Covalent binding of toluene to human liver microsomes and liver slices was 21-fold and 4-fold greater than for comparable rat liver preparations. Covalent binding of toluene to human microsomes required NADPH, was significantly decreased by coincubation with 4 mM cysteine or 4 mM glutathione, and radioactivity associated with microsomes was decreased by subsequent digestion of microsomes with protease. These results suggest that toluene metabolism and covalent binding of toluene are underestimated if the male Fischer 344 rat is used as a model for human toluene metabolism

  6. A Toxoplasma gondii protein with homology to intracellular type Na{sup +}/H{sup +} exchangers is important for osmoregulation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Maria E.; Wicher, Sarah [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States); Pace, Douglas A. [Center for Tropical and Emerging Global Diseases and Department of Cellular Biology University of Georgia, Athens, GA 30602 (United States); Sullivan, Jack [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States); Moreno, Silvia N.J. [Center for Tropical and Emerging Global Diseases and Department of Cellular Biology University of Georgia, Athens, GA 30602 (United States); Arrizabalaga, Gustavo, E-mail: gustavo@uidaho.edu [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States)

    2011-06-10

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na{sup +}/H{sup +} exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca{sup 2+} concentration [Ca{sup 2+}]{sub i}, and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  7. Synthesis, conductivity behaviour and second-order nonlinear optics of partially substituted double KDP containing As{sup 5+} and Na{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Ennaceur, Nasreddine, E-mail: nennaceu@ens-cachan.fr [Laboratoire Physico-chimie de l' Etat Solide, Faculte des Sciences BP 1171, 3000 Sfax, Universite de Sfax (Tunisia); Laboratoire de Photonique Quantique Moleculaire, Institut d' Alembert-Ecole Normale Superieure, 94230 Cachan (France); Ledoux-Rak, Isabelle [Laboratoire de Photonique Quantique Moleculaire, Institut d' Alembert-Ecole Normale Superieure, 94230 Cachan (France); Mhiri, Tahar [Laboratoire Physico-chimie de l' Etat Solide, Faculte des Sciences BP 1171, 3000 Sfax, Universite de Sfax (Tunisia)

    2013-02-01

    A new solid solution K{sub 0.95}Na{sub 0.05}H{sub 2}(PO{sub 4}){sub 0.5}(AsO{sub 4}){sub 0.5} abbreviated (KNDAP) has been prepared by slow evaporation of an aqueous solution at room temperature. Its crystal structure which was solved by the direct method from single crystal X-ray diffraction data can give birth to two kinds of disorder. The first one is statistical or dynamical in the shortest O---H{sup Horizontal-Ellipsis }O hydrogen bond that can facilitate the migration of proton. As for the second kind, it is related to the effect of the substitution of Na{sup +} and As{sup 5+} in the same site occupancy as that of the K{sup +} and P{sup 5+}, respectively. This disorder could promote hard defects in the structure, which can enhance the physical properties, especially, the conductivity.

  8. Gender and Species-Mediated Differences in the In Vitro Metabolism of Triadimefon by Rodent Hepatic Microsomes

    Science.gov (United States)

    Understanding how metabolism kinetics differ between genders and species is important in developing informative pharmacokinetic models and accurately assessing risk. Metabolism of the conazole fungicide Triadimefon (TDN) was studied in hepatic microsomes of SD rats and CD-1 mice...

  9. Correlation of serum antithyroid microsomal antibody and autologous serum skin test in patients with chronic idiopathic urticaria

    OpenAIRE

    Snehal Balvant Lunge; Milind Borkar; Sushil Pande

    2015-01-01

    Background: About 25–45% of patients of chronic urticaria (CU) have been stated to have histamine releasing autoantibodies in their blood. The term autoimmune urticaria is increasingly being accepted for this subgroup of patients. Review of the literature suggests high autologous serum skin test (ASST) positivity and presence of antithyroid microsomal antibodies in patients with autoimmune urticaria. Aims: To study prevalence of ASST positivity and antithyroid microsomal antibodies in chronic...

  10. 31P-NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver

    NARCIS (Netherlands)

    Kruijff, B. de; Rietveld, A.; Cullis, P.R.

    1980-01-01

    1. 1. The 36.4 and 81 MHz 31P-NMR spectra of isolated rat liver microsomes, rat liver slices and perfused rat liver have been recorded in the 4–40°C temperature range. 2. 2. In isolated microsomes at 37°C the majority of the phospholipids undergo isotropic motion, whereas at 4°C most of the phospho

  11. Liver microsomal drug-metabolizing enzyme activity: enhancement by blockade of degradative processes in promethazine-treated rats.

    OpenAIRE

    Fernández, G.; Villarruel, M. C.; Bernacchi, A.; de Castro, C. R.; Castro, J.A.

    1981-01-01

    Daily injection of promethazine over 4 days significantly increased the liver cytochrome P-450 content and ethyl morphine N-demethylase activity. These increases were evident after the first dose and were prevented by puromycin or actinomycin D administration. Repeated administration of promethazine does not increase the liver's ability to incorporate [14]C DL-leucine in microsomes but slows down the decay of radioactivity in microsomes previously labelled with ([14C]-guanidino) arginine. Rep...

  12. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes.

    OpenAIRE

    Bloomer, J C; Woods, F R; Haddock, R E; Lennard, M S; Tucker, G T

    1992-01-01

    Paroxetine is a selective serotonin reuptake inhibitor possessing anti-depressant activity. Demethylenation of the methylenedioxy phenyl group is the initial step in its metabolism, the liberated carbon appearing in vitro as formate. A radioassay involving [14C-methylenedioxy] paroxetine was developed and used to examine the role of cytochrome P4502D6 in paroxetine metabolism by human liver microsomes. The rate of formate production was much higher in microsomes from an extensive metaboliser ...

  13. Flavin-containing monooxygenase-mediated metabolism of N-deacetyl ketoconazole by rat hepatic microsomes.

    Science.gov (United States)

    Rodriguez, R J; Proteau, P J; Marquez, B L; Hetherington, C L; Buckholz, C J; O'Connell, K L

    1999-08-01

    Although ketoconazole is extensively metabolized by hepatic microsomal enzymes, the route of formation and toxicity of suspected metabolites are largely unknown. Reports indicate that N-deacetyl ketoconazole (DAK) is a major initial metabolite in mice. DAK may be susceptible to successive oxidative attacks on the N-1 position by flavin-containing monooxygenases (FMO) producing potentially toxic metabolites. Previous laboratory findings have demonstrated that postnatal rat hepatic microsomes metabolize DAK by NADPH-dependent monooxygenases to two metabolites as determined by HPLC. Our current investigation evaluated DAK's metabolism in adult male and female rats and identified metabolites that may be responsible for ketoconazole's hepatotoxicity. DAK was extensively metabolized by rat liver microsomal monooxygenases at pH 8.8 in pyrophosphate buffer containing the glucose 6-phosphate NADPH-generating system to three metabolites as determined by HPLC. The initial metabolite of DAK was a secondary hydroxylamine, N-deacetyl-N-hydroxyketoconazole, which was confirmed by liquid chromatography/mass spectrometry and NMR spectroscopy. Extensive metabolism of DAK occurred at pH 8.8 in pyrophosphate buffer (female 29% and male 53% at 0.25 h; female 55% and male 57% at 0.5 h; and female 62% and male 66% at 1.0 h). Significantly less metabolism of DAK occurred at pH 7.4 in phosphate buffer (female 11%, male 17% at 0.25 h; female 20%, male 31% at 0.5 h; and female 27%, male 37% at 1 h). Heat inactivation of microsomal-FMO abolished the formation of these metabolites from DAK. SKF-525A did not inhibit this reaction. These results suggest that DAK appears to be extensively metabolized by adult FMO-mediated monooxygenation.

  14. Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Ohhira, Shuji; Watanabe, Masatomo; Matsui, Hisao [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, 321-0293, Tochigi (Japan)

    2003-03-01

    Tributyltin and triphenyltin are metabolized by cytochrome P-450 system enzymes, and their metabolic fate may contribute to the toxicity of the chemicals. In the current study, the in vitro metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes was investigated to elucidate the metabolic competence for these compounds in humans. The metabolic reaction using microsome-NADPH system that is usually conducted was not applicable to in vitro metabolism of organotins, especially triphenyltin. We therefore examined the effects of dithiothreitol (DTT), one of the antioxidants for sulfhydryl groups, to determine the in vitro metabolism of tributyltin and triphenyltin. As a result, the treatment with 0.1 mM DTT in vitro increased the activity of the microsomal monooxygenase system for metabolism of tributyltin as well as triphenyltin; the total yield of tributyltin and triphenyltin metabolites as tin increased, respectively, by approximately 1.8 and 8.9 times for rat, 2.1 and 1.2 times for hamster, and 1.6 and 1.5 times for human. It is suggested that the organotins directly inactivate cytochrome P-450 because of the interaction with critical sulfhydryl groups of the hemoprotein. We confirmed the utility of this in vitro metabolic system using DTT in the hepatic microsomes of phenobarbital (PB)-pretreated and untreated hamsters. Thus, the in vitro metabolic system described here was applied to a comparative study of the metabolism of organotins in rats, hamsters and humans. Tributyltin was metabolized more readily than triphenyltin in all the species. In humans, the in vitro metabolic pattern resembled that of hamsters, which were susceptible to in vivo triphenyltin toxicity because of incompetent metabolism. It is possible that the hamster is a qualitatively and quantitatively suitable animal model for exploring the influence of tributyltin and triphenyltin in humans. (orig.)

  15. Biosynthesis of rice seed alpha-amylase: proteolytic processing and glycosylation of precursor polypeptides by microsomes

    OpenAIRE

    1983-01-01

    Microsomes prepared from the rice seed scutellum were incubated in wheat germ extracts (S-100 fraction) to direct the synthesis of alpha- amylase, a secretory protein subject to proteolytic processing (cleavage of the N-terminal signal sequence) as well as glycosylation during its biosynthesis. The characterization and identification of the immunoprecipitable products synthesized were performed by SDS gel electrophoresis and subsequent fluorography. The molecular weight of the alpha-amylase s...

  16. Thyroxine, methimazole, and thyroid microsomal autoantibody titres in hypothyroid Hashimoto's thyroiditis.

    OpenAIRE

    Jansson, R.; Karlsson, A; Dahlberg, P A

    1985-01-01

    Ten hypothyroid patients with Hashimoto's thyroiditis were treated with methimazole 30 mg in addition to thyroxine 0.15 mg daily. Another 10 hypothyroid patients with Hashimoto's thyroiditis were given thyroxine 0.15 mg alone. After 22 weeks of treatment significant decreases in thyroid microsomal autoantibody titres were observed in both groups (p less than 0.01). There was no difference in the mean change in titre between the two groups. When the patients treated with methimazole were subse...

  17. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes.

    Science.gov (United States)

    Coleman, S; Linderman, R; Hodgson, E; Rose, R L

    2000-01-01

    Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (butachlor, and metolachlor are CYP3A4 and CYP2B6. PMID:11133395

  18. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals.

    Science.gov (United States)

    Boveris, A D; Galatro, A; Puntarulo, S

    2000-01-01

    The antioxidant ability of nitric oxide (NO) generated by a chemical donor and of commercially available antioxidant preparations was assayed. SNAP (S-Nitroso-N-acetylpenicilamine) was used as the NO donor, and Ginkgo biloba, wheat and alfalfa preparations were tested. Lipid peroxidation was assayed by EPR employing a reaction system consisting of rat liver microsomes, ADP, FeCl3, NADPH and POBN in phosphate buffer, pH=7.4. In vitro NO exposure decreased microsomal lipid peroxidation in a dose-dependent manner. The dose responsible for inhibiting the microsomal content of lipid radical adducts by 50% (LD50) for SNAP was 550 microM (NO generation rate 0.1 microM/min). The addition of 50 microM hemoglobin to the incubation media prevented NO effect on lipid peroxidation. The addition of an amount of the antioxidant preparations equivalent to the LD50 doses inhibited lipid peroxidation by 21, 15, and 33% for wheat, alfalfa, ginkgo biloba preparations respectively in the presence of 550 microM SNAP. We detected a decrease in the content of lipid radical adducts after simultaneous supplementation, although it was less than 50%, even when LD50 doses of the products were added. This suggests that NO and the natural antioxidants inhibit lipid peroxidation by a mechanism that has both common and non-shared features. PMID:15693283

  19. Rapid LC-MS Drug Metabolite Profiling Using Microsomal Enzyme Bioreactors in a Parallel Processing Format

    Science.gov (United States)

    Bajrami, Besnik; Zhao, Linlin; Schenkman, John B.; Rusling, James F.

    2009-01-01

    Silica nanoparticle bioreactors featuring thin films of enzymes and polyions were utilized in a novel high-throughput 96-well plate format for drug metabolism profiling. The utility of the approach was illustrated by investigating the metabolism of the drugs diclofenac (DCF), troglitazone (TGZ) and raloxifene, for which we observed known metabolic oxidation and bioconjugation pathways and turnover rates. A broad range of enzymes was included by utilizing human liver (HLM), rat liver (RLM) and bicistronic human-cyt P450 3A4 (bicis.-3A4) microsomes as enzyme sources. This parallel approach significantly shortens sample preparation steps compared to an earlier manual processing with nanoparticle bioreactors, allowing a range of significant enzyme reactions to be processed simultaneously. Enzyme turnover rates using the microsomal bioreactors were 2-3 fold larger compared to using conventional microsomal dispersions, most likely because of better accessibility of the enzymes. Ketoconazole (KET) and quinidine (QIN), substrates specific to cyt P450 3A enzymes, were used to demonstrate applicability to establish potentially toxic drug-drug interactions involving enzyme inhibition and acceleration. PMID:19904994

  20. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    Science.gov (United States)

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2012-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998

  1. Cytotoxic mechanisms of Zn{sup 2+} and Cd{sup 2+} involve Na{sup +}/H{sup +} exchanger (NHE) activation by ROS

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Evangelinos, Nikolaos [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koliakos, George [Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, P.O. Box 17034, 54124 Thessaloniki (Greece); Kaloyianni, Martha [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)]. E-mail: kaloyian@bio.auth.gr

    2006-07-20

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in {center_dot}O{sub 2} {sup -} production, with Cd to be more potent (216 {+-} 15%) than Zn (150 {+-} 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na{sup +}/H{sup +} exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on {center_dot}O{sub 2} {sup -} production was mediated via the interaction of metal ions with {alpha}{sub 1}- and {beta}-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi ({delta}pHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi ({delta}pHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O{sub 2} {sup -} production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-{gamma} receptors. In addition, differences between the two metals concerning NHE activation, O{sub 2} {sup -} production and interaction with adrenergic receptors were observed.

  2. Effects of quinolones on liver microsome cytochrome P450 in rats

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2012-11-01

    Full Text Available Objective  To study and compare the effects of fluoroquinolones (levofloxacin, gatifloxacin, moxifloxacin and pazufloxacin on the enzyme system of liver microsome cytochrome P450 in rat. Methods  Thirty male Wistar rats were equally assigned into five groups: control group, levofloxacin (LV group, gatifloxacin (GT group, moxifloxacin (MX group and pazufloxacin (PZ group. Each drug was consecutively administered by tail vein injection for 7 days in a dosage of 120 mg/(kg•d. Liver microsomes were prepared by differential centrifugation, the concentration of protein in the liver microsome was measured by Lowry method, the content and activity of cy tochrome P450 were detected by spectrophotometric determination, and the results were analyzed by one-way ANOVA. Results  Compared with control group, the weight of liver in MX group and GT group was significantly reduced (P 0.05. Assay of aminopyrine-N-demethylase activity showed that the difference in enzyme activity was statistically significant between the control group and groups LV, GT and MX (P < 0.01. Erythromycin-N-demethylase activity measurement revealed that the enzyme activity was lowered in GT group and slightly elevated in MX group, and the difference was statistically significant compared with that of control group (P < 0.01. Measurement of activity of rat liver microsomal CYP450 enzyme system subfamily showed that the BROD activity increased in LV, MX and PZ groups (P < 0.01, and slightly decreased in GT group as compared with control group (P < 0.05. The PROD activity increased in GT group, but decreased in PZ group (P < 0.01. The EROD activity increased in all the four groups (P < 0.01. Conclusions  The four fluoroquinolones have some effects on the enzyme system of liver microsome cytochrome P450 in rats, but the effects may be different (enhancement or attenuation of the enzymatic activity depending on the enzymes, and the extent of the decrease of effect is in the

  3. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Koeberle, Andreas; Northoff, Hinnak; Werz, Oliver

    2009-08-01

    Prostaglandin E(2) (PGE(2)) plays a crucial role in the apparent link between tumor growth and chronic inflammation. Cyclooxygenase (COX)-2 and microsomal PGE(2) synthase-1, which are overexpressed in many cancers, are functionally coupled and thus produce massive PGE(2) in various tumors. Curcumin, a polyphenolic beta-diketone from tumeric with anti-carcinogenic and anti-inflammatory activities, was shown to suppress PGE(2) formation and to block the expression of COX-2 and of microsomal PGE(2) synthase-1. Here, we identified microsomal PGE(2) synthase-1 as a molecular target of curcumin and we show that inhibition of microsomal PGE(2) synthase-1 activity is the predominant mechanism of curcumin to suppress PGE(2) biosynthesis. Curcumin reversibly inhibited the conversion of PGH(2) to PGE(2) by microsomal PGE(2) synthase-1 in microsomes of interleukin-1beta-stimulated A549 lung carcinoma cells with an IC(50) of 0.2 to 0.3 micromol/L. Closely related polyphenols (e.g., resveratrol, coniferyl alcohol, eugenol, rosmarinic acid) failed in this respect, and isolated ovine COX-1 and human recombinant COX-2 were not inhibited by curcumin up to 30 micromol/L. In lipopolysaccharide-stimulated human whole blood, curcumin inhibited COX-2-derived PGE(2) formation from endogenous or from exogenous arachidonic acid, whereas the concomitant formation of COX-2-mediated 6-keto PGF(1)alpha and COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid was suppressed only at significant higher concentrations. Based on the key function of PGE(2) in inflammation and carcinogenesis, inhibition of microsomal PGE(2) synthase-1 by curcumin provides a molecular basis for its anticarcinogenic and anti-inflammatory activities.

  4. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  5. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  7. Formation of 4'-carboxyl acid metabolite of imrecoxib by rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Hai-yan XU; Peng ZHANG; Ai-shen GONG; Yu-ming SUN; Feng-ming CHU; Zong-ru GUO; Da-fang ZHONG

    2006-01-01

    Aim:Imrecoxib is a novel and moderately selective COX-2 inhibitor.The aim of the present in vitro investigation was to study the formation of the major metabolite 4'-carboxylic acid imrecoxib (M2) and identify the enzyrne(s) involved in the reaction.Methods:The formation of M2 was studied in rat liver cytosol in the absence or presence of liver microsomes.The formed metabolite was identified and quantified by LC/MSn.In addition,to characterize the cytochrome P450 (CYP) isozymes involved in M2 formation,the effects of typical CYP inhibitors (such as ketoconazle,quinine,α-naphthoflavone, methylpyrazole,and cimetidine) on the formation rate of M2 were investigated.Results:The formation of M2 from 4'hydroxymethyl imrecoxib (M4) was completely dependent on rat liver microsomes and NADPH.Enzyme kinetic studies demonstrated that the formation rate of M2 conformed to monophasic Michaelis-Menten kinetics.Additional experiments showed that the formation of M2 was induced significantly by dexamethasone and lowered by ketoconazole strongly and concentration-dependently.By comparison.other CYP inhibitors.such as α-naphthoflavone,cimetidine,quinine,and methylpyrazole had no inhibitory effects on this metabolic pathway.Conclusion:These biotransformation studies of M4 and imrecoxib in rat liver at the subcellular level showed that the formation of M2 occurs in rat liver microsomes and is NADPH-dependent.The reaction was mainly catalyzed by CYP 3A in untreated rats and in dexamethasone-induced rats.Other CYP,such as CYP 1A,2C,2D,and 2E,seem unlikely to participate in this metabolic pathway.

  8. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-10-01

    Full Text Available Wenqin Liu,1,2,* Jian Shi,1,2,* Lijun Zhu,2 Lingna Dong,1 Feifei Luo,2 Min Zhao,2 Ying Wang,2 Ming Hu,2,3 Linlin Lu,2 Zhongqiu Liu1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 3Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA *These authors contributed equally to this work Abstract: Oxymatrine (OMT is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT, and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs and human intestinal microsomes (HIMs and the cytochrome P450 (CYP isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT

  9. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeong

    2010-09-01

    Full Text Available Eupatilin and jaceosidin are bioactive flavones found in the medicinal herbs of the genus Artemisia. These bioactive flavones exhibit various antioxidant, antiinflammatory, antiallergic, and antitumor activities. The inhibitory potentials of eupatilin and jaceosidin on the activities of seven major human cytochrome P450 enzymes in human liver microsomes were investigated using a cocktail probe assay. Eupatilin and jaceosidin potently inhibited CYP1A2-catalyzed phenacetin O-deethylation with 50% inhibitory concentration (IC50 values of 9.4 mM and 5.3 mM, respectively, and CYP2C9-catalyzed diclofenac 4-hydroxylation with IC50 values of 4.1 mM and 10.2 mM, respectively. Eupatilin and jaceosidin were also found to moderately inhibit CYP2C19-catalyzed [S]-mephenytoin 4¢-hydroxylation, CYP2D6-catalyzed bufuralol 1¢-hydroxylation, and CYP2C8-catalyzed amodiaquine N-deethylation. Kinetic analysis of human liver microsomes showed that eupatilin is a competitive inhibitor of CYP1A2 with a Ki value of 2.3 mM and a mixed-type inhibitor of CYP2C9 with a Ki value of 1.6 mM. Jaceosidin was shown to be a competitive inhibitor of CYP1A2 with a Ki value of 3.8 mM and a mixed-type inhibitor of CYP2C9 with Ki value of 6.4 mM in human liver microsomes. These in vitro results suggest that eupatilin and jaceosidin should be further examined for potential pharmacokinetic drug interactions in vivo due to inhibition of CYP1A2 and CYP2C9.

  10. Production of gaseous radiotracers CH{sub 3}I and I{sub 2} through Na{sup 123}I salt

    Energy Technology Data Exchange (ETDEWEB)

    Candeiro, R.E.M., E-mail: ricardocandeiro@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIFOR/CNEN-CE), Fortaleza, CE (Brazil). Distrito de Fortaleza; Brandao, L.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pereira, W.P. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2011-07-01

    The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with {sup 123}I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH{sub 3}I, and molecular iodine, I{sub 2}, are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 1{sup 23I}. The production of gas I{sub 2} was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO{sub 3}) and the CH{sub 3}I was used, the salt of NaI and the reagent (CH{sub 3}){sub 2}SO{sub 4}. The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I{sub 2}, and in syntheses of CH{sub 3}I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na{sup 123}I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)' positioned in the reaction bottle. (author)

  11. Temporal evolution of {sup 137}Cs{sup +}, K{sup +} and Na{sup +} in fruits of South American tropical species

    Energy Technology Data Exchange (ETDEWEB)

    Cid, A.S. [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Anjos, R.M., E-mail: meigikos@if.uff.br [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Zamboni, C.B. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN), Av. Lineu Prestes 2242, Cidade Universitária, 05508-000, Paulo, SP (Brazil); Velasco, H. [GEA, Instituto de Matemática Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas. Ej. de los Andes 950, D5700HHW San Luis (Argentina); Macario, K. [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Rizzotto, M. [GEA, Instituto de Matemática Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas. Ej. de los Andes 950, D5700HHW San Luis (Argentina); and others

    2013-02-01

    Concentrations of {sup 137}Cs, K and Na in fruits of lemon (Citrus limon B.) and of K and Na in fruits of coconut (Cocos nucifera L.) trees were measured by both gamma spectrometry and neutron activation analysis, with the aim to understand the behaviour of monovalent inorganic cations in tropical plants as well as the plant ability to store these elements. Similar amounts of K{sup +} were incorporated by lemon and coconut trees during the growth and ripening processes of its fruits. The K concentration decreased exponentially during the growth of lemons and coconuts, ranging from 13 to 25 g kg{sup −1} dry weight. The incorporation of Na{sup +} differed considerably between the plant species studied. The Na concentration increased linearly during the lemon growth period (0.04 to 0.70 g kg{sup −1} d.w.) and decreased exponentially during the coconut growth period (1.4 to 0.5 g kg{sup −1} d.w.). Even though radiocaesium is not an essential element to plants, our results have shown that {sup 137}Cs incorporation to vegetable tissues is positively correlated to K distribution within the studied tropical plant species, suggesting that the two elements might be assimilated in a similar way, going through the biological cycle together. A mathematical model was developed from the experimental data allowing simulating the incorporation process of monovalent inorganic cations by the fruits of such tropical species. The agreement between the theoretical approach and the experimental values is satisfactory along fruit development. - Highlights: ► Concentrations of {sup 137}Cs, K and Na in fruits of lemon (Citrus limon B.) are presented. ► Concentrations of K and Na in fruits of coconut (Cocos nucifera L.) are also showed. ► We investigated the use of {sup 137}Cs as a tracer for the plant absorption of macronutrients. ► A model was developed to simulate the temporal evolution of {sup 137}Cs, K and Na by fruits. ► This model exhibited close agreement with our

  12. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na{sup +}/K{sup +}-ATPase localization

    Energy Technology Data Exchange (ETDEWEB)

    Bernabò, Ilaria; Bonacci, Antonella; Coscarelli, Francesca [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy); Tripepi, Manuela [University of Pennsylvania, Department of Biology, 201 Leidy Laboratories, Philadelphia, PA 19104 (United States); Brunelli, Elvira, E-mail: brunelli@unical.it [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy)

    2013-05-15

    Freshwater habitats are globally threatened by human-induced secondary salinization. Amphibians are generally poorly adapted to survive in saline environments. We experimentally investigated the effects of chronic exposure to various salinities (5%, 10%, 15%, 20%, 25%, 30% and 35% seawater, SW) on survival, larval growth and metamorphosis of tadpoles from two amphibian populations belonging to two species: the green toad Bufo balearicus and the common toad Bufo bufo. In addition, gill morphology of tadpoles of both species after acute exposure to hypertonic conditions (20%, 25%, and 30% SW) was examined by light and electron microscopy. Tadpoles experienced 100% mortality above 20% SW in B. balearicus while above 15% SW in B. bufo. We detected also sublethal effects of salinity stress on growth and metamorphosis. B. bufo cannot withstand chronic exposure to salinity above 5% SW, tadpoles grew slower and were significantly smaller than those in control at metamorphosis. B. balearicus tolerated salinity up to 20% SW without apparent effects during larval development, but starting from 15% SW tadpoles metamorphosed later and at a smaller size compared with control. We also revealed a negative relation between increasing salt concentration and gill integrity. The main modifications were increased mucous secretion, detachment of external layer, alteration of epithelial surface, degeneration phenomena, appearance of residual bodies, and macrophage immigration. These morphological alterations of gill epithelium can interfere with respiratory function and both osmotic and acid-base regulation. Significant variations in branchial Na{sup +}/K{sup +}-ATPase activity were also observed between two species; moreover an increase in enzyme activity was evident in response to SW exposure. Epithelial responses to increasing salt concentration were different in the populations belonging to two species: the intensity of histological and ultrastructural pathology in B. bufo was

  13. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  14. Mechanism of activation of mouse liver microsomal glutations S—transferase by paracetamol treatment

    Institute of Scientific and Technical Information of China (English)

    ZhenY; LouYJ

    2002-01-01

    Microsomal glutathion S-transferase(mGST) is one of the important detoxifcation enzymes in vivo,its modifying activation by drugs has been paid more attention to in pertinent field recently.This study was to explore the influence of paracetamol(Par) on mGST and its possible mechanism in vivo,and to further reveal the biological significance.Par is metabolized to N-acetyl-p-benzoquinone imine(NAPQI) by CYP2E1 and mGST is activated by sulfhydryl modification.

  15. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  16. Determination of codeine and its metabolites in microsomal incubates by high-performance liquid chromatography.

    Science.gov (United States)

    Pawula, M; Shaw, P N; Barrett, D A

    1994-02-18

    A rapid and sensitive HPLC method has been developed for the determination of codeine, norcodeine and morphine in small volumes of a biological matrix, using a cyanopropyl column and a combination of coulometric and UV detection. The compounds were isolated using C18 solid-phase extraction cartridges prior to quantitative analysis. The limit of detection was 250 pg/ml for morphine and 5 ng/ml for both norcodeine and codeine. Recovery of each compound was greater than 90% and intra- and inter-assay precision was better than 10%. The method has been used to study the metabolism of codeine in microsomal incubations. PMID:8012553

  17. Differences in metabolite-mediated toxicity of tamoxifen in rodents versus humans elucidated with DNA/microsome electro-optical arrays and nanoreactors.

    Science.gov (United States)

    Zhao, Linlin; Krishnan, Sadagopan; Zhang, Yun; Schenkman, John B; Rusling, James F

    2009-02-01

    Tamoxifen, a therapeutic and chemopreventive breast cancer drug, was chosen as a model compound because of acknowledged species specific toxicity differences. Emerging approaches utilizing electro-optical arrays and nanoreactors based on DNA/microsome films were used to compare metabolite-mediated toxicity differences of tamoxifen in rodents versus humans. Hits triggered by liver enzyme metabolism were first provided by arrays utilizing a DNA damage end point. The arrays feature thin-film spots containing an electrochemiluminescent (ECL) ruthenium polymer ([Ru(bpy)(2)PVP(10)](2+); PVP, polyvinylpyridine), DNA, and liver microsomes. When DNA damage resulted from reactions with tamoxifen metabolites, it was detected by an increase in light from the oxidation of the damaged DNA by the ECL metallopolymer. The slope of ECL generation versus enzyme reaction time correlated with the rate of DNA damage. An approximate 2-fold greater ECL turnover rate was observed for spots with rat liver microsomes compared to that with human liver microsomes. These results were supported by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products using nanoreactors featuring analogous films on silica nanoparticles, allowing the direct measurement of the relative formation rate for alpha-(N(2)-deoxyguanosinyl)tamoxifen. We observed 2-5-fold more rapid formation rates for three major metabolites, i.e., alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and tamoxifen N-oxide, catalyzed by rat liver microsomes compared to human liver microsomes. Comparable formation rates were observed for N-desmethyl tamoxifen with rat and human liver microsomes. A better detoxifying capacity for human liver microsomes than rat liver microsomes was confirmed utilizing glucuronyltransferase in microsomes together with UDP-glucuronic acid. Taken together, lower genotoxicity and higher detoxication rates presented by human liver microsomes correlate with the lower risk of tamoxifen in

  18. [Mechanisms of the stimulating effect of brain antibodies on the Ca2 current in the neuron membrane].

    Science.gov (United States)

    Solntseva, E I; Pozdniakova, A L; Savich, V; Khorvat, I; Iankovich, B

    1987-11-01

    Antibodies against rat brain microsomes induce a 16 +/- 3% increase in the amplitude of Ca-current (ICa) in snail neurons. Ca-ions block ICa in dose-dependent and potential-dependent manner. Antibodies against microsomes decrease the effectiveness of ICa blockade by Ca-ions: a 85 +/- 10% increase in ICa is observed and I-V curve is normalized. It is suggested that an enhancing effect of antibodies on ICa and the elimination of blocking Ca-effect on ICa are connected with the weakening of divalent cations binding by the anionic groups of calcium channels. PMID:2445395

  19. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  20. Sulfation of p-nitrophenyl-N-acetyl-beta-D-galactosaminide with a microsomal fraction from cultured chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Habuchi, O.; Conrad, H.E.

    1985-10-25

    Chick embryo chondrocyte microsomes containing intact Golgi vesicles took up 3'-phosphoadenosine-5'-phospho(TVS)sulfate ((TVS)PAPS) in a time- and temperature-dependent, substrate-saturable manner. When (TVS)PAPS and p-nitrophenyl-N-acetyl-beta-D-galactosaminide (pNP-GalNAc) were added to the incubation in the absence of detergent, the microsomes catalyzed the transfer of sulfate from (TVS)PAPS to pNP-GalNAc to form pNP-GalNAc-6-TVSO4. The apparent Km values for PAPS in the uptake and the pNP-GalNAc sulfation reactions were 2 X 10(-7) and 2 X 10(-6) M, respectively. The sulfation of pNP-GalNAc by the microsomal preparation was inhibited by detergent. The microsomal fraction also catalyzed the transfer of sulfate from (TVS)PAPS to oligosaccharides prepared from chondroitin. However, in contrast to the sulfation of pNP-GalNAc, the rate of sulfation of these oligosaccharides was low in the absence of detergent and was markedly stimulated when detergent was added. Sulfation of pNP-GalNAc by the freeze-thawed microsomes was inhibited when the octasaccharide prepared from chondroitin was present in the reaction mixture. As the PAPS that had been internalized in the microsomal vesicles was consumed in the sulfation of pNP-GalNAc, more (TVS)PAPS was taken up and the sulfated pNP-GalNAc was released from the vesicles. These observations suggest that pNP-GalNAc may serve as a model membrane-permeable substrate for study of the 6-sulfo-transferase reaction involved in sulfation of chondroitin sulfate in intact Golgi vesicles.

  1. Omega-hydroxylation of phytanic acid in rat liver microsomes: implications for Refsum disease.

    Science.gov (United States)

    Komen, J C; Duran, M; Wanders, R J A

    2004-07-01

    The 3-methyl-branched fatty acid phytanic acid is degraded by the peroxisomal alpha-oxidation route because the 3-methyl group blocks beta-oxidation. In adult Refsum disease (ARD), peroxisomal alpha-oxidation is defective, which is caused by mutations in the gene coding for phytanoyl-CoA hydroxylase in the majority of ARD patients. As a consequence, phytanic acid accumulates in tissues and body fluids. This study focuses on an alternative route of phytanic acid degradation, omega-oxidation. The first step in omega-oxidation is hydroxylation at the omega-end of the fatty acid, catalyzed by a member of the cytochrome P450 multienzyme family. To study this first step, the formation of hydroxylated intermediates was studied in rat liver microsomes incubated with phytanic acid and NADPH. Two hydroxylated metabolites of phytanic acid were formed, omega- and (omega-1)-hydroxyphytanic acid (ratio of formation, 5:1). The formation of omega-hydroxyphytanic acid was NADPH dependent and inhibited by imidazole derivatives. These results indicate that phytanic acid undergoes omega-hydroxylation in rat liver microsomes and that an isoform of cytochrome P450 catalyzes the first step of phytanic acid omega-oxidation.

  2. Critical appraisal of 13C breath tests for microsomal liver function: aminopyrine revisited.

    Science.gov (United States)

    Pijls, Kirsten E; de Vries, Hanne; Nikkessen, Suzan; Bast, Aalt; Wodzig, Will K W H; Koek, Ger H

    2014-04-01

    As liver diseases are a major health problem and especially the incidence of metabolic liver diseases like non-alcoholic fatty liver disease (NAFLD) is rising, the demand for non-invasive tests is growing to replace liver biopsy. Non-invasive tests such as carbon-labelled breath tests can provide a valuable contribution to the evaluation of metabolic liver function. This review aims to critically appraise the value of the (13) C-labelled microsomal breath tests for the evaluation of metabolic liver function, and to discuss the role of cytochrome P450 enzymes in the metabolism of the different probe drugs, especially of aminopyrine. Although a number of different probe drugs have been used in breath tests, the perfect drug to assess the functional metabolic capacity of the liver has not been found. Data suggest that both the (13) C(2) -aminopyrine and the (13) C-methacetin breath test can play a role in assessing the capacity of the microsomal liver function and may be useful in the follow-up of patients with chronic liver diseases. Furthermore, CYP2C19 seems to be an important enzyme in the N-demethylation of aminopyrine, and polymorphisms in this gene may influence breath test values, which should be kept in mind when performing the (13) C(2) -aminopyrine breath test in clinical practice.

  3. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Science.gov (United States)

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  4. Synergistic Metabolic Toxicity Screening Using Microsome/DNA Electrochemiluminescent Arrays and Nanoreactors

    Science.gov (United States)

    Krishnan, Sadagopan; Hvastkovs, Eli G.; Bajrami, Besnik; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2012-01-01

    Platforms based on thin enzyme/DNA films were used in two-tier screening of chemicals for reactive metabolites capable of producing toxicity. Microsomes were used for the first time as sources of cytochrome (cyt) P450 enzymes in these devices. Initial rapid screening involved electrochemiluminescent (ECL) arrays featuring spots containing ruthenium poly(vinylpyridine), DNA, and rat liver microsomes or bicistronically expressed human cyt P450 2E1 (h2E1). Cyt P450 enzymes were activated via the NADPH/reductase cycle. When bioactivation of substrates in the films gives reactive metabolites, they are trapped by covalent attachment to DNA bases. The rate of increase in ECL with enzyme reaction time reflects relative DNA damage rates. “Toxic hits” uncovered by the array were studied in structural detail by using enzyme/DNA films on silica nanospheres as “nanoreactors” to provide nucleobase adducts from reactive metabolites. The utility of this synergistic approach was demonstrated by estimating relative DNA damage rates of three mutagenic N-nitroso compounds and styrene. Relative enzyme turnover rates for these compounds using ECL arrays and LC-UV-MS correlated well with TD50 values for liver tumor formation in rats. Combining ECL array and nanoreactor/LC–MS technologies has the potential for rapid, high-throughput, cost-effective screening for reactive metabolites and provides chemical structure information that is complementary to conventional toxicity bioassays. PMID:18563913

  5. Metabolism of arachidonic acid in hamster lung microsomes is not completely inhibited by aspirin and indomethacin

    Energy Technology Data Exchange (ETDEWEB)

    Uotila, P.; Paajanen, H.; Schalin, M.; Simberg, N.

    1983-10-01

    Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

  6. Simultaneous determination of cytochrome P450 1A, 2A and 3A activities in porcine liver microsomes.

    Science.gov (United States)

    Johansson, Monika; Tomankova, Jana; Li, Shengjie; Zamaratskaia, Galia

    2012-09-01

    The aim of this study was to develop a robust method for the simultaneous determination of the activities of three porcine CYP450 enzymes in hepatic microsomes. A cocktail consisting of three selective CYP450 probe substrates, 7-ethoxyresorufin (CYP1A), coumarin (CYP2A) and 7-benzyloxy-4-trifluoromethylcoumarin (BFC; CYP3A), was incubated with porcine liver microsomes. The presence of 7-ethoxyresorufin appears to significantly influence the kinetics of coumarin hydroxylation and BFC O-debenzylation. These results indicate that the use of 7-ethoxyresorufin in substrate cocktails together with coumarin and BFC should be avoided.

  7. Clearance and clearance inhibition of the HIV-1 protease inhibitors ritonavir and saquinavir in sandwich-cultured rat hepatocytes and rat microsomes

    NARCIS (Netherlands)

    Treijtel, N.; Eijkeren, J.C.H.v.; Nijmeijer, S.; Greef de - Sandt, I.C.J. van der; Freidig, A.P.

    2009-01-01

    The metabolism and active transport of ritonavir and saquinavir were studied using sandwich-cultured rat hepatoyctes and rat liver microsomes. For ritonavir four comparable metabolites were observed in the sandwich-culture and in microsomes. For saquinavir eight metabolites were observed in sandwich

  8. The relationship between microsomal enzyme induction and liver tumour formation : a study on the effects of xenobiotic and naturally occurring microsomal enzyme inducers on livers of male CF-1 mice

    NARCIS (Netherlands)

    Tennekes, H.A.

    1979-01-01

    The effects of naturally occurring microsomal enzyme inducers on important hepatocellular pathways for the metabolism of foreign compounds (xenobiotics) and also upon the incidence of liver tumours in CF-1 mice treated or not with 10 mg dieldrin.kg -1diet were inves

  9. Brain-specific interaction of a 91-kDa membrane-bound protein with the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1996-01-01

    in microsomal and synaptosomal fractions. Furthermore, the formation of cross-link complexes with membrane proteins appeared to be developmentally and regionally regulated in the brain and inhibited upon ATP hydrolysis. The data suggest the requirement of specific protein interactions for MPR 300...

  10. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  11. Absence of cross-reactivity to myeloperoxidase of anti-thyroid microsomal antibodies in patients with autoimmune thyroid diseases

    NARCIS (Netherlands)

    Freire, BA; Paula, ID; Paula, F; Kallenberg, GGM; Limburg, PC; Queluz, TT

    2001-01-01

    Background: Thyroperoxidase is the major antigen of the thyroid microsomal antibodies (TMA) detected in autoimmune thyroid diseases. Its amino acid sequence has 44% homology with myeloperoxidase (MPO), an enzyme present in the primary granules of neutrophils and one of the major antineutrophil cytop

  12. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus;

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...

  13. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT

    Science.gov (United States)

    Rainbow trout (Oncorhynchus mykiss) liver microsomes were used to study the rate of ring-hydroxylation of phenol PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultra...

  14. Oxidation process intensity in microsomal fraction of rat liver under conditions of different supplementation with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    O. V. Ketsa

    2014-02-01

    Full Text Available The effect of fat compositions with the varying ratio of polyunsaturated fatty acids (PUFAs of families ω-3 and ω-6 on oxidation process intensity in microsomal fraction of rat liver has been investigated. The aim of the study was to investigate the level of markers of oxidative modification of lipids and proteins in microsomal fraction of rat liver. Fat components in the experiment diets were presented by sunflower oil, soybean oil and fish oil. Rats were fed using one of the fillowing 5 diets for the period of 4 weeks: 1 AIN-93 diet with 7% sunflower oil and fish oil, with the inclusion of linoleic acid, eicosapentaenoic acid and docosahexaenoic acid in the ratio of ω-6:ω-3 – 7:1 (control diet; 2 AIN-93 diet with 7% soybean oil, with the inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1; 3 the diet containing only ω-6 PUFAs; 4 the diet containing only ω-3 PUFAs; 5 the diet without PUFAs. The fatty acid compositions of the diets were analysed by gas chromatography. We measured the primary and secondary lipoperoxidation products, proteins carbonyl derivatives and SH-groups of proteins. It was shown that inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1 or ω-6 PUFAs into the animal diet increased lipid peroxidation in microsomal fraction of the rat liver as compared with the control group. Only ω-6 PUFAs increased the oxidative modification of proteins in microsomal fraction of the rat liver as compared with the control rat group. High dose of ω-3 PUFAs – eicosapentaenoic acid and docosahexaenoic acid had no influence on free radical oxidation of lipids and proteins. Using the diet without PUFAs increased oxidation process intensity in microsomal fraction of rat liver. According to our study, ω-6 PUFAs increased the oxidative modification of lipids and proteins in microsomal fraction of the rat liver. ω-3 PUFAs, in particular, eicosapentaenoic acid and docosahexaenoic acid, increased lipid and

  15. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    Science.gov (United States)

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  16. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.

  17. Chiral metabolism of propafenone in rat hepatic microsomes treated with two inducers

    Institute of Scientific and Technical Information of China (English)

    Quan Zhou; Tong-Wei Yao; Su Zeng

    2001-01-01

    AIM: To study the influence of inducers of drug metabolism enzyme, β-naphthoflavone (BNF) and dexamethasone (DEX), on the stereoselective metabolism of propafenone in the rat hepatic microsomes. METHODS: Phase I metabolism of propafenone was studied using the microsomes induced by BNF and DEX and the non-induced microsome was used as the control. The enzymatic kinetics parameters of propafenone enantiomers were calculated by regress analysis of Eadie-Hofstee Plots.Propafenone enantiomer concentrations were assayed by a chiral HPLC. RESULTS: The metabolite of propafenone, N-desalkylpropafenone, was found after incubstion of propafenone with the rat hepatic microsomes induced by BNF and DEX. In these two groups, the stereoselectivity favoring R ( - ) isomer was observed in metabolism st Iow substrate concentrations of racemic propafenone, but lost the stereoselectivity st high substrate concentrations.However; in control group, no stereeselectivity was observed. The enzyme kinetic parameters were: ① Km.Control group: R( - ) 83 ± 6, S( + ) 94 ± 7; BNF group: R (-)105 ± 6, S( + )128 ± 14; DEX group: R( - ) 86± 11, S( + ) 118 ± 16; ② vmax. Control group: R( - ) 0.75 ± 0.16, S( + ) 0.72±0.07; BNF group: R( - )1.04± 0.15, S( + )1.07±14; DEX group: R( - ) 0.93 ± 0.06, S( + ) 1.04 ± 0.09; (③)Clint. Control group: R( - ) 8.9± 1.1, S( + ) 7.6±0.7; BNFgroup: R( - )9.9±0.9, S( + )8.3±0.7; DEX group: R( - )10.9± 0.8, S( + ) 8.9 ± 0.9. The enantiomeric differences in Km and Clint were both significant, but not in Vmax, in BNF and DEX group. Whereas enantiomeric differences in three parameters were all insignificant in control group.Furthermore, Km and Umax were both significantly less than those in BNF or DEX group. In the rat liver microsorne induced by DEX, nimodipine (NDP) decreased the stereoselectivity in propafenone metabolism at Iow substrate concentration. The inhibition of NDP on the metabolism of propafenone was stereo.selective with R

  18. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis).

    Science.gov (United States)

    Stymne, S; Stobart, A K

    1986-12-01

    The developing seeds of Borago officinalis (common borage) accumulate a triacylglycerol oil that is relatively rich in the uncommon fatty acid gamma-linolenate (octadec-6,9,12-trienoic acid). Incubation of developing, whole, cotyledons with [14C]oleate and [14C]linoleate showed that the gamma-linolenate was synthesized by the sequential desaturation of oleate----linoleate----gamma-linolenate. Microsomal membrane preparations from the developing cotyledons contained an active delta 6-desaturase enzyme that catalysed the conversion of linoleate into gamma-linolenate. Experiments were designed to manipulate the [14C]linoleate content of the microsomal phosphatidylcholine. The [14C]linoleoyl phosphatidylcholine labelled in situ was converted into gamma-linolenoyl phosphatidylcholine in the presence of NADH. The substrate for the delta 6-desaturase in borage was, therefore, the linoleate in the complex microsomal lipid phosphatidylcholine, rather than, as in animals, the acyl-CoA. This was further confirmed in experiments that compared the specific radioactivity of the gamma-linolenate, in acyl-CoA and phosphatidylcholine, that was synthesized when [14C]linoleoyl-CoA was incubated with microsomal membranes, NADH and non-radioactive gamma-linolenoyl-CoA. The delta 6-desaturase was positionally specific and only utilized the linoleate in position 2 of sn-phosphatidylcholine. Analysis of the positional distribution of fatty acids in the endogenous microsomal sn-phosphatidylcholine showed that, whereas position 1 contained substantial linoleate, only small amounts of gamma-linolenate were present. The results shed further light on the synthesis of C18 polyunsaturated fatty acids in plants and in particular its relationship to the regulation of the acyl quality of the triacylglycerols in oilseeds. PMID:3028375

  19. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity.

    Science.gov (United States)

    Ahmad, Shabbir; Thulasingam, Madhuranayaki; Palombo, Isolde; Daley, Daniel O; Johnson, Kenneth A; Morgenstern, Ralf; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2015-10-01

    Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA4 forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometry of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.

  20. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  1. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  2. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  3. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    Science.gov (United States)

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo. PMID:27318552

  4. Enhancement of persistent luminescence of ZnTa{sub 2}O{sub 6}:Pr{sup 3+} by addition Li{sup +}, Na{sup +}, K{sup +} and Cs{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Noto, Luyanda L., E-mail: NotoLL@ufs.ac.za; Ntwaeaborwa, Orileng M.; Yagoub, Mubarak Y.A.; Swart, Hendrik C., E-mail: SwartHC@ufs.ac.za

    2015-10-15

    Graphical abstract: The incorporation of the alkali metals (Li, Na, K and Cs) as co-dopants in ZnTa{sub 2}O{sub 6}:Pr{sup 3+} phosphor improved the lifetime of the persistent emission by increasing the quantity of the electron trapping centres. - Highlights: • ZnTa{sub 2}O{sub 6}:Pr{sup 3+} was co-doped with Li{sup +}, Na{sup +}, K{sup +} or Cs{sup +} ions. • Phase pure samples were synthesised. • Enhancement of the persistent emission was achieved by co-doping. • Corresponding electron trapping centres were quantified by a TL reader. - Abstract: Enhancement of the persistent emission was achieved by co-doping ZnTa{sub 2}O{sub 6}:Pr{sup 3+} with Li{sup +}, Na{sup +}, K{sup +} or Cs{sup +} ions. Phase pure samples were synthesised and it was confirmed by the X-ray diffraction pattern which matches that of the standard data. Incorporation of the co-dopant ions introduced strain into the phosphor, which increased with an increase in the ionic radius of the co-dopant ion. The scanning electron microscope image shows that the particles were agglomerated, and the surface images obtained using the Time of flight secondary ion mass spectroscopy showed that the dopant and the co-dopant ions in the phosphor were homogeneously distributed. The persistent emission was enhanced by the co-dopant ions as shown by the lifetime values calculated from the phosphorescence decay curves, and the corresponding electron trapping centres were quantified by thermoluminescence reader.

  5. Diffusion of HTO, {sup 36}Cl{sup -}, {sup 125}I{sup -} and {sup 22}Na{sup +} in Opalinus Clay: Effect of Confining Pressure, Sample Orientation, Sample Depth and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Van Loon, L.R.; Soler, J.M

    2004-02-01

    Effective diffusion coefficients (D{sub e}), rock capacity factors ({alpha}) and diffusion-accessible porosities ({epsilon}) were measured using the through-diffusion technique. Transport (diffusion) was measured both perpendicular and parallel to the bedding. Special cells that allowed the application of an axial confining pressure were designed. The pressures applied ranged from 1 to 5 MPa for Mont Terri samples and between 4 and 15 MPa for Benken samples, the upper values representing the in-situ confining pressure at both locations. The test solutions used in the experiments were synthetic Opalinus Clay pore water, which has Na and Cl as main components (Mont Terri: I = 0.39 M; Benken: I = 0.20 M). Pressure only had a small effect on the value of the effective diffusion coefficients. In the case of Mont Terri samples, increasing the pressure from 1 to 5 MPa resulted in a decrease of the effective diffusion coefficient of 20% for HTO, 27% for {sup 36}Cl{sup -}, 29% for {sup 125}I{sup -} and 17 % for {sup 22}Na{sup +}. In the case of Benken samples, increasing the pressure from 4 to 15 MPa resulted in a decrease of D{sub e} of 17% for HTO, 22% for {sup 36}Cl{sup -}, 32% for {sup 125}I{sup -} and 17 % for {sup 22}Na{sup +}. Moreover, the effective diffusion coefficients for for {sup 36}Cl{sup -}are smaller than for HTO, which is consistent with an effect arising from anion exclusion. This ion exclusion effect is smaller in samples from Mont Terri than in samples from Benken, which can be explained by the higher ionic strength of the Mont Terri water used in the experiments. The diffusion of {sup 22}Na{sup +} is similar to that of HTO in the case of Mont Terri OPA. For Benken OPA, the D{sub e} value of {sup 22}Na{sup +} is a factor of 2 higher than that of HTO. This last observation cannot be explained so far but is comparable to experimental data from ANDRA (1999) on Callovo-Oxfordian claystones from the Meuse/Haute Same site. {sup 125}I{sup -} is retarded with

  6. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  7. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  8. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... others live with symptoms of mental illness every day. They can be moderate, or serious and cause ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the ... distant nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  13. SUPRESSION OF MICROSOMAL OXIDATION WEAKENS HISTOCHROME’S DIURETIC EFFECT AT RATS

    Directory of Open Access Journals (Sweden)

    O. S. Talalaeva

    2013-01-01

    Full Text Available Histochrome is the medicinal form of echinochrome (2, 3, 5, 6, 8-pentahydroxy-7-ethyl-1,4-naphthoquinone. Arisen during clinical application of the drug questions concerning its biotransformation have predetermined the aim of this research: to study participation liver monooxygenase system in maintenance of histochrome’s pharmacological activity.Simple and informative method of the lifetime control of liver monooxygenase systems influence on a metabolism of a medical product is the estimation of changes of pharmacological effect of a r esearched preparation on a background microsomal oxidations i nhibitor. In experiments on rats chloramphenicol action on diuretic effect of histochrome, as the most convenient for screening, was i nvestigated.To control group of animals during 10 days were hypodermically entered by histochrome in a doze of 10 mg/kg (n = 15. Experimental animals preliminary oral received 50 mg/kg of chloramphenicol before three hours of histochrome introduction (n = 16. In both groups of animals measured volume daily excretion of water, creathinin, sodium and potassium ions excretions in experimental rats each two days. The initial level of parameters of excretory kidneys functions were estimated before introduction of preparations at animals.Long-term histochrome’s injection was followed by a fivefold increasing of water excretion and simultaneously creathinin growth one. Allocation of ions of sodium was statistically significantly increased by 11-th day of experiment, and potassium ions – since the ninth day of histochrome injection. In conditions preliminary chloramphenicol applications volume daily daily urine output and creathinin excretion were essentially less control parameters. Allocation with urine of ions of sodium was decreased almost twice in comparison with the values, fixed at introduction histochrome. Excretion potassium ions ware corresponded to an initial level during all period of supervision.Taking into

  14. Stereoselective Degradation of alpha-Cypermethrin and Its Enantiomers in Rat Liver Microsomes.

    Science.gov (United States)

    Yan, Jin; Zhang, Ping; Wang, Xinru; Xu, Meiqi; Wang, Yao; Zhou, Zhiqiang; Zhu, Wentao

    2016-01-01

    Alpha-cypermethrin (α-CP), [(RS)-a-cyano-3-phenoxy benzyl (1RS)-cis-3-(2, 2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate], comprises a diastereoisomer pair of cypermethrin, which are (+)-(1R-cis-αS)-CP (insecticidal) and (-)-(1S-cis-αR)-CP (inactive). In this experiment, the stereoselective degradation of α-CP was investigated in rat liver microsomes by high-performance liquid chromatography (HPLC) with a cellulose-tris- (3, 5-dimethylphenylcarbamate)-based chiral stationary phase. The results revealed that the degradation of (-)-(1S-cis-αR)-CP was much faster than (+)-(1R-cis-αS)-CP both in enantiomer monomers and rac-α-CP. As for the enzyme kinetic parameters, there were some variances between rac-α-CP and the enantiomer monomers. In rac-α-CP, the Vmax and CLint of (+)-(1R-cis-αS)-CP (5105.22 ± 326.26 nM/min/mg protein and 189.64 mL/min/mg protein) were about one-half of those of (-)-(1S-cis-αR)-CP (9308.57 ± 772.24 nM/min/mg protein and 352.19 mL/min/mg protein), while the Km of the two α-CP enantiomers were similar. However, in the enantiomer monomers of α-CP, the Vmax and Km of (+)-(1R-cis-αS) -CP were 2-fold and 5-fold of (-)-(1S-cis-αR)-CP, respectively, which showed a significant difference with rac-α-CP. The CLint of (+)-(1R-cis-αS)-CP (140.97 mL/min/mg protein) was still about one-half of (-)-(1S-cis-αR)-CP (325.72 mL/min/mg protein) in enantiomer monomers. The interaction of enantiomers of α-CP in rat liver microsomes was researched and the results showed that there were different interactions between the IC50 of (-)- to (+)-(1R-cis-αS)-CP and (+)- to (-)-(1S-cis-αR)-CP(IC50(-)/(+) / IC50(+)/(-)  = 0.61).

  15. Effect of N-acetylcysteine in COPD patients with different microsomal epoxide hydrolase genotypes

    Directory of Open Access Journals (Sweden)

    Zhang JQ

    2015-05-01

    Full Text Available Jian-Qing Zhang,1 Jia-Qiang Zhang,1 Hua Liu,2 Zhi-Huan Zhao,1 Li-Zhou Fang,1 Ling Liu,1 Wei-Ping Fu,1 Jing-Kui Shu,1 Jia-Gang Feng,1 Lu-Ming Dai1 1Department of Respiratory Critical Care Medicine, 2Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China Background: The role of the antioxidant N-acetylcysteine (NAC in the treatment of chronic obstructive pulmonary disease (COPD has not been clarified as yet. In early studies, we found that the proportion of smokers with COPD having extremely slow/slow microsomal epoxide hydrolase (EPHX1 enzyme activity is significantly higher than that in healthy smokers. The purpose of this study was to evaluate whether different EPHX1 enzyme activity is related to differential therapeutic effects of treatment with NAC in COPD.Methods: A total of 219 patients with COPD were randomly allocated to an extremely slow/slow EPHX1 enzyme activity group (n=157 or a fast/normal EPHX1 enzyme activity group (n=62 according to their EPHX1 enzyme activity. Both groups were treated with NAC 600 mg twice daily for one year. The main study parameters, including forced expiratory volume in one second (FEV1, St George’s Respiratory Questionnaire (SGRQ, and yearly exacerbation rate, were measured at baseline and at 6-month intervals for one year.Results: Both FEV1 and SGRQ symptom scores were improved after treatment with NAC in the slow activity group when compared with the fast activity group. Further, changes in FEV1 and SGRQ symptom score in patients with mild-to-moderate COPD were more significant than those in patients with severe-to-very severe COPD. The yearly exacerbation rates were reduced in both groups, but the reduction in the slow activity group was significantly lower than in the fast activity group.Conclusion: NAC treatment in COPD patients with extremely slow/slow EPHX1 enzyme activity improves FEV1 and the SGRQ symptom score, especially

  16. Liver microsomal drug-metabolizing enzyme activity: enhancement by blockade of degradative processes in promethazine-treated rats.

    Science.gov (United States)

    Fernández, G.; Villarruel, M. C.; Bernacchi, A.; de Castro, C. R.; Castro, J. A.

    1981-01-01

    Daily injection of promethazine over 4 days significantly increased the liver cytochrome P-450 content and ethyl morphine N-demethylase activity. These increases were evident after the first dose and were prevented by puromycin or actinomycin D administration. Repeated administration of promethazine does not increase the liver's ability to incorporate [14]C DL-leucine in microsomes but slows down the decay of radioactivity in microsomes previously labelled with ([14C]-guanidino) arginine. Repeated treatment with promethazine leads to a marked proliferation of the rough endoplasmic reticulum (RER) and a slight increase in the smooth endoplasmic reticulum (SER). Our findings suggest that the enhancement of P-450 and EM-ase activity result from the decelerating effect of promethazine on protein degradation. Images Fig. 1 Fig. 2 PMID:7295538

  17. Characterization of 3,3-dimethyl substituted N-aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors.

    Science.gov (United States)

    Kuklish, Steven L; Antonysamy, Stephen; Bhattachar, Shobha N; Chandrasekhar, Srinivasan; Fisher, Matthew J; Fretland, Adrian J; Gooding, Karen; Harvey, Anita; Hughes, Norman E; Luz, John G; Manninen, Peter R; McGee, James E; Navarro, Antonio; Norman, Bryan H; Partridge, Katherine M; Quimby, Steven J; Schiffler, Matthew A; Sloan, Ashley V; Warshawsky, Alan M; York, Jeremy S; Yu, Xiao-Peng

    2016-10-01

    Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30μM, and failed to inhibit human mPGES-2 at 62.5μM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study. PMID:27554445

  18. Genetic variants in microsomal epoxide hydrolase and N-acetyltransferase 2 in susceptibility of IBD in the Danish population

    DEFF Research Database (Denmark)

    Ernst, Anja; Andersen, Vibeke; Østergaard, Mette;

    Introduction. Inflammatory bowel disease (IBD) is characterised by recurrent inflammation of the intestinal mucosa, however the exact mechanism is unknown. Reactive molecules play a central role in the disruption of the mucosa increasing the permeability across the intestinal barrier, which may...... induce or sustain an immune response. Changes in detoxification of substances that causes epithelial damage may confer susceptibility to IBD. Hence, polymorphic enzymes involved in the detoxification processes may be risk factors of IBD. Methods. The two biotransformation enzymes microsomal epoxide......-acetyltransferase 2 acetylator status and IBD. An association between high activity of microsomal epoxide hydrolase and disease diagnosis before age 40 in CD with an OR of 2.2(1.1- 4.2) P=0.02) was found. No other phenotypic associations were found for the two enzymes and IBD, regarding age at onset, disease location...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Welcome. Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Research Modern research tools and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  1. Effect of methoxychlor on the antioxidant system in mitochondrial and microsome-rich fractions of rat testis.

    Science.gov (United States)

    Latchoumycandane, C; Mathur, P P

    2002-07-01

    Methoxychlor, an environmental contaminant, which is widely used as a pesticide in many countries, has been shown to induce reproductive abnormalities in male rats. The precise nature and mechanism of action of methoxychlor on the male reproductive system is not clear. In the present study, we have sought to investigate the induction of oxidative stress in the testis of rat after exposure to methoxychlor. Methoxychlor (1, 10, and 100 mg kg(-1) body weight per day) was administered orally to the rats for 45 days. After 24 h of the last treatment the animals were killed using anesthetic ether. The body weight of the animals administered with methoxychlor did not show any significant change. The weights of the testis, epididymis, seminal vesicles and ventral prostate decreased significantly in 100 mg dose but remained unchanged in 1 and 10 mg doses. Mitochondrial and microsome-rich fractions of the testis were obtained by the method of differential centrifugation. The activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase decreased significantly in the animals treated with methoxychlor in a dose-dependent manner in the mitochondrial and microsome-rich fractions of rat testis. The levels of hydrogen peroxide generation (H(2)O(2)) and lipid peroxidation increased in mitochondrial and microsome-rich fractions of the testis of the rats treated with methoxychlor. The results suggested that the low to medium doses of methoxychlor elicit depletion of antioxidant enzymes and concomitant increase in the levels of H(2)O(2) and lipid peroxidation differentially in mitochondrial and microsome-rich fractions of rat testis. In conclusion, the adverse effect of methoxychlor on male reproduction could be due to the induction of oxidative stress in testis.

  2. Import of frog prepropeptide GLa into microsomes requires ATP but does not involve docking protein or ribosomes.

    OpenAIRE

    Schlenstedt, G.; Zimmermann, R.

    1987-01-01

    Frog prepropeptide GLa, a precursor to a secretory protein containing 64 amino acids, was processed and imported by dog pancreas microsomes. These events did not depend on either docking protein or on the presence of ribosomes. A hybrid protein between the first 60 amino acids of prepropeptide GLa and an unrelated peptide of 49 amino acids fused to the carboxy terminus, however, behaved like a typical secretory protein precursor with regard to docking protein dependence. This suggests that in...

  3. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    Science.gov (United States)

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  4. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes.

    Science.gov (United States)

    Fraga, C G; Leibovitz, B E; Tappel, A L

    1988-01-01

    Liver slices were used to measure lipid peroxidation induced by bromotrichloromethane, tert-butyl hydroperoxide (t-BOOH), or ferrous iron. The responses of liver homogenates and microsomes to oxidative conditions were compared with the response of tissue slices. Lipid peroxidation was evaluated by the production of thiobarbituric acid-reactive substances (TBARS). As was observed in homogenates and microsomes, TBARS production by liver slices depended upon the amount of tissue, the incubation time, inducer, the amount of inducer, and the presence of antioxidant. Control liver slices incubated at 37 degrees C for 2 h produced 19 nmol of TBARS per g of liver. When slices were incubated in the presence of 1 mM BrCCl3, 1 mM t-BOOH, or 50 microM ferrous iron, TBARS production increased 4.6-, 8.2-, or 6.7-fold over the control value, respectively. Comparable induction of TBARS by liver homogenates and microsomes was observed when these preparations were incubated with the same inducers. Addition of 5 microM butylated hydroxytoluene (BHT) prevented the induction of TBARS by 50 microM ferrous iron by liver slices. The results indicate the usefulness of tissue slices to measure lipid peroxidation. The usefulness of tissue slices is emphasized when a number of compounds or tissues are studied and tissue integrity is desired as in toxicological, pharmacological, and nutritional studies where reduced numbers of experimental animals is a relevant issue. PMID:3356355

  5. Enzyme kinetic study of a new cardioprotective agent, KR-32570 using human liver microsomes and recombinant CYP isoforms.

    Science.gov (United States)

    Kim, Hyojin; Seo, Kyung-Ah; Kim, Hyunmi; Lee, Hye Suk; Lee, Choong-Hwan; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2007-04-01

    KR-32570 (5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. Human liver microsomal incubation of KR-32570 in the presence of NADPH resulted in the formation of two metabolites, hydroxy-KR-32570 and O-desmethyl-KR-32570. In this study, a kinetic analysis of the metabolism of two metabolites from KR-32570 was performed in human liver microsomes, and recombinant CYP1A2, and CYP3A4. The metabolism for hydroxy- and O-desmethyl-KR-32570 formation from KR-32570 by human liver microsomes was best described by a Michaelis-Menten equation and a Hill equation, respectively. The Cl(int) values of hydroxy- and O-desmethyl-KR-32570 formation were similar to each other (0.03 vs 0.04 microL/min/pmol CYP, respectively). CYP3A4 mediated the formation of hydroxy-KR-32570 from KR-32570 with Cl(int) = 0.24 microL/min/pmol CYP3A4. The intrinsic clearance for O-desmethyl-KR-32570 formation by CYP1A2 was 0.83 AL/min/pmol CYP1A2. These findings suggest that CYP3A4 and CYP1A2 enzymes are major enzymes contributing to the metabolism of KR-32570.

  6. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    Science.gov (United States)

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  7. Interaction between oblongifolin C and UDP-glucuronosyltransferase isoforms in human liver and intestine microsomes.

    Science.gov (United States)

    Gao, Cui; Shi, Rong; Wang, Tianming; Tan, Hongsheng; Xu, Hongxi; Ma, Yueming

    2015-01-01

    1. Oblongifolin C (OC) is a potential natural anticancer candidate, and its metabolic profile has not yet been established. 2. One major OC glucuronidation metabolite (OCG) has been identified in a pool of human liver microsomes (HLMs). Chemical inhibition experiments suggested that OCG was mainly formed by UGT1A. A screen of recombinant UDP-glucuronosyltransferase isoforms (UGTs) indicated that UGT1A1 primarily mediates OC conjugation, with minor contributions from UGT1A3 and UGT1A8. Enzyme kinetic studies showed that UGT1A1 was the main UGT isoform involved in OCG in HLMs. 3. Further investigation suggested that OC is a broad inhibitor of UGTs. Additionally, OC competitively inhibited UGT1A6 with a Ki value of 3.49 ± 0.57 μM, whereas non-competitively inhibited UGT1A10 with a Ki value of 2.12 ± 0.18 μM. 4. Understanding the interaction between OC and UGTs will greatly contribute to future investigations regarding the inter-individual differences in OC metabolism in clinical trials and potential drug-drug interactions. PMID:25714435

  8. Troglitazone thiol adduct formation in human liver microsomes: enzyme kinetics and reaction phenotyping.

    Science.gov (United States)

    Gan, Jinping; Qu, Qinling; He, Bing; Shyu, Wen C; Rodrigues, A David; He, Kan

    2008-08-01

    Troglitazone (TGZ) induced hepatotoxicity has been linked to cytochrome P450 (CYP)-catalyzed reactive metabolite formation. Therefore, the kinetics and CYP specificity of reactive metabolite formation were studied using dansyl glutathione (dGSH) as a trapping agent after incubation of TGZ with human liver microsomes (HLM) and recombinant human CYP proteins. CYP2C8 exhibited the highest rate of TGZ adduct (TGZ-dGS) formation, followed by CYP3A4, CYP3A5, and CYP2C19. The involvement of CYP2C8 and CYP3A4 was confirmed with CYP form-selective chemical inhibitors. The impact of TGZ concentration on the rate of TGZ-dGS formation was also evaluated. In this instance, two distinctly different profiles were observed with recombinant CYP3A4 and CYP2C8. It is concluded that both CYP3A4/5 and CYP2C8 play a major role in the formation of TGZ adduct in HLM. However, the contribution of these CYPs varies depending on their relative expression and the concentration of TGZ. PMID:19356091

  9. Evaluation of extracts from Coccoloba mollis using the Salmonella/microsome system and in vivo tests

    Directory of Open Access Journals (Sweden)

    Marcela Stefanini Tsuboy

    2010-01-01

    Full Text Available The common everyday use of medicinal plants is an ancient, and still very widespread practice, whereby the need for studies on their possible toxicity and mutagenic properties. The species Coccoloba mollis has been much used in phytotherapy, mainly in cases involving loss of memory and stress. In order to investigate its genotoxic and mutagenic potential, ethanolic extracts from the leaves and roots underwent Salmonella/microsome assaying (TA98 and TA100 strains, with and without exogenous metabolism - S9, besides comet and micronucleus tests in vivo.There was no significant increase in the number of revertants/plate of Salmonella strains in any of the analyzed root-extract concentrations, although the extract itself was extremely toxic to the Salmonella TA98 strain in the tests carried out with S9 (doses varying from 0.005 to 0.5 µg/plate. On the other hand, the leaf-extract induced mutations in the TA98 strain in the absence of S9 in the highest concentration evaluated, although at very low mutagenic potency (0.004 rev/µg. Furthermore, there was no statistically significant increase in the number of comets and micronuclei, in treatments involving Swiss mice. It was obvious that extracts of Coccoloba mollis, under the described experimental conditions, are not mutagenic.

  10. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury.

    Science.gov (United States)

    Yao, Lu; Chen, Weina; Han, Chang; Wu, Tong

    2016-06-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries. PMID:27102561

  11. Antioxidant Capacity of Flavonoids in Hepatic Microsomes Is not Reflected by Antioxidant Effects In Vivo

    Directory of Open Access Journals (Sweden)

    Garry Duthie

    2012-01-01

    Full Text Available Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin. However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition, there appears to be an important distinction between the in vitro antioxidant effectiveness of flavonoids and their ability to suppress indices of oxidation in vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoids in vivo was not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant response element cannot be excluded.

  12. Use of Salmonella/microsome reversion bioassay for monitoring industrial wastewater treatment plants in Rajasthan, India.

    Science.gov (United States)

    Mathur, Nupur; Bhatnagar, Pradeep; Bakre, Prakash

    2012-05-01

    Salmonella/microsome reversion assay was used as a biological parameter for monitoring the toxicity of common effluent treatment plant (CETP), Mandia road industrial area, Pali catering to textile industrial areas in Pali, Rajasthan. The influent and effluent water of CETP, surface water (Bandi river) and underground water were tested using Ames bioassay. The results showed presence of mutagens in surface water of Bandi river and the underground water in Pali. Further, comparison of mutagenicity of CETP influent and effluent water revealed that the treatment method employed at this plant has failed to remove mutagenic substances present in Pali textile wastewater. The study also showed that Ames assay is an important tool in genotoxic studies because of its simplicity, sensitivity to genetic damage, speed, low cost of experimentation and small amount of sample required. Further Ames assay, as seen from the results of this study, can be used as a monitoring tool for not only CETPs but also for other water resources. The outcomes of the Ames assay demonstrated its performance as a sensitive, cost-effective and relatively rapid screening tool to assess the genotoxic potential of complex environmental samples. PMID:23029899

  13. Metabolism and toxicity of styrene in microsomal epoxide hydrolase-deficient mice.

    Science.gov (United States)

    Carlson, Gary P

    2010-01-01

    Styrene, which is widely used in manufacturing, is both acutely and chronically toxic to mice. Styrene is metabolized by cytochromes P-450 to the toxic metabolite styrene oxide, which is detoxified via hydrolysis with microsomal epoxide hydrolase (mEH) playing a major role. The purpose of these studies was to characterize the importance of this pathway by determining the hepatotoxicity and pneumotoxicity of styrene in wild-type and mEH-deficient (mEH(-/-)) mice. While the mEH(-/-) mice metabolized styrene to styrene oxide at the same rate as the wild-type mice, as expected there was minimal metabolism of styrene oxide to glycol. mEH(-/-) mice were more susceptible to the lethal effects of styrene. Twenty-four hours following the administration of 200 mg/kg ip styrene, mice demonstrated a greater hepatotoxic response due to styrene, as measured by increased serum sorbitol dehydrogenase activity and greater pneumotoxicity as shown by increased protein levels, cell numbers, and lactate dehydrogenase activity in bronchioalveolar lavage fluid. mEH(-/-) mice were also more susceptible to styrene-induced oxidative stress, as indicated by greater decreases in hepatic glutathione levels 3 h after styrene. Styrene oxide at a dose of 150 mg/kg did not produce hepatotoxicity in either wild-type or mEH(-/-) mice. However, styrene oxide produced pneumotoxicity that was similar in the two strains. Thus, mEH plays an important role in the detoxification of styrene but not for exogenously administered styrene oxide.

  14. Evidence of in vitro glucuronidation and enzymatic transformation of paralytic shellfish toxins by healthy human liver microsomes fraction.

    Science.gov (United States)

    García, Carlos; Rodriguez-Navarro, Alberto; Díaz, Juan Carlos; Torres, Rafael; Lagos, Néstor

    2009-02-01

    Paralytic Shellfish Toxins (PST) are endemic components found in filter bivalves in Southern Chile. Post-mortems analysis of fluid and tissue samples has shown biotransformation of PST in humans. The Gonyautoxin 3 (GTX3) and Gonyautoxin 2 (GTX2) are the major PST components in the toxin profile found in Chilean shellfish extracts, being as much as 65% of the total content of PST in filter bivalves. Therefore, they are the major accountable components of the human intoxication by shellfish consumption. The aim of this study is to show in vitro glucuronidation and biotransformation of GTX3 and GTX2 when they are incubated with microsomal fraction isolated from healthy human livers. Microsomes fractions isolated from human livers were incubated with GTX3 and GTX2 purified from contaminated mussels. After different incubation times, incubated samples were extracted and analyzed by HPLC with fluorescent on line detection and HPLC-MS analysis. The results revealed that GTX3 and GTX2, only when they were incubated with microsomal fraction and appropriated cofactors, showed to be enzymatic transformed in vitro. The glucuronidation of GTX3 and GTX2 followed typical Michaelis-Menten kinetics, resulting in apparent kinetic parameters of Km=39.4+/-0.24 microM and Vmax=6.0x10(-3) pmol/min/mg protein. In addition, the microsomes fraction also oxidized GTX3 and GTX2 into Gonyautoxin 4 (GTX 4) and Gonyautoxin 1 (GTX 1) resulting in 0.339x10(-3) pmol/min/mg protein. In conclusion, this study reports oxidation and glucuronidation of GTX3 and GTX2 when they are incubated with human liver microsomal fraction. The metabolism occurs via a glucuronidation reaction, the basis first step of biotransformation in human liver. Also it is showed that GTX4 and GTX1 came by biotransformation from GTX3 and GTX2 in humans. This data confirm human biotransformation found in human post-mortem fluid and tissue samples described previously. This data is the first evidence of in vitro glucuronidation

  15. Brain Basics

    Medline Plus

    Full Text Available ... all. She was happily married and successful in business. Then, after a serious setback at work, she ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... Trials — Participants Statistics Help for Mental Illnesses Outreach Research Priorities Funding Labs at NIMH News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ... mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics will introduce you to some of this science, such as: How the brain develops How ... cell, and responds to signals from the environment; this all helps the cell maintain its balance with ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... How the brain develops How genes and the environment affect the brain The basic structure of the ... inside contents of the cell from its surrounding environment and controls what enters and leaves the cell, ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... medications could reduce the amount of trial and error and frustration that many people with depression experience ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  8. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... mainly involved in controlling movement and aiding the flow of information to the front of the brain, ... the neuron will fire. This enhances the electrical flow among brain cells required for normal function and ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... and epigenetic changes can be passed on to future generations. Further understanding of genes and epigenetics may ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... neurons, the most highly specialized cells of all, conduct messages. Every cell in our bodies contains a ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  16. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    Science.gov (United States)

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  17. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  18. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders.

    Science.gov (United States)

    Koeberle, Andreas; Werz, Oliver

    2015-11-01

    Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.

  19. Inhibitory effects of amiodarone on simvastatin metabolism in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Chao Wan; Jiang wei Zhang; Ning Zhu; Ling Yang

    2009-01-01

    Objective To investigate the effects ofamiodarone (AMD) on simvastatin (SV) in human liver microsomes and the possible underlying mechanisms. Methods Time-, NADPH- and concentration-dependent inhibitions were tested in HLM. The logarithm of relative inhibition values was plotted versus preincubation time (0, 5, 10, 15, 20min) for a series concentration of AMD used (0, 2, 5,25, 50 μ mol/L), and the slopes determined by linear regression. These slope values represente the observed inactivation rate constants (kobs). A double-reciprocal plot was then constructed using the reciprocal of the ko~ (y-axis) and the reciprocal of the associated inhibitor concentration (x-axis) to estimate the values ofkinact and K, which were two principal kinetic constants that were specific for mechanism-based inhibition (MBI).drug-drug interactions (DDI) potential was predicted based on in vitro data and by using the in vitro-in vivo extrapolation. Results The time-, concentration- and NADPH-dependent charactga'istics confirmed that when SV was the substrate of CYP3A4, the inhibition of AMD to CYP3A4 is MBI. Kj and kinact value were calculated to be 5.1 μ mol/L and 0.018min-1 The Clint of SV was reduced 2.96-5.63 fold when it was administrated with AMD. Conclusion Based on the results, AMD would inhibit SV metabolism via the mechanism-based manner, which would lead to DDI when they are taken together. Careful clinical observation is recommended when AMD and SV have to be simultaneously prescribed.

  20. Covalent modification of hepatic microsomal lipids of rats by carbon tetrachloride

    International Nuclear Information System (INIS)

    The present study was undertaken to isolate and identify various lipids bound to 14C label during hepatic microsomal metabolism of 14CCl4 in vitro under anaerobic conditions and in vivo in rats. The two major radioactive fractions identified by thin-layer chromatography each for neutral lipids and phospholipids from in vitro and in vivo experiments corresponded to fatty acids and triglycerides and to phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively. Approximately 89% of the radioactivity associated with phospholipids was found in PC and PE fractions. Hydrolysis of PC and PE with phospholipase A2 released about 50% of the total radioactivity as lipid moieties corresponding to fatty acids. The radioactive neutral lipids and the lipid moieties hydrolyzed from PC and PE were methylated with boron trifluoride in methanol. These methylated lipids were separated by reversed-phase high-performance liquid chromatography (HPLC), and the elution profiles of 14C label found for the lipids obtained from in vitro experiments were similar to those from in vivo. The major radioactive fractions eluted immediately after methyl oleate were identified as trichloromethyloctadecenoic and trichloromethyleicosatrienoic acid methyl esters by chemical ionization mass spectrometry. The mass spectral analysis of these fractions also indicated the formation of dichlorocarbene adduct of oleic acid. However, similar mass spectrometric detection of trichloromethylated lipids was not evident in neutral lipids and phospholipids isolated from in vivo studies. The 14C-labeled lipids eluted as a nonpolar fraction exhibited a high molecular weight containing more than three chlorines. Dimerization and cross-linking of trichloromethylated lipids based on HPLC and mass spectral analysis are also discussed in this paper

  1. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available BACKGROUND: Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. METHODS: Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. RESULTS: In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. CONCLUSIONS: Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  2. Polymorphisms of microsomal triglycedde transfer protein in different hepatitis B virus-infected patients

    Institute of Scientific and Technical Information of China (English)

    Zhi-Tao Yang; Xin-Xin Zhang; Xiao-Fei Kong; Dong-Hua Zhang; Shen-Ying Zhang; Jie-Hong Jiang; Qi-Ming Gong; Gen-Di Jin; Zhi-Meng Lu

    2008-01-01

    AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and persistent infection.METHODS: A total of 316 subjects with self-limited HBV infection and 316 patients with persistent HBV infection (195 subjects without familial history),matched with age and sex,from the Chinese Han population were enrolled in this study.Polymorphisms of MTP at the promoter region -493 and at H297Q were determined by the allele specific polymerase chain reaction (PCR).RESULTS: The ratio of males to females was 2.13:1 for each group and the average age in the self-limited and chronic infection groups was 38.36 and 38.28 years,respectively.None of the allelic distributions deviated significantly from that predicted by the Hardy-Weinberg equilibrium.There was a linkage disequilibrium between H297Q and -493G/T(D'=0.77).As the X2 test was used,the genotype distribution of MTP-493G/T demonstrated a significant difference between the self-limited infection group and the entire chronic group or the chronic patients with no family history (X2=8.543,P=0.015 and X2=7.199,P=0.019).The allele distribution at the MTP-493 position also demonstrated a significant difference between the study groups without family history (X2=6.212,P=0.013).The T allele emerged as a possible protective factor which may influence the outcomes of HBV infection (OR: 0.59; 95% CI: 0.389-0.897).CONCLUSION: The polymorphism of the MTP gene,T allele at -493,may be involved in determining the HBV infection outcomes,of which the mechanism needs to be further investigated.

  3. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... having trouble coping with the stresses in her life. She began to think of suicide because she ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman ... new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ... stress. impulse —An electrical communication signal sent between neurons ...

  5. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  6. The activity of microsomal triglyceride transfer protein is essential for accumulation of triglyceride within microsomes in McA-RH7777 cells. A unified model for the assembly of very low density lipoproteins.

    Science.gov (United States)

    Wang, Y; Tran, K; Yao, Z

    1999-09-24

    Previously, based on distinct requirement of microsomal triglyceride transfer protein (MTP) and kinetics of triglyceride (TG) utilization, we concluded that assembly of very low density lipoproteins (VLDL) containing B48 or B100 was achieved through different paths (Wang, Y. , McLeod, R. S., and Yao, Z. (1997) J. Biol. Chem. 272, 12272-12278). To test if the apparent dual mechanisms were accounted for by apolipoprotein B (apoB) length, we studied VLDL assembly using transfected cells expressing various apoB forms (e.g. B64, B72, B80, and B100). For each apoB, enlargement of lipoprotein to form VLDL via bulk TG incorporation was induced by exogenous oleate, which could be blocked by MTP inhibitor BMS-197636 treatment. While particle enlargement was readily demonstrable by density ultracentrifugation for B64- and B72-VLDL, it was not obvious for B80- and B100-VLDL unless the VLDL was further resolved by cumulative rate flotation into VLDL(1) (S(f) > 100) and VLDL(2) (S(f) 20-100). BMS-197636 diminished B100 secretion in a dose-dependent manner (0.05-0.5 microM) and also blocked the particle enlargement from small to large B100-lipoproteins. These results yield a unified model that can accommodate VLDL assembly with all apoB forms, which invalidates our previous conclusion. To gain a better understanding of the MTP action, we examined the effect of BMS-197636 on lipid and apoB synthesis during VLDL assembly. While BMS-197636 (0.2 microM) entirely abolished B100-VLDL(1) assembly/secretion, it did not affect B100 translation or translocation across the microsomal membrane, nor did it affect TG synthesis and cell TG mass. However, BMS-197636 drastically decreased accumulation of [(3)H]glycerol-labeled TG and TG mass within microsomal lumen. The decreased TG accumulation was not a result of impaired B100-VLDL assembly, because in cells treated with brefeldin A (0.2 microgram/ml), the assembly of B100-VLDL was blocked yet lumenal TG accumulation was normal. Thus, MTP plays

  7. 3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, is a substrate for microsomal aldehyde oxygenase in the mouse liver.

    Science.gov (United States)

    Watanabe, K; Kayano, Y; Matsunaga, T; Yamamoto, I; Yoshimura, H

    1995-05-01

    3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, was oxidized to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. The reaction was NADPH-dependent, and inhibited by SKF 525-A, metyrapone and disulfiram. A P450 isozyme in mouse hepatic microsomes, P450 MUT-2 (CYP2C29), catalyzed the reaction (0.96 nmol/min/nmol P450) in which NADPH and NADPH-cytochrome c reductase were essential for the catalytic activity. The reaction was confirmed to be an oxygenation since molecular oxygen was incorporated into the carboxylic acid metabolite formed under oxygen-18 gas by GC-MS analysis. By addition of antibody against CYP2C29 to the microsomes (3.2 mg/mg microsomal protein) the MALDO activity was inhibited by 35% of the control value with preimmune serum, suggesting that CYP2C29 or an immunologically-related isozyme(s) plays a major role in the NADPH-dependent oxidation of 3,4,5-trimethoxyphenylacetaldehyde to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. Pharmacological experiments on mescaline and its deaminated metabolites using mice indicated that the metabolites were much less active or were inactive in cataleptogenic effect and pentobarbital-induced sleep prolongation as compared with the parent compound.

  8. Acylation of lysophosphatidylcholine and glycerolphosphate and fatty acid pattern in phosphatidylcholine and -ethanolamine in microsomes of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Kuksis, A; Myher, J J

    1986-02-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were isolated from microsomes obtained from normal and dystrophic human muscle and the fatty acid (FA) pattern estimated by GLC. In PC a decrease of the fatty acids of 16:0 and 18:2 and an increase of 18:0 and 18:1 was observed. In PE the decrease measured 18:2 and the increase 18:0 and 18:1. The acylation of lysophosphatidylcholine (LPC) and glycerol-3-phosphate (G3P) was measured in a microsomal system containing exogenously added LPC or G3P and labelled palmitic and oleic acid CoA esters. The incorporation of both labelled fatty acids in LPC-forming PC is reduced in dystrophic microsomes. On the other hand the acylation of glycerolphosphate and the formation of phosphatidic acid (PA) is greater in dystrophic microsomes when compared with normal controls. Possible correlations between the shifted FA pattern and the acylation rate by dystrophic microsomes measured in vitro in the two systems are discussed.

  9. Effects of trans n-6 fatty acids on the fatty acid profile of tissues and liver microsomal desaturation in the rat

    Directory of Open Access Journals (Sweden)

    Berdeaux, Olivier

    1996-04-01

    Full Text Available 18:2Δ 9c,12t and 18:2 Δ9t,12c are present in our diet, as result of heat treatment of vegetable oils. A nutritional study was carried out in order to obtain more precise information on the conversion of these two isomers into long chain polyunsaturated fatty acids (PUFA by rat tissues. This in vivo study performed using rat fed with small quantities of mono trans linoleic acid isomers (0.6% of total energy showed that 18:2 Δ9c,12t was converted into 20:4 Δ5c,8c,11c,14t while 18:2 Δ9t,12c was only slightly converted into 20:4 Δ5c,8c,11t,14c. Furthermore 18:2 Δ9t,12c was preferentially elongated into 20:2 Δ11t,14c. Each C20 metabolite of these mono trans 18:2 isomers was isolated as methyl ester by semi-preparative high-performance liquid chromatography (HPLC followed by silver nitrate thin layer chromatography (AgNO3-TLC.The structure of the components was identified using partial hydrazine reduction, AgNO3-TLC of the resulting monoenes and gas-liquid chromatography coupled with mass spectrometry (GC-MS of the 4,4-dimethyloxazoline (DMOX derivatives. Fourier-transform-infrared spectroscopy (GC-FTIR confirmed the frans geometry. Gas-liquid chromatography (GC analyses showed that 18:2 Δ9c,12t and 18:2 Δ9t,12c were present in different tissue lipids (liver, heart, testes, brain and adipose tissue, and without any modification in the amount of 20:4n-6. 20:4 Δ5c, 8c,11c,14t was incorporated in different rat tissues except in brain. Furthermore, its incorporation followed that of its structural analogue, 20:3n-9 in liver phospholipid classes (phosphatidylethanolamine, phosphatidylinositol and phosphatidylcholine. Finally, an in vitro study carried out with rat liver microsomes showed that dietary trans 18:2 isomers could inhibit the Δ6- desaturation of 18:2n-6 to 18:3n-6 and the Δ5-desaturation of 20:3n-6 to 20:4n-6.

  10. Correlation of serum antithyroid microsomal antibody and autologous serum skin test in patients with chronic idiopathic urticaria

    Directory of Open Access Journals (Sweden)

    Snehal Balvant Lunge

    2015-01-01

    Full Text Available Background: About 25-45% of patients of chronic urticaria (CU have been stated to have histamine releasing autoantibodies in their blood. The term autoimmune urticaria is increasingly being accepted for this subgroup of patients. Review of the literature suggests high autologous serum skin test (ASST positivity and presence of antithyroid microsomal antibodies in patients with autoimmune urticaria. Aims: To study prevalence of ASST positivity and antithyroid microsomal antibodies in chronic "idiopathic" urticaria and to study the correlation between the two parameters. Methods: All patients of chronic idiopathic urticaria satisfying inclusion/exclusion criteria were enrolled in the study after written informed consent. Patients of CU secondary to infections and infestations, physical urticaria including dermatographism, mastocytosis, urticarial vasculitis and those on treatment with immunosuppressive drugs for urticaria were excluded from the study. In all of these patients, complete blood count; ASST, serum T3/T4/thyroid stimulating hormone levels, antithyroid microsomal antibody (AMA levels were done. Statistical analysis was done by Chi-square test, Fisher exact test and Kappa statistics. Results: Study included 24 males and 26 females with mean age of 39.54 years. Majority of patients belonged to 20-40 years of age. Females showed more ASST positivity. A total of 12 out of 50 (24% patients showed positive ASST. A total of four out of 12 (33.33% had positive ASST and raised AMA levels. Conclusion: Only 25% of patients of chronic idiopathic urticaria had positive ASST. ASST and AMA levels were positively correlated in our study. Further studies are required to authenticate this association.

  11. Metabolism of 20(S-Ginsenoside Rg2 by Rat Liver Microsomes: Bioactivation to SIRT1-Activating Metabolites

    Directory of Open Access Journals (Sweden)

    Li-Yuan Ma

    2016-06-01

    Full Text Available 20(S-Ginsenoside Rg2 (1 has recently become a hot research topic due to its potent bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes was first carried out. To identify metabolites, a strategy of combined analyses based on prepared metabolites by column chromatography and ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS was performed. As a result, four metabolites M1–M4, including a rare new compound named ginsenotransmetin A (M1, were isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1, MA–MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1. Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator. These results indicate that microsome-dependent metabolism may represent a bioactivation pathway for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an experimental foundation to better understand the in vivo metabolic fate of 1.

  12. Inhibitory effects of psychotropic drugs on mexiletine metabolism in human liver microsomes: prediction of in vivo drug interactions.

    Science.gov (United States)

    Hara, Y; Nakajima, M; Miyamoto, K-I; Yokoi, T

    2005-06-01

    Mexiletine, an anti-arrhythmic agent, is used for the control of ventricular arrhythmias and for neuropathic pain from cancer or diabetes mellitus. It is sometimes used together with psychotropic drugs in patients with depression, schizophrenia or sleep disorder. It is metabolized mainly by cytochrome P450 (CYP) 2 D 6 and, to a minor extent, by CYP1A2. To predict possible drug interactions between mexiletine and psychotropic drugs, the inhibitory effects of 14 psychotropic drugs (phenytoin, carbamazepine, fluvoxamine, paroxetine, fluoxetine, citalopram, sertraline, imipramine, desipramine, haloperidol, thioridazine, olanzapine, etizolam, and quazepam) on mexiletine metabolism in human liver microsomes were determined. Fluoxetine (Ki=0.6+/- 0.1 microM), sertraline (Ki=7.6+/- 0.8 microM) and desipramine (Ki=3.2+/- 0.5 microM) competitively inhibited the mexiletine p-hydroxylation in human liver microsomes. Thioridazine (Kis=0.5+/- 0.2 microM; Kii =3.6+/-1.6 microM) and paroxetine (Kis=1.7+/- 0.7 microM; Kii=3.6+/- 0.9 microM) exhibited a mixed-type inhibition (competitive and non-competitive) toward mexiletine p-hydroxylation in human liver microsomes. The changes of the in vivo clearance of mexiletine by the psychotropic drugs were predicted by 1+(I/Ki) using the in vitro Ki and unbound inhibitor concentrations in liver. The values were calculated as 2.4 for paroxetine, 5.5 for fluoxetine, 1.1 for sertraline, 2.8 for desipramine and 2.2 for thioridazine. In addition, paroxetine exhibited a mechanism-based inactivation with Ki=0.7 microM and Kinact=0.15 min(-1). The present study predicted the possibility of drug interactions between mexiletine and paroxetine, fluoxetine, desipramine, and thioridazine in clinical use. PMID:16192107

  13. Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes.

    Science.gov (United States)

    Duhamel, Marie-Claude; Troncy, Eric; Beaudry, Francis

    2010-08-01

    Medetomidine is a potent and selective alpha2-adrenergic agonist. The activation of alpha2-adrenergic receptor mediates a variety of effects including sedation, analgesia, relief of anxiety, vasoconstriction and bradycardia. However, our main interest is the sedative effects of medetomidine when used as a premedicant prior surgery in companion animals, especially in dogs. Recently, data suggested that following intravenous infusion at six dosing regiments non-linear pharmacokinetics was observed. Major causes of non-linear pharmacokinetics are the elimination of the drug not following a simple first-order kinetics and/or the elimination half-life changing due to saturation of an enzyme system. The goal of this study was to establish the metabolic stability and determine the metabolic pathway of medetomidine in dog liver microsomes. Consequently, Michaelis-Menten parameters (V(max), K(m)), T(1/2) and CL(i) were determined. The incubations were performed in a microcentrifuge tube and containing various concentrations of medetomidine (10-5000 nM), 1 mg/mL of microsomal proteins suspended in 0.1 M phosphate buffer, pH 7.4. Microsomal suspensions were preincubated with NADPH (1 mM) for 5 min at 37 degrees C prior to fortification with medetomidine. Samples were taken at various time points for kinetic information and the initial velocity (v(i)) was determined after 10 min incubation. The reaction was stopped by the addition of an internal standard solution (100 ng/mL of dextrometorphan in acetone). Medetomidine concentrations were determined using a selective and sensitive HPLC-ESI/MS/MS method. Using non-linear regression, we determined a K(m) value of 577 nM, indicating relatively low threshold enzyme saturation consistent with previous in vivo observation. The metabolic stability was determined at a concentration of 100 nm (dog liver microsomes, also consistent with previous in vivo data. Moreover, results suggest that principally medetomidine is metabolized by the

  14. Identification of Three New N-Demethylated and O-Demethyled Bisbenzylisoquinoline Alkaloid Metabolites of Isoliensinine from Dog Hepatic Microsomes

    Directory of Open Access Journals (Sweden)

    Su Zeng

    2012-10-01

    Full Text Available Isoliensinine, a natural phenolic bisbenzyltetrahydroisoquinoline alkaloid, has received considerable attention for its potential biological effects such as antioxidant and anti-HIV activities. From the dog hepatic microsomes of isoliensinine, three new N-demethylated and O-demethylated metabolites, 2-N-desmethyl-isoliensinine (M1, 2'-N-desmethylisoliensinine (M2, and 2'-N-6-O-didesmethylisoliensinine (M3, were identified by high-performance liquid chromatography and data-dependent electrospray ionization tandem mass spectrometry. Possible metabolic pathways for isoliensinine have been proposed. The result should prove very helpful for evaluation of the drug-like properties of isoliensinine and other bisbenzylisoquinoline alkaloids.

  15. [Progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes].

    Science.gov (United States)

    Wang, Huanhuan; Lu, Yayao; Peng, Bo; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    Cytochrome P450 (CYP) enzymes and uridine 5-diphospho-glucuronosyltransferase (UGT) enzymes are critical enzymes for drug metabolism. Both chemical drugs and traditional Chinese medicines are converted to more readily excreted compounds by drug metabolizing enzymes in human livers. Because of the disparate expression of CYP and UGT enzymes among different individuals, accurate quantification of these enzymes is essential for drug pharmacology, drug-drug interactions and drug clinical applications. The research progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes in the recent decade is reviewed.

  16. Immunochemical detection of cytochrome P450 enzymes in liver microsomes of 27 cynomolgus monkeys.

    Science.gov (United States)

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2011-11-01

    The cynomolgus monkey is widely used as a primate model in preclinical studies because of its evolutionary closeness to humans. Despite their importance in drug metabolism, the content of each cytochrome P450 (P450) enzyme has not been systematically determined in cynomolgus monkey livers. In this study, liver microsomes of 27 cynomolgus monkeys were analyzed by immunoblotting using selective P450 antibodies. The specificity of each antibody was confirmed by analyzing the cross-reactivity against 19 CYP1-3 subfamily enzymes using recombinant proteins. CYP2A, CYP2B6, CYP2C9/19, CYP2C76, CYP2D, CYP2E, CYP3A4, and CYP3A5 were detected in all 27 animals. In contrast, CYP1A, CYP1D, and CYP2J were below detectable levels in all liver samples. The average content of each P450 showed that among the P450s analyzed CYP3A (3A4 and 3A5) was the most abundant (40% of total immunoquantified P450), followed by CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%), and CYP2D (3%). No apparent sex differences were found for any P450. Interanimal variations ranged from 2.6-fold (CYP3A) to 11-fold (CYP2C9/19), and most P450s (CYP2A, CYP2D, CYP2E, CYP3A4, and CYP3A5) varied 3- to 4-fold. To examine the correlations of P450 content with enzyme activities, metabolic assays were performed in 27 cynomolgus monkey livers using 7-ethoxyresorufin, coumarin, pentoxyresorufin, flurbiprofen, bufuralol, dextromethorphan, and midazolam. CYP2D and CYP3A4 contents were significantly correlated with typical reactions of human CYP2D (bufuralol 1'-hydroxylation and dextromethorphan O-deethylation) and CYP3A (midazolam 1'-hydroxylation and 4-hydroxylation). The results presented in this study provide useful information for drug metabolism studies using cynomolgus monkeys.

  17. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B;

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  18. Effect of water miscible organic solvents on p-nitrophenol hydroxylase (CYP2E1 activity in rat liver microsomes

    Directory of Open Access Journals (Sweden)

    Pranali G Patil

    2015-01-01

    Full Text Available Organic solvents used for solubilization of the substrates/NCEs are known to affect the activity of cytochrome P450 enzymes. Further, this effect varies with the solvents used, the substrates and CYP450 isoforms in question. In the present study, we have investigated the effect of ten commonly used water miscible organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, acetone, dimethyl sulphoxide, N,N-dimethyl formamide, dioxane and polyethylene glycol 400 on p-nitrophenol hydroxylase activity at 0, 0.1, 0.25, 0.5, 0.75 and 1% v/v concentration in rat liver microsomes. All the solvents studied showed concentration dependent inhibition of the p-nitrophenol hydroxylase activity except acetonitrile which showed activation of the activity at concentration range studied. Out of ten solvents studied, dioxane was found to be the most inhibitory solvent (inhibition >90% at 0.25% v/v concentration. Overall, solvents like dimethyl sulphoxide, dimethyl formamide and dioxane appeared to be unsuitable for characterizing p-nitrophenol hydroxylase (CYP2E1-mediated reactions due to a high degree of inhibition. On the other hand, methanol and acetonitrile at concentrations <0.5% v/v appeared to be appropriate solvents for substrate solubilization while evaluating CYP2E1-mediated catalysis. The results of this study imply that caution should be exercised while choosing solvents for dissolution of substrate during enzyme studies in liver microsomes.

  19. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1975-07-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase. PMID:1004

  20. Proliferation of smooth endoplasmic reticulum and induction of microsomal drug-metabolizing enzymes after ether or halothane.

    Science.gov (United States)

    Ross, W T; Cardell, R R

    1978-05-01

    Hepatic drug-metabolizing enzymes and hepatic ultrastructure were studied in rats after two hours of anesthesia with 1 MAC halothane or diethyl ether. Twelve hours after cessation of either anesthetic smooth endoplasmic reticulum was increased in centrilobular but not in periportal hepatocytes. This change persisted at 24- and 36-hour sampling times. Microsomal cytochrome P450 and cytochrome b5 decreased after halothane anesthesia (by 7 to 20 per cent of control). Diethyl ether caused increased cytochrome P450 and cytochrome b5 (27 and 18 per cent, respectively) at the 36-hour sampling time. NADPH cytochrome c reductase did not change significantly after either agent. The authors interpret these results to mean that both agents promote conversion of rough endoplasmic reticulum to smooth endoplasmic reticulum or, alternatively, that the anesthetics decrease degradation of smooth endoplasmic membranes. Since only ether caused an increase in the microsomal content of enzymes of the drug-metabolizing enzyme system, it is concluded that these two anesthetics act on hepatic cells by dissimilar mechanisms. PMID:646150

  1. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    Science.gov (United States)

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  2. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    Directory of Open Access Journals (Sweden)

    Christian Mazars

    Full Text Available The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS. For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  3. Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station

    Science.gov (United States)

    Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The “GENARA A” experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected. PMID:24618597

  4. The Relationship Between Senescence and Ca2+-ATPase Activity of Microsomal Membrane and Lipid Peroxidation in Harvested Peach Fruit

    Institute of Scientific and Technical Information of China (English)

    GUAN Jun-feng; FAN Xiu-cai; DOU Shi-juan; ZHANG Ji-shu; LI Guang-min

    2006-01-01

    Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence in correlation with Ca2+- ATPase activity of microsomal membrane and lipid peroxidation during ripening and senescence. In comparison with that stored at 25℃, the fruit stored at 4℃ exhibited a higher flesh firmness, lower respiration rate, and generated the late bigger peak value of Ca2+-ATPase activity as well as maintained the higher activity of the enzyme. Meanwhile, the lower levels of super oxygen radical (O2-) production and content of malondialdehyde (MDA), a product of membrane lipid peroxidation were observed. Sodium orthovanadate (SO) and erythrosin B (EB), as Ca2+-ATPase inhibitors, could stimulate the respiration rate. The results suggested that the slower senescence rate of peach fruit was closely related to the higher peak value and longer duration of Ca2+-ATPase activity in microsomal membrane, with the slighter membrane lipid peroxidation and lower O2(-) production rate.

  5. Plasmalemma- and tonoplast-ATPase activity in mesophyll protoplasts, vacuoles and microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Balsamo, R A; Uribe, E G

    1988-02-01

    Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H(+)-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces. PMID:24226399

  6. A comparative study of precision cut liver slices, hepatocytes, and liver microsomes from the Wistar rat using metronidazole as a model substance

    DEFF Research Database (Denmark)

    Sidelmann, U. G.; Cornett, Claus; Tjornelund, J.;

    1996-01-01

    , whereas the intrinsic clearance with respect to formation of the glucuronic acid conjugate was lower in slices compared with hepatocytes. 4. The metabolism of metronidazole in liver slices, in hepatocytes in primary monolayer culture, in hepatocytes incubated in suspension, and in liver microsomes was...... higher in microsomes than in the other liver preparations. The metabolic rates in hepatocytes in primary culture and in suspension with respect to the oxidative metabolites were higher than in liver slices. The metabolic turnover observed in liver slices was predicted to correlate with in vivo data...

  7. Brain Basics

    Medline Plus

    Full Text Available ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... PTSD) . Prefrontal cortex (PFC) —Seat of the brain's executive functions, such as judgment, decision making, and problem solving. ... brain that, in humans, plays a role in executive functions such as judgment, decision making and problem solving, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... axis —A brain-body circuit which plays a critical role in the body's response to stress. impulse — ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. She was happily married and successful in business. Then, after a serious setback at work, she lost interest ...

  13. Brain peroxisomes.

    Science.gov (United States)

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  14. Microsomal biotransformation of benzo[ghi]perylene, a mutagenic polycyclic aromatic hydrocarbon without a "classic" bay region.

    Science.gov (United States)

    Platt, Karl L; Grupe, Stefanie

    2005-04-01

    Carcinogenic polycyclic aromatic hydrocarbons (PAH), e.g., benzo[a]pyrene (BaP), possess a bay region comprising an ortho-fused benzene ring. Benzo[ghi]perylene (BghiP) represents the group of PAHs lacking such a "classic" bay region and hence cannot be metabolically converted like BaP to bay region dihydrodiol epoxides considered as ultimate mutagenic and carcinogenic metabolites of PAH. BghiP exhibits bacterial mutagenicity in strains TA98 (1.3 his(+)-revertant colonies/nmol) and TA100 (4.3 his(+)-revertant colonies/nmol) of Salmonella typhimurium after metabolic activation by the postmitochondrial hepatic fraction of CD rats treated with 3-methylcholanthrene. Inhibition of microsomal epoxide hydrolase (mEH) with 1,1,1-trichloro-2-propene oxide raised the bacterial mutagenicity of BghiP in TA98 almost 4-fold indicating arene oxides as ultimate mutagens. To confirm this assumption, the biotransformation of BghiP was elucidated. Incubation of BghiP with liver microsomes of CD rats treated with Aroclor 1254 yielded 17 ethyl acetate extractable metabolic products. Twelve metabolites were identified by a combination of chromatographic, spectroscopic, and biochemical methods. The microsomal biotransformation of BghiP proceeds by two pathways: Pathway I starts with the monooxygenase attack at the 7-position leading to the 7-phenol, which is transformed to the 7,8- and 7,10-diphenols followed by oxidation to the 7,8- and 7,10-quinones. On pathway II, the K regions of BghiP are successively converted to arene oxides yielding the indirectly identified 3,4-oxide and the 3,4,11,12-bisoxides. Enzymatic hydrolysis of the 3,4-oxide leads to the trans-3,4-dihydrodiol, which is oxidized to the 3,4-quinone. Similarly, the trans-3,4-trans-11,12-bisdihydrodiols and the trans-3,4-dihydrodiol 11,12-quinone are generated from the 3,4,11,12-bisoxides. The trans-3,4-dihydrodiol and the trans-3,4-trans-11,12-bisdihydrodiols are preferentially formed as R,R and R,R,R,R enantiomers

  15. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.;

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using...... an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored...... after the addition of exogenous wild-type mouse or human alpha-synuclein, but not by A30P, E46K, and A53T forms of alpha-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools were markedly reduced...

  16. Pretreatment with turmeric modulates the inhibitory influence of cisplatin and paclitaxel on CYP2E1 and CYP3A1/2 in isolated rat hepatic microsomes.

    Science.gov (United States)

    Ahmed, Enas M; EL-Maraghy, Shohda A; Teleb, Zakaria A; Shaheen, Amira A

    2014-09-01

    Previous animal studies have shown that turmeric can significantly modulate the activity of several drug metabolizing enzymes, this may dramatically affect the bioavailability of several drugs resulting in over dose or less therapeutic effects. This study was directed to evaluate the inhibitory effects of cisplatin and paclitaxel on two CYP450 enzymes namely CYP2E1 and CYP3A1/2 in hepatic microsomes isolated from normal and turmeric pretreated rats. Cisplatin and paclitaxel were added by different concentrations to hepatic microsomes isolated from untreated and turmeric (100 mg/kg/day) pretreated rats for 15 days after receiving pyrazole or dexamethasone for induction of CYP2E1 and CYP3A1/2 respectively. The kinetic potency of these drugs as CYP inhibitors was determined by analysis of Lineweaver-Burk plot. Addition of cisplatin or paclitaxel by (10, 50 and 100 μM) to hepatic microsomes from normal or turmeric pretreated rats caused a concentration dependent inhibition of CYP2E1, with an evidence of less inhibition in turmeric pretreated microsomes particularly at higher concentration. Both drugs at 100 μM displayed a mixed type of inhibition of CYP2E1 in normal or turmeric pretreated microsomes where paclitaxel was the most potent inhibitor. Cisplatin (10, 50 and 100 μM) caused a concentration dependant inhibition of CYP3A1/2 that was enhanced by turmeric pretreatment. The inhibition of CYP3A1/2 by cisplatin (100 μM) was in non-competitive manner with a smaller Ki value in turmeric pretreated microsomes. The inhibitory influence of paclitaxel (10, 50 and 100 μM) on CYP3A1/2 decreased with increasing the drug concentration and this inhibition was augmented by turmeric pretreatment. Interestingly, the inhibition of this enzyme by paclitaxel (10 μM) was switched from mixed type in normal microsomes to competitive manner in turmeric pretreated ones with a marked reduction of Ki values reflecting greater inhibitory influence of paclitaxel on CYP3A1/2 by turmeric

  17. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  18. The use of microsomal in vitro assay to study phase I biotransformation of chlorobornanes (Toxaphene) in marine mammals and birds. Possible consequences of biotransformation for bioaccumulation and genotoxicity.

    Science.gov (United States)

    Boon, J P; Sleiderink, H M; Helle, M S; Dekker, M; van Schanke, A; Roex, E; Hillebrand, M T; Klamer, H J; Govers, B; Pastor, D; Morse, D; Wester, P G; de Boer, J

    1998-11-01

    The factors determining the bioaccumulation of lipophilic compounds in wildlife are often poorly understood, partly because it is difficult to do in vivo experiments with animals such as marine mammals and birds. To evaluate the role of phase I biotransformation in the bioaccumulation process of chlorobornanes (toxaphene), this was studied in in vitro assays with hepatic microsomes of animals that could be sampled shortly after death. The capacity of microsomes to metabolise a technical toxaphene mixture decreased in the order Phoca vitulina (harbour seal) > Lagenorhynchus albirostris (whitebeaked dolphin) approximately equal to Diomedea immutabilis (Laysan albatross) > Physeter macrocephalus (sperm whale). Harbour seal microsomes metabolised the chlorobornane (CHB) congeners CHB-32 and CHB-62; whitebeaked dolphin and Laysan albatross microsomes only metabolised CHB-32. Metabolism of CHB-26 and CHB-50 was never observed. The negative chemical ionisation (NCI-) mass spectra of some of the hydroxylated metabolites were obtained. The number of peaks in the toxaphene residues of wildlife extracts decreased in the order of increasing in-vitro biotransformation capacity. Thus, the results of the in vitro assays and residue analysis were in accordance, although assays with microsomes of more individuals of the same species are required for a more general conclusion at the species level. Finally, the effect of in vitro biotransformation was evaluated in terms of the genotoxic potential using the Mutatox assay. Only technical toxaphene and CHB-32 were genotoxic in the direct assay, whereas the addition of rat S9 fraction or microsomes of harbour seal and albatross decreased the genotoxic response. Thus, organisms with a low ability to metabolise chlorobornanes, such as whales, may be most affected by the carcinogenic properties of toxaphene. A hypothetical reaction which fits the experimental results is discussed. Based on these results it is concluded that in vitro assays

  19. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    International Nuclear Information System (INIS)

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  20. Effects of Chronic Renal Failure on Brain Cytochrome P450 in Rats.

    Science.gov (United States)

    Naud, Judith; Harding, Jessica; Lamarche, Caroline; Beauchemin, Stephanie; Leblond, Francois A; Pichette, Vincent

    2016-08-01

    Chronic renal failure (CRF) impedes renal excretion of drugs and their metabolism by reducing the expression of liver cytochrome P450 (P450). Uremic serum contains factors, such as parathyroid hormone (PTH), that decrease liver P450s. The P450s are also involved in the metabolism of xenobiotics in the brain. This study investigates: 1) the effects of CRF on rat brain P450, 2) the role of PTH in the downregulation of brain P450s in CRF rats, and 3) the effects of PTH on P450s in astrocytes. Protein and mRNA expression of P450s were assessed in the brain of CRF and control (CTL) rats, as well as from CTL or CRF rats that underwent parathyroidectomy (PTX) 1 week before nephrectomy. CYP3A activity was measured using 3-[(3, 4-difluorobenzyl) oxy]-5, 5-dimethyl-4-[4-methylsulfonyl) phenyl] furan-2(5H)-1 metabolism in brain microsomal preparation. CYP3A protein expression was assessed in primary cultured astrocytes incubated with serum obtained from CRF or CTL rats or with PTH. Significant downregulations (≥40%) of CYP1A, CYP2C11, and CYP3A proteins were observed in microsomes from CRF rat brains. CYP3A activity reduction was also observed. CYP3A expression and activity were unaffected in PTX-pretreated CRF rats. Serum of PTX-treated CRF rats had no impact on CYP3A levels in astrocytes compared with that of untreated CRF rats. Finally, PTH addition to normal calf serum induced a reduction in CYP3A protein similar to CRF serum, suggesting that CRF-induced hyperparathyroidism is associated with a significant decrease in P450 drug-metabolizing enzymes in the brain, which may have implications in drug response. PMID:27271372

  1. Mechanism on activation of mouse liver microsomal glutathione S—transferase—I by cyclophosphamide treatment in vivo

    Institute of Scientific and Technical Information of China (English)

    ZhenY; LouYJ

    2002-01-01

    Membrane-associated microsomal glutathione S-transferase-I (mGST-I) is activated easily by alkyl agent or electrophilic metabolite.It was expected that toxic drugs and their metabolites derived from biotransformation by cytochrome P-450 maybe bind to and activate the mGST-I that can accelerate the metabolism of drugs to form inactive metabolites and simultaneously protect cell from damages.The aim of the present study was to investigate whether mGST-I is activated by cyclophosphamide(CP) treatment and to explore the possible mechanism in vivo.The results suggested that the main mechanism of mGST-I activation caused by overdose CP treatment is the unique sulfhydryl modification on its Cys-49.

  2. Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chi, Xiaoyuan; Zhang, Xiaowen; Guan, Xiangyu; Ding, Ling; Li, Youxun; Wang, Mingqing; Lin, Hanzhi; Qin, Song

    2008-04-01

    Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae). PMID:18545969

  3. Effects of two novel sugar drug candidates on CYP450 isoforms in different sexed Chinese human liver microsome in vitro

    Institute of Scientific and Technical Information of China (English)

    SHI Jie; ZHANG Xin-hui; SU Jia-ru

    2008-01-01

    The sex-based differences between the effects of two novel sugar-based drug candidates, a sulfated polymannuroguluronate (SPMG-911) and an acidic oligosaccharide sugar chain compound (AOSC-971), on the enzymes CYP 1A2, CYP2E1 and CYP3A4 of Chinese human liver microsome were investigated. The results showed that neither SPMG-911 nor AOSC-971 have any effect on CYP3A4, AOSC-971 induced the CYP 2E1 in men but have no effect on CYP1A2, SPMG-911 inhibit the CYP1A2 also in men but have no effect on CYP2E1. The results are useful for their safety evaluation, as well as for the prediction of interdrug interactions associated with the two drugs.

  4. Some factors determining the concentration of liver proteins for optimal mutagenicity of chemicals in the Salmonella/microsome assay.

    Science.gov (United States)

    Malaveille, C; Kuroki, T; Brun, G; Hautefeuille, A; Camus, A M; Bartsch, H

    1979-12-01

    In plate assays in the presence of S. typhimurium TA100 and various amounts of liver 9000 X g supernatant (S9) from either untreated, phenobarbitone- (PB) or Aroclor-treated rats, the S9 concentration required for optimal mutagenicity of aflatoxin B1 (AFB) depended both on the source of S9 and on the concentration of the test compound. In these assays, the water-soluble procarcinogen, dimethylnitrosamine (DMN) was mutagenic in S. typhimurium TA1530 only in the presence of a 35-fold higher concentration of liver S9 from PB-treated rats than that required for AFB, a lipophilic compound. In liquid assays, a biphasic relationship was observed in the mutagenicities in S. typhimurium TA100 of benzo[a]pyrene (BP) and AFB and the concentration of liver S9. For optimal mutagenesis of BP, the concentration of liver S9 from rats treated with methylcholanthrene (MC) was 4.4% (v/v); for AFB it was 2.2% (v/v) liver S9 from either Aroclor-treated or untreated rats. At higher concentrations of S9 the mutagenicity of BP and of AFB was related inversely to the amount of S9 per assay. The effect of Aroclor treatment on the microsomemediated mutagenicity of AFB was assay-dependent: in the liquid assay, AFB mutagenicity was decreased, whereas in the plate assay it did not change or was increased. As virtually no bacteria-bound microsomes were detected by electron microscopy, after the bacteria had been incubated in a medium containing 1-34% (v/v) MC-treated rat-liver S9, it is concluded that, in mutagenicity assays, mutagenic metabolites generated by microsomal enzymes from certain pro-carcinogens have to diffuse through the assay medium before reaching the bacteria. Thus the mutagenicity of BP was dependent on both the concentration of rat-liver microsomes and that of total cytosolic proteins and other soluble nucleophiles such as glutathione. At a concentration of 4.4% (v/v) liver S9, the mutagenicity of BP was about 3.6 times higher than in assays containing a 4-fold higher

  5. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell.

    Science.gov (United States)

    Han, Lingyu; Wang, Hongjie; Si, Nan; Ren, Wei; Gao, Bo; Li, Yan; Yang, Jian; Xu, Miao; Zhao, Haiyu; Bian, Baolin

    2016-04-01

    Bufadienolides, a class of polyhydroxy steroids, exhibit significant antitumor activity. In this study, a total of 39 metabolites from 10 bufadienolides were detected and identified by ultrahigh-performance liquid chromatography (UHPLC) coupled with an LTQ Orbitrap mass spectrometer. The results showed that hydroxylation and dehydrogenation were the major metabolic pathways of bufadienolides in human liver microsomes (HLMs). CYP3A4 was found to be the major metabolic enzyme and CYP2D6 only mediated the dehydrogenation reaction. A systematic validated cytotoxicity evaluation method for bufadienolide metabolites at equal equivalents was established. Hellebrigenin (1), hellebrigenol (2), arenobufagin (3), bufotalin (5), and bufalin (6) were selected to determine their cytotoxicity against HepG2 cells before and after incubation in HLMs. All the test samples were enriched by a validated solid-phase extraction (SPE) method. Although the cytotoxicities of metabolites were weaker than those of the parent compounds to different degrees, their effects were still strong.

  6. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I;

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  7. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    Science.gov (United States)

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  8. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  9. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  10. Brain and Addiction

    Science.gov (United States)

    ... Teens / Drug Facts / Brain and Addiction Brain and Addiction Print Your Brain Your brain is who you ... is taken over and over. What Is Drug Addiction? Addiction is a chronic brain disease that causes ...

  11. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  12. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... who can diagnose mental disorders are psychologists or clinical social workers. The psychiatrist asked Sarah and her ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... begun to chart how the brain develops over time in healthy people and are working to compare ... listless, and had no appetite most of the time. Weeks later, Sarah realized she was having trouble ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ... normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the flow of information to the ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... Statistics Help for Mental Illnesses Outreach Outreach Home Public Involvement Outreach Partners Alliance for Research Progress Coalition ... also linked to reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early-life experiences ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... to another. Share Science News Connectome Re-Maps Human Cortex ECT Lifts Depression, Sustains Remission in Older ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on neurons ... depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... in controlling movement, managing the release of various hormones, and aiding the flow of information to the ... at the front of the brain that, in humans, plays a role in executive functions such as ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... the understanding of how the brain grows and works and the effects of genes and environment on mental health. This knowledge is allowing scientists to make important discoveries that ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... doctor, who ran some tests. After deciding her symptoms were not caused by a stroke, brain tumor, ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... NIMH Strategic Plan in 2016 August 31, 2016, 2:00-3:00 PM ET General Health Information ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... sends impulses and extends from cell bodies to meet and deliver impulses to another nerve cell. Axons ... in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Director’s Blog Budget Strategic Plan Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting ... works in healthy people, and how normal brain development and function can go awry, leading to mental ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... but can still remember past events and learned skills, and carry on a conversation, all which rely ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... and plays an important role during early brain development. It may also assist in learning and memory. ... but can still remember past events and learned skills, and carry on a conversation, all which rely ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... These factors may act alone or together in complex ways, to change the way a gene is ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... or serious and cause severe disability. Through research, we know that mental disorders are brain disorders. Evidence ... many different types of cells in the body. We say that cells differentiate as the embryo develops, ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  11. Brain Health

    Science.gov (United States)

    ... Love Your Brain Stay Physically Active Adopt a Healthy Diet Stay Mentally and Socially Active We Can Help ... of any wellness plan. Learn More Adopt a Healthy Diet > Eat a heart-healthy diet that benefits both ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... for the function of conducting messages. A neuron has three basic parts: Cell body which includes the ... disorder (ADHD) . Glutamate —the most common neurotransmitter, glutamate has many roles throughout the brain and nervous system. ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... stay focused on a task, and managing proper emotional reactions. Reduced ACC activity or damage to this ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... genes and epigenetics may one day lead to genetic testing for people at risk for mental disorders. ... brain. DNA —The "recipe of life," containing inherited genetic information that helps to define physical and some ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... interconnections. neuron —A nerve cell that is the basic, working unit of the brain and nervous system, which processes and transmits information. neurotransmitter —A chemical produced by ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... they can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as ... brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... as sleep and speech. The brain continues maturing well into a person's early 20s. Knowing how the ... as judgment, decision making and problem solving, as well as emotional control and memory. serotonin —A neurotransmitter ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... mental disorder, or perhaps you have experienced one yourself at some point. Such disorders include depression , anxiety ... control specific body functions such as sleep and speech. The brain continues maturing well into a person's ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... some point. Such disorders include depression , anxiety disorders , bipolar disorder , attention deficit hyperactivity disorder (ADHD) , and many others. ... differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... can diagnose mental disorders are psychologists or clinical social workers. The psychiatrist asked Sarah and her husband ... the understanding of how the brain grows and works and the effects of genes and environment on ...

  1. Subcellular localization and compartmentation of thiamine derivatives in rat brain.

    Science.gov (United States)

    Bettendorff, L; Wins, P; Lesourd, M

    1994-05-26

    The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate. PMID:8186256

  2. Binding of mescaline with subcellular fractions upon incubation of brain cortex slices with [14C] mescaline.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1977-01-01

    Incubation of brain cortex slices in the presence of glucose resulted in the permeation of about 65% of [14C] mescaline into slices. Of this, about one-third radioactivity was bound with nuclei, mitochondria, microsomes, and ribosomes. Dialysis of subcellular fractions did not markedly reduce the amounts of radioactivity bound to the fractions. The permeation into slices and the binding of mescaline to subcellular fractions were fairly time-dependent, but were inhibited by the presence of potassium cyanide, or by the absence of glucose and by heating to 80 degrees C for 1 min.

  3. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li, E-mail: wangyongli@gmail.com

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  4. Anticuerpos anti 21 hidroxilasa séricos en pacientes con anticuerpos antifracción microsomal: Síndrome poliendocrino autoinmune Seric 21- hydroxilase antibodies in patients with anti-microsomal fraction antibodies: Autoimmune polyendocrine syndrome

    Directory of Open Access Journals (Sweden)

    Silvia Botta

    2007-04-01

    Full Text Available El síndrome poliendocrino autoinmune (SPA es la asociación de enfermedades endocrinas autoinmunes con otros desórdenes autoinmunes no endocrinos. Los tipos 1, 2 y 4 presentan adrenalitis autoinmune, esto indica la presencia de autoanticuerpos, y su marcador serológico específico es el anti 21 hidroxilasa (a21-OH. El SPA tipo 2 es la asociación de adrenalitis, enfermedad tiroidea y/o diabetes mellitus inducidas por autoanticuerpos. Como componentes menores, pueden estar asociados entre otros, vitiligo, alopecia y miastenia. Nuestros objetivos fueron: establecer la prevalencia de a21-OH séricos en pacientes con anticuerpos anti fracción microsomal (AFM positivos, enfermedad tiroidea autoinmune y/o afecciones endocrinas y no endocrinas autoinmunes; diagnosticar formas incompletas de SPA y estudiar individuos con probable riesgo de progresión a un SPA completo. Estudiamos 72 pacientes AFM positivos y 60 sujetos tomados como grupo control, AFM negativos. Hallamos a21-OH elevados en dos pacientes: A= 47 U/ml, hipotiroidismo autoinmune y miastenia; y B= 8.75 U/ml, hipotiroidismo autoinmune y vitiligo; ambos con ausencia de insuficiencia adrenal. La prevalencia de a21-OH encontrada fue del 2.8%. Las pacientes A y B corresponden a un SPA tipo 2 incompleto y latente en relación al componente adrenal. Considerando a los a21-OH marcadores de enfermedad autoinmune latente, el eventual riesgo de evolución hacia la afección clínica sugiere la necesidad de estrechos controles clínicos y bioquímicos periódicos.Autoimmune polyendocrine syndrome (APS is the association of autoimmune endocrine diseases, with other autoimmune nonendocrine disorders. APS types 1, 2 and 4 include autoimmune adrenalitis; this suggests the presence of autoantibodies. A specific serological marker for these is the anti 21- hydroxilase autoantibody (a21-OH. APS type 2 is the association of autoimmune adrenalitis, to autoimmune thyroid disease and/or diabetes mellitus, all

  5. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  6. Robot brains

    NARCIS (Netherlands)

    Babuska, R.

    2011-01-01

    The brain hosts complex networks of neurons that are responsible for behavior in humans and animals that we generally call intelligent. I is not easy to give an exact definition of intelligence – for the purpose of this talk it will suffice to say that we refer to intelligence as a collection of cap

  7. Brain Basics

    Medline Plus

    Full Text Available ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate have been linked ... we see, and help us to solve a problem. Some of the regions most commonly ... also appears to be involved in learning to fear an event, such as touching a ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... or post-traumatic stress disorder (PTSD) . Prefrontal cortex (PFC) —Seat of the brain's executive functions, such as ... making, and problem solving. Different parts of the PFC are involved in using short-term or "working" ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... ClinicalTrials.gov : Federally and privately supported research using human volunteers PubMed Central: An archive of life sciences ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... ADHD , schizophrenia , and depression . Hippocampus —Helps create and file new memories. When the hippocampus is damaged, a ... portion of the brain involved in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) axis —A ...

  11. Age-related changes in microsome-dependent conversion of T -T ,thyroid function and cadmium toxicity in albino rat

    Directory of Open Access Journals (Sweden)

    Sohair A. Moustafa

    2002-09-01

    Full Text Available The impact of age on microsomal function, manifested by its ability to convert thyroid hormone thyroxine (T to triiodothyronine (T&, was investigated using four age '& (-months. The data show impaired microsomal function with advancing age represented by a significant decrease in serum levels of T& and T&/T ratio. There was a decline in the liver glutathione (GSH, total proteins and serum aspartate aminotransferase (AST, alanine aminotransferase (ALT and gamma-glutamyl transpeptidase (*GT. There was an-age associated increase in liver content of the lipid peroxidation products, thiobarituric acid (TBA-reactants and the serum total protein. + +,-.'( +-/' +-old+0-1-mg/kg CdCl 2their controls were injected with distilled water. A higher susceptibility of senile rats to cadmium toxicity was manifested as a significantly higher decrease in their serum T& level and T&/T ratio than adult compared to control. A reduction in the adaptive response of senile animals was manifested by a less increase in hepatic GSH in senile than adult as compared to control. The level of hepatic TBA-reactants was significantly higher in treated than in control group. The increase was more pronounced in the senile group. A marked hepatic cellular damage indicated by an increase in the serum levels of the AST and ALT was more pronounced in senile compared with adult rats. Treatment resulted in a decrease in the serum *GT and liver triglycerides (TG. The decrease in both parameters was more evident in senile as compared to adult group. Key words: Introduction As nations become progressively associated decline in the above more industrialized, the incidence of variables may be further complicated by overweight, non-insulin dependent disturbance in the normal metabolism diabetes mellitus (NIDDM, and related and action of thyroid hormones, metabolic disorders has been shown to particularly T& (Wallace & Hofmann, increase especially at old age. Along ((%263 4(((with those changes

  12. Inhibition of hepatic microsomal triglyceride transfer protein – a novel therapeutic option for treatment of homozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Vuorio A

    2014-05-01

    Full Text Available Alpo Vuorio,1,2 Matti J Tikkanen,3 Petri T Kovanen4 1Health Center Mehiläinen, Vantaa, Finland; 2Finnish Institute of Occupational Health, Lappeenranta, Finland; 3Heart and Lung Center, Helsinki University Central Hospital, Folkhälsan Research Center, Biomedicum, Helsinki, Finland; 4Wihuri Research Institute, Biomedicum, Helsinki, Finland Abstract: Familial hypercholesterolemia (FH is an autosomal dominant disease caused by mutations in the low-density lipoprotein (LDL-receptor gene (LDLR. Patients with homozygous FH (hoFH have inherited a mutated LDLR gene from both parents, and therefore all their LDL-receptors are incapable of functioning normally. In hoFH, serum LDL levels often exceed 13 mmol/L and tendon and cutaneous xanthomata appear early (under 10 years of age. If untreated, this extremely severe form of hypercholesterolemia may cause death in childhood or in early adulthood. Based on recent data, it can be estimated that the prevalence of hoFH is about 1:500,000 or even 1:400,000. Until now, the treatment of hoFH has been based on high-dose statin treatment combined with LDL apheresis. Since the LDL cholesterol-lowering effect of statins is weak in this disease, and apheresis is a cumbersome treatment and not available at all centers, alternative novel pharmaceutical therapies are needed. Lomitapide is a newly introduced drug, capable of effectively decreasing serum LDL cholesterol concentration in hoFH. It inhibits the microsomal triglyceride transfer protein (MTTP. By inhibiting in hepatocytes the transfer of triglycerides into very low density lipoprotein particles, the drug blocks their assembly and secretion into the circulating blood. Since the very low density lipoprotein particles are precursors of LDL particles in the circulation, the reduced secretion of the former results in lower plasma concentration of the latter. The greatest concern in lomitapide treatment has been the increase in liver fat, which can be, however

  13. Characterization of in vitro metabolic profiles of cinitapride obtained with liver microsomes of humans and various mammal species using UHPLC and chemometric methods for data analysis.

    Science.gov (United States)

    Marquez, Helena; Albertí, Joan; Salvà, Miquel; Saurina, Javier; Sentellas, Sonia

    2012-05-01

    An ultra-high performance liquid chromatographic method has been utilized to obtain metabolic profiles of cinitapride with liver microsomes of humans and various mammal species such as rats, mice, mini pigs, dogs, and monkeys. Metabolites have been generated by incubation of cinitapride in the presence of microsomes using nicotinamide adenine dinucleotide phosphate as a cofactor. Incubation times from 15 to 60 min have been assayed. Cinitapride and its metabolites have been separated by reversed-phase C(18) mode using ammonium formate aqueous solution (pH 6.5) and acetonitrile as the components of the mobile phase. Concentrations of metabolites in the incubated samples have resulted in an excellent source of multivariate data to be used to extract metabolic information. Statistic parameters and principal component analysis have been used to compare the in vitro metabolism of humans with the other species. PMID:22362276

  14. Development and validation of an enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human liver microsomes.

    Science.gov (United States)

    De Bock, Lies; Colin, Pieter; Boussery, Koen; Van Bocxlaer, Jan

    2012-09-15

    Little is known about the influence of hepatic pathologies on cytochrome P450 (CYP) mediated drug metabolism in children. The determination of the abundance of the different isoforms in pediatric microsomes may provide valuable information on the mechanisms of possible changes in activity. Until now, western blotting was mostly used for abundance measurements, but this technique only provides semi-quantitative data. Therefore, this study aimed to develop and validate an indirect ELISA for the quantification of the most important CYP isoform, CYP3A4, in human liver microsomes, using commercially available reagents. Samples, calibrators and validation samples were diluted to a final concentration of 10 μg microsomal protein/ml. A polyclonal antibody raised against the full length human protein was used as primary antibody; horseradish peroxidase conjugated secondary antibodies for detection. The assay was validated for sensitivity, working range and calibration, accuracy and precision. Amounts of CYP3A4 between 2 and 300 pmol/mg microsomal protein could be quantified with a 5-parameter logistics function with 1/x weighting factor. Coefficients of variation of intra and inter assay variability were between 9.54 and 13.98% (16.34% at LLOQ), and between 10.51 and 14.55% (19.44% at LLOQ), respectively. The relative error (%RE) varied between -5.96 and 6.68% (11.53% at LLOQ), and the total error between 11.93 and 21.23% (30.97% at LLOQ). The cross-reactivity of the method with human CYP2E1 showed to have no significant effect on the accuracy of the results. Successful analysis of five samples from an ongoing study demonstrated the usefulness of the method.

  15. Transcriptional modulation of hepatic lipoprotein assembly and secretion : coordinate regulation of the liver-fatty acid binding protein and microsomal triglyceride transfer protein genes

    OpenAIRE

    Spann, Nathanael J.

    2006-01-01

    Hepatic production of apolipoprotein (apo) B-containing lipoproteins provides a means to transport essential lipids and fat-soluble nutrients to peripheral tissues for utilization and storage. Liver-fatty acid binding protein (L-FABP) and microsomal triglyceride transfer protein (MTP) bind fatty acids and glycerolipids, respectively and facilitate their transfer into the VLDL assembly and secretion pathway. Sequence analysis reveals that the proximal promoter regions of L-FABP and MTP contain...

  16. The biotransformation of isoprene and the two isoprene monoepoxides by human cytochrome P450 enzymes, compared to mouse and rat liver microsomes

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Venekamp, J.C.; Bladeren, P.J. van

    1996-01-01

    The metabolism of isoprene was investigated with microsomes derived from cell lines expressing human CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, or CYP3A4. The formation of epoxide metabolites was determined by gas chromatographic analysis. CYP2E1 showed the highest rates of formation of

  17. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  18. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  19. High-performance liquid chromatography determination of N- and O-demethylase activities of chemicals in human liver microsomes: application of postcolumn fluorescence derivatization using Nash reagent.

    Science.gov (United States)

    Kobayashi, K; Yamamoto, T; Taguchi, M; Chiba, K

    2000-09-10

    Formaldehyde is liberated in the process of cytochrome P450 (CYP) mediated demethylation of a wide variety of compounds containing the CH(3)N or CH(3)O functionality. A highly sensitive method using a high-performance liquid chromatography (HPLC) system with postcolumn derivatization was developed to measure the liberated formaldehyde as N- and O-demethylase activity of drugs in human liver microsomes. Following the chromatographic separation of formaldehyde on a C18 column, the formaldehyde was reacted with the Nash reagent in the postcolumn reactor at 100 degrees C and detected by the fluorescence method. The results showed that the present method has excellent precision and accuracy. The intra- and interassay variances of this method were less than 10%. The newly developed HPLC method was found to be about 80-fold more sensitive than the colorimetric method in detection of formaldehyde. The N-demethylase activity of sertraline in rat liver microsomes determined by the present method did not differ from those detected by previous methods quantifying produced desmethyl metabolite. The present method has been successfully applied to determine the N-demethylase activities of several drugs, including aminopyrine, erythromycin, fluoxetine, S-mephenytoin, and sertraline, in human liver microsomes. This assay should be useful for generic analysis of N- and O-demethylase activities of xenobiotic and endobiotic chemicals by CYP enzymes. PMID:10964418

  20. Metabolic Profiling of the Uncaria Hook Alkaloid Geissoschizine Methyl Ether in Rat and Human Liver Microsomes Using High-Performance Liquid Chromatography with Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hirotaka Kushida

    2015-01-01

    Full Text Available Geissoschizine methyl ether (GM is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes.

  1. In vitro metabolism of a novel PPAR gamma agonist, KR-62980, and its stereoisomer, KR-63198, in human liver microsomes and by recombinant cytochrome P450s.

    Science.gov (United States)

    Kim, K-B; Seo, K-A; Yoon, Y-J; Bae, M-A; Cheon, H G; Shin, J-G; Liu, K-H

    2008-09-01

    1. KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPAR gamma) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes. 2. Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a beta-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198. 3. The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CL(int) of 0.012 +/- 0.001 versus 0.004 +/- 0.001 microl min(-1) pmol(-1) P450, respectively). 4. In a drug-drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC(50) > 50 microM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.

  2. Metabolic profiling of the Uncaria hook alkaloid geissoschizine methyl ether in rat and human liver microsomes using high-performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Kushida, Hirotaka; Matsumoto, Takashi; Igarashi, Yasushi; Nishimura, Hiroaki; Watanabe, Junko; Maemura, Kazuya; Kase, Yoshio

    2015-01-01

    Geissoschizine methyl ether (GM) is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes. PMID:25633336

  3. Breath analysis of 13CO2 following N-demethylation of 13C-aminopyrine: a measure of liver microsomal function

    International Nuclear Information System (INIS)

    The hepatic microsomal mixed function oxidase enzyme activity has been measured by N-demethylation of 4-dimethyl-14C-aminopyrine (DAP). Analysis of 14CO2 in expired breath has recently been validated in the rat and man as a measure of this function. In the present study we examine the use of DAP labeled with the stable isotope carbon-13, in order to permit broader clinical application of this test by avoiding radiation exposure. Two mg/kg of 86% enriched 13C-DAP were given orally to 4 normal subjects and 5 patients with cholestatic liver disease. All subjects were fasted overnight and studied at rest. Breath samples were collected at 1/2 hour intervals for 3 hours. In all samples the excess of 13CO2 was significantly greater than the variation in baseline after ingestion of unlabeled DAP. In normal subjects the peak production of 13CO2 occurred in the first 1/2 hour sample. Unlabeled DAP (8 mg/kg) clearance from serum correlated with excess 13CO2 production measured in exhaled breath confirming the 14CO2 results. When phenobarbital (180 mg/day) was administered, an increase in exhaled 13CO2 was observed. Measurement of 13CO2 in breath following DAP provides a reproducible clinical measure of microsomal function and drug induction. The use of stable carbon-13 labeled DAP permits measurement of liver microsomal function in patients who cannot receive radioactive labeled DAP

  4. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    Science.gov (United States)

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  5. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-01

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. PMID:27381871

  6. Evaluation of beta-myrcene, alpha-terpinene and (+)- and (-)-alpha-pinene in the Salmonella/microsome assay.

    Science.gov (United States)

    Gomes-Carneiro, M R; Viana, Márcia E S; Felzenszwalb, Israel; Paumgartten, Francisco J R

    2005-02-01

    This study was undertaken to investigate the genotoxicity of beta-myrcene, alpha-terpinene and (+) and (-)-alpha-pinene, monoterpenes found in a variety of plant volatile oils. beta-myrcene, alpha-terpinene and alpha-pinene as well as plant oils containing these hydrocarbon monoterpenes have been used as flavoring additives in foods and beverages, as fragrances in cosmetics, and as scent in household products. Mutagenicity was evaluated by the Salmonella/microsome assay (TA100, TA98, TA97a and TA1535 tester strains), without and with addition of an extrinsic metabolic activation system (rat liver S9 fraction induced by Aroclor 1254). Two dose-complementary assays were performed so that a broad range of doses, including a number of regularly-spaced doses in the non-toxic dose interval, were tested. No increase in the number of his+ revertant colonies over the negative control values was observed in any of the four S. typhimurium tester strains. Results from the present study therefore indicated that beta-myrcene, alpha-terpinene, and (+) and (-)-alpha-pinene are not mutagenic in the Ames test.

  7. The in vivo toxicity of carbon tetrachloride and carrageenan on heart microsomes: analysis by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Melin, A M; Perromat, A; Deleris, G

    2001-09-01

    We investigated the sensitivity of rat heart microsomes to free radical attack using Fourier transform infrared (FT-IR) spectroscopy. This physico-chemical method seemed a valuable technique: quite sensitive to changes in the vibrational spectra. The spectral variations observed between normal and treated rats were in great part due to reactive oxygen species that led to changes in protein conformation involving beta-sheets, aggregation of proteins, and modification of protein synthesis. Carrageenan-induced inflammation slightly enhanced the total lipid content; rearrangement of acyl chains and accumulation of cholesterol esters and phospholipids also occurred in the treated rats. Carbon tetrachloride induced a decrease in both lipid and protein contents. The level of glucidic substrates was diminished with carbon tetrachloride and enhanced with carrageenan; these changes were due to metabolic interactions between cell components and drugs. FT-IR spectroscopy provided an accurate means to monitor, in rat heart, the in vivo effects of inflammatory and peroxidative damages, to discriminate and classify the affected cells, and to correlate the findings with known physiological and biochemical data in close relationship with metabolic disruptions induced by the two xenobiotics.

  8. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    Science.gov (United States)

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules. PMID:26601426

  9. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes.

    Science.gov (United States)

    Albassam, Ahmed A; Mohamed, Mohamed-Eslam F; Frye, Reginald F

    2015-05-01

    1. Herbal supplements widely used in the US were screened for the potential to inhibit CYP2C8 activity in human liver microsomes. The herbal extracts screened were garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry. N-desethylamodiaquine (DEAQ) and hydroxypioglitazone metabolite formation were used as indices of CYP2C8 activity. 2. All herbal extracts showed inhibition of CYP2C8 activity for at least one of three concentrations tested. A volume per dose index (VDI) was calculated to determine the volume in which a dose should be diluted to obtain IC50 equivalent concentration. Cranberry and saw palmetto had a VDI value > 5.0 l per dose unit, suggesting a potential for interaction. 3. Inhibition curves were constructed and the IC50 (mean ± SE) values were 24.7 ± 2.7 μg/ml for cranberry and 15.4 ± 1.7 μg/ml for saw palmetto. 4. The results suggest a potential for cranberry or saw palmetto extracts to inhibit CYP2C8 activity. Clinical studies are needed to evaluate the significance of this interaction. PMID:25430798

  10. Effect of Honokiol on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Yong Yeon Cho

    2013-09-01

    Full Text Available Honokiol is a bioactive component isolated from the medicinal herbs Magnolia officinalis and Magnolia grandiflora that has antioxidative, anti-inflammatory, antithrombotic, and antitumor activities. The inhibitory potentials of honokiol on eight major human cytochrome P450 (CYP enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4, and four UDP-glucuronosyltransferases (UGTs 1A1, 1A4, 1A9, and 2B7 in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. Honokiol strongly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C8-mediated amodiaquine N-deethylation, CYP2C9-mediated diclofenac 4-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4-hydroxylation, and UGT1A9-mediated propofol glucuronidation with Ki values of 1.2, 4.9, 0.54, 0.57, and 0.3 μM, respectively. Honokiol also moderately inhibited CYP2B6-mediated bupropion hydroxylation and CYP2D6-mediated bufuralol 1'-hydroxylation with Ki values of 17.5 and 12.0 μM, respectively. These in vitro results indicate that honokiol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, CYP2C8, CYP2C9, CYP2C19, and UGT1A9.

  11. An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases.

    Science.gov (United States)

    Yang, Guangrui; Chen, Lihong

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options. PMID:27594972

  12. Effect of microsomal triglyceride transfer protein gene polymorphism in the promoter region on dyslipidemia in type 2 diabetic subjects

    Institute of Scientific and Technical Information of China (English)

    陈莉明; 芳野原; 前田英一; 曾淑范

    2003-01-01

    Objective To explore the relationship between microsomal triglyceride transfer protein (MTP) gene variation and diabetic dyslipidemia among Chinese. Methods Using PCR restriction fragment length polymorphism (PCR-RFLP) analysis and gene sequencing, we studied the influence of a common MTP gene polymorphism in the p romoter region on the apoB-containing lipoproteins in 44 Chinese type 2 diabeti c subjects and 32 non-diabetic volunteers. Results A common functional G/T polymorphism in 493 bp upstream from the transcriptional start point was detected among native Chinese. There were 41 carriers (53.9%) of the MTP-493 G/G genotype, 28 (36.8%) of the MTP-493 G/T genotype and 7 (9.3%) of the MTP-493 T/T genotype. The allele frequency of M TP-493 T in the diabetic group was 0.30. The MTP-493 T/T diabetic group had significantly higher TG (P<0.05), VLDL-CH (P<0.05) and smaller LDL pa rticle size (P<0.001) than the MTP-493 common genotype group. Conclusion Genetic variation in the MTP promoter is likely to be highly involved in the production of dyslipidemia in type 2 diabetic subjects.

  13. Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures. Microsomal conversion of demethylsuberosin into (+)marmesin and psoralen.

    Science.gov (United States)

    Hamerski, D; Matern, U

    1988-01-15

    Suspension cultures of Ammi majus L. cells produce various linear furanocoumarins in response to treatment with elicitor preparations from either Alternaria carthami Chowdhury or Phytophthora megasperma f.sp. glycinea. Microsomes which were isolated from these cells 14 h after addition of the elicitor efficiently catalyzed the conversion of demethyl [3-14C]suberosin into labelled (+)marmesin in the presence of NADPH and oxygen. In contrast to the chemical cyclization of demethylsuberosin by m-chloroperoxybenzoic acid, the reaction catalyzed by the marmesin synthase proceeded rapidly and no intermediate demethylsuberosin epoxide could be recovered. Significant blue-light-reversible inhibition by carbon monoxide and inhibition by various chemicals known to inhibit reactions dependent on cytochrome P450 suggested that the marmesin synthase is a cytochrome-P450-dependent monooxygenase. Upon prolonged incubation, a subsequent major labelled product originated from (+)marmesin, which was identified as psoralen. The psoralen synthase was also characterized as a cytochrome-P450-dependent monooxygenase. Both the marmesin synthase and the psoralen synthase, as well as enzymes catalyzing the formation of demethylsuberosin and O-prenylumbelliferone from umbelliferone and dimethylallyl diphosphate, were associated with the endoplasmic reticulum in Ammi majus cells and their activities were concomitantly induced by elicitor treatment of the cells. We propose that in vivo these enzymes are active in the lumen of the endoplasmic reticulum from where the furanocoumarin phytoalexins are excreted into the cell culture fluid.

  14. Spectrophotometric method for the assay of steroid 5α-reductase activity of rat liver and prostate microsomes.

    Science.gov (United States)

    Iwai, Atsushi; Yoshimura, Teruki; Wada, Keiji; Watabe, Satoshi; Sakamoto, Yuki; Ito, Etsuro; Miura, Toshiaki

    2013-01-01

    A simple spectrophotometric method for the assay of steroid 5α-reductase (5α-SR) was developed in which 5α-dihydrotestosterone (5α-DHT) and 5α-androstane-3α,17β-diol (5α-diol), metabolites formed in the NADPH-dependent reduction of testosterone with enzyme sources of 5α-SR, were measured by enzymatic cycling using 3α-hydroxysteroid dehydrogenase in the presence of excess thionicotinamide-adenine dinucleotide (thio-NAD) and NADH. It was found that 5α-SR activity was proportional to the accumulated thio-NADH having an absorption maximum at 400 nm. Because of the high cycling rate (> 600 cycle per min) and no interference from testosterone, enzymatic cycling can determine the sum of 5α-DHT and 5α-diol at the picomole level without separation from excess testosterone. The present method was readily applicable to the assay of 5α-SR activity of rat liver and prostate microsomes as well as to the assay of inhibitory activity of finasteride, a synthetic inhibitor of 5α-SR. PMID:23574674

  15. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, reduces food preference for fat.

    Science.gov (United States)

    Mera, Yasuko; Hata, Takahiro; Ishii, Yukihito; Tomimoto, Daisuke; Kawai, Takashi; Ohta, Takeshi; Kakutani, Makoto

    2014-01-01

    Microsomal triglyceride transfer protein (MTP) is involved in the assembly and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. JTT-130 is a novel intestine-specific MTP inhibitor, which has been shown to be useful in the prevention and treatment of dyslipidemia, obesity, and diabetes. JTT-130 has also been shown to suppress food intake in a dietary fat-dependent manner in rats. However, whether JTT-130 enables changes in food preference and nutrient consumption remains to be determined. Therefore, the aim of the present study was to investigate the effects of JTT-130 on food preference in rat under free access to two different diets containing 3.3% fat (low-fat diet, LF diet) and 35% fat (high-fat diet, HF diet). JTT-130 decreased HF diet intake and increased LF diet intake, resulting in a change in ratio of caloric intake from LF and HF diets to total caloric intake. In addition, macronutrient analysis revealed that JTT-130 did not affect carbohydrate consumption but significantly decreased fat consumption (P fat absorption, but also suppresses food intake and specifically reduces food preference for fat. Therefore, JTT-130 is expected to provide a new option for the prevention and treatment of obesity and obesity-related metabolic disorders.

  16. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    Science.gov (United States)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  17. Effect of water-miscible organic solvents on CYP450-mediated metoprolol and imipramine metabolism in rat liver microsomes

    Directory of Open Access Journals (Sweden)

    T S Shah

    2015-01-01

    Full Text Available The catalytic activity of cytochrome P450 enzymes is known to be affected by presence of organic solvents in in vitro assays. However, these effects tend to be variable and depend on the substrate and CYP450 isoform in question. In the present study, we have investigated effect of ten water miscible organic solvents (methanol, ethanol, propanol, isopropanol, acetone, acetonitrile, dimethylsulphoxide, dimethylformamide, dioxane and PEG400 on water soluble substrates of CYP450, metoprolol and imipramine, at 0, 0.1, 0.25, 0.5, 0.75 and 1% v/v concentration in rat liver microsomes. Organic solvents studied had a concentration dependent inhibitory effect on the metoprolol and imipramine metabolism activity. Metoprolol metabolism was found to be more susceptible to the organic solvents, almost all the ten solvents had more or less inhibitory effect compared to imipramine metabolism. Except acetone, PEG400 and dimethylsulphoxide, all solvents had ~50% inhibition of total metoprolol metabolism activity, while in case of imipramine metabolism activity, only n-propanol, isopropanol and PEG400 had ~50% inhibition at 1% v/v. Interestingly, methanol, dimethylsulphoxide and acetonitrile had negligible effect on the imipramine metabolism (less than 10% inhibition at 1% v/v while, total metoprolol metabolism activity was substantially inhibited by these solvents (MeOH 52%, DMSO 29% and ACN 47% at 1% v/v. In both cases, dioxane was found to be the most inhibitory solvent (~90% inhibition at 1% v/v.

  18. Identification and comparative oridonin metabolism in different species liver microsomes by using UPLC-Triple-TOF-MS/MS and PCA.

    Science.gov (United States)

    Ma, Yinghua; Xie, Weiwei; Tian, Tingting; Jin, Yiran; Xu, Huijun; Zhang, Kerong; Du, Yingfeng

    2016-10-15

    Oridonin (ORI) is an active natural ent-kaurene diterpenoid ingredient with notable anti-cancer and anti-inflammation activities. Currently, a strategy was developed to identify metabolites and to assess the metabolic profiles of ORI in vitro using ultra-high-performance liquid chromatography-Triple/time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS). Meanwhile, the metabolism differences of ORI in the liver microsomes of four different species were investigated using a principal component analysis (PCA) based on the metabolite absolute peak area values as the variables. Based on the proposed methods, 27 metabolites were structurally characterized. The results indicate that ORI is universally metabolized in vitro, and the metabolic pathway mainly includes dehydration, hydroxylation, di-hydroxylation, hydrogenation, decarboxylation, and ketone formation. Overall, there are obvious inter-species differences in types and amounts of ORI metabolites in the four species. These results will provide basic data for future pharmacological and toxicological studies of ORI and for other ent-kauranes diterpenoids. Meanwhile, studying the ORI metabolic differences helps to select the proper animal model for further pharmacology and toxicological assessment. PMID:27503750

  19. Pharmacokinetic study of isocorynoxeine metabolites mediated by cytochrome P450 enzymes in rat and human liver microsomes.

    Science.gov (United States)

    Zhao, Lizhu; Zang, Bin; Qi, Wen; Chen, Fangfang; Wang, Haibo; Kano, Yoshihiro; Yuan, Dan

    2016-06-01

    Isocorynoxeine (ICN) is one of the major bioactive tetracyclic oxindole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks. that is widely used for the treatment of hypertension, vascular dementia, and stroke. The present study was undertaken to assess the plasma pharmacokinetic characteristics of major ICN metabolites, and the role of simulated gastric and intestinal fluid (SGF and SIF), human and rat liver microsomes (HLMs and RLMs), and seven recombinant human CYP enzymes in the major metabolic pathway of ICN. A rapid, sensitive and accurate UHPLC/Q-TOF MS method was validated for the simultaneous determination of ICN and its seven metabolites in rat plasma after oral administration of ICN at 40mg/kg. It was found that 18.19-dehydrocorynoxinic acid (DCA) and 5-oxoisocorynoxeinic acid (5-O-ICA) were both key and predominant metabolites, rather than ICN itself, due to the rapid and extensive metabolism of ICN in vivo. The further study indicated that ICN was mainly metabolized in human or rat liver, and CYPs 2C19, 3A4 and 2D6 were the major enzymes responsible for the biotransformation of ICN to DCA and 5-O-ICA in human. These findings are of significance in understanding of the pharmacokinetic nature of tetracyclic oxindole alkaloids, and provide helpful information for the clinical co-administration of the herbal preparations containing U. rhynchophylla with antihypertensive drugs that are mainly metabolized by CYP3A4 and CYP2C19. PMID:27094112

  20. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  1. Animating Brains

    Science.gov (United States)

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  2. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    International Nuclear Information System (INIS)

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  3. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying; Takagi, Akira [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kayano, Hidekazu [Department of Pathology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Koyama, Isamu [Department of Digestive and General Surgery, Saitama International Medical Center, Faculty of Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  4. In vitro metabolism of two heterocyclic andnes, 2-amino-9H-pyrido[2,3-b]indole (A alpha C) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) in human and rat hepatic microsomes

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Frandsen, Henrik Lauritz

    2002-01-01

    microsomes from human pools, rats induced with polychlorinated biphenyl (PCB) (Aroclor 1254) and control rats. The microsomes were incubated with AalphaC and MeAalphaC and the detoxified and activated metabolites of AalphaC and MeAalphaC were separated and characterised by HPLC-MS. AalphaC is metabolised to......-metabolites react partially in the incubation system with formation of protein adducts, dimers and the parent compound by reduction of the A(2)-OH-metabolites. The distribution between the detoxified and activated metabolites in the different types of hepatic microsomes showed same pattern for both AalphaC and Mc......AalphaC In PCB-induced rat microsomes, the major part of the metabolites are detoxified, only a little amount is activated. In control rat microsomes there is a fifty-ffty distribution between detoxification and activation, while the major part of the metabolites from the human microsomes are activated and...

  5. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.

    Science.gov (United States)

    Urban, G; Speerschneider, P; Dekant, W

    1994-01-01

    1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) has been developed as a substitute for ozone-depleting chlorofluorocarbons. The atmospheric lifetime of HCFC-123 is expected to be much shorter than those of chlorofluorocarbons; however, due to its lower stability and the presence of carbon-hydrogen bonds, metabolism of HCFC-123 in mammals and metabolism-dependent toxicity is likely. We compared the metabolism of HCFC-123 and its analog halothane in rat and human liver microsomes. 19F-NMR studies showed that trifluoroacetic acid is a major metabolite of HCFC-123. Besides trifluoroacetic acid, chlorodifluoroacetic acid and inorganic fluoride were identified as products of the enzymatic oxidation of HCFC-123 in rat and human liver microsomes by 19F-NMR and mass spectrometry. The metabolites were not detected in incubations with halothane. HCFC-123 and halothane were transformed by liver microsomes from untreated rats at low rates. Microsomes from ethanol-and pyridine-treated rats metabolized both HCFC-123 and halothane at much higher rates. These microsomes also exhibited high rates of p-nitrophenol oxidation. p-Nitrophenol is a model substrate mainly oxidized by P450 2E1 to p-nitrocatechol. Samples of human liver microsomes showed considerable differences in the extent of HCFC-123, p-nitrophenol oxidation, and chlorzoxazone hydroxylation. In human liver microsomes, rabbit anti-rat P450 2E1 IgG recognized a single protein band corresponding in apparent molecular weight to human P450 2E1. Immunoblot analysis revealed considerable heterogenity in the P450 2E1 protein content of the human liver samples. Trifluoroacetic acid formation from HCFC-123 and halothane and p-nitrocatechol formation from p-nitrophenol were significantly reduced by the P450 2E1 inhibitor diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8199305

  6. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    Science.gov (United States)

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  7. Determination of the inhibitory potential of 6 fluoroquinolones on CYPIA2 and CYP2C9 in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Min-ji WEI; Cai-yun ZHAO; Hui-min QI

    2008-01-01

    Aim: To determine the inhibitory potential of 2 new fluoroquinolones, caderofloxacin and antofloxacin, together with 4 marketed fluoroquinolones, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin, on the activity of cytochrome P450 isoforms 1A2 (CYP1A2) and 2C9 (CYP2C9). Methods: Probe substrates, phenacetin (CYP1A2), and tolbutamide (CYP2C9) were incubated with human liver microsomes and the metabolites were analyzed by liquid chromatography/mass spectrometry using electrospray ionization in positive or negative mode. Glipizide was used as the internal standard in both modes. The inhibitory potential of fluoroquinolones on CYP1A2 and CYP2C9 was investigated. Results: The IC50 values (μmol/L) determined with the cocktail were in agreement with individual probe substrates (α-naphthoflavone: 0.27 vs 0.26; sulfaphenazole: 0.49 vs 0.37). Ciprofloxacin showed weak inhibition on both the activity of CYPIA2 (IC50 135 μmol/L) and CYP2C9 (IC50 180 μmol/L), whereas levofloxacin inhibited only CYP2C9 (IC50 210 μmol/L). Caderofloxacin, antofloxacin, moxifloxacin, and gatifloxacin showed little or no inhibition on the activity of CYPIA2 or CYP2C9 when tested at comparable concentrations (0-200 mg/L). Conclusion: Caderofloxacin, antofloxacin, moxifloxacin, and gatifloxacin are negligible inhibitors to CYP1A2 and CYP2C9. The in vitro system can be used as a high-throughput model to screen similar compounds for the early identification of drug-drug interaction potential.

  8. Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes.

    Science.gov (United States)

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Hayakawa, Toru; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-06-01

    The cytochrome P450 (CYP) 2C8*3 allele is associated with reduced metabolic activity of paclitaxel. This study was aimed to investigate the inhibitory effect of losartan on paclitaxel metabolism in human liver microsomes (HLMs) and to determine the impact of the CYP2C8*3 polymorphism. HLMs that contained the CYP2C8*1 homozygote (HL60) or CYP2C8*3 heterozygote (HL54) genotype were used for the inhibition study. Losartan, at a concentration of 50 μmol/L, significantly inhibited paclitaxel metabolism by 29% and 57% in the HL60 (p losartan and the CYP3A4-selective inhibitors, erythromycin and ketoconazole, caused a greater inhibition of the paclitaxel metabolism than quercetin, a CYP2C8-selective inhibitor. This demonstrated that the paclitaxel metabolism was mainly catalysed by CYP3A4 in HL60. There were no significant differences found for the inhibitory effects caused by the four inhibitors of the paclitaxel metabolism in HL54, indicating that both CYP2C8 and CYP3A4 play important roles in paclitaxel metabolism in HL54. These findings suggest that 50 μmol/L of losartan inhibits both CYP2C8 and CYP3A4 in HLMs. In summary, losartan inhibited paclitaxel metabolism, with concentrations over 50 μmol/L in HLMs. The CYP2C8*3 allele carriers are likely susceptible to the interactions of losartan and CYP3A4 inhibitors to paclitaxel metabolism.

  9. CL 64, 855, a potent do anti-Trypanosoma cruzi drug, is also mutagenic in the salmonella/microsome assay

    Directory of Open Access Journals (Sweden)

    R. C. C. Ferreira

    1986-03-01

    Full Text Available The nitroimidazole-tiadiazole derivative CL 64,855 (2-amino-5-(1-methyl-5-nitro-2-imidazolyl-1,3,4-thiadiazole, a potent anti-trypanosomal drug, was assayed in a short-term bacterial mutagenicity test with Salmonella typhimurium strains TA 98, TA 100 and TA 102. Results indicate that CL 64,855 is a potent frameshift mutagen detected by strains TA 98 and TA 102. CL 64,855 was able to revert the indicators strains at concentrations as low as 0.1 µg/plate. Metabolic activation experiments with rat liver microsomal fractions did not increase the mutagenic action of Cl 64,855.O derivado nitroimizadole-tiadizol CL 64.855 (2-amino-5-(1-metil-5-nitro-2-imidazoli-1, 3, 4-tiadiazol, um potente agente tripanomicida, foi submetido a um ensaio mutagênico bacteriano com as linhagens indicadoras de Salmonella typhimurium TA 98, TA 100 e TA 102. Os resultados indicaram que o CL 64.855 é um potente mutagênico tipo troca de referencial detectado pelas linhagens TA 98 e TA 102. O CL 64.855 foi capaz de reverter as linhagens indicadoras em concentrações tão baixas quatro 0,1microng/placa. Ativação metabólica com frações microssomais de fígado de rato foram incapazes de aumentar a ação mutagênica do CL 64.855.

  10. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  11. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Federica Finetti

    Full Text Available BACKGROUND: Blockade of Prostaglandin (PG E(2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1 gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β increased mPGES-1 expression, PGE(2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF and fibroblast growth factor-2 (FGF-2 expression. AF3485 reduced PGE(2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION: Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

  12. Prevalence of antinuclear and anti-liver-kidney-microsome type-1 antibodies in patients with chronic hepatitis C in China

    Institute of Scientific and Technical Information of China (English)

    BAI Li; FENG Zhen-ru; LU Hai-ying; LI Wen-gang; YU Min; XU Xiao-yuan

    2009-01-01

    Background Hepatitis C virus (HCV) infection may induce autoimmune response and autoantibodies can be detected in chronic hepatitis C (CHC) patients. However, the reported positive rate of autoantibodies in CHC patients in China varies considerably. In this study, we investigated the prevalence of antinuclear antibodies (ANA) and anti-liver-kidney-microsome type 1 autoantibodies (anti-LKM-1) in a large cohort of CHC patients, and analyzed the factors related to the presence of the autoantibodies. Methods A total of 360 CHC patients were enrolled in this study. Serum ANA and anti-LKM-1 were detected by indirect immunofluorescence and enzyme-linked immunosorbent assay, respectively. Clinical analysis was performed to disclose the related factors to autoantibody production. Results The prevalence of ANA and anti-LKM-1 in CHC patients was 12.5% (45/360) and 2.5% (9/360), respectively. Women had a higher prevalence than men (18.9% vs 11.4%, P=0.046). Patients with positive autoantibodies had lower HCV RNA levels (1.2x107 copies/L vs 7.2x107 copies/L, P <0.05). Positive ANA was associated with higher serum globulin (P<0.05). Stratified analysis showed that there were no significant differences in age, HCV genotype, disease course, clinical stage, prevalence of cirrhosis and interferon therapy between autoantibody-positive and-negative subgroups. Conclusion Autoantibodies can be induced in the course of CHC, and some CHC patients can even develop autoimmune hepatitis.

  13. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    Science.gov (United States)

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP. PMID:26514348

  14. In vitro identification of metabolites of verapamil in rat liver microsomes%维拉帕米在大鼠肝微粒体中代谢产物的体外鉴定

    Institute of Scientific and Technical Information of China (English)

    孙璐; 张淑秋; 钟大放

    2004-01-01

    AIM: To investigate the metabolism of verapamil at low concentrations in rat liver microsomes. METHODS: Liver microsomes of Wistar rats were prepared using ultracentrifuge method. The in vitro metabolism of verapamil was studied with the rat liver microsomal incubation at concentration of 1.0 μmol/L and 5.0 μmol/L. The metabolites were separated and assayed by liquid chromatography-ion trap mass spectrometry (LC/MSn), and further identified by comparison of their mass spectra and chromatographic behaviors with reference substances. RESULTS: Eight metabolites, including two novel metabolites (M4 and M8), were found in rat liver microsomal incubates. They were identified as O-demethyl-verapamil isomers (M1 - M4), N-dealkylated derivatives of verapamil (M5-M7), and N, O-didemethyl-verapamil (M8). CONCLUSION: O-Demethylation and N-dealkylation were the main metabolic pathways of verapamil at low concentrations in rat liver microsomes, and the relative proportion of them in verapamil metabolism changed with different substrate concentrations.

  15. Effects of the aqueous extract from Salvia miltiorrhiza Bge on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats.

    Science.gov (United States)

    Jinping, Qiao; Peiling, Hou; Yawei, Li; Abliz, Zeper

    2003-08-01

    The aim of this study was to determine the effects of the aqueous extract of Salvia miltiorrhiza Bge (danshen in Chinese) on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats. Rats (n = 5) were pretreated with danshen extract (100 mg kg(-1) per day, p.o.) for 15 consecutive days. Control rats (n = 5) received saline at the same time. Each rat was then administered a single oral dose of 15 mg kg(-1) diazepam. The pharmacokinetic parameters of diazepam were significantly different between the two groups. In the danshen pretreated group, the maximum concentration of diazepam and the area under the plasma concentration-time curve were reduced to about 72.7% and 44.4%, respectively, while the total body clearance was markedly increased by 2-fold. To help explain the results, liver microsomal suspensions were obtained from rats that were randomly divided into the control group (n = 10), and the low- (20 mg kg(-1) for 15 days, p.o., n = 10) and high-dose groups (100 mg kg(-1) for 15 days, p.o., n = 10) pretreated with danshen extract. Compared with the control rats, the microsomal protein content, cytochrome P450 enzyme level and erythromycin N-demethylase activity of pretreated rats were significantly increased. These results indicate that danshen extract can stimulate the activity of cytochrome P450 isoforms, and changes in the pharmacokinetics of diazepam resulting from danshen extract are related to an increase in metabolic activity of cytochrome P450. PMID:12956908

  16. Hepatic microsomal metabolism of the anthelmintic benzimidazole fenbendazole: enhanced inhibition of cytochrome P450 reactions by oxidized metabolites of the drug.

    Science.gov (United States)

    Murray, M; Hudson, A M; Yassa, V

    1992-01-01

    Potentiation of the anthelmintic action of benzimidazole carbamates, such as fenbendazole [methyl 5(6)-(phenylthio)-1H-benzimidazol-2-ylcarbamate], has been noted during concurrent administration of benzimidazoles that possess no intrinsic anthelmintic activity. This study investigated the possibility that inhibition of P450 enzymes by fenbendazole and its metabolites could play a role in the potentiation phenomenon. Fenbendazole underwent P450-mediated oxidation in microsomes from untreated rat liver to the sulfoxide and (4'-hydroxyphenyl)thio metabolites [2.92 and 2.87 nmol/(mg of protein.h)]. Pretreatment of rats with phenobarbital or dexamethasone enhanced sulfoxidation by 1.9- and 2.9-fold, respectively. 4'-Hydroxylation was increased slightly (by 28%) by phenobarbital and decreased slightly (by 41%) by dexamethasone. Induction also promoted further metabolism of the sulfoxide to fenbendazole sulfone. Immunoinhibition and chemical inhibition studies suggested that P450 3A proteins and the flavin-containing monooxygenase are involved in sulfoxide and sulfone formation whereas 4'-hydroxylation involved the P450s 2C11, 2C6, and 2B1, depending on the type of induction. In untreated rat liver, the sulfoxide and (4'-hydroxyphenyl)thio metabolites of fenbendazole were relatively potent inhibitors of P450-mediated androstenedione 16 alpha-, 16 beta-, and 6 beta-hydroxylation (IC50 values of 42, 36, and 74 microM, respectively); 7 alpha-hydroxylase activity was uninhibited. In contrast, fenbendazole and its sulfone metabolite were not inhibitors of these reactions. Mixed-function oxidase activities in phenobarbital-induced rat hepatic microsomes were refractory to inhibition by most compounds, but P450 1A1 mediated activities in microsomes from beta-naphthoflavone-induced rat liver were quite susceptible to inhibition by fenbendazole sulfoxide. Studies with two analogous sulfoxides yielded similar findings.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes.

    Science.gov (United States)

    Tang, Xiange; Di, Xinyu; Zhong, Zeyu; Xie, Qiushi; Chen, Yang; Wang, Fan; Ling, Zhaoli; Xu, Ping; Zhao, Kaijing; Wang, Zhongjian; Liu, Li; Liu, Xiaodong

    2016-09-01

    l-Corydalmine (l-CDL) was under development as an oral analgesic agent, exhibiting potent analgesic activity in preclinical models. The objective of this study was to compare metabolic profiles of l-CDL in liver microsomes from mouse, rat, monkey, dog and human. Six metabolites (M1-M6) were identified using LC-Q/TOF in liver microsomes from the five species. The metabolism of l-CDL included O-demethylation (M1-3) and hydroxylation (M4-6). The desmethyl metabolites were the major ones among the five species, which accounted for more than 84%. Data from chemical inhibition in human liver microsomes (HLM) and human recombinant CYP450s demonstrated that CYP2D6 exhibited strong catalytic activity towards M1 and M2 formations, while CYP2C9 and CYP2C19 also catalyzed M2 formation. Formations of M3 and hydroxyl metabolites (M4 and M5) were mainly catalyzed by CYP3A4. Further studies showed that M1 and M2 were main metabolites in HLM. The kinetics of M1 and M2 formations in HLM and recombinant CYP450s were also investigated. The results showed that M1 and M2 formations in HLM and recombinant CYP2D6 characterized biphasic kinetics, whereas sigmoid Vmax model was better used to fit M2 formation by recombinant CYP2C9 and CYP2C19. The contributions of CYP2D6 to M1 and M2 formations in HLM were estimated to be 75.3% and 50.7%, respectively. However, the contributions of CYP2C9 and CYP2C19 to M2 formation were only 5.0% and 4.1%, respectively. All these data indicated that M1 and M2 were main metabolites in HLM, and CYP2D6 was the primary enzyme responsible for their formations. PMID:27239758

  18. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  19. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  20. Neurobehavioural changes and persistence of complaints in workers exposed to styrene in a polyester boat building plant: influence of exposure characteristics and microsomal epoxide hydrolase phenotype

    OpenAIRE

    Viaene, M; Pauwels, W.; Veulemans, H.; Roels, H.; Masschelein, R

    2001-01-01

    OBJECTIVES—To investigate neurobehavioural effects and the persistence of complaints in workers exposed to styrene relative to exposure characteristics and the enzyme microsomal epoxide hydrolase (mEH) activity.
METHODS—A cross sectional study was performed in a retrospective cohort of workers of a polyester boat building plant 3 years after the main activity shut down in 1989. Workers still currently exposed to a much lower concentration of styrene in air than before (n=27) and formerly expo...

  1. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).

    Science.gov (United States)

    Griffiths, G; Stobart, A K; Stymne, S

    1988-06-15

    Microsomal membrane preparations from the maturing cotyledons of common borage (Borago officinalis) exhibit delta 12- and delta 6-desaturase activities, which resulted in the synthesis of linoleate and gamma-linolenate respectively. The desaturase enzymes utilized the complex lipid substrate phosphatidylcholine. The activity of these enzymes was sufficiently high to allow the monitoring of the mass changes in the endogenous oleate, linoleate and gamma-linolenate in the microsomal phosphatidylcholine in the presence of NADH (i.e. under desaturating conditions). The results illustrate that the delta 12-desaturase uses the oleate substrate at both the sn-1 and -2 positions of sn-phosphatidylcholine, whereas the delta 6-desaturase is almost totally restricted to the linoleate at position 2 of the complex lipid. Estimate of the acyl-substrate pool size at position 2 of sn-phosphatidylcholine for both desaturases indicated that some 50% of the oleate and linoleate was available to the enzymes. The microsomes (microsomal fractions) had a somewhat impaired Kennedy [(1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940] pathway for the formation of triacylglycerols when compared with other oil-rich plant species that have been studied [Stymne & Stobart (1987) The Biochemistry of Plants: a Comprehensive Treatise (Stumpf, P.K., ed.), vol. 10, chapter 8, pp. 175-214, Academic Press, New York]. In the presence of sn-glycerol 3-phosphate and acyl-CoA, large quantities of phosphatidic acid accumulated in the membranes. Acyl-selectivity studies on the glycerol-acylating enzymes showed that gamma-linolenate could be acylated to both the sn-1 and sn-2 positions of sn-glycerol 3-phosphate. However, stereochemical analysis of the acyl components of the sn-triacylglycerol obtained from mature seeds indicated that, whereas no gamma-linolenate was present at the sn-1 position, it accounted for over 50% of the fatty acids at position sn-3. The results indicate that the diacylglycerol

  2. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe;

    2015-01-01

    -fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having....... This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using...

  3. Effect of melatonin on the production of microsomal hydrogen peroxide and cytochrome P-450 content in rat treated with aflatoxin B(1).

    Science.gov (United States)

    Awney, Hala A; Attih, Ahmed M; Habib, Sami L; Mostafa, Mostafa H

    2002-03-20

    Aflatoxin B(1) (AFB(1)) is a food contaminant fungal toxin that has been implicated as a causative agent in human hepatic and extrahepatic carcinogenesis. In this study we went on to show the effect of melatonin as a free radical scavenger on the production of microsomal hydrogen peroxide (H(2)O(2)) during the metabolic activation AFB(1). The production of microsomal H(2)O(2) in vitro during the metabolic activation of different chemical carcinogens has been reported previously. We also studied the effect of melatonin on the cytochrome P-450 content as a major microsomal monooxygenase isoenzymes system in rat liver responsible for the metabolic activation of AFB(1). The amounts of H(2)O(2) and cytochrome P-450 contents in rat treated with melatonin (0.2 mg/kg BW) and/or AFB(1) (0.2 mg/kg BW) at various time intervals has been measured. Animals treated with melatonin exhibited markedly inhibition in the amounts of H(2)O(2) after 1, 3, and 6 h. The highest level of inhibition (3.0 nmol H(2)O(2)/mg protein) was detected after 6 h. However, cytochrome P-450 contents were also decreased after the same period of time. The highest level of inhibition (2.1 nmol/mg protein) was detected after 3 h of injection. A pronounced augmentation of H(2)O(2) production was observed in rat treated with AFB(1) only. The highest level of H(2)O(2) (100 nmol/mg protein) was measured after 1 h. Cytochrome P-450 contents were also decreased in response to AFB(1) injection over the same time intervals. Contrary data was detected in animals received both AFB(1) and melatonin. The generation of H(2)O(2) was inhibited by melatonin after 1, 3 and 6 h. The highest level of inhibition (44.2 nmol/mg protein) was observed after 6 h. Finally, these data suggested that melatonin as a free radical scavenger inhibited the microsomal production of H(2)O(2) in rat treated with AFB(1).

  4. In vivo clearance of ethoxycoumarin and its prediction from In vitro systems. Use Of drug depletion and metabolite formation methods in hepatic microsomes and isolated hepatocytes.

    Science.gov (United States)

    Carlile, D J; Stevens, A J; Ashforth, E I; Waghela, D; Houston, J B

    1998-03-01

    The pharmacokinetics of ethoxycoumarin have been characterized using steady-state plasma concentrations achieved after administration of this compound, at a series of infusion rates, into the hepatic portal vein of rats. The clearance of ethoxycoumarin could be described by a one-site Michaelis-Menten kinetic model with Vmax and unbound KM values of 495 nmol/min/standard rat weight (SRW) and 3.6 microM, respectively, and an intrinsic clearance (CLint, Vmax/KM ratio) of 137 ml/min/SRW (where SRW is 250 g). Urinary excretion experiments, using both ethoxycoumarin and hydroxycoumarin, demonstrated that 7-hydroxycoumarin, the metabolite frequently measured in in vitro studies, accounted for 26% of the metabolism of ethoxycoumarin. In vitro studies with hepatic microsomes and isolated hepatocytes were undertaken to characterize the kinetics of both hydroxycoumarin formation and ethoxycoumarin depletion and to compare the utility of these methods for predicting in vivo clearance. In both in vitro systems, hydroxycoumarin formation displayed biphasic kinetics, with a high-affinity/low-capacity component (with Vmax, KM, and CL1 terms) and a low-affinity/high-capacity component (with a CL2 term) that was not saturated over the substrate concentration range studied (0.5-100 microM). The use of scaling factors to relate in vitro and in vivo data showed that, although microsomal and hepatocyte Vmax values were comparable (26 and 17 nmol/min/SRW, respectively), both were substantially lower than the in vivo value. However, scaling of the in vitro CLint values, by taking into account the fraction of ethoxycoumarin metabolized to hydroxycoumarin, yielded in vivo predictions of 127 and 122 ml/min/SRW (representing 93 and 89% of the observed CLint value) for microsomes and hepatocytes, respectively. The depletion of ethoxycoumarin (1-1.5 microM) with time in both microsomes and hepatocytes displayed a monoexponential decline and predicted in vivo CLint values of 53 and 117 ml

  5. Slow oxidation of acetoxime and methylethyl ketoxime to the corresponding nitronates and hydroxy nitronates by liver microsomes from rats, mice, and humans.

    Science.gov (United States)

    Völkel, W; Wolf, N; Derelanko, M; Dekant, W

    1999-02-01

    Acetoxime and methylethyl ketoxime (MEKO) are tumorigenic in rodents, inducing liver tumors in male animals. The mechanisms of tumorigenicity for these compounds are not well defined. Oxidation of the oximes to nitronates of secondary-nitroalkanes, which are mutagenic and tumorigenic in rodents, has been postulated to play a role in the bioactivation of ketoximes. In these experiments, we have compared the oxidation of acetoxime and methylethyl ketoxime to corresponding nitronates in liver microsomes from different species. The oximes were incubated with liver microsomes from mice, rats, and several human liver samples. After tautomeric equilibration and extraction with n-hexane, 2-nitropropane and 2-nitrobutane were quantitated by GC/MS-NCI (limit of detection of 250 fmol/injection volume). In liver microsomes, nitronate formation from MEKO and acetoxime was dependent on time, enzymatically active proteins, and the presence of NADPH. Nitronate formation was increased in liver microsomes of rats pretreated with inducers of cytochrome P450 and reduced in the presence of inhibitors (n-octylamine and diethyldithiocarbamate). Rates of oxidation of MEKO (Vmax) were 1.1 nmol/min/mg (mice), 0.5 nmol/min/mg (humans), and 0.1 nmol/min/mg (rats). In addition to nitronates, several minor metabolites were also enzymatically formed (two diastereoisomers of 3-nitro-2-butanol, 2-hydroxy-3-butanone oxime and 2-nitro-1-butanol). Acetoxime was also metabolized to the corresponding nitronate at rates approximately 50% of those observed with MEKO oxidation in the three species examined. 2-Nitro-1-propanol was identified as a minor product formed from acetoxime. No sex differences in the capacity to oxidize acetoxime and MEKO were observed in the species examined. The observed results show that formation of sec-nitronates from ketoximes occurs slowly, but is not the only pathway involved in the oxidative biotransformation of these compounds. Due to the lack of sex-specific oxidative

  6. Brain evolution by brain pathway duplication

    OpenAIRE

    Chakraborty, Mukta; Jarvis, Erich D

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel ...

  7. FROM BRAIN DRAIN TO BRAIN NETWORKING

    OpenAIRE

    Irina BONCEA

    2015-01-01

    Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The co...

  8. A preliminary characterization of the mutagenicity of atmospheric particulate matter collected during sugar cane harvesting using the Salmonella/microsome microsuspension assay.

    Science.gov (United States)

    de Aragão Umbuzeiro, Gisela; Franco, Alexandre; Magalhães, Dulce; de Castro, Francisco José Viana; Kummrow, Fábio; Rech, Célia Maria; Rothschild Franco de Carvalho, Lilian; de Castro Vasconcellos, Pérola

    2008-05-01

    During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of São Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in São Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season.

  9. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    Science.gov (United States)

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  10. The regulation of the fatty-acid composition of the triacylglycerols in microsomal preparations from avocado mesocarp and the developing cotyledons of safflower.

    Science.gov (United States)

    Stobart, A K; Stymne, S

    1985-01-01

    The utilisation of [(14)C]glycerol 3-phosphate and [(14)C]linoleoyl-CoA in the synthesis of triacylglycerol has been studied in the microsomal preparations of developing cotyledons of safflower seed. The results confirm that the glycerol backbone, which flows towards triacylglycerol from phosphatidic acid through the Kennedy pathway, can enter phosphatidylcholine from diacylglycerol. The equilibration between diacylglycerol and phosphatidylcholine offers a mechanism for the return of oleate to phosphatidylcholine for desaturation to linoleate. We have established that the oleate entering position 1 of sn-phosphatidylcholine from diacylglycerol is desaturated in situ to linoleate. The results indicate that the diacylglycerol phosphatidylcholine interconvertion coupled to the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18-polyunsaturated fatty acids and hence these enzymes are of major importance in regulating the acyl quality of the accumulating triacylglycerols. Microsomal preparations from avocado mesocarp, however, did not have detectable acyl exchange between acyl-CoA and phosphatidylcholine or diacylglycerol phosphatidylcholine interconversion despite the high activity of the enzymes of the Kennedy pathway. A scheme is presented which incorporates many of the observations on triacylglycerol synthesis and provides a working model for the regulation of acyl quality in linoleate-rich vegetable oils.

  11. Hepatic microsomal mixed-function oxidase activity in ethanol-treated hamsters and its consequences on the bioactivation of aromatic amines to mutagens.

    Science.gov (United States)

    Ioannides, C; Steele, C M

    1986-09-01

    Male golden Syrian hamsters were maintained on ethanol-containing liquid diets for 4 weeks, corresponding to an average daily intake of 17 g/kg body wt. The p-hydroxylation of aniline was markedly enhanced by this treatment while minimal effects were seen in benzphetamine N-demethylase and ethoxyresorufin O-deethylase activities; there was no change in the microsomal levels of cytochromes P-450. Hepatic microsomal preparations from the ethanol-treated hamsters were more efficient than controls fed isocaloric diets in converting 2-aminofluorene, 4-aminobiphenyl, benzidine and 2-acetylaminofluorene into mutagens in the Salmonella mutagenicity test. The same treatment had no effect on the metabolic activation of 2-naphthylamine and even inhibited the mutagenicity of 2-aminoanthracene. No increase was seen in the activation of the two polycyclic aromatic hydrocarbons, benzo[a]pyrene and 3-methylcholanthrene to mutagens and an inhibitory effect was seen with the former. The ethanol-induced increase in the mutagenicity of 2-aminofluorene was inhibited by 2-butanol but not by the hydroxyl radical scavenger dimethylsulphoxide. It is concluded that chronic ethanol ingestion modulates the bioactivation of aromatic amines and amides to mutagens, the effect being substrate dependent. This effect of ethanol may be catalysed by unique form(s) of cytochrome P-450 whose synthesis is induced by such treatment. PMID:3021347

  12. Synthesis, microsome-mediated metabolism, and identification of major metabolites of environmental pollutant naphtho(8,1,2-ghi)chrysene

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.K.; Gowdahalli, K.; Gimbor, M.; Amin, S. [Penn State College of Medicine, Hershey, PA (United States)

    2008-05-15

    Naphtho(8,1,2-ghi)chrysene, commonly known as naphtho(1,2-e)pyrene (N(1,2-e)P) is a widespread environmental pollutant, identified in coal tar extract, air borne particulate matter, marine sediment, cigarette smoke condensate, and vehicle exhaust. Herein, we determined the ability of rat liver microsomes to metabolize N(1,2-e)P and an unequivocal assignment of the metabolites by comparing them with independently,synthesized standards. We developed the synthesis of both the fjord region and the K-region dihydrodiols and various phenolic derivatives for metabolite identification. In summary, N(1,2-e)P trans-11, 12-dihydrodiol was the major metabolite formed along with N(1,2-e)P 4,5-trtins-dihydrodiol and 12-OH-N(1,2-e)P on exposure of rat liver microsomes to N(1,2-e)P. The presence of N(1,2-e)P in the environment and formation of fjord region dihydrodiol 14 as a major metabolite in in vitro metabolism studies strongly suggest the role of N(1,2-e)P as a potential health hazard.

  13. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  14. Covalent binding of food carcinogens MeIQx, MeIQ and IQ to DNA and protein in microsomal incubations and isolated rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, H.; Holme, J.A.; Alexander, J. (National Institute of Public Health, Department of Environmental Medicine, Oslo (Norway))

    1992-01-01

    The metabolic activation of {sup 14}C-labelled food carcinogens 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx),2-amino-3,4-dimethylimidazo(4,5-f)quinoline(MeIQ) and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ) to macromolecular bound species was studied in microsomal and hepatocellular incubations. Several data indicated that the covalent binding was dependent on P450 enzymes: It was dependent on NADPH, it was induced many times by the P450 IA1 and IA2 upregulators {beta}-naphthoflavone and polychlorinated biphenyls, and was inhibited by the P450 IA1 and IA2 inhibitor {alpha}-naphtoflavone. In both hepatocellular and microsomal incubations the three compounds bound with similar efficiency, with IQ being somewhat more potent compared to MeIQx and MeIQ. The binding appeared to follow saturation kinetics with K{sub m} values less than 20 {mu}M. In incubations with hepatocytes the compounds bound to both cellular DNA and to bovine serum albumin in the medium. The fact that 13-26% of total adducts were formed with bovine serum albumin, indicates that reactive metabolites of the compounds may be transported and react at distant sites from their formation without any further activation. (au).

  15. Covalent binding of food carcinogens MeIQx, MeIQ and IQ to DNA and protein in microsomal incubations and isolated rat hepatocytes

    International Nuclear Information System (INIS)

    The metabolic activation of 14C-labelled food carcinogens 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx),2-amino-3,4-dimethylimidazo[4,5-f]quinoline(MeIQ) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to macromolecular bound species was studied in microsomal and hepatocellular incubations. Several data indicated that the covalent binding was dependent on P450 enzymes: It was dependent on NADPH, it was induced many times by the P450 IA1 and IA2 upregulators β-naphthoflavone and polychlorinated biphenyls, and was inhibited by the P450 IA1 and IA2 inhibitor α-naphtoflavone. In both hepatocellular and microsomal incubations the three compounds bound with similar efficiency, with IQ being somewhat more potent compared to MeIQx and MeIQ. The binding appeared to follow saturation kinetics with Km values less than 20 μM. In incubations with hepatocytes the compounds bound to both cellular DNA and to bovine serum albumin in the medium. The fact that 13-26% of total adducts were formed with bovine serum albumin, indicates that reactive metabolites of the compounds may be transported and react at distant sites from their formation without any further activation. (au)

  16. A new way to carcinogenicity of azo dyes: the benzenediazonium ion formed from a non-aminoazo dye, 1-phenylazo-2-hydroxynaphthalene(Sudan I) by microsomal enzymes binds to deoxyguanosine residues of DNA.

    Science.gov (United States)

    Stiborová, M; Asfaw, B; Anzenbacher, P; Hodek, P

    1988-06-30

    1-Phenylazo-2-hydroxynaphthalene (Sudan I) activated by pre-incubation with microsomal enzymes of rat livers covalently binds to DNA from calf thymus. Benzenediazonium ion formed from Sudan I by activation with microsomal enzymes is the principal active metabolite, which binds to DNA. Enzymatic hydrolysis of modified (14C-labelled) DNA, followed by separation of deoxynucleosides on a Sephadex G-10 column revealed that deoxyguanosine is the principal target for the binding of activated Sudan I. The high-performance liquid chromatographic (HPLC) analysis indicate that probably more than one radioactive adduct of activated Sudan I with deoxyguanosine is formed.

  17. Regioselective differences in C(8)- and N-oxidation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline by human and rat liver microsomes and cytochromes P450 1A2.

    Science.gov (United States)

    Turesky, R J; Parisod, V; Huynh-Ba, T; Langouët, S; Guengerich, F P

    2001-07-01

    The metabolism of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was investigated with human and rat liver microsomes, recombinant human cytochrome P450 1A2 (P450 1A2) expressed in Escherichia coli cells, and rat P450 1A2. Human liver microsomes and human P450 1A2 catalyzed the oxidation of the exocyclic amine group of MeIQx to form the genotoxic product 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline (HONH-MeIQx). Human P450 1A2 also catalyzed the oxidation of C(8)-methyl group of MeIQx to form 2-amino-(8-hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH(2)OH-IQx), 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carbaldehyde (IQx-8-CHO), and 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH). Thus, chemically stable C(8)-oxidation products of MeIQx may be useful biomarkers of P450 1A2 activity in humans. Rat liver microsomes were 10-15-fold less active than the human counterpart at both N-oxidation and C(8)-oxidation of MeIQx when expressed as nanomoles of product formed per minute per nanomoles of P450 1A2. Differences in regioselective oxidation of MeIQx were also observed with human and rat liver microsomes and the respective P450 1A2 orthologs. In contrast to human liver microsomes and P450 1A2, rat liver microsomes and purified rat P4501A2 were unable to catalyze the oxidation of MeIQx to the carboxylic derivative IQx-8-COOH, an important detoxication product formed in humans. However, rat liver microsomes and rat P4501A2, but not human liver microsomes or human P450 1A2, extensively catalyzed ring oxidation at the C-5 position of MeIQx to form the detoxication product 2-amino-3,8-dimethyl-5-hydroxyimidazo[4,5-f]quinoxaline (5-HO-MeIQx). There are important differences between human and rat P450 1A2, both in catalytic activities and oxidation pathways of MeIQx, that may affect the biological activity of this carcinogen and must be considered when assessing human health risk.

  18. SECONDARY BRAIN INJURY

    OpenAIRE

    Ida Ayu Basmatika

    2013-01-01

    Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial s...

  19. Brain Drain Controversy

    OpenAIRE

    Borta, Oxana

    2007-01-01

    This thesis focuses on the widely acknowledged so-called brain drain controversy. More concretely on developments in the traditional brain drain literature towards a new shift, claiming the brain gain effect, as an alternative to the brain drain effect, that emigration may bring to a source country. The research investigates not only the obvious direct loss effects – the so called brain drain – but also the possibility of more subtle indirect beneficial effects.

  20. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K{sup +} and Na{sup +}) on direct uptake of {sup 137}Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of {sup 137}Cs from Chlamydomonas to Daphnia at different K{sup +} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, J. [Uppsala Univ., Dept. of Limnology, Uppsala (Sweden)

    2002-04-01

    The influences of cation concentrations (K{sup +} and Na{sup +}) on radiocesium ({sup 137}Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 {mu}E M{sup -2} s{sup -1} constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours ({mu} {approx_equal} 0.02 h{sup -1} for C. noctigama and 0.03 h{sup -1} for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K{sup +}] from 0.1 {mu}M to 3 mM, [Na{sup +}] from 20 {mu}M to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10{sup 3} to 10{sup 6} L (kg C){sup -1}). For both species, the major effector on BCF and uptake rate was external [K{sup +}], which was inversely proportional to these parameters over wide ranges (1-1000 {mu}M for S. quadricauda and 0.1 to 300 {mu}M for C. noctigama). At concentrations above these ranges K{sup +} still reduced {sup 137} Cs bio-uptake, but less effectively. A minor influence of external [Na{sup +}] on {sup 137}Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for {sup 137}Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 {mu}M to 1.4 mM external [K{sup +}]. Since depletion of external [K{sup +}] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF

  1. Synthesis, structure-activity relationships and brain uptake of a novel series of benzopyran inhibitors of insulin-regulated aminopeptidase.

    Science.gov (United States)

    Mountford, Simon J; Albiston, Anthony L; Charman, William N; Ng, Leelee; Holien, Jessica K; Parker, Michael W; Nicolazzo, Joseph A; Thompson, Philip E; Chai, Siew Yeen

    2014-02-27

    Peptide inhibitors of insulin-regulated aminopeptidase (IRAP) enhance fear avoidance and spatial memory and accelerate spatial learning in a number of memory paradigms. Using a virtual screening approach, a series of benzopyran compounds was identified that inhibited the catalytic activity of IRAP, ultimately resulting in the identification of potent and specific inhibitors. The present study describes the medicinal chemistry campaign that led to the development of the lead candidate, 3, highlighting the key structural features considered as critical for binding. Furthermore, the in vivo pharmacokinetics and brain uptake of compounds (1 and 3) were assessed in rats and were complemented with in vitro human and rat microsomal stability studies. Following intravenous administration to rodents, 3 exhibits brain exposure, albeit it is rapidly converted to 1, a compound which also exhibits potent inhibition of IRAP.

  2. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  3. The Brain Never Stops

    OpenAIRE

    Sadaghiani, Sepideh

    2014-01-01

    Your brain is doing a lot of work when you are engaged in activities such as sports, playing a game, or watching a movie. Your brain is also a master of associating one thought with another and making your mind wander. But what does your brain do when you are not engaged in particular thoughts or actions? Interestingly, similar to the heart that always keeps beating, the brain never stops its activity. For example, your brain is highly active even when you are fast asleep. In fact, brain cell...

  4. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.;

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat...

  5. Understanding brain networks and brain organization

    Science.gov (United States)

    Pessoa, Luiz

    2014-09-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal "true" subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different "slices" of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.

  6. High performance liquid chromatography with immobilized Ru(bpy)32+-KMn04 chemiluminescence detection and its application in metabolism of repaglinide in pig liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Ai Hua Fu; Zhu Jun Zhang; Li Li Chen; Xiao Ming Zhang; Pan Xue

    2011-01-01

    A novel high performance liquid chromatography-chemiluminescence (HPLC-CL) method for investigation of in vitro metabolism of repaglinide in pig liver microsomes with microdialysis sampling technique was developed. The chromatographic separation was performed on a Hypersil BDS-C18 column with an isocratic mobile phase consisting of methanol and 0.01 mol/L KH2PO4 (pH 3.0) (volume ratio 75:25) at a flow rate of 1.0 mL/min. The detection was based on the chemiluminescence reaction of repaglinide with acidic potassium permanganate (KMnO4) and tris (2,2'-bipyridyl)ruthenium(III) (Ru(bpy)33+), which was immobilized on the cationic ion-exchange resin for obtaining high sensitivity and reducing consumption of expensive reagent.

  7. 微粒体甘油三脂转运蛋白MTP的研究进展%Recent Advance On Microsomal Triglyceride Transfer Protein

    Institute of Scientific and Technical Information of China (English)

    叶健强; 王继文

    2005-01-01

    微粒体甘油三酯转运蛋白MTP(microsomal triglyceride transfer protein,MTP)首先是从牛的肝细胞微粒体碎片中分离获得的,其作用是加速甘油三脂(triglyceride,TG)、胆固醇(cholesteryl ester,CE)和磷脂酰胆碱(phosphatidylcholine,PC)的转运和细胞或亚细胞膜的生物合成.它后来在肝细胞和小肠的微粒体膜中发现[1],由于它的位置及其转运TG可以推测与血浆脂蛋白中极低密度脂蛋白(very low density lipoprotein,VLDL)和乳糜微粒(chylomicrons,CM)的组装过程有关.

  8. Whole brain reirradiation for brain metastases

    International Nuclear Information System (INIS)

    A retrospective analysis was done for 31 patients with brain metastases who had undergone reirradiation. Initial whole brain irradiation was performed with 30 Gy/10 fractions for 87% of these patients. Whole brain reirradiation was performed with 30 Gy/10 fractions for 42% of these patients (3-40 Gy/1-20 fractions). The median interval between the initial irradiation and reirradiation was 10 months (range: 2-69 months). The median survival time after reirradiation was 4 months (range: 1-21 months). The symptomatic improvement rate after reirradiation was 68%, and the partial and complete tumor response rate was 55%. Fifty-two percent of the patients developed grade 1 acute reactions. Whole brain reirradiation for brain metastases placed only a slight burden on patients and was effective for symptomatic improvement. (author)

  9. Identification of Metabolite Biomarkers of the Designer Hallucinogen 25I-NBOMe in Mouse Hepatic Microsomal Preparations and Human Urine Samples Associated with Clinical Intoxication.

    Science.gov (United States)

    Poklis, Justin L; Dempsey, Sara K; Liu, Kai; Ritter, Joseph K; Wolf, Carl; Zhang, Shijun; Poklis, Alphonse

    2015-10-01

    'NBOMe' (dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine) derivatives are a new class of designer hallucinogenic drugs widely available on the Internet. Currently, 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) is the most popular abused derivative in the USA. There are little published data on the absorption, metabolism and elimination of 25I-NBOMe, or any of the other NBOMe derivatives. Therefore, there are no definitive metabolite biomarkers. We present the identification of fifteen 25I-NBOMe metabolites in phase I and II mouse hepatic microsomal preparations, and analysis of two human urine samples from 25I-NBOMe-intoxicated patients to test the utility of these metabolites as biomarkers of 25I-NBOMe use. The synthesis of two major urinary metabolites, 2-iodo-4-methoxy-5-[2-[(2-methoxyphenyl) methylamino]ethyl]phenol (2-O-desmethyl-5-I-NBOMe, M5) and 5-iodo-4-methoxy-2-[2-[(2-methoxyphenyl)methylamino]ethyl]phenol (5-O-desmethyl-2-I-NBOMe), is also presented. Seven phase II glucuronidated metabolites of the O-desmethyl or the hydroxylated phase I metabolites were identified. One human urine sample contained 25I-NBOMe as well as all 15 metabolites identified in mouse hepatic microsomal preparations. Another human urine sample contained no parent 25I-NBOMe, but was found to contain three O-desmethyl metabolites. We recommend β-glucuronidase enzymatic hydrolysis of urine prior to 25I-NBOMe screening and the use of M5 as the primary biomarker in drug testing. PMID:26378134

  10. Interaction of hepatic microsomal epoxide hydrolase derived from a recombinant baculovirus expression system with an azarene oxide and an aziridine substrate analogue.

    Science.gov (United States)

    Lacourciere, G M; Vakharia, V N; Tan, C P; Morris, D I; Edwards, G H; Moos, M; Armstrong, R N

    1993-03-16

    A recombinant baculovirus (vEHX) encoding rat hepatic microsomal epoxide hydrolase has been constructed. Infection of Spodoptera frugiperda (Sf9) cells with the recombinant virus results in the expression of the enzyme at a level estimated to be between 5% and 10% of the cellular protein. The enzyme, which can be purified in 15% yield by a simple three-step procedure involving detergent extraction, DEAE-cellulose chromatography, and removal of the detergent on hydroxylapatite, has physical and kinetic properties very close to those of the enzyme obtained from rat liver microsomes. The interaction of the enzyme with two nitrogen-containing analogues of the substrate phenanthrene 9,10-oxide (1) was investigated in order to delineate the contributions of the oxirane group and the hydrophobic surface of the substrate to substrate recognition. The enzyme exhibits altered kinetic properties toward 1,10-phenanthroline 5,6-oxide (2) in which the biphenyl group of 1 is replaced with a bipyridyl group, suggesting that hydrophobic interaction between the complementary surfaces of the substrate and active site has an influence on catalysis. The conjugate acid of the aziridine analogue of 1, phenanthrene 9,10-imine (3), in which the oxirane oxygen is replaced with NH, has a pKa of 6.1, which allows the characterization of both the neutral and protonated aziridine (3H+) as substrate analogues for the enzyme. The pH dependence of the solvolysis reveals that 3H+ rearranges to a 65/35 mixture of 9-aminophenanthrene and 9-amino-10-hydroxy-9,10-dihydrophenanthrene 10(3)-fold faster than does 3. The neutral aziridine is a competitive inhibitor (Ki = 26 microM) of the enzyme at pH 8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383521

  11. In vitro hepatic conversion of the anticancer agent nemorubicin to its active metabolite PNU-159682 in mice, rats and dogs: a comparison with human liver microsomes.

    Science.gov (United States)

    Quintieri, Luigi; Fantin, Marianna; Palatini, Pietro; De Martin, Sara; Rosato, Antonio; Caruso, Michele; Geroni, Cristina; Floreani, Maura

    2008-09-15

    We recently demonstrated that nemorubicin (MMDX), an investigational antitumor drug, is converted to an active metabolite, PNU-159682, by human liver cytochrome P450 (CYP) 3A4. The objectives of this study were: (1) to investigate MMDX metabolism by liver microsomes from laboratory animals (mice, rats, and dogs of both sexes) to ascertain whether PNU-159682 is also produced in these species, and to identify the CYP form(s) responsible for its formation; (2) to compare the animal metabolism of MMDX with that by human liver microsomes (HLMs), in order to determine which animal species is closest to human beings; (3) to explore whether differences in PNU-159682 formation are responsible for previously reported species- and sex-related differences in MMDX host toxicity. The animal metabolism of MMDX proved to be qualitatively similar to that observed with HLMs since, in all tested species, MMDX was mainly converted to PNU-159682 by a single CYP3A form. However, there were marked quantitative inter- and intra-species differences in kinetic parameters. The mouse and the male rat exhibited V(max) and intrinsic metabolic clearance (CL(int)) values closest to those of human beings, suggesting that these species are the most suitable animal models to investigate MMDX biotransformation. A close inverse correlation was found between MMDX CL(int) and previously reported values of MMDX LD(50) for animals of the species, sex and strain tested here, indicating that differences in the in vivo toxicity of MMDX are most probably due to sex- and species-related differences in the extent of PNU-159682 formation.

  12. Metabolism of novel anti-HIV agent 3-cyanomethyl-4-methyl-DCK by human liver microsomes and recombinant CYP enzymes

    Institute of Scientific and Technical Information of China (English)

    Xiao-mei ZHUANG; Jing-ting DENG; Hua LI; Wei-li KONG; Jin-xiu RUAN; Lan XIE

    2011-01-01

    Aim:To investigate the metabolism of 3-cyanomethyl-4-methyl-DCK (CMDCK),a novel anti-HIV agent,by human liver microsomes (HLMs) and recombinant cytochrome P450 enzymes (CYPs).Methods:CMDCK was incubated with HLMs or a panel of recombinant cytochrome P450 enzymes including CYP1A2,2B6,2C8,2C9,2C19,2D6,3A4,and 3A5.LC-ion trap mass spectrometry was used to separate and identify CMDCK metabolites.In the experiments with recombinant cytochrome P450 enzymes,specific chemical inhibitors combined with CYP antibodies were used to identify the CYP isoforms involved in CMDCK metabolism.Results:CMDCK was rapidly and extensively metabolized by HLMs.Its intrinsic hepatic clearance estimated from the in vitro data was 19.4 mL.min-1·kg-1,which was comparable to the mean human hepatic blood flow rate (20.7 mL·min-1·kg-1).The major metabolic pathway of CMDCK was oxidation,and a total of 14 metabolites were detected.CYP3A4 and 3A5 were found to be the principal CYP enzymes responsible for CMDCK metabolism.Conclusion:CMDCK was metabolized rapidly and extensively in human hepatic microsomes to form a number of oxidative metabolites.CYP3A4 and 3A5 were the predominant enzymes responsible for the oxidation of CMDCK.

  13. Metabolism and effect of para-toluene-sulfonamide on rat liver microsomal cytochrome P450 from in vivo and in vitro studies

    Institute of Scientific and Technical Information of China (English)

    Jiang-quan ZHOU; Zhi-qiang TANG; Jin-nan ZHANG; Jing-cheng TANG

    2006-01-01

    Aim: To study the in vivo and in vitro metabolism and the effect of para-toluene-sulfonamide (PTS) on cytochrome P450 enzymes (CYP450). Methods: Total C YP450 and microsome protein content were determined after iv pretreatment of rats with PTS. CYP-specific substrates were incubated with rat liver microsomes. Specific CYP isoform activities were determined by using HPLC. CYP chemical inhibitors added to the incubation mixture were used to investigate the principal CYP isoforms involved in PTS metabolism. The effect of PTS on CYP isoforms was investigated by incubating PTS with specific substrates. Results: The groups treated with 33 and 99 mg/kg per d PTS, respectively, had a total CYP content of 0.66±0.17 and 0.60±0.12 nmol/mg. The Km and Vmax were 92.2 μmol/L and 0.0137 nmol/min per mg protein. CYP2C7, CYP2D1 and CYP3A2 might contribute to PTS metabolism in the rat liver. The inhibitory effects of sulfaphenazole and ketoconazole on PTS metabolism were shown to have a mixed mechanism, whereas PTS metabolism was inhibited noncompetitively by quinidine. PTS had little effect on the activities of the selected CYP isoforms. Conclusion: Generally speaking, it is relatively safe for PTS to be co-administered with other drugs. However, care should be taken when administering PTS with CYP inhibitors and the substrates of CYP2C, CYP2D and CYP3A.

  14. The effects of general anesthetics on ESR spectra of spin labels in phosphatidylcholine vesicles containing purified Na,K-ATPase or microsomal protein

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Makiko, E-mail: shibu@den.hokudai.ac.jp [Department of Dental Anesthesiology, Graduate School of Dental Medicine, Hokkaido University (Japan); Hiraoki, Toshifumi [Division of Applied Physics, Graduate School of Engineering, Hokkaido University (Japan); Kimura, Kunie; Fukushima, Kazuaki [Department of Dental Anesthesiology, Graduate School of Dental Medicine, Hokkaido University (Japan); Suzuki, Kuniaki [Department of Molecular Cell Pharmacology, Graduate School of Dental Medicine, Hokkaido University (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer We studied the effects of general anesthetics on liposome using ESR spectra. Black-Right-Pointing-Pointer Two spin labels, 5-DSA and 16-DSA, were located in different position in liposome. Black-Right-Pointing-Pointer Anesthetics did not change the environment around the spin labels in the liposome. Black-Right-Pointing-Pointer Anesthetics remained on the surface of the lipid bilayer of liposome. Black-Right-Pointing-Pointer Proteins in the liposome did not change the effects of anesthetics on liposome. - Abstract: We investigated the effects of general anesthetics on liposome containing spin labels, 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA), and purified Na,K-ATPase or membrane protein of microsome using an electron spin resonance (ESR) spectroscopy. The spectra of 16-DSA in liposomes with both proteins showed three sharp signals compared with 5-DSA. The difference in the order parameter S value of 5-DSA and 16-DSA suggested that the nitroxide radical location of 5-DSA and 16-DSA were different in the membrane bilayer. The results were almost the same as those obtained in liposomes without proteins. The addition of sevoflurane, isoflurane, halothane, ether, ethanol and propofol increased the intensity of the signals, but the clinical concentrations of anesthetics did not significantly alter the S and {tau} values, which are indices of the fluidity of the membrane. These results suggest that anesthetics remain on the surface of the lipid bilayer and do not act on both the inside hydrophobic area and the relatively hydrophilic area near the surface. These results and others also suggest that the existence of Na,K-ATPase and microsomal proteins did not affect the environment around the spin labels in the liposome and the effects of anesthetics on liposome as a model membrane.

  15. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Buckpitt, Alan, E-mail: arbuckpitt@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura [Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Center for Health and the Environment, UC Davis, Davis, CA 95616 United States (United States)

    2013-07-15

    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epithelium > mouse olfactory epithelium > murine airways ≫ rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.

  16. Identification of Metabolite Biomarkers of the Designer Hallucinogen 25I-NBOMe in Mouse Hepatic Microsomal Preparations and Human Urine Samples Associated with Clinical Intoxication.

    Science.gov (United States)

    Poklis, Justin L; Dempsey, Sara K; Liu, Kai; Ritter, Joseph K; Wolf, Carl; Zhang, Shijun; Poklis, Alphonse

    2015-10-01

    'NBOMe' (dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine) derivatives are a new class of designer hallucinogenic drugs widely available on the Internet. Currently, 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) is the most popular abused derivative in the USA. There are little published data on the absorption, metabolism and elimination of 25I-NBOMe, or any of the other NBOMe derivatives. Therefore, there are no definitive metabolite biomarkers. We present the identification of fifteen 25I-NBOMe metabolites in phase I and II mouse hepatic microsomal preparations, and analysis of two human urine samples from 25I-NBOMe-intoxicated patients to test the utility of these metabolites as biomarkers of 25I-NBOMe use. The synthesis of two major urinary metabolites, 2-iodo-4-methoxy-5-[2-[(2-methoxyphenyl) methylamino]ethyl]phenol (2-O-desmethyl-5-I-NBOMe, M5) and 5-iodo-4-methoxy-2-[2-[(2-methoxyphenyl)methylamino]ethyl]phenol (5-O-desmethyl-2-I-NBOMe), is also presented. Seven phase II glucuronidated metabolites of the O-desmethyl or the hydroxylated phase I metabolites were identified. One human urine sample contained 25I-NBOMe as well as all 15 metabolites identified in mouse hepatic microsomal preparations. Another human urine sample contained no parent 25I-NBOMe, but was found to contain three O-desmethyl metabolites. We recommend β-glucuronidase enzymatic hydrolysis of urine prior to 25I-NBOMe screening and the use of M5 as the primary biomarker in drug testing.

  17. Identification of Metabolite Biomarkers of the Designer Hallucinogen 25I-NBOMe in Mouse Hepatic Microsomal Preparations and Human Urine Samples Associated with Clinical Intoxication

    Science.gov (United States)

    Poklis, Justin L.; Dempsey, Sara K.; Liu, Kai; Ritter, Joseph K.; Wolf, Carl; Zhang, Shijun; Poklis, Alphonse

    2015-01-01

    ‘NBOMe’ (dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine) derivatives are a new class of designer hallucinogenic drugs widely available on the Internet. Currently, 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) is the most popular abused derivative in the USA. There are little published data on the absorption, metabolism and elimination of 25I-NBOMe, or any of the other NBOMe derivatives. Therefore, there are no definitive metabolite biomarkers. We present the identification of fifteen 25I-NBOMe metabolites in phase I and II mouse hepatic microsomal preparations, and analysis of two human urine samples from 25I-NBOMe-intoxicated patients to test the utility of these metabolites as biomarkers of 25I-NBOMe use. The synthesis of two major urinary metabolites, 2-iodo-4-methoxy-5-[2-[(2-methoxyphenyl) methylamino]ethyl]phenol (2-O-desmethyl-5-I-NBOMe, M5) and 5-iodo-4-methoxy-2-[2-[(2-methoxyphenyl)methylamino]ethyl]phenol (5-O-desmethyl-2-I-NBOMe), is also presented. Seven phase II glucuronidated metabolites of the O-desmethyl or the hydroxylated phase I metabolites were identified. One human urine sample contained 25I-NBOMe as well as all 15 metabolites identified in mouse hepatic microsomal preparations. Another human urine sample contained no parent 25I-NBOMe, but was found to contain three O-desmethyl metabolites. We recommend β-glucuronidase enzymatic hydrolysis of urine prior to 25I-NBOMe screening and the use of M5 as the primary biomarker in drug testing. PMID:26378134

  18. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  19. Brain Tumor Statistics

    Science.gov (United States)

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ABTA ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain ...

  20. Biophysics: Unfolding the brain

    Science.gov (United States)

    Kuhl, Ellen

    2016-06-01

    The folded surface of the human brain, although striking, continues to evade understanding. Experiments with swelling gels now fuel the notion that brain folding is modulated by physical forces, and not by genetic, biological or chemical events alone.

  1. Brain Basics: Preventing Stroke

    Science.gov (United States)

    ... free mailed brochure Cómo Prevenir un Accidente Cerebrovascular Brain Basics: Preventing Stroke Request free mailed brochure Table ... Americans are protecting their most important asset—their brain. Are you? Stroke ranks as the fourth leading ...

  2. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... to make progress in “immunogenomics” Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  3. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  4. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  5. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  6. NASA Robot Brain Surgeon

    Science.gov (United States)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  7. Brain cancer spreads

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).......The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue)....

  8. Brain-actuated interaction

    OpenAIRE

    Millán, José del R.; Renkens, F.; Mourino, J.; Gerstner, W.

    2004-01-01

    Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results have been obtained with either invasive approaches (requiring surgical implantation of electrodes) or synchronous protocols (where brain signals are time-locked to external cues). In this paper we describe a portable noninvasive brain-computer...

  9. The connected brain

    NARCIS (Netherlands)

    van den Heuvel, M.P.

    2009-01-01

    The connected brain Martijn van den Heuvel, 2009 Our brain is a network. It is a network of different brain regions that are all functionally and structurally linked to each other. In the past decades, neuroimaging studies have provided a lot of information about the specific functions of each separ

  10. Brain and Spinal Tumors

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  11. Primary lymphoma of the brain

    Science.gov (United States)

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  12. Brain emotional learning based Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Abdolreza Asadi Ghanbari

    2012-09-01

    Full Text Available A brain computer interface (BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain-computer interfaces (BCIs bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC, which is based on emotional learning process. The main purpose of this research is to use a structural model based on the limbic system of mammalian brain, for decision making and control engineering applications. We have adopted a network model developed by Moren and Balkenius, as a computational model that mimics amygdala, orbitofrontal cortex, thalamus, sensory input cortex and generally, those parts of the brain thought responsible for processing emotions. The developed method was compared with other methods used for EEG signals classification (support vector machine (SVM and two different neural network types (MLP, PNN. The result analysis demonstrated an efficiency of the proposed approach.

  13. Instant BrainShark

    CERN Document Server

    Li, Daniel

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. ""Instant BrainShark"" is a step-by-step guide to creating online presentations using BrainShark. The book covers digital marketing best practices alongside tips for sales conversions. The book is written in an easy-to-read style for anybody to easily pick up and get started with BrainShark.Instant BrainShark is for anyone who wants to use BrainShark to create presentations online and share them around the community. The book is also useful for developers who are looking to explore

  14. The Blue Collar Brain

    Directory of Open Access Journals (Sweden)

    Guy eVan Orden

    2012-06-01

    Full Text Available Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue collar role compared to the white collar control exercised by the body. The argument that supports a blue collar role for the brain is also consistent with recent discoveries clarifying the white collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

  15. Neuropathophysiology of Brain Injury.

    Science.gov (United States)

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  16. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  17. 雌三醇在不同种属肝微粒体中体外代谢的研究%Study on metabolism of estriol in liver microsomes of different species

    Institute of Scientific and Technical Information of China (English)

    宋玉乔; 廖杰; 管健; 王新建

    2013-01-01

    目的:采用体外肝微粒体孵育体系,研究雌三醇在大鼠、比格犬、人肝微粒体中酶代谢动力学及代谢产物.方法:通过对雌三醇浓度、肝微粒体蛋白含量和孵育时间等条件的考察,优化雌三醇与肝微粒体的反应体系;应用LC-MS/MS定量检测孵育体系中的雌三醇及代谢产物,计算并比较代谢动力学参数.结果:雌三醇在人、比格犬肝微粒体中不代谢,而在大鼠肝微粒体中可发生代谢,在雌雄大鼠的体外代谢参数T1/2、CLint、CLh、Km、Vmax没有显著性差异;在雌雄大鼠肝微粒体代谢产物中均发现1个Ⅰ相代谢产物,而且代谢产物的生成量不存在性别差异.结论:雌雄大鼠的肝微粒体对雌三醇Ⅰ相代谢途径基本相同.%Objective: To study in vitro estriol metabolism in rat, Beagle dog and human liver microsomes by comparing enzyme kinetics of parent drug and the formation of its major metabolites. Methods: The incubation systems of estriol with liver microsomes of three species were optimized in terms of estriol concentration, microsomal protein content and incubation time. Estriol and its metabolites were determined by LC - MS/MS method. The metabolizing parameters were calculated and compared. Results: Estriol was metabolized in the rat but not in Beagle dog and human liver microsomes. There was no distinctive difference for the metabolizing parameters of T1/2 ,CLint ,CLh ,Km and Vmax between the female and male rat. One metabolite were found from I phase metabolism in both male and female rat liver microsomes and there were no distinctive difference between them. Conclusions; The results indicated that the major phase f metabolic pathway of estriol was basically similar in the male and female rat liver microsomes.

  18. Effects of halophenol LM49 on microsomal CYP450 in Rats%卤酚化合物LM49对大鼠肝微粒体细胞色素P450的影响

    Institute of Scientific and Technical Information of China (English)

    白玉; 张丽锋; 冯秀娥; 梁泰刚; 李青山

    2012-01-01

    目的 研究LM49对大鼠肝微粒体蛋白及细胞色素P450含量的影响.方法 将大鼠分成空白对照组、溶剂对照组、阳性对照组(苯巴比妥组、地塞米松组、β-萘黄酮组)、LM49低、中、高剂量组.给药后采用超速离心法制备大鼠肝微粒体;BCA法测定大鼠肝微粒体蛋白浓度;Omura and Sato法测定大鼠肝微粒体细胞色素P450的含量.结果 给予不同剂量的LM49后,大鼠肝微粒体的蛋白及细胞色素P450含量均明显降低.低、中、高剂量组与对照组比较差异有统计学意义(P<0.05).结论 LM49对大鼠肝微粒体细胞色素P450具有一定的抑制作用,可能引起肝药酶对某些药物代谢的改变.%Objective To determine the effects of LM49 on microsomal protein and CYP450 in rats. Methods Rats were assigned into blank control group, solvent control group, positive control groups (phenobarbital, dexametha-sone and (3-nephthoflavone) and LM49-treated (low, medium and high dosage) groups, respectively. Hepatic micro-somes were prepared using ultracentrifuge after administration of interventions. The concentration of microsomal proteins was determined using BAG approach, and the content of microsomal CYP450 was assayed via Omura and Sato method. Results Marked reduction in the concentration of microsomal proteins and CYP450 was associated with administration of LM49 with various (low, medium and high) dosages as compared with control group (all P<0.05). Conclusion LM49 inhibits hepatic microsomal CYP450 and may result in changes of metabolism of certain medicines induced by liver drug enzymes in rats.

  19. A Brain Gain with a Brain Drain

    OpenAIRE

    Stark, Oded; Prskawetz, Alexia; Helmenstein, Christian

    1997-01-01

    Abstract: We study human capital depletion and formation in an economy open to out-migration, as opposed to an economy which is closed. Under the natural assumption of asymmetric information, the enlarged opportunities and the associated different structure of incentives can give rise to a brain gain in conjunction with a brain drain. Migration by high-skill members of its workforce notwithstanding, the home country can end up with a higher average level of human capital per worker.;

  20. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    OpenAIRE

    Ségolène Mrozek; Fanny Vardon; Thomas Geeraerts

    2012-01-01

    The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variatio...

  1. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  2. [Brain abscess - overview].

    Science.gov (United States)

    Sveinsson, Olafur Arni; Asgeirsson, Hilmir; Olafsson, Ingvar H

    2013-01-01

    Brain abscess is a life threatening illness, demanding rapid diagnosis and treatment. Its development requires seeding of an organism into the brain parenchyma, often in an area of damaged brain tissue or in a region with poor microcirculation. The lesion evolves from a cerebritis stage to capsule formation. Brain abscesses can be caused by contiguous or haematogenous spread of an infection, or by head trauma/ neurosurgical procedure. The most common presentation is that of headache and vomiting due to raised intracranial pressure. Seizures have been reported in up to 50% of cases. Focal neurological deficits may be present, depending on the location of the lesion. Treatment of a brain abscess involves aspiration or excision, along with parenteral antibiotic therapy. The outcome has improved dramatically in the last decades due to improvement in diagnostic techniques, neurosurgery, and broad-spectrum antibiotics. The authors provide an overview of the pathogenesis, diagnosis and management of brain abscesses. PMID:23341403

  3. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  4. Brain Development in Childhood

    OpenAIRE

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volum...

  5. Psychotherapy and brain plasticity

    OpenAIRE

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of conscio...

  6. Multimodal Brain Visualization

    OpenAIRE

    Nadeem, Saad; Kaufman, Arie

    2016-01-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, spl...

  7. Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks.

    Science.gov (United States)

    Herrero, M E; Arand, M; Hengstler, J G; Oesch, F

    1997-01-01

    Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an especially high enzymatic mEH activity toward styrene 7,8-oxide (10 nmol converted per mg of protein per min, measured in the 9,000 x g supernatant of the cell homogenate), that was 100 times higher than that determined in mock-transfected cells and within the range of mEH activity in human liver. Styrene 7,8-oxide-induced DNA single-strand breaks/alkali labile sites (dose range 10 microM to 1 mM styrene 7,8-oxide) measured by the alkaline elution technique were significantly lower in the 92hmEH-V79 cells as compared to the mock-transfected cells. The protection against styrene 7,8-oxide genotoxicity in 92hmEH-V79 cells could be abolished by addition of valpromide, a selective inhibitor of microsomal epoxide hydrolase. These results clearly show that the metabolism of styrene 7,8-oxide by hmEH in 92hmEH-V79 cells was responsible for the protection against styrene 7,8-oxide genotoxicity. On the other hand, no protective effect of epoxide hydrolase expression could be observed on ethylene oxide-induced DNA damage with the recombinant cell line over a dose range of 0.5-2.5 mM ethylene oxide. This selectivity of the protective effect on epoxide genotoxicity thus appears to be an important factor that must be taken into account for the prediction of the genotoxic risk of epoxides

  8. Brain tumor - children

    Science.gov (United States)

    Glioblastoma multiforme - children; Ependymoma - children; Glioma - children; Astrocytoma - children; Medulloblastoma - children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children)

  9. Markowitz in the brain ?

    OpenAIRE

    Kerstin Preuschoff; Steven Quartz; Peter Bossaerts

    2008-01-01

    We review recent brain-scanning (fMRI) evidence that activity in certain sub-cortical structures of the human brain correlate with changes in expected reward, as well as with risk. Risk is measured by variance of payoff, as in Markowitz’ theory. The brain structures form part of the dopamine system. This system had been known to regulate learning of expected rewards. New data show that it is also involved in perception, of expected reward, and of risk. The findings suggest that the brain may ...

  10. Mapping the brain

    International Nuclear Information System (INIS)

    With powerful new technologies such as positron tomography and superconducting quantum interference device that peer through the skull and see the brain at work, neuroscientists seek the wellsprings of thoughts and emotions, the genesis of intelligence and language. A functional map of the brain is thus obtained and its challenge is to move beyond brain structure to create a detailed diagram of which part do what. For that the brain's cartographers rely on a variety of technologies such as positron tomography and superconducting quantum interference devices. Their performances and uses are briefly reviewed. ills

  11. Comprehensive characterization of the in vitro and in vivo metabolites of ziyuglycoside I in rat microsome, intestinal flora, excretion specimen and fresh tissues based on LC-Q-TOF/MS.

    Science.gov (United States)

    Wang, Guangji; Fu, Hanxu; Ye, Wei; Zheng, Xiao; Xiao, Jingcheng; Kang, Dian; Rao, Tai; Shao, Yuhao; Xie, Lin; Liang, Yan

    2016-09-01

    Ziyuglycoside I is one of the major active ingredients in Sanguisorba officinalis, a popular medicinal plant in China. In the present study, the metabolites of ziyuglycoside I in rat liver microsome and intestinal flora were identified and structurally characterized, and the metabolic rules were summed based on the LC-Q-TOF/MS system. Then, the metabolites in rat excreta samples were rapidly screened and identified according to the in vitro metabolic rules. Finally, ziyuglycoside I was incubated with fresh liver/lung/kidney/stomach homogenates to further explore the source of the metabolites and reveal the possible metabolic organs involved. Four metabolites in liver microsome were identified as M0-Glu, M0-CH2OH, M0-Glu+CH3, M0-Glu-Ara+CH3. In intestinal flora incubation system, 6 degradation products including M0-Glu-Ara+O, M0-Ara, M0-Glu-COOH, M0-Glu, M0-Glu-Ara+O and M0-Ara+H2O were tentatively identified by interpretation of their accurate MS(1) and MS(2) data. Fifteen metabolites in rat urine and feces were identified, and most of the metabolites were attributed to the transformation in liver microsome and intestinal flora. Specifically, more than a dozen of new metabolites were identified in rat fresh tissues, and ziyuglycoside II was confirmed as the major metabolite in rats. PMID:27268222

  12. Mutagenicity and antimutagenicity studies of DRDE-07 and its analogs against sulfur mustard in the in vitro Ames Salmonella/microsome assay.

    Science.gov (United States)

    Vijayan, Vinod; Pathak, Uma; Meshram, Ghansham Pundilikji

    2014-10-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM), a chemical warfare agent, is classified as a class I human carcinogen by IARC. No effective antidote against this agent is available. The synthetic aminothiol, amifostine, earlier known as WR-2721, has been extensively used as a chemical radioprotector for normal tissues in cancer radiotherapy and chemotherapy. SM is a radiomimetic agent; this prompted us to evaluate the protective efficacy of amifostine and three of its analogs, DRDE-07 [S-2(2-aminoethylamino) ethyl phenyl sulphide], DRDE-30 [S-2(2-aminoethyl amino) ethyl propyl sulphide] and DRDE-35 [S-2(2-aminoethyl amino) ethyl butyl sulphide], against sulfur mustard-induced mutagenicity in the Ames Salmonella/microsome assay. The antidotes were also evaluated for possible mutagenic activity. DRDE-07 was mutagenic in strain TA104 in the absence of S9; DRDE-30 was mutagenic in strain TA100; amifostine and DRDE-35 did not show mutagenic activity in any of the five tester strains used. SM is mutagenic in strains TA97a and TA102, with or without S9 activation. In the antimutagenicity studies, DRDE-07 and DRDE-35 showed promising antimutagenic activity against SM in the absence of S9, in comparison to amifostine. DRDE-07 and DRDE-35 are promising protective agents against SM-induced mutagenicity.

  13. Comparative inhibitory effect of prenylated coumarins, ferulenol and ferprenin, contained in the 'poisonous chemotype' of Ferula communis on mammal liver microsomal VKORC1 activity.

    Science.gov (United States)

    Louvet, Marie-Sophie; Gault, Gilbert; Lefebvre, Sébastien; Popowycz, Florence; Boulven, Manon; Besse, Stéphane; Benoit, Etienne; Lattard, Virginie; Grancher, Denis

    2015-10-01

    Two distinguishable chemotypes of Ferula communis have been described: the 'nonpoisonous' chemotype, containing as main constituents the daucane esters; and the 'poisonous' chemotype containing prenylated coumarins, such as ferulenol and ferprenin. Ferulenol and ferprenin are 4-oxygenated molecules such as dicoumarol and warfarin, the first developed antivitamin K molecules. Antivitamin K molecules specifically inhibit VKORC1, an enzyme essential for recycling vitamin K. This latest is involved in the activation of clotting factors II, VII, IX, X. The inhibiting effect of ferulenol on VKORC1 was shown in rat, but not for species exposed to F. communis while in vivo studies suggest differences between animal susceptibility to ferulenol. The inhibiting effect of ferprenin on VKORC1 was never demonstrated. The aim of this study was to compare the inhibiting effect of both compounds on VKORC1 of different species exposed to F. communis. Vitamin K epoxide activity was evaluated for each species from liver microsomes and inhibiting effect of ferulenol and ferprenin was characterized. Ferulenol and ferprenin were shown to be able to inhibit VKORC1 from all analyzed species. Nevertheless, susceptibility to ferulenol and ferprenin presented differences between species, suggesting a different susceptibility to 'poisonous' chemotypes of F. communis.

  14. X-ray effects on the activity of a Mg2+-dependent, Na+- and K+-activable microsomal membrane ATP-ase system

    International Nuclear Information System (INIS)

    The bahviour of a Mg2+-dependent, Na+- and K+-activable ATP-ase sytem on irradiation was investigated using a microsome fraction of guinea pig myocardial cells prepared by fractionated centrifugation. The Na+- and K+-activable component, transport-ATPase, was particularly radiation-sensitive. Three stages of development were observed for a 1,500 R radiation damage until 24 h p.r.. In the first stage, until 30 minutes p.r., the activity of transport-ATP-ase was inhibited. This was followed by repair processes which had reached a peak value clearly higher than the control values at 4 hours p.r.. In the third stage, the activity was reduced again; 15 and 24 hours after termination of exposure, values again were nearly the same as after 30 minutes where a maximum was observed for this radiation dose. Radiation-induced electrolyte displacements, active transport, and radiation-induced inhibition of transport-ATP-ase were correlated and discussed; the assumption was that changes in, the electrolyte conditions in the membranes on irradiation are at least partly due to the described inhibition of transport-ATP-ase. (orig./AJ)

  15. JTT-130, a microsomal triglyceride transfer protein (MTP inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Directory of Open Access Journals (Sweden)

    Shrestha Sudeep

    2005-09-01

    Full Text Available Abstract Background Microsomal transfer protein inhibitors (MTPi have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG. However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. Methods Male guinea pigs (n = 10 per group were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control, 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. Results Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P Conclusion These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.

  16. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L.) cell suspension cultures

    International Nuclear Information System (INIS)

    Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of the 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway

  17. Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5

    Science.gov (United States)

    Ye, Ling; Yang, Xiao-Shan; Lu, Lin-lin; Chen, Wei-Ying; Zeng, Shan; Yan, Tong-Meng; Dong, Ling-Na; Peng, Xiao-Juan; Shi, Jian; Liu, Zhong-Qiu

    2013-01-01

    Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA. PMID:23864901

  18. Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5

    Directory of Open Access Journals (Sweden)

    Ling Ye

    2013-01-01

    Full Text Available Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC, benzoylmesaconine (BMA, and benzoylhypaconine (BHA, are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA.

  19. In vitro screening of reversible and time-dependent inhibition on CYP3A by TM208 and TM209 in rat liver microsomes

    Directory of Open Access Journals (Sweden)

    Miaoran Ning

    2012-04-01

    Full Text Available TM208 and TM209, dithiocarbamate derivatives with potential anti-cancer effects, were evaluated in reversible and time-dependent cytochrome P450 (CYP 3A inhibition assays in rat liver microsomes using testosterone as probe substrate. Both compounds were found to be weak reversible inhibitors and moderate mechanism-based inhibitors of rat CYP3A. For reversible inhibition on rat CYP3A, the Ki values of competitive inhibition model were 12.10±1.75 and 13.94±1.31 μM, respectively. For time-dependent inhibition, the inactivation constants (Kl were 31.93±12.64 and 32.91±15.58 μM, respectively, and the maximum inactivation rates (kinact were 0.03497±0.0069 and 0.07259±0.0172 min−1 respectively. These findings would provide useful in vitro information for future in vivo DDI studies on TM208 or TM209.

  20. Modulation by K+ Plus NH4+ of microsomal (Na+, K+-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae.

    Directory of Open Access Journals (Sweden)

    Francisco A Leone

    Full Text Available We investigate the synergistic stimulation by K(+ plus NH4 (+ of (Na(+, K(+-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na(+, K(+-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K(+ and NH4 (+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na(+, K(+-ATPase activity is stimulated synergistically by ≈ 50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na(+, K(+-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K(+ and NH4 (+ of gill (Na(+, K(+-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 (+ during ontogenetic development in M. amazonicum.

  1. SECONDARY BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Ida Ayu Basmatika

    2013-03-01

    Full Text Available Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial such as hipoxia, hypotensi, hyponatremia, hypertermia, hypoglycemia or hyperglycemia. The cause of intracranial such as extradural, subdural, intraserebral, intraventrikular, dan subarachnoid hemorrhage. Beside that secondary injury can also be caused by edema and infection. Post-traumatic cerebral injured is characterized by direct tissue damage, impaired regulation of cerebral blood flow (cerebral blood flow / CBF, and disruption of metabolism. Manifestations of secondary brain injured include increased intracranial pressure, ischemic brain damage, cerebral hypoxia and hypercarbi, as well as disruption of cerebral autoregulation. The first priority is to stabilize the patient's cervical spine injury, relieve and maintain airway, ensure adequate ventilation (breathing, and making venous access for fluid resuscitation pathways (circulation and assessing the level of awareness and disability. This steps is crucial in patients with head injured to prevent hypoxia and hypotension, which is the main cause of secondary brain injury.

  2. Brain, body and culture

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2010-01-01

    This essay sketches out a biocultural theory of religion which is based on an expanded view of cognition that is anchored in brain and body (embrained and embodied), deeply dependent on culture (enculturated) and extended and distributed beyond the borders of individual brains. Such an approach u...... to scholars of religion and be submitted to further hypotheses and tests by cognitive scientists....

  3. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2013-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed.

  4. Demystifying the Adolescent Brain

    Science.gov (United States)

    Steinberg, Laurence

    2011-01-01

    Understanding the nature of brain development in adolescence helps explain why adolescents can vacillate so often between mature and immature behavior. Early and middle adolescence, in particular, are times of heightened vulnerability to risky and reckless behavior because the brain's reward center is easily aroused, but the systems that control…

  5. Inside the Adolescent Brain

    Science.gov (United States)

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  6. Mild traumatic brain injury.

    NARCIS (Netherlands)

    Vos, P.E.; Alekseenko, Y.; Battistin, L.; Ehler, E.; Gerstenbrand, F.; Muresanu, D.F.; Potapov, A.; Stepan, C.A.; Traubner, P.; Vecsei, L.; Wild, K. von

    2012-01-01

    Traumatic Brain Injury (TBI) is among the most frequent neurological disorders. Of all TBIs 90% are considered mild with an annual incidence of 100-300/100.000. Intracranial complications of Mild Traumatic Brain Injury (MTBI) are infrequent (10%), requiring neurosurgical intervention in a minority o

  7. Coping changes the brain

    Directory of Open Access Journals (Sweden)

    Jordan M. Nechvatal

    2013-02-01

    Full Text Available One of the earliest and most consistent findings in behavioral neuroscience research is that learning changes the brain. Here we consider how learning as an aspect of coping in the context of stress exposure induces neuroadaptations that enhance emotion regulation and resilience. A systematic review of the literature identified 15 brain imaging studies in which humans with specific phobias or posttraumatic stress disorder were randomized to stress exposure therapies that diminished subsequent indications of anxiety. Most of these studies focused on functional changes in the amygdala and anterior corticolimbic brain circuits that control cognitive, motivational, and emotional aspects of physiology and behavior. Corresponding structural brain changes and the timing, frequency, and duration of stress exposure required to modify brain functions remain to be elucidated in future research. These studies will advance our understanding of coping as a learning process and provide mechanistic insights for the development of new interventions that promote stress coping skills.

  8. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  9. Teen Brain: Still Under Construction

    Science.gov (United States)

    ... Teen Brain Reprints For more information Share The Teen Brain: Still Under Construction Download PDF Download ePub ... emotional health. The Changing Brain and Behavior in Teens One interpretation of all these findings is that ...

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... knowing the multimedia devices… whether their brains will be able to adapt differently than older people. Announcer: So, what was the human brain originally developed to do? Well, Dr. Giedd says our brains are fundamentally designed ...

  11. Brain Aneurysm Statistics and Facts

    Science.gov (United States)

    ... Statistics and Facts A- A A+ Brain Aneurysm Statistics and Facts An estimated 6 million people in ... Understanding the Brain Warning Signs/ Symptoms Brain Aneurysm Statistics and Facts Seeking Medical Attention Risk Factors Aneurysm ...

  12. Brain Fingerprinting Technology

    Directory of Open Access Journals (Sweden)

    Ms.J.R.Rajput

    2015-01-01

    Full Text Available Brain Fingerprinting is a new computer-based technology to identify the perpetrator of a crime accurately and scientifically by measuring brain-wave responses to crime-relevant words or pictures presented on a computer screen. Brain Fingerprinting has proven 100% accurate in over 120 tests, including tests on FBI agents, tests for a US intelligence agency and for the US Navy, and tests on real-life situations including felony crimes. Brain fingerprinting is based on finding that the brain generates a unique brain wave pattern when a person encounters a familiar stimulus Use of functional magnetic resonance imaging in lie detection derives from studies suggesting that persons asked to lie show different patterns of brain activity than they do when being truthful. Issues related to the use of such evidence in courts are discussed. The author concludes that neither approach is currently supported by enough data regarding its accuracy in detecting deception to warrant use in court. In the field of criminology, a new lie detector has been developed in the United States of America. This is called “brain fingerprinting”. This invention is supposed to be the best lie detector available as on date and is said to detect even smooth criminals who pass the polygraph test (the conventional lie detector test with ease. The new method employs brain waves, which are useful in detecting whether the person subjected to the test, remembers finer details of the crime. Even if the person willingly suppresses the necessary information, the brain wave is sure to trap him, according to the experts, who are very excited about the new kid on the block.

  13. Imaging brain plasticity after trauma

    OpenAIRE

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. ...

  14. Degenerative brain disorders and brain iron

    International Nuclear Information System (INIS)

    High-field-strength [e.g., 1.5 tesla (T)] magnetic resonance imaging (MRI) provides a sensitive, in vivo method for mapping the normal and pathologic distribution of iron in the brain with excellent anatomic specificity. In all adults individuals studied using a multislice, spin-echo (SE) pulse sequence for T2-weighted (e.g., TR = 2,500 msec and TE = 80 msec) imaging, a prominent decreased signal intensity (decreased T2) was noted in the globus pallidum, red nucleus, reticular substantia nigra, and dentate nucleus of the cerebellum. The normal decreased signal intensity on SE 2,500/80 images correlates directly with previous autopsy studies on 98 normal brains of age 13 to 100 years that describe a preferential accumulation of brain iron in the globus pallidum (21 mg Fe/100 g), red nucleus (19 mg Fe/100 g), reticular substantia nigra (18 mg Fe/100 g), putamen (13 mg Fe/100g), caudate nucleus (9 mg Fe/100g), and thalamus (5 mg Fe/100 g). Our own studies using both high-field MRI in vivo and Peris staining for ferric iron on autopsy brains confirm this iron accumulation

  15. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  16. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  17. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  18. Modification of the striatal dopaminergic neuron system by carbon monoxide exposure in free-moving rats, as determined by in vivo brain microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Shuichi; Kurosaki, Kunihiko; Kuriiwa, Fumi; Endo, Takahiko [Department of Forensic Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Mukai, Toshiji [Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-0015 (Japan)

    2002-10-01

    Acute carbon monoxide (CO) intoxication in humans results in motor deficits, which resemble those in Parkinson's disease, suggesting possible disturbance of the central dopaminergic (DAergic) neuronal system by CO exposure. In the present study, therefore, we explored the effects of CO exposure on the DAergic neuronal system in the striatum of freely moving rats by means of in vivo brain microdialysis. Exposure of rats to CO (up to 0.3%) for 40 min caused an increase in extracellular dopamine (DA) levels and a decrease in extracellular levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum depending on the CO concentration. Reoxygenation following termination of the CO exposure resulted in a decline of DA to the control level and an overshoot in the recovery of DOPAC and HVA to levels higher than the control. A monoamine oxidase type A (MAO-A) inhibitor, clorgyline, significantly potentiated the CO-induced increase in DA and completely abolished the subsequent overshoot in the recovery of DOPAC and HVA. Tetrodotoxin, a Na{sup +} channel blocker, completely abolished both the CO-induced increase in DA and the overshoot of DOPAC and HVA. A DA uptake inhibitor, nomifensine, strongly potentiated the CO-induced increase in DA without affecting the subsequent overshoot of DOPAC and HVA. Clorgyline further potentiated the effect of nomifensine on the CO-induced increase in DA, although a slight overshoot of DOPAC and HVA appeared. These findings suggest that (1) CO exposure may stimulate Na{sup +}-dependent DA release in addition to suppressing DA metabolism, resulting in a marked increase in extracellular DA in rat striatum, and (2) CO withdrawal and subsequent reoxygenation may enhance the oxidative metabolism, preferentially mediated by MAO-A, of the increased extracellular DA. In the light of the neurotoxicity of DA per se and reactive substances, such as quinones and activated oxygen species

  19. Brains on video games

    OpenAIRE

    Bavelier, Daphne; Green, C. Shawn; Han, Doug Hyun; Renshaw, Perry F.; Merzenich, Michael M.; Gentile, Douglas A.

    2011-01-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games ‘damage the brain’ or ‘boost brain power’ do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affe...

  20. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  1. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  2. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan;

    2011-01-01

    constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes......After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  3. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan;

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  4. Osmotherapy in brain edema

    DEFF Research Database (Denmark)

    Grände, Per-Olof; Romner, Bertil

    2012-01-01

    Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect......, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain...... edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate...

  5. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  6. Brain Basics: Understanding Sleep

    Science.gov (United States)

    ... up. Some children experience bedwetting, night terrors, or sleepwalking during deep sleep. When we switch into REM ... stimulate some parts of the brain and can cause insomnia, or an inability to sleep. Many antidepressants ...

  7. Understanding Brain Tumors

    Science.gov (United States)

    ... Our Mission Advance Research Clinical Trial Endpoints Defeat GBM Oligo Research Fund Pediatric Initiatives Funded Research & Accomplishments ... no symptoms when their brain tumor is discovered Recurrent headaches Issues with vision Seizures Changes in personality ...

  8. Legionella micdadei Brain Abscess

    OpenAIRE

    Charles, Marthe; Johnson, Edward; Macyk-Davey, Andrea; Henry, Monica; Nilsson, Jan-Erik; Miedzinski, Lil; Zahariadis, George

    2013-01-01

    We describe an immunocompromised patient who developed a large frontal brain abscess caused by Legionella micdadei. This is, to our knowledge, a rare case of culture-proven Legionella central nervous system infection.

  9. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are...

  10. Genetics and the Brain

    Science.gov (United States)

    ... Find us on YouTube Follow us on Instagram Genetics and the Brain by Carl Sherman September 10, ... effects that may be responsible. How Much Is Genetic? [x] , [xi] , [xii] , [xiii] A basic question in ...

  11. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-12-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

  12. Quantum Brain States

    CERN Document Server

    Mould, R A

    2003-01-01

    If conscious observers are to be included in the quantum mechanical universe, we need to find the rules that engage observers with quantum mechanical systems. The author has proposed five rules that are discovered by insisting on empirical completeness; that is, by requiring the rules to draw empirical information from Schrodinger's solutions that is more complete than is currently possible with the (Born) probability interpretation. I discard Born's interpretation, introducing probability solely through probability current. These rules tell us something about brains. They require the existence of observer brain states that are neither conscious nor unconscious. I call them 'ready' brain states because they are on stand-by, ready to become conscious the moment they are stochastically chosen. Two of the rules are selection rules involving ready brain states. The place of these rules in a wider theoretical context is discussed. Key Words: boundary conditions, consciousness, decoherence, macroscopic superpositio...

  13. Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago truncatula roots

    Directory of Open Access Journals (Sweden)

    Abdallah Cosette

    2012-06-01

    Full Text Available Abstract Background Shotgun proteomics represents an attractive technical framework for the study of membrane proteins that are generally difficult to resolve using two-dimensional gel electrophoresis. The use of iTRAQ, a set of amine-specific isobaric tags, is currently the labelling method of choice allowing multiplexing of up to eight samples and the relative quantification of multiple peptides for each protein. Recently the hyphenation of different separation techniques with mass spectrometry was used in the analysis of iTRAQ labelled samples. OFFGEL electrophoresis has proved its effectiveness in isoelectric point-based peptide and protein separation in solution. Here we describe the first application of iTRAQ-OFFGEL-LC-MS/MS on microsomal proteins from plant material. The investigation of the iTRAQ labelling effect on peptide electrofocusing in OFFGEL fractionator was carried out on Medicago truncatula membrane protein digests. Results In-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully used in this study. The focusing quality in OFFGEL electrophoresis was maintained for iTRAQ labelled peptides with a higher than expected number of identified peptides in basic OFFGEL-fractions. We furthermore observed, by comparing the isoelectric point (pI fractionation of unlabelled versus labelled samples, a non-negligible pI shifts mainly to higher values. Conclusions The present work describes a feasible and novel protocol for in-solution protein digestion in which the filter unit permits protein retention and buffer removal. The data demonstrates an impact of iTRAQ labelling on peptide electrofocusing behaviour in OFFGEL fractionation compared to their native counterpart by the induction of a substantial, generally basic pI shift. Explanations for the occasionally observed acidic shifts are likewise presented.

  14. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    International Nuclear Information System (INIS)

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep)3+/CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep)3+) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 μg L-1, which is by an order of magnitude lower than the EU limit (0.3 μg L-1) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 μg L-1

  15. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  16. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5′-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Soon-Sang Kwon

    2016-04-01

    Full Text Available Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP and uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.

  17. New microsome-associated HT-family proteins from Nicotiana respond to pollination and define an HT/NOD-24 protein family

    Institute of Scientific and Technical Information of China (English)

    Katsuhiko Kondo; Bruce McClure

    2008-01-01

    HT-family proteins have been identified in Nicotiana, Solanum,and Petunia.HT-B-type proteins are implicated in S-RNase-based self-incompatibility,but the functions of other family members are unknown.Screening for cDNA sequences with an expression pattern similar to HT-B in Nicotiana alata revealed a new group of small HT-family proteins.designated HT-M.HT-M proteins resemble HT-B in several respects:their pistil-specific expression pattern iS indistinguish-able from HT-B,they pellet with a microsome fraction,and their abundance decreases after pollination.Unlike HT-B,there iS no S-specificity to this response,and RNAi experiments show that HT-M proteins are not necessary for self-incompatibility.Identification of a third group of pistil-specific HT-family proteins helps better define the characteristics of the family and allowed identification of putative new family members.By searching the databases with only the most conserved HT-family sequence elements,the signal sequence and cysteine motifs,we identified nodulin-24-1ike proteins and several small glycine-rich proteins as putative HT-family members.Like HT-M and HT-B,nodulin-24 iS membrane associated.We propose that the conserved features in HT-family proteins are important for targeting or modification and refer to the broader family that includes both HT-and nodulin-24-like proteins as the HT/NOD-24-family.

  18. Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Tao-Tao Liu; Ning-Sheng Liang; Yan Li; Fan Yang; Yi Lu; Zi-Qing Meng; Li-Sheng Zhang,

    2003-01-01

    AIM: To investigate the effects of long-term tea polyphenols (TPs) consumption on hepatic microsomal drug-metabolizing enzymes and liver function in rats.METHODS: TPs were administered intragastrically to rats at the doses of 833 mg.kg-1.d-1 (n=20) and 83.3 mg.kg-1@d-1 (n=20) respectively for six months. Controlled group (n=20)was given same volume of saline solution. Then the contents of cytochrome P450, bS, enzyme activities of aminopyrine N-demethylase (ADM), glutathione S-trasferase (GST) and the biochemical liver function of serum were determined.RESULTS: The contents of cytochrome P450 and b5 in the livers of male rats in high dose groups (respectively 2.66±0.55,10.43±2.78 nmol.mg MS pro-1) were significantly increased compared with the control group (1.08±1.04, 5.51±2.98nmol.mg MS pro-1; P<0.01, respectively). The enzymatic activities of ADM in the livers of female rats in high dose groups (0.91±0.08 mmol@mg MS pro-1min-1) were increased compared with the control group (0.82±0.08 mmol.mg MS pro-1.min-1; P<0.05). The GST activity was unchanged in all treated groups, and the function of liver was not obviously changed.CONCLUSION: The antidotal capability of rats' livers can be significantly improved after long-term consumption of TPs.There are differences in changes of drug-metabolizing enzymes between the sexes induced by TPs and normal condition.

  19. Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken.

    Science.gov (United States)

    Liu, Zhen; Li, Qinghe; Liu, Ranran; Zhao, Guiping; Zhang, Yonghong; Zheng, Maiqing; Cui, Huanxian; Li, Peng; Cui, Xiaoyan; Liu, Jie; Wen, Jie

    2016-06-01

    The typical characteristic of fatty liver syndrome (FLS) is an increased hepatic triacylglycerol content, and a sudden decline in egg production often occurs. FLS may develop into fatty liver hemorrhagic syndrome (FLHS), characterized by sudden death from hepatic rupture and hemorrhage. DNA methylation is associated with transcriptional silencing, leading to the etiology and pathogenesis of some animal diseases. The roles of DNA methylation in the genesis of FLS, however, are largely unknown. The lipogenic methyl-deficient diet (MDD) caused FLS similar to human nonalcoholic steatohepatitis (NASH). After 16 Jingxing-Huang (JXH) hens were fed MDD for 10 wk, eight exhibited FLS (designated as FLS-susceptible birds); the remainder, without FLS, served as controls (NFLS). Physiological and biochemical variables, gene expression levels, and DNA methylation were determined in the liver. The development of FLS in JXH hens was accompanied by abnormal lipid accumulation. Relative expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and microsomal triglyceride transfer protein (MTTP) were significantly up-regulated in the FLS group in comparison with the NFLS group. The transcript abundance of sterol regulatory element binding protein 1 (SREBP-1c), stearoyl-CoA desaturase (SCD), liver X receptor alpha (LXRα), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferator-activated receptor gamma (PPARγ) did not differ between the two groups. Interestingly, MTTP and ACC mRNA abundance were negatively correlated with the level of promoter methylation. The extent of DNA methylation of the cytosine-guanine (CpG) sites in the SREBP-1c, FAS, PPARα, and LXRα promoter regions was also analyzed by direct sequencing but none differed between FLS and NFLS birds. Taken together, these results specify link DNA methylation to the pathogenesis of FLS in chickens. PMID:27083546

  20. Application of a New Dynamic Model to Predict the In Vitro Intrinsic Clearance of Tolbutamide Using Rat Microsomes Encapsulated in a Fab Hydrogel.

    Science.gov (United States)

    Zhou, Ning; Zheng, Yuanting; Xing, Junfen; Yang, Huiying; Chen, Hanmei; Xiang, Xiaoqiang; Liu, Jing; Tong, Shanshan; Zhu, Bin; Cai, Weimin

    2016-01-01

    Currently used in vitro models for estimating liver metabolism do not take into account the physiologic structure and blood circulation process of liver tissue. The Bio-PK metabolic system was established as an alternative approach to determine the in vitro intrinsic clearance of the model drug tolbutamide. The system contained a peristaltic pump, recirculating pipeline, reaction chamber, and rat liver microsomes (RLMs) encapsulated in pluronic F127-acrylamide-bisacrylamide (FAB) hydrogel. The metabolism of tolbutamide at initial concentrations of 100, 150, and 200 μM was measured in both the FAB hydrogel and the circular medium. The data from the FAB hydrogel and the circular medium were fitted to a mathematical model to obtain the predicted intrinsic clearance of tolbutamide after different periods of preincubation. The in vitro clearance value for tolbutamide was incorporated into Simcyp software and used to predict both the in vivo clearance value and the dynamic process of elimination. The predicted in vivo clearance of tolbutamide was 0.107, 0.087, and 0.095 L/h/kg for i.v. injection and 0.113, 0.095, and 0.107 L/h/kg for oral administration. Compared with the reported in vivo clearance of 0.09 L/h/kg (i.v.) and 0.10 L/h/kg (oral), all the predicted values differed by less than twofold. Thus, the Bio-PK metabolic system is a reliable and general in vitro model, characterized by three-dimensional structured RLM and circulation and perfusion processes for predicting the in vivo intrinsic clearance of low-extraction compounds, making the system more analogous with the rat in terms of both morphology and physiology.

  1. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    Science.gov (United States)

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  2. Brain abscess: Current management

    OpenAIRE

    Hernando Alvis-Miranda; Sandra Milena Castellar-Leones; Mohammed Awad Elzain; Luis Rafael Moscote-Salazar

    2013-01-01

    Brain abscess (BA) is defined as a focal infection within the brain parenchyma, which starts as a localized area of cerebritis, which is subsequently converted into a collection of pus within a well-vascularized capsule. BA must be differentiated from parameningeal infections, including epidural abscess and subdural empyema. The BA is a challenge for the neurosurgeon because it is needed good clinical, pharmacological, and surgical skills for providing good clinical outcomes and prognosis to ...

  3. Coping changes the brain

    OpenAIRE

    Jordan M. Nechvatal; Lyons, David M.

    2013-01-01

    One of the earliest and most consistent findings in behavioral neuroscience research is that learning changes the brain. Here we consider how learning as an aspect of coping in the context of stress exposure induces neuroadaptations that enhance emotion regulation and resilience. A systematic review of the literature identified 15 brain imaging studies in which humans with specific phobias or posttraumatic stress disorder were randomized to stress exposure therapies that diminished subsequen...

  4. Coping changes the brain

    OpenAIRE

    Jordan M. Nechvatal; Lyons, David M.

    2013-01-01

    One of the earliest and most consistent findings in behavioral neuroscience research is that learning changes the brain. Here we consider how learning as an aspect of coping in the context of stress exposure induces neuroadaptations that enhance emotion regulation and resilience. A systematic review of the literature identified 15 brain imaging studies in which humans with specific phobias or post-traumatic stress disorder (PTSD) were randomized to stress exposure therapies that diminished su...

  5. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  6. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  7. BRAIN CANCER IMMUNOTHERAPY (REVIEW)

    OpenAIRE

    Yashin К.S.; Medyanik I.А.

    2014-01-01

    The review analyzes Russian and foreign reports concerned with a rapidly developing brain cancer treatment technique — immunotherapy. There has been presented a current view on the basic concept of antitumor immunity, on the problem of immune system interaction with a tumor in general and under the conditions of an immunologically privileged nervous system, shown the theoretical background of efficiency of immunotherapy used against brain cancer (the capability of tumor antigens and activated...

  8. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2014-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed. Ass et gutt e Kand méisproocheg ze erzéien? Wat sinn déi optimal Konditio...

  9. Is Brain Emulation Dangerous?

    Science.gov (United States)

    Eckersley, Peter; Sandberg, Anders

    2013-12-01

    Brain emulation is a hypothetical but extremely transformative technology which has a non-zero chance of appearing during the next century. This paper investigates whether such a technology would also have any predictable characteristics that give it a chance of being catastrophically dangerous, and whether there are any policy levers which might be used to make it safer. We conclude that the riskiness of brain emulation probably depends on the order of the preceding research trajectory. Broadly speaking, it appears safer for brain emulation to happen sooner, because slower CPUs would make the technology`s impact more gradual. It may also be safer if brains are scanned before they are fully understood from a neuroscience perspective, thereby increasing the initial population of emulations, although this prediction is weaker and more scenario-dependent. The risks posed by brain emulation also seem strongly connected to questions about the balance of power between attackers and defenders in computer security contests. If economic property rights in CPU cycles1 are essentially enforceable, emulation appears to be comparatively safe; if CPU cycles are ultimately easy to steal, the appearance of brain emulation is more likely to be a destabilizing development for human geopolitics. Furthermore, if the computers used to run emulations can be kept secure, then it appears that making brain emulation technologies ―open‖ would make them safer. If, however, computer insecurity is deep and unavoidable, openness may actually be more dangerous. We point to some arguments that suggest the former may be true, tentatively implying that it would be good policy to work towards brain emulation using open scientific methodology and free/open source software codebases

  10. Dyslexia singular brain

    International Nuclear Information System (INIS)

    Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.)

  11. Vortices in brain waves

    OpenAIRE

    Freeman, Walter J III; Vitiello, Giuseppe

    2008-01-01

    Interactions by mutual excitation in neural populations in human and animal brains cre- ate a mesoscopic order parameter that is recorded in brain waves (electroencephalogram, EEG). Spatially and spectrally distributed oscillations are imposed on the background activity by inhibitory feedback in the gamma range (30–80 Hz). Beats recur at theta rates (3–7 Hz), at which the order parameter transiently approaches zero and micro- scopic activity becomes disordered. After these null spikes, the or...

  12. Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    K. Vessal

    2005-08-01

    Full Text Available Introduction & Background: The historical evolution of concepts of the mind has had a tremendous impact on human civilization. Aside from Smith’s surgical papyrus, there exists practically no documentation down to the era of Hippocrates. While in Corpus, the seat of all sensations is put in the brain, there is an amazing regression, for many centuries thereafter notably influenced by Aristotle, to displace it to the heart. This erroneous diversion promulgated in De Anima with minor corrections by Galen, has per-petuated to our time when we say, for example, that we love something with our very hearts or “knowing by heart” when we mean to memorize something. Avicenna challenged many of Aristotle’s ideas in El-monnafs (psychology section of Al Shafa, paving the road for the later European Renaissance. Cartesian choice of pineal body as the seat of soul in the first half of the 7th century was a fundamental departure from brain-soul dichotomy. It was followed by Gall’s pseudo-science, phrenology, as the first attempt of brain mapping in ascribing “mental faculties” to the speculative “organs” of the brain. Brain mapping through Functional Brain Imaging has flourished ex-tensively in the past decades -starting from PET with later substitution by fMRI- as robust tools for interro-gating mysteries of the brain. With a surprising pace of development, Functional Brain Imaging heralds a welcome adjunct to the science of radiology in ex-ploring mind and human behavior. Given the multi-tude of appropriate MRI machines operating across the country, attention to this aspect of imaging can invigorate research in radiology and boost generation of knowledge in this rapidly growing field. Recent advances in MRI fast imaging, fMRI, as well as clini-cal and spectroscopic imaging with present clinical application and future trends are discussed.

  13. Cytokines and brain excitability

    OpenAIRE

    Galic, Michael A.; Riazi, Kiarash; Pittman, Quentin J.

    2011-01-01

    Cytokines are molecules secreted by peripheral immune cells, microglia, astrocytes and neurons in the central nervous system. Peripheral or central inflammation is characterized by an upregulation of cytokines and their receptors in the brain. Emerging evidence indicates that pro-inflammatory cytokines modulate brain excitability. Findings from both the clinical literature and from in vivo and in vitro laboratory studies suggest that cytokines can increase seizure susceptibility and may be in...

  14. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    Science.gov (United States)

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  15. Experimental study on specific glucuronidation of baicalein by liver and intestine microsomes in rats%大鼠微粒体代谢酶对黄芩素葡萄糖醛酸化代谢物影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    关小彬; 叶玲; 夏笔军; 刘中秋

    2009-01-01

    Objective To investigate the different roles of metabolism of baicalein in rat,especial liver and intestine. Methods The enzyme re-actions by microsome incubations were employed. The content of baica-lein and baicalein- glucuronide were determined by HPLC. The glucu-ronidation rates of baicalein at different time points and at various con-centrations were measured by using 5 UGT microsomes. Results Five different microsomes are important common microsomes for glucuronida-tion of baicalein with the manner of time and concentration-dependences.Furthermore, the results also showed that jejunum microsome is the main microsome for metabolizing baicalein, and the colon microsome would be a weakest microsome for the contribution of baicalein metabolism. Con-clusion Different microsomes are responsible for the metabolism of ba-icalein in different organs/regions of the digestive system. The glucuroni-dation of baicalein in the intestine contributes significantly to that of ba-icalein in the liver.%目的 观察大鼠微粒体代谢酶对黄芩素(治疗呼吸道感染中药)代谢作用的影响.方法 用体外微粒体药物代谢酶孵育法;用HPLC法测定黄芩素及其葡萄糖醛酸化代谢物的含量,在不同孵育时间和不同浓度下,观察大鼠肝肠不同微粒体对黄芩素葡萄糖醛酸化代谢产物生成速率的影响.结果 5种不同微粒体药物代谢酶对黄芩素均有代谢作用,且随孵育时间延长,代谢作用也相应增加,呈较好的时间和剂量依赖关系.在5种微粒体中,十二指肠微粒体代谢作用最强;而肝代谢作用最弱.结论 黄芩素主要代谢部位是肠道.

  16. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait......-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified...

  17. Functional brain imaging

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.)

  18. Effect of volatile oil from nutmeg on liver microsomal cytochrome P450 in mice%肉豆蔻挥发油对小鼠肝微粒体细胞色素P450的影响

    Institute of Scientific and Technical Information of China (English)

    赵润英; 王玮; 赵丽妮; 李昭; 王俊平

    2009-01-01

    Objective: To study the effect of the volatile oil from nutmeg on liver microsomal cytochrome P450 in mice. Method: Mice were administered the volatile oil from nutmeg at 0.4, 0.8 and 1.2 mg·g~(-1), respectively, twice a day for 10 days. And then, the contents of liver microsomal cytochrome P450(CYP), cytochrome b5 (Cytb5), MDA and GST in serum were examined by UV chromatography method. Result: The contents of liver CYP, Cytb5 and GST in serum were increased significantly (P<0.01) and the contents of MDA was reduced significantly (P<0.01). Conclusion: The volatile oil from nutmeg showed induction effect on the hepatic microsomal CYP in mice.%目的:研究肉豆蔻挥发油对小鼠肝微粒体细胞色素P450的影响.方法:肉豆蔻挥发油按0.4,0.8,1.2 mg·g~(-1)剂量每天灌胃2次,连续10 d后,用紫外分光光度法检测肝脏微粒体细胞色素P450(CYP)、细胞色素B_5(Cytb_5)、丙二醛(MDA)和血清谷胱甘肽转移酶(GST)的含量.结果:用药小鼠的肝脏微粒体CYP,Cytb5和血清中GST含量显著增加(P<0.01),并呈现一定的剂量依赖性;而肝脏MDA含量明显降低(P<0.01).结论:肉豆蔻挥发油对小鼠肝微粒体CYP具有诱导作用.

  19. 丙泊酚对大鼠肝微粒体细胞色素酶P450的影响%Effect of propofol on liver microsomal cytochrome P450 in rats

    Institute of Scientific and Technical Information of China (English)

    李振洲; 陈学新; 陈雅儒; 闫瑞; 孟尽海; 马汉祥; 邓丽琴

    2011-01-01

    目的:研究丙泊酚对大鼠肝微粒体细胞色素酶P450含量的影响.方法:健康雄性SD大鼠18只,体重180 ~ 220 g,随机分为苯巴比妥钠组、丙泊酚组、生理盐水组,每组6只,分别给予苯巴比妥钠75 mg/kg,丙泊酚3.789 mg/kg及等量生理盐水,持续3 d.测定肝微粒体蛋白和P450的含量以及氨基比林-N脱甲基酶的活性.结果:与生理盐水组比较,苯巴比妥钠组、丙泊酚组肝微粒体蛋白和P450的含量升高;苯巴比妥钠组氨基比林-N脱甲基酶活性明显增高.结论:丙泊酚对大鼠肝微粒体蛋白、细胞色素P450具有诱导作用,对氨基比林-N脱甲基酶的活性无影响.%Objective To explore the effect of propofol on liver microsomal cytochrome P450 in rats.Methods Eighteen male SD rats were randomly assigned to receive phenobarbital of 75 mg/kg (phenobarbital group, n= 6), propofol of 3.789 mg/kg (propofol group, n= 6), or normal saline (control group, n= 6) for three days. Levels of liver microsomal proteins and P450 were detected and activity of aminopyrine N-demethylase was detemined by spectrophotometry. Results As compared with the control group, the levels of microsomal proteins and cytochrome P450 were increased in phenobarbital group and propofol group; the activity of aminopyrine N-demethylase was significantly elevated in phenobarbital group. Conclusions Propofol can induce liver microsomal cytochrome P450 in rats but has no effect on the activity of aminiopyrine N-demethylase.

  20. Function and clinical significance of microsomal triglyceride transfer proteins%微粒体甘油三酯转移蛋白的功能及临床意义

    Institute of Scientific and Technical Information of China (English)

    刘黎; 欧阳冬生

    2009-01-01

    微粒体甘油三酯转移蛋白(microsomal triglyceride transfer protein,MTP)是一种主要分布于肝细胞、肠上皮细胞中的脂质转移蛋白,其在甘油三酯转运及极低密度脂蛋白组装和分泌中发挥着重要作用.近来研究表明MTP与血脂障碍和肝脏脂肪变性等疾病的发生发展关系密切.