WorldWideScience

Sample records for brain metastasis formation

  1. Ion Channels in Brain Metastasis.

    Science.gov (United States)

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-09-08

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.

  2. Ion Channels in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Lukas Klumpp

    2016-09-01

    Full Text Available Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.

  3. Microenvironment Determinants of Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Zhang Chenyu

    2011-02-01

    Full Text Available Abstract Metastasis accounts for 90% of cancer-related mortality. Brain metastases generally present during the late stages in the natural history of cancer progression. Recent advances in cancer treatment and management have resulted in better control of systemic disease metastatic to organs other than the brain and improved patient survival. However, patients who experience recurrent disease manifest an increasing number of brain metastases, which are usually refractory to therapies. To meet the new challenges of controlling brain metastasis, the research community has been tackling the problem with novel experimental models and research tools, which have led to an improved understanding of brain metastasis. The time-tested "seed-and-soil" hypothesis of metastasis indicates that successful outgrowth of deadly metastatic tumors depends on permissible interactions between the metastatic cancer cells and the site-specific microenvironment in the host organs. Consistently, recent studies indicate that the brain, the major component of the central nervous system, has unique physiological features that can determine the outcome of metastatic tumor growth. The current review summarizes recent discoveries on these tumor-brain interactions, and the potential clinical implications these novel findings could have for the better treatment of patients with brain metastasis.

  4. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation.

    Directory of Open Access Journals (Sweden)

    Gretchen Wolff

    Full Text Available Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB. There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6 D122 (murine Lewis lung carcinoma cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies or 2-3 weeks (in long-term studies post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals.

  5. Leptomeningeal metastasis after surgical resection of brain metastases

    NARCIS (Netherlands)

    T.C. van der Ree; D.W.J. Dippel (Diederik); C.J.J. Avezaat (Cees); C.J. Vecht; M.J. van den Bent (Martin); P.A.E. Sillevis Smitt (Peter)

    1999-01-01

    textabstractOBJECTIVE: To determine the incidence and risk factors for leptomeningeal metastasis after surgery for brain metastasis of solid tumors. METHODS: Review of the records of all patients operated on for brain metastasis between January 1990 and August 1995.

  6. Brain metastasis: Unique challenges and open opportunities.

    Science.gov (United States)

    Lowery, Frank J; Yu, Dihua

    2017-01-01

    The metastasis of cancer to the central nervous system (CNS) remains a devastating clinical reality, carrying an estimated survival time of less than one year in spite of recent therapeutic breakthroughs for other disease contexts. Advances in brain metastasis research are hindered by a number of factors, including its complicated nature and the difficulty of modeling metastatic cancer growth in the unique brain microenvironment. In this review, we will discuss the clinical challenge, and compare the merits and limitations of the available models for brain metastasis research. Additionally, we will specifically address current knowledge on how brain metastases take advantage of the unique brain environment to benefit their own growth. Finally, we will explore the distinctive metabolic and chemical characteristics of the brain and how these paradoxically represent barriers to establishment of brain metastasis, but also provide ample supplies for metastatic cells' growth in the brain. We envision that multi-disciplinary innovative approaches will open opportunities for the field to make breakthroughs in tackling unique challenges of brain metastasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The vascular basement membrane as "soil" in brain metastasis.

    Directory of Open Access Journals (Sweden)

    W Shawn Carbonell

    2009-06-01

    Full Text Available Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's "seed and soil" concept. However, there is little direct evidence for this "neurotropic" growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the "soil" for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the beta1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies.

  8. Treatment of Brain Metastasis from Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Alexander [Department of Radiation Oncology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ 85724 (United States); Komaki, Ritsuko, E-mail: rkomaki@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States)

    2010-12-15

    Brain metastases are not only the most common intracranial neoplasm in adults but also very prevalent in patients with lung cancer. Patients have been grouped into different classes based on the presence of prognostic factors such as control of the primary tumor, functional performance status, age, and number of brain metastases. Patients with good prognosis may benefit from more aggressive treatment because of the potential for prolonged survival for some of them. In this review, we will comprehensively discuss the therapeutic options for treating brain metastases, which arise mostly from a lung cancer primary. In particular, we will focus on the patient selection for combined modality treatment of brain metastases, such as surgical resection or stereotactic radiosurgery (SRS) combined with whole brain irradiation; the use of radiosensitizers; and the neurocognitive deficits after whole brain irradiation with or without SRS. The benefit of prophylactic cranial irradiation (PCI) and its potentially associated neuro-toxicity for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are also discussed, along with the combined treatment of intrathoracic primary disease and solitary brain metastasis. The roles of SRS to the surgical bed, fractionated stereotactic radiotherapy, WBRT with an integrated boost to the gross brain metastases, as well as combining WBRT with epidermal growth factor receptor (EGFR) inhibitors, are explored as well.

  9. Mixed adenoneuroendocrine carcinoma with brain metastasis

    Directory of Open Access Journals (Sweden)

    Xiao-ling YAN

    2015-05-01

    Full Text Available Objective To study clinicopathological features, diagnosis, differential diagnosis and prognosis of mixed adenoneuroendocrine carcinoma (MANEC.  Methods One case of MANEC with brain metastasis was reported focusing on the following aspects: clinical manifestations, histopathological features and immunophenotypes, and the relevant literatures were reviewed.  Results A 35-year-old male presented headache and vomiting, and his head CT scan showed a lesion located in the right temporal lobe. The tumor was detected after separating the cerebral cortex during the surgery. The tumor diameter was 3 cm. The tumor was soft and rubbery with ill-defined margins, and rich in blood supply. Under optical microscopy, the tumor was consisted of small round cells of the same size, with focal tumor cells arranged around blood vessels in a pseudorosette manner or papillary manner with brisk mitotic activity. The boundary between tumor and brain tissue was ill-defined. By using immunohistochemical staining, the tumor cells were diffusely positive for synaptophysin (Syn and CD56, and negative for glial fibrillary acidic protein (GFAP, pan cytokeratin (PCK, CD3, CD20, vimentin (Vim, leukocyte common antigen (LCA, thyroid transcription factor-1 (TTF-1, S-100 protein (S-100, neurofilament (NF, nestin (Nes, CK5/6, CK8/18 and CD99. Ki-67 labeling index was about 62%. Sigmoidoscopy was performed later in another hospital and showed a mass in the patient's colon. The colon tumor was biphasic in appearance, and was consisted of two distinct components: isomorphic small round cells and low-middle differentiated adenocarcinoma cells. The small round tumor cells were diffusely positive for Syn and CD56, and negative for PCK. The adenocarcinoma cells showed opposite results.  Conclusions MANEC is a rare tumor, which is defined in 2010 by WHO Classification of Digestive, and to the best of our knowledge, MANEC of the colon with brain metastasis has never been described

  10. Brain metastasis in gastroesophageal adenocarcinoma and HER2 status.

    Science.gov (United States)

    Limon, Dror; Gal, Omer; Gordon, Noa; Katz, Lior; Perl, Gali; Purim, Ofer; Amit, Limor; Stemmer, Salomon M; Kundel, Yulia; Ben-Aharon, Irit; Brenner, Baruch; Siegal, Tali; Yust-Katz, Shlomit

    2018-02-10

    The increased survival of patients with gastroesophageal adenocarcinoma (GAD) following improvements in treatment has been accompanied by a rising incidence of secondary brain metastasis. HER2 amplification/overexpression, which has been associated with an increased risk of brain metastasis in breast cancer, is found in about 20% of patients with GAD. The aim of this study was to evaluate the effect of HER2 status on brain metastasis in GAD. The database of a tertiary cancer center was searched for patients with GAD diagnosed in 2011-2015, and data were collected on clinical characteristics, brain metastasis, HER2 status, and outcome. We identified 404 patients with a confirmed diagnosis of GAD. HER2 results were available for 298: 69 (23.2%) positive and 227 negative. Brain metastasis developed in 15 patients with GAD (3.7%); HER2 results, available in 13, were positive in 6, negative in 6, and equivocal in 1. The brain metastasis rate was significantly higher in HER2-positive than HER2-negative patients with GAD (6/69, 8.7% vs. 6/227, 2.6%; RR = 3.3, 95% CI 1.1-9.9, p = 0.034). Median overall survival from diagnosis of brain metastasis was 2.3 months, with no significant difference by HER2 status. HER2 positive GAD patients may be at increased risk to develop BM. Clinicians should maintain a lower threshold for performing brain imaging in patients with HER2-positive GAD given their increased risk of brain metastasis. The role of anti-HER2 agents in the development and treatment of brain metastasis in GAD warrants further study.

  11. Brain metastasis from ovarian cancer: a systematic review.

    Science.gov (United States)

    Pakneshan, Shabnam; Safarpour, Damoun; Tavassoli, Fattaneh; Jabbari, Bahman

    2014-08-01

    To review the existing literature on brain metastasis (BM) from ovarian cancer and to assess the frequency, anatomical, clinical and paraclinical information and factors associated with prognosis. Ovarian cancer is a rare cause of brain metastasis with a recently reported increasing prevalence. Progressive neurologic disability and poor prognosis is common. A comprehensive review on this subject has not been published previously. This systematic literature search used the Pubmed and Yale library. A total of 66 publications were found, 57 of which were used representing 591 patients with BM from ovarian cancer. The median age of the patients was 54.3 years (range 20-81). A majority of patients (57.3 %) had multiple brain lesions. The location of the lesion was cerebellar (30 %), frontal (20 %), parietal (18 %) and occipital (11 %). Extracranial metastasis was present in 49.8 % of cases involving liver (20.7 %), lung (20.4 %), lymph nodes (12.6 %), bones (6.6 %) and pelvic organs (4.3 %). The most common symptoms were weakness (16 %), seizures (11 %), altered mentality (11 %) visual disturbances (9 %) and dizziness (8 %). The interval from diagnosis of breast cancer to BM ranged from 0 to 133 months (median 24 months) and median survival was 8.2 months. Local radiation, surgical resection, stereotactic radiosurgery and medical therapy were used. Factors that significantly increased the survival were younger age at the time of ovarian cancer diagnosis and brain metastasis diagnosis, lower grade of the primary tumor, higher KPS score and multimodality treatment for the brain metastases. Ovarian cancer is a rare cause of brain metastasis. Development of brain metastasis among older patients and lower KPS score correlate with less favorable prognosis. The more prolonged survival after using multimodality treatment for brain metastasis is important due to potential impact on management of brain metastasis in future.

  12. [Molecular background of the melanoma and the brain metastasis].

    Science.gov (United States)

    Katona, Frida; Murnyák, Balázs; Marko-Varga, György; Hortobágyi, Tibor

    2017-07-01

    Malignant melanoma is one of the most aggressive tumors which often gives metastasis to distant organs thereby limiting the chances of survival. Brain metastasis occurs in nearly half of the advanced tumors. In order to improve outcome early diagnosis is important. The discovery and better understanding of genetic and epigenetic changes is essential for developing new effective therapies, which can designate promising therapeutic targets. Melanoma most often is caused by gene mutations of the mitogen-activated protein kinase pathway, the phosphatidylinositol 3-kinase signaling pathway, and the cell cycle regulatory molecules, respectively. The molecular process of brain metastasis has not been fully elucidated. In our review we summarize the genetic alterations and molecular mechanisms playing a role in the development of melanoma and its brain metastasis. Orv Hetil. 2017; 158(28): 1083-1091.

  13. The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis.

    Science.gov (United States)

    Izraely, Sivan; Sagi-Assif, Orit; Klein, Anat; Meshel, Tsipi; Ben-Menachem, Shlomit; Zaritsky, Assaf; Ehrlich, Marcelo; Prieto, Victor G; Bar-Eli, Menashe; Pirker, Christine; Berger, Walter; Nahmias, Clara; Couraud, Pierre-Olivier; Hoon, Dave S B; Witz, Isaac P

    2015-03-15

    Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis. © 2014 UICC.

  14. T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression.

    Science.gov (United States)

    Mustafa, Dana A M; Pedrosa, Rute M S M; Smid, Marcel; van der Weiden, Marcel; de Weerd, Vanja; Nigg, Alex L; Berrevoets, Cor; Zeneyedpour, Lona; Priego, Neibla; Valiente, Manuel; Luider, Theo M; Debets, Reno; Martens, John W M; Foekens, John A; Sieuwerts, Anieta M; Kros, Johan M

    2018-01-19

    The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood-brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.

  15. Non-coding RNAs in cancer brain metastasis.

    Science.gov (United States)

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2016-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can't penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed.

  16. Heparanase Mechanisms in Melanoma Brain Metastasis

    Science.gov (United States)

    2015-10-01

    An established role for heparanase is the release of growth and angiogenic factors which are avidly bound to extracellular matrix HS (1, 2). HPSE...are endosome-derived, 30–100nm small membrane vesicles released by most cell types including tumor cells. Of note, they possess capabilities to...metastasis onset. Electron microscopy was performed to characterize the quality of the vesicles . Membrane-bound particles with a characteristic

  17. Integrated Genomic and Epigenomic Analysis of Breast Cancer Brain Metastasis

    Science.gov (United States)

    Salhia, Bodour; Kiefer, Jeff; Ross, Julianna T. D.; Metapally, Raghu; Martinez, Rae Anne; Johnson, Kyle N.; DiPerna, Danielle M.; Paquette, Kimberly M.; Jung, Sungwon; Nasser, Sara; Wallstrom, Garrick; Tembe, Waibhav; Baker, Angela; Carpten, John; Resau, Jim; Ryken, Timothy; Sibenaller, Zita; Petricoin, Emanuel F.; Liotta, Lance A.; Ramanathan, Ramesh K.; Berens, Michael E.; Tran, Nhan L.

    2014-01-01

    The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies. PMID:24489661

  18. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine

    Science.gov (United States)

    Kircher, David A.; Silvis, Mark R.; Cho, Joseph H.; Holmen, Sheri L.

    2016-01-01

    The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases. PMID:27598148

  19. A rare metastasis from a rare brain tumour

    DEFF Research Database (Denmark)

    Aabenhus, Kristine; Hahn, Christoffer Holst

    2014-01-01

    This case report presents the story of a patient with an oligodendroglioma metastasizing to the bone marrow and to lymph nodes of the neck. The patient had undergone primary brain surgery 13 years prior to the discovery of metastases and radiotherapy directed at the brain tumour two months prior........ Oligodendroglioma are rare primary brain tumours of which extraneural metastasis is even more rare. The incidence of cases like this may be increasing because of better treatment and thus longer survival of patients with oligodendroglioma....

  20. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility.

    Science.gov (United States)

    Riemann, A; Schneider, B; Gündel, D; Stock, C; Gekle, M; Thews, O

    2016-01-01

    The tumor microenvironment is characterized by hypoxia, acidosis as well as other metabolic and biochemical alterations. Its role in cancer progression is increasingly appreciated especially on invasive capacity and the formation of metastasis. The effect of acidosis on metastasis formation of two rat carcinoma cell lines was studied in the animal model. In order to analyze the pH dependency of different steps of metastasis formation, invasiveness, cell adhesion and migration of AT-1 prostate cancer cells as well as possible underlying cell signaling pathways were studied in vitro. Acidosis significantly increased the formation of lung metastases of both tumor cell lines in vivo. In vitro, extracellular acidosis neither enhanced invasiveness nor affected cell adhesion to a plastic or to an endothelial layer. However, cellular motility was markedly elevated at pH 6.6 and this effect was sustained even when extracellular pH was switched back to pH 7.4. When analyzing the underlying mechanism, a prominent role of ROS in the induction of migration was observed. Signaling through the MAP kinases ERK1/2 and p38 as well as Src family kinases was not involved. Thus, cancer cells in an acidic microenvironment can acquire enhanced motility, which is sustained even if the tumor cells leave their acidic microenvironment e.g. by entering the blood stream. This increase depended on elevated ROS production and may contribute to the augmented formation of metastases of acidosis-primed tumor cells in vivo.

  1. EGFR and HER2 signaling in breast cancer brain metastasis

    Science.gov (United States)

    Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis. PMID:26709660

  2. Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Distant metastasis of primary neoplasms is the main factor that limits the success of antineoplastic therapy. It can be regarded as an early or late event in the neoplastic process, and varies considerably with tumor type. The metastatic potential of a given tumor greatly influences prognosis. Tumor metastasis is not a single neoplastic event, rather, it involves several major steps: invasion of cells from the primary tumor into tissue, and penetration of blood and lymph vessels; release of tumor cell emboli into the circulation; arrest of the emboli in capillary beds of distant organs; invasion of the wall of the arresting vessel, infiltration into adjacent tissue, and multiplication; and growth of vascularized stroma into the new tumor as proliferating tumor cells invade the distant organ. Lodgement and invasion are complex events that are not fully defined. Arrest and lodgement appears to require a thromboembolic event in which the metastatic embolis (1 cell) contacts vascular endothelium and adheres to the wall with thrombis formation following aggregation of platelets and fibrin to the tumor cell(s). Invasion may involve: formation of collagenases by tumor cells; mechanical disruption; chemotactic factors. Metastatic patterns depend on the route of metastasis, tumor type, and target organ (favored soil). In general, carcinomas metastasize via lymphatics and sarcomas via hematogenous routes. Others, melanoma, mast cell tumors, etc., show mixed patterns. This knowledge is important when one is attempting to prognostically stage a tumor, especially when thoracic radiographs are negative. The question of enlarged regional lymph nodes will be discussed in lecture relative to specific tumor types. 4 refs., 1 tab.

  3. Challenging the current paradigm of melanoma progression: brain metastasis as isolated first visceral site

    Science.gov (United States)

    Ma, Michelle W.; Qian, Meng; Lackaye, Daniel J.; Berman, Russell S.; Shapiro, Richard L.; Pavlick, Anna C.; Golfinos, John G.; Parker, Erik C.; Darvishian, Farbod; Hernando, Eva; Shao, Yongzhao; Osman, Iman

    2012-01-01

    Melanoma brain metastasis that develops as the isolated first visceral site challenges the current paradigm of tumor progression in which brain metastasis is regarded as the final stage. Here we test the hypothesis that melanoma patients who develop brain metastasis as the isolated first visceral site have distinct clinicopathological features at the time of primary melanoma diagnosis. Cutaneous melanoma patients enrolled in 2 prospectively collected databases were studied (Cohort 1: 1972–1982, Cohort 2: 2002–2009). Patients who developed brain metastasis as isolated first visceral site were compared with (1) all other patients, (2) patients who developed visceral metastasis: extracranial only or extracranial and brain, and (3) patients who progressed to other isolated visceral sites first. Two hundred seven of 2280 (9.1%) patients developed brain metastasis (median follow–up, 5.2 y). Seventy–four of 207 (35.7%) brain metastasis patients progressed to brain metastasis as the isolated first visceral site. These patients presented with primaries that were thinner and had no mitosis compared with all other visceral metastasis patients (Fisher's combined P = .02, .05, respectively), and there was a significant difference in American Joint Committee on Cancer stage distribution at initial melanoma diagnosis (combined P = .02). Post–visceral metastasis survival, however, was shorter in patients with brain metastasis as isolated first visceral site than in patients with visceral metastasis: extracranial and brain (combined P = .03). Brain metastasis as isolated first visceral site is a distinct clinicopathological entity. Studies are needed to better understand the biological factors driving this phenotype at the time of primary melanoma diagnosis and to determine its clinical implications. PMID:22561799

  4. Management of lung cancer brain metastasis: An overview

    Directory of Open Access Journals (Sweden)

    Himanshu Srivastava

    2017-01-01

    Full Text Available With the improvements in systemic treatment for lung cancer, distant metastasis to sanctuary sites such as brain has become an increasingly more important issue. The management of these patients consists of supportive care and disease-directed treatment. Combined modality treatment (surgical resection or radiosurgery, followed by whole brain radiotherapy of brain metastases has greatly improved the local control of disease in patients with single lesion, good functional performance status, and controlled extracranial disease as demonstrated in prospective randomized studies. For patients with multiple brain metastases, conventional fractionated whole brain radiotherapy continues to be a standard and efficacious treatment. At present, experience with the use of molecularly targeted tyrosine kinase inhibitors in nonsmall cell lung cancer patients with activating mutations in the epidermal growth factor receptor gene and anaplastic lymphoma kinase gene is growing. However, their effectiveness in patients with brain metastases is not well established. In the arena of targeted therapies, vascular endothelial growth factor pathway inhibitors such as bevacizumab have shown some activity in brain metastases. Further prospective studies are necessary to facilitate selection of patient subpopulation for targeted agents in future studies.

  5. [Robo1 expression in non-small cell lung cancer and its brain metastasis].

    Science.gov (United States)

    Li, Xiao-xia; Jin, Ling; Sun, Zeng-feng; Gu, Feng; Li, Wen-liang; Ma, Yong-jie

    2013-03-01

    To detect the expression of Robo1 in lung cancer tissues, adjacent non-cancerous tissues as well as lung cancer brain metastasis, and explore the correlation of Robo1 expression to lung cancer brain metastasis. SP (streptavidin-peroxidase) staining method was used to examine the Robo1 expression in specimens from 80 cases of NSCLC, 52 cases of adjacent non-cancerous tissues and 72 cases of lung cancer with single brain metastasis (without metastasis in other organs). The Robo1 expression was further examined in 17 self control cases with lung cancer tissues and their brain metastasis tissues. The results were assessed by Kaplan-Meier analysis and log-rank test. The positive expression rate of Robo1 among adjacent non-cancerous tissues, lung cancers tissues and the lung cancer brain metastasis tissues were 1.9% (1/52), 13.8% (11/80) and 40.3% (29/72), respectively, and significant differences were detected among them (P Robo1 in lung cancer tissue and their brain metastasis tissues were 17.6% and 64.7%, respectively, with a significant difference between them (P cancer brain metastasis, the median survival time of cases with positive Robo1 expression was 10 months, significantly shorter than that of cases with negative expression of Robo1 (17 months, P Robo1 was increased in sequence from the lowest in adjacent non-cancerous tissues, intermediate in the lung cancer tissues to highest in the lung cancer brain metastasis tissues. The expression of Robo1 in lung cancer brain metastasis is negatively correlated with the prognosis of patients with lung cancer brain metastasis. Robo1 may promote the genesis and progression of lung cancer and lung cancer brain metastasis as a cancer-promoting oncogene.

  6. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model.

    Science.gov (United States)

    Liu, Hui; Kato, Yukinari; Erzinger, Stephanie A; Kiriakova, Galina M; Qian, Yongzhen; Palmieri, Diane; Steeg, Patricia S; Price, Janet E

    2012-12-07

    Brain metastasis is an increasingly common complication for breast cancer patients; approximately 15- 30% of breast cancer patients develop brain metastasis. However, relatively little is known about how these metastases form, and what phenotypes are characteristic of cells with brain metastasizing potential. In this study, we show that the targeted knockdown of MMP-1 in breast cancer cells with enhanced brain metastatic ability not only reduced primary tumor growth, but also significantly inhibited brain metastasis. Two variants of the MDA-MB-231 human breast cancer cell line selected for enhanced ability to form brain metastases in nude mice (231-BR and 231-BR3 cells) were found to express high levels of matrix metalloproteinase-1 (MMP-1). Short hairpin RNA-mediated stable knockdown of MMP-1 in 231-BR and 231-BR3 cells were established to analyze tumorigenic ability and metastatic ability. Short hairpin RNA-mediated stable knockdown of MMP-1 inhibited the invasive ability of MDA-MB 231 variant cells in vitro, and inhibited breast cancer growth when the cells were injected into the mammary fat pad of nude mice. Reduction of MMP-1 expression significantly attenuated brain metastasis and lung metastasis formation following injection of cells into the left ventricle of the heart and tail vein, respectively. There were significantly fewer proliferating cells in brain metastases of cells with reduced MMP-1 expression. Furthermore, reduced MMP-1 expression was associated with decreased TGFα release and phospho-EGFR expression in 231-BR and BR3 cells. Our results show that elevated expression of MMP-1 can promote the local growth and the formation of brain metastases by breast cancer cells.

  7. Significance of Primary Tumor Location and Histology for Brain Metastasis Development and Peritumoral Brain Edema in Lung Cancer

    DEFF Research Database (Denmark)

    Fabian, Katalin; Gyulai, Marton; Furak, Jozsef

    2016-01-01

    of peritumoral brain edema (p development of brain metastasis was shorter in central than in peripheral lung cancer (5.3 vs. 9.0 months, p = 0.035). Early brain...... metastasis was characteristic for adenocarcinomas. A total of 135 patients had brain only metastases (N0 disease) characterized by peripheral lung cancer predominance (p development of brain metastasis (9.2 vs. 4.4 months, p ... in patients with N1-3 diseases (p development and radiographic features of brain metastases. Our results might be helpful in selecting patients who might benefit from prophylactic cranial irradiation. (C) 2016 S...

  8. Intraparenchymal Hemorrhage due to Brain Metastasis of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Rafael Sartori Balbinot

    2017-09-01

    Full Text Available Although extrahepatic metastases from hepatocellular carcinoma (HCC are present in only 5–15% of cases, they are certainly factors associated with poor prognosis. The main sites include lung, lymph nodes, bones, and adrenal glands, in descending order. Metastasis in the central nervous system is extremely rare, and the incidences vary from 0.6 to 1.7%. We report a case of a 54-year-old man previously diagnosed with alcohol-induced cirrhosis of the liver and HCC. The patient was admitted presenting progressive left hemiparesis and headache which started 2 days earlier, with no history of cranioencephalic trauma. After admission, cranial computed tomography revealed an intraparenchymal hemorrhage area with surrounding edema in the right frontal lobe. An angioresonance requested showed a large extra-axial mass lesion located in the right frontal region with well-defined contours and predominantly hypointense signal on T2 sequence. At first, the radiological findings suggested meningioma as the first diagnostic hypothesis. However, the patient underwent surgery. The tumor was completely removed, and the morphological and immunohistochemical findings were consistent with metastatic hepatocarcinoma associated with meningioma. In postoperative care, the patient did not recover from the left hemiparesis and manifested Broca’s aphasia. He had a survival time of 24 weeks, presenting acute liver failure as his cause of death. There is a lack of evidence supporting a specific management of patients with brain metastasis from HCC. Furthermore, there are no studies that evaluate different modalities of therapeutics in brain metastasis of HCC due to the rarity of this condition. Therefore, management must be individualized depending on probable prognostic factors in these patients.

  9. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-12-01

    autoradiograph film . After 12 hr incubation, autoradiograph images showed multiple hot spots on the tumor brain, while clean background signal observed on the...Contents …………………………………………………………….……...3 Introduction…………………………………………………………….…………....4 Body …………………………………………………………………………………….4 Key Research...treatment for breast cancer brain metastasis. Body : The Statement of Work in this period had two major tasks: Task 1. To study phosphatidylserine

  10. Clinicopathological factors associated with survival in patients with breast cancer brain metastasis.

    Science.gov (United States)

    Li, Rong; Zhang, Kui; Siegal, Gene P; Wei, Shi

    2017-06-01

    Brain metastasis from breast cancer generally represents a catastrophic event yet demonstrates substantial biological heterogeneity. There have been limited studies solely focusing on the prognosis of patients with such metastasis. In this study, we carried out a comprehensive analysis in 108 consecutive patients with breast cancer brain metastases between 1997 and 2012 to further define clinicopathological factors associated with early onset of brain metastasis and survival outcomes after development of them. We found that lobular carcinoma, higher clinical stages at diagnosis, and lack of coexisting bone metastasis were significantly associated with a worse brain relapse-free survival when compared with brain-only metastasis. High histologic grade, triple-negative breast cancer, and absence of visceral involvement were unfavorable prognostic factors after brain metastasis. Furthermore, high histologic grade, advanced tumor stages, and lack of coexisting bone involvement indicated a worse overall survival. Thus, the previously established prognostic factors in early stage or advanced breast cancers may not entirely apply to patients with brain metastases. Furthermore, the prognostic significance of the clinicopathological factors differed before and after a patient develops brain metastasis. This knowledge might help in establishing an algorithm to further stratify patients with breast cancer into prognostically significant categories for optimal prevention, screening, and treatment of their brain metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Roles of the Cyclooxygenase 2 Matrix Metalloproteinase 1 Pathway in Brain Metastasis of Breast Cancer*

    Science.gov (United States)

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D.; Zhou, Xiaobo; Qasem, Shadi A.; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-01-01

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. PMID:25691572

  12. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer.

    Science.gov (United States)

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D; Zhou, Xiaobo; Qasem, Shadi A; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-04-10

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Brain Metastasis-Initiating Cells: Survival of the Fittest

    Directory of Open Access Journals (Sweden)

    Mohini Singh

    2014-05-01

    Full Text Available Brain metastases (BMs are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs or cancer stem cells (CSCs hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs. These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.

  14. Pathogenesis and Blood-Brain Barrier Heterogeneity of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2005-07-01

    fluorescence microscope . Serendipitous observations indicate that our current concepts about pathogenesis and BBB function of brain metastasis (Fenner and...GFP expression under a fluorescence microscope . Those colonies with robust GFP expression were picked, pooled, and expanded for further experiments...days. In our system, both vasculature and tumor cells were clearly visible under fluorescence microscope . The results suggest that the intravascular

  15. [Robo1 expression in breast cancer and its relationship to brain metastasis].

    Science.gov (United States)

    Wang, Jing; Wang, Le; Liu, Fang-fang; Ma, Yong-jie; Fu, Li; Li, Wen-liang; Gu, Feng

    2011-06-01

    To detect the expression of Robo1 in different breast tumors and its association with the breast cancer brain metastasis. Labelled streptavidin-biotin (LSAB) staining was used to examine the Robo1 expression in specimens from 24 cases of invasive ductal carcinoma (IDC) with brain metastasis, 71 cases of IDC without brain metastasis, 22 cases of ductal carcinoma in situ (DCIS) and 23 cases of fibroadenoma. The expression pattern of Robo1 in DCIS (59.1%) and IDC (45.3%) was significantly lower than that in adenofibroma (87.0%, P Robo1 in IDC with brain metastasis (12.5%) was significantly lower than that in IDC without brain metastasis (56.3%, P Robo1 was much higher in more than 50 year-old-group (57.8%) than that in less than 50 year-old-group (34.0%) of IDC patients. The overall survival time in patients with the Robo1 negative expression was significantly shorter than those with positive expression (P Robo1 expression and the tumor size, lymph node metastasis, pathologic stage, histological grade and clinical stage (P > 0.05). The Robo1 expression correlates negatively with IDC brain metastasis, and correlates positively with the age and prognosis of IDC patients. Robo1 may be applied as a marker in evaluation of the IDC prognosis and brain metastasis.

  16. Surgical Treatment for Non-small Cell Lung Cancer Patients with Synchronous Solitary Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Hao BAI

    2013-12-01

    Full Text Available Background and objective Brain metastases are common in non-small cell lung cancer. Usual treatments include radiotherapy and chemotherapy. However, these methods result in poor patient prognosis. The aim of this study is to assess the effectiveness of surgical resection in the multimodality management of non-small cell lung cancer patients with synchronous solitary brain metastasis. Methods The clinical data of 46 non-small cell lung cancer patients with synchronous solitary brain metastasis were retrospectively reviewed. All patients underwent surgical resection of primary lung tumor, followed by whole brain radiotherapy and chemotherapy. In addition, 13 out of the 46 patients underwent resection of brain metastasis, whereas the remaining 33 patients received stereotactic radiosurgery. Results The median survival time of the enrolled patients was 16.8 months. The 1-, 2-, and 3-year survival rates were 76.1%, 20.9%, and 4.7%, respectively. The median survival times of the patients with brain metastasis resection or stereotactic radiosurgery were 18.3 and 15.8 months, respectively (P=0.091,2. Conclusion Surgical resection of primary lung tumor and brain metastasis may improve prognosis of non-small cell lung cancer patients with synchronous solitary brain metastasis. However, the survival benefit of surgical resection over brain metastasis resection or stereotactic radiosurgery is uncertain.

  17. Gamma knife surgery for brain metastasis from hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Qingsheng Xu

    Full Text Available OBJECTIVES: The authors evaluated the results of Gamma knife surgery (GKS for the treatment of metastatic brain tumors from hepatocellular carcinoma (HCC. METHODS AND RESULTS: The authors conducted a retrospective review of the clinical characteristics and treatment outcomes in 14 patients with metastatic brain tumors from HCC who underwent GKS. Twelve (85.7% patients were male. The mean age of the patients was 53±12 years. There were totally 22 brain metastases in 14 patients and 8 patients (57.1% presented with a single brain lesion. Intracranial hemorrhages occurred in 13 (59.1% of the 22 lesions. The mean KPS score was 81±14 (range 50-100. Eleven (78.6% patients were classified as RTOG RPA Class 2. The mean tumor volume was 8.16±8.15 cm(3 (range 0.59-27.0 cm(3. The mean marginal dose prescribed was 18.7±3.2 Gy (range 10.0-22.0 Gy. The mean number of shots administered was 10±9 (range 1-27. The median overall survival time after GKS was 5.0±0.93 months (95% CI 3.2-6.8. No complications related to the radiosurgical treatment were identified. Multivariate analysis showed that the total volume of brain metastases, the RTOG RPA class and serum AFP level were significantly correlated with patients' survival time. CONCLUSIONS: Although survival was extremely poor in patients with brain metastasis (BM from HCC, GKS was shown to lead to prolongation of the survival time. Accordingly, GKS can be considered as a valuable treatment option for proper patients with HCC BM.

  18. Brain metastasis from urachal carcinoma: the importance of locally aggressive treatment

    Directory of Open Access Journals (Sweden)

    Normand Blais

    2012-01-01

    Full Text Available We present the case of a 52 years old woman who developed multiple brain metastasis after cystectomy with anterior exenteration and chemotherapy. She received whole-brain radiotherapy with 20 gray in 5 sessions. On magnetic resonance imaging 8 weeks after radiotherapy she showed a regression of some lesions while others responded only partially. This case-report and a review of the literature show the importance of aggressive local treatment in patients with brain metastasis from urachal carcinoma.

  19. A Bayesian network meta-analysis of whole brain radiotherapy and stereotactic radiotherapy for brain metastasis.

    Science.gov (United States)

    Yuan, Xi; Liu, Wen-Jie; Li, Bing; Shen, Ze-Tian; Shen, Jun-Shu; Zhu, Xi-Xu

    2017-08-01

    This study was conducted to compare the effects of whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRS) in treatment of brain metastasis.A systematical retrieval in PubMed and Embase databases was performed for relative literatures on the effects of WBRT and SRS in treatment of brain metastasis. A Bayesian network meta-analysis was performed by using the ADDIS software. The effect sizes included odds ratio (OR) and 95% confidence interval (CI). A random effects model was used for the pooled analysis for all the outcome measures, including 1-year distant control rate, 1-year local control rate, 1-year survival rate, and complication. The consistency was tested by using node-splitting analysis and inconsistency standard deviation. The convergence was estimated according to the Brooks-Gelman-Rubin method.A total of 12 literatures were included in this meta-analysis. WBRT + SRS showed higher 1-year distant control rate than SRS. WBRT + SRS was better for the 1-year local control rate than WBRT. SRS and WBRT + SRS had higher 1-year survival rate than the WBRT. In addition, there was no difference in complication among the three therapies.Comprehensively, WBRT + SRS might be the choice of treatment for brain metastasis.

  20. Capturing Changes in the Brain Microenvironment during Initial Steps of Breast Cancer Brain Metastasis

    Science.gov (United States)

    Lorger, Mihaela; Felding-Habermann, Brunhilde

    2010-01-01

    Brain metastases are difficult to treat and mostly develop late during progressive metastatic disease. Patients at risk would benefit from the development of prevention and improved treatments. This requires knowledge of the initial events that lead to brain metastasis. The present study reveals cellular events during the initiation of brain metastasis by breast cancer cells and documents the earliest host responses to incoming cancer cells after carotid artery injection in immunodeficient and immunocompetent mouse models. Our findings capture and characterize heterogeneous astrocytic and microglial reactions to the arrest and extravasation of cancer cells in the brain, showing immediate and drastic changes in the brain microenvironment on arrival of individual cancer cells. We identified reactive astrocytes as the most active host cell population that immediately localizes to individual invading tumor cells and continuously associates with growing metastatic lesions. Up-regulation of matrix metalloproteinase-9 associated with astrocyte activation in the immediate vicinity of extravasating cancer cells might support their progression. Early involvement of different host cell types indicates environmental clues that might codetermine whether a single cancer cell progresses to macrometastasis or remains dormant. Thus, information on the initial interplay between brain homing tumor cells and reactive host cells may help develop strategies for prevention and treatment of symptomatic breast cancer brain metastases. PMID:20382702

  1. αB-crystallin: a Novel Regulator of Breast Cancer Metastasis to the Brain

    Science.gov (United States)

    Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M.; Ahmad, Abraham Al; Adamo, Barbara; Miller, C. Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V.; Anders, Carey K.; Cryns, Vincent L.

    2013-01-01

    Purpose Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBC. Experimental Design αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among breast cancer patients with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMECs) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte co-culture blood-brain barrier (BBB) model were examined. Additionally, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. Results In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among TNBC patients. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, while silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs at least in part through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, while silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. Conclusion αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease. PMID:24132917

  2. Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis

    Science.gov (United States)

    Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan

    2014-01-01

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  3. Identifying risk factors for brain metastasis in breast cancer patients: Implication for a vigorous surveillance program

    Directory of Open Access Journals (Sweden)

    Lorraine Chow

    2015-10-01

    Conclusion: Chinese breast cancer patients with brain metastasis were more likely to have high-grade tumors and negative estrogen receptor status. A more vigorous surveillance program for the central nervous system should be considered for this group of patients.

  4. Prognostic factors for cases with no extracranial metastasis in whom brain metastasis is detected after resection of non-small cell lung cancer.

    Science.gov (United States)

    Bae, Mi Kyung; Yu, Woo Sik; Byun, Go Eun; Lee, Chang Young; Lee, Jin Gu; Kim, Dae Joon; Chung, Kyung Young

    2015-05-01

    This study aimed to determine prognostic factors associated with postrecurrence survival in cases with postoperative brain metastasis but with no extracranial metastasis in non-small cell lung cancer (NSCLC). Between 1992 and 2012, a total of 2832 patients underwent surgical resection for NSCLC. Among those, 86 patients had postoperative brain metastasis as the initial recurrence. Those patients were retrospectively reviewed. The median follow-up time after the initial lung resection was 24.0 months (range, 2.0-126.0 months). The median overall survival after initial lung cancer resection was 25.0 months and the median overall postrecurrence survival was 11 months. An initial lesion of adenocarcinoma (hazard ratio, 0.548; 95% confidence interval, 0.318 to 0.946; p=0.031), non-pneumonectomy, and a disease-free interval longer than 10.0 months (hazard ratio, 0.565; 95% confidence interval, 0.321-0.995; p=0.048) from the initial lung resection to the diagnosis of brain metastasis positively related to a good postrecurrence survival. Solitary brain metastasis and a size of less than 3 cm for the largest brain lesion were also positive factors for postrecurrence survival. Systemic chemotherapy for brain metastasis (hazard ratio, 0.356; 95% confidence interval, 0.189-0.670; p=0.001) and local treatment of surgery and/or stereotactic radiosurgery (SRS) for brain lesions (hazard ratio, 0.321; 95% confidence interval, 0.138-0.747; p=0.008) were positive factors for better postrecurrence survival. In patients with brain metastasis after resection for NSCLC with no extracranial metastasis, adenocarcinoma histologic type, longer disease-free interval, systemic chemotherapy for brain metastasis and local treatment of surgery and/or SRS for brain metastasis are independent positive prognostic factors for postrecurrence survival. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Clinicopathological characteristics at primary melanoma diagnosis as risk factors for brain metastasis

    Science.gov (United States)

    Qian, Meng; Ma, Michelle W.; Fleming, Nathaniel H.; Lackaye, Daniel J.; Hernando, Eva; Osman, Iman; Shao, Yongzhao

    2015-01-01

    Objective In order to better identify melanoma patients who are, at the time of primary melanoma diagnosis, at high risk of developing brain metastases, primary melanoma characteristics were examined as risk factors for brain metastasis development. Methods In a study of two patient cohorts, clinicopathological characteristics prospectively collected at primary cutaneous melanoma diagnosis for patients with/without brain metastasis were assessed in univariate and multivariate analyses using data from two prospectively-collected databases: Melanoma Cooperative Group (MCG) (1972–1982), and Interdisciplinary Melanoma Cooperative Group (IMCG) (2002–2009). Candidate risk factors were evaluated in association with time to brain metastasis via either the log-rank test or Cox proportional hazards regression analysis with/without considering competing risks. Results Out of 2341 total patients included in the study, 222 (9.5%) developed brain metastases (median follow-up: 98 months). The median time to brain metastases was 30.5 months, and the median survival time after brain metastases was 4 months. Increased hazard ratios (HR) for brain metastasis were found among thicker (logarithmic value in mm) (MCG – HR=1.97, Pmelanomas based on multivariate Cox regression analysis assuming the presence of competing risks. Conclusions Primary cutaneous melanoma thickness, ulceration, and stage were identified and validated as risk factors associated with time to melanoma brain metastasis. PMID:24165034

  6. Identifying risk factors for brain metastasis in breast cancer patients: Implication for a vigorous surveillance program.

    Science.gov (United States)

    Chow, Lorraine; Suen, Dacita; Ma, Kwok Kuen; Kwong, Ava

    2015-10-01

    Brain metastasis occurs in 10-15% of metastatic breast cancer patients and is associated with poor prognosis. This study aims to identify tumor characteristics of primary breast cancer, which are related to brain metastases in Hong Kong Chinese patients. A retrospective study of patients with invasive breast cancer receiving treatment in a university hospital from January 2001 to December 2008 was performed. The clinicopathological factors of patients with brain metastases were analyzed and compared with those who had no brain metastasis. Risk factors for brain metastasis were identified by univariate analysis first and then by multivariate analysis. A total of 912 patients with invasive breast cancer were treated during the study period. Of these, 30 patients were found to have distant metastases to brain. Patients with brain metastases had more breast tumors of higher histological grade (Grade III, 78.9% vs. 30.2%; p = 0.001). Their tumors also had a significantly higher rate of negative estrogen receptors (78.9% vs. 30.2%, p = 0.001). On multivariate analysis, only high tumor grading was found to be predictive of developing brain metastasis. Chinese breast cancer patients with brain metastasis were more likely to have high-grade tumors and negative estrogen receptor status. A more vigorous surveillance program for the central nervous system should be considered for this group of patients. Copyright © 2015. Published by Elsevier Taiwan.

  7. Effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Man-Hsin Hung

    Full Text Available BACKGROUND: Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. PATIENTS AND METHODS: We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. RESULTS: Of the 2248 eligible patients, 164 (7.3% developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507. Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. CONCLUSIONS: Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.

  8. Effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients.

    Science.gov (United States)

    Hung, Man-Hsin; Liu, Chun-Yu; Shiau, Cheng-Ying; Hsu, Chin-Yi; Tsai, Yi-Fang; Wang, Yu-Ling; Tai, Ling-Chen; King, Kuang-Liang; Chao, Ta-Chung; Chiu, Jen-Hwey; Su, Cheng-Hsi; Lo, Su-Shun; Tzeng, Cheng-Hwai; Shyr, Yi-Ming; Tseng, Ling-Ming

    2014-01-01

    Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. Of the 2248 eligible patients, 164 (7.3%) developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507). Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.

  9. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options.

    Science.gov (United States)

    Yousefi, Meysam; Bahrami, Tayyeb; Salmaninejad, Arash; Nosrati, Rahim; Ghaffari, Parisa; Ghaffari, Seyed H

    2017-10-01

    Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.

  10. In vivo modeling and molecular characterization: a path towards targeted therapy of melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Avital eGaziel-Sovran

    2013-05-01

    Full Text Available Brain metastasis from melanoma remains mostly incurable and the main cause of death from the disease. Early stage clinical trials and case studies show some promise for targeted therapies in the treatment of melanoma brain metastasis. However, the progression-free survival for currently available therapies, although significantly improved, is still very short. The development of new potent agents to eradicate melanoma brain metastasis relies on the elucidation of the molecular mechanisms that drive melanoma cells to reach and colonize the brain. The discovery of such mechanisms depends heavily on pre-clinical models that enable the testing of candidate factors and therapeutic agents in vivo. In this review we summarize the effects of available targeted therapies on melanoma brain metastasis in the clinic. We provide an overview of existing pre-clinical models to study the disease and discuss specific molecules and mechanisms reported to modulate different aspects of melanoma brain metastasis and finally, by integrating both clinical and basic data, we summarize both opportunities and challenges currently presented to researchers in the field.

  11. Targeting Neuronal-like Metabolism of Metastatic Tumor Cells as a Novel Therapy for Breast Cancer Brain Metastasis

    Science.gov (United States)

    2016-03-01

    to reconstruct the brain metastasis landscape in 3D, but also provides new, exceptionally accurate perspectives on phenotypic heterogeneity of... Heterogeneous Metastasis Landscapes ”. This award is acknowledged. 7. Participants & Other Collaborating Organizations…………… What individuals have worked...brain astrocytes, tumor cell, proliferating cell (Edu) and blood vessel. We have conducted 3D reconstruction of brain metastasis landscape . We will

  12. Brain metastasis as initial presentation of papillary adenocarcinoma of the lung: case report

    Energy Technology Data Exchange (ETDEWEB)

    Bispo, Irving Gabriel Araujo; Nascimento, Diego Teixeira; Ferreira, Karina Oliveira; Fakhouri, Ricardo; Godinho, Atilano Salvador; Ferrao, Thiago de Oliveira, E-mail: irvingbispo@yahoo.com.br [Universidade Federal de Sergipe (HU-UFS), Aracaju, SE (Brazil). Hospital Universitario

    2013-09-15

    The authors describe the case of a 33-year-old patient with history of seizures alone without any previous symptom, being diagnosed with brain metastases from primary papillary adenocarcinoma of the lung. Emphasis is given to the diagnostic investigation for brain metastasis and prognostic evaluation of papillary adenocarcinoma of the lung, and a brief literature review on such diseases is performed. (author)

  13. TREATMENT OF SINGLE BRAIN METASTASIS - RADIOTHERAPY ALONE OR COMBINED WITH NEUROSURGERY

    NARCIS (Netherlands)

    VECHT, CJ; HAAXMAREICHE, H; NOORDIJK, EM; PADBERG, GW; VOORMOLEN, JHC; HOEKSTRA, FH; TANS, JTJ; LAMBOOIJ, N; METSAARS, JAL; WATTENDORFF, AR; BRAND, R; HERMANS, J

    Most patients treated for single or multiple brain metastases die from progression of extracranial tumor activity. This makes it uncertain whether the combination of neurosurgery and radiotherapy for treatment of single brain metastasis will lead to better results than less invasive treatment with

  14. Brain metastasis in lung cancer: Building a molecular and systems-level understanding to improve outcomes.

    Science.gov (United States)

    Ebben, Johnathan D; You, Ming

    2016-09-01

    Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances. Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain

  15. BRAF-V600 mutational status affects recurrence patterns of melanoma brain metastasis.

    Science.gov (United States)

    Maxwell, Russell; Garzon-Muvdi, Tomas; Lipson, Evan J; Sharfman, William H; Bettegowda, Chetan; Redmond, Kristin J; Kleinberg, Lawrence R; Ye, Xiaobu; Lim, Michael

    2017-06-15

    Brain metastasis is common and carries a poor prognosis in melanoma. A single institution, retrospective cohort of 225 melanoma patients was analyzed to determine if BRAF-V600 mutational status was associated with brain metastasis. Eighty-three of the 225 patients (37%) had BRAF-V600 mutations. At initial diagnosis, BRAF-V600 mutations were associated with younger age (p ≤ 0.001), higher proportion of females (p = 0.0037), higher AJCC stage (p = 0.030), regional lymph node involvement (p = 0.047), and family history of cancer (p = 0.044). Compared to BRAF-WT, BRAF-V600 patients had an increased risk of brain metastasis in multivariate analysis (OR = 2.24; 95% CL = 1.10-4.58; p = 0.027). However, BRAF-V600 patients treated with a selective BRAF inhibitor (BRAFi) had a similar risk of brain metastasis compared to BRAF-WT patients (OR = 1.00; 95% CL = 0.37-2.65; p = 0.98). Moreover, treatment with BRAFi significantly prolonged the time from initial diagnosis to brain metastasis diagnosis (HR = 0.30; 95% CL = 0.11-0.79; p = 0.015). Compared to other tissues, the brain was the most frequent site of metastasis in BRAF-V600 patients without BRAFi (42% ± 7%). The frequency of brain metastasis was lower in BRAF-WT and BRAF-V600 patients with BRAFi (25% ± 4% and 25% ± 8%, respectively). The proportion of patients with brain metastasis as the only site was 40%, 60%, and 0% in the BRAF-WT, BRAF-V600 without BRAFi, and BRAF-V600 with BRAFi groups, respectively. This study provides evidence on the clinical importance of BRAF-V600 mutations and BRAF inhibition in the progression to melanoma brain metastasis. © 2016 UICC.

  16. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    Science.gov (United States)

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The factors that have an impact on the development of brain metastasis in the patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Adem Dayan

    2012-01-01

    Conclusions: As the prognostic and predictive factors showing the development of brain metastasis in breast cancer patients may be identified, follow-up also including the brain is important in order to take preventive measures.

  18. Brain Metastasis from Gastrointestinal Stromal Tumor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hideaki Naoe

    2011-10-01

    Full Text Available Metastasis of gastrointestinal stromal tumor (GIST into the central nervous system is extremely rare. We report a patient with synchronous GIST and brain metastasis. At disease onset, there was left hemiplegia and ptosis of the right eyelids. Resection cytology of the brain tumor was reported as metastasis of GIST. After positron emission tomography examination, another tumor in the small bowel was discovered, which suggested a small bowel GIST associated with intracranial metastasis. Immunohistochemical analysis of the intestinal tumor specimen obtained by double balloon endoscopy showed a pattern similar to the brain tumor, with the tumors subsequently identified as intracranial metastases of jejunal GIST. After surgical resection of one brain tumor, the patient underwent whole brain radiation therapy followed by treatment with imatinib mesylate (Gleevec; Novartis Pharma, Basel, Switzerland. Mutational analysis of the original intestinal tumor revealed there were no gene alterations in KIT or PDGFRα. Since the results indicated the treatment had no apparent effect on either of the tumors, and because ileus developed due to an intestinal primary tumor, the patient underwent surgical resection of the intestinal lesion. However, the patient’s condition gradually worsen and she subsequently died 4 months after the initial treatment.

  19. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    Science.gov (United States)

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Brain metastasis from uterine malignancies: treatment modalities and prognostic factors

    Directory of Open Access Journals (Sweden)

    Naoual Benhmidou

    2017-01-01

    Full Text Available Isolated brain metastases from gynecologic malignancies are unusual. Advances in therapeutic modalities including surgery, whole brain radiotherapy stereotactic radiosurgery and chemotherapy improved survival and quality of life in this population. Therapeutic decision is based on patients’ specific prognostic factors. We report three cases of isolated brain metastases from gynecologic cancers and discuss treatment modalities in the light of a literature review.

  1. A nomogram to predict brain metastasis as the first relapse in curatively resected non-small cell lung cancer patients.

    Science.gov (United States)

    Won, Young-Woong; Joo, Jungnam; Yun, Tak; Lee, Geon-Kook; Han, Ji-Youn; Kim, Heung Tae; Lee, Jin Soo; Kim, Moon Soo; Lee, Jong Mog; Lee, Hyun-Sung; Zo, Jae Ill; Kim, Sohee

    2015-05-01

    Development of brain metastasis results in a significant reduction in overall survival. However, there is no an effective tool to predict brain metastasis in non-small cell lung cancer (NSCLC) patients. We conducted this study to develop a feasible nomogram that can predict metastasis to the brain as the first relapse site in patients with curatively resected NSCLC. A retrospective review of NSCLC patients who had received curative surgery at National Cancer Center (Goyang, South Korea) between 2001 and 2008 was performed. We chose metastasis to the brain as the first relapse site after curative surgery as the primary endpoint of the study. A nomogram was modeled using logistic regression. Among 1218 patients, brain metastasis as the first relapse developed in 87 patients (7.14%) during the median follow-up of 43.6 months. Occurrence rates of brain metastasis were higher in patients with adenocarcinoma or those with a high pT and pN stage. Younger age appeared to be associated with brain metastasis, but this result was not statistically significant. The final prediction model included histology, smoking status, pT stage, and the interaction between adenocarcinoma and pN stage. The model showed fairly good discriminatory ability with a C-statistic of 69.3% and 69.8% for predicting brain metastasis within 2 years and 5 years, respectively. Internal validation using 2000 bootstrap samples resulted in C-statistics of 67.0% and 67.4% which still indicated good discriminatory performances. The nomogram presented here provides the individual risk estimate of developing metastasis to the brain as the first relapse site in patients with NSCLC who have undergone curative surgery. Surveillance programs or preventive treatment strategies for brain metastasis could be established based on this nomogram. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Brain metastasis. Prognostic value of the number of involved extracranial organs

    Energy Technology Data Exchange (ETDEWEB)

    Rades, D. [Luebeck Univ. (Germany). Dept. of Radiation Oncology; Gerdan, L. [Luebeck Univ. (Germany). Dept. of Radiation Oncology; Luebeck Univ. (Germany). Section of Nuclear Medicine; Segedin, B. [Institute of Oncology, Ljubljana (Slovenia). Dept. of Radiation Oncology; Nagy, V. [Oncology Institute Ion Ciricuta, Cluj-Napoca (Romania). Dept. of Radiotherapy; Khoa, M.T. [Hanoi Medical Univ., Hanoi (Viet Nam). Dept. of Nuclear Medicine; Bach Mai Hospital, Hanoi (Viet Nam). Nuclear Medicine and Oncology Center; Trang, N.T. [Bach Mai Hospital, Hanoi (Viet Nam). Nuclear Medicine and Oncology Center; Schild, S.E. [Mayo Clinic, Scottsdale, AZ (United States). Dept. of Radiation Oncology

    2013-12-15

    Background and purpose: This study was performed to evaluate the prognostic role for survival of the number and the type of involved extracranial organs in patients with brain metastasis. Material and methods: The data of 1146 patients who received whole-brain radiotherapy (WBRT) alone for brain metastasis have been retrospectively analyzed. In addition to the number of involved extra cranial organs, seven potential prognostic factors were investigated including WBRT regimen, age, gender, Karnofsky Performance Score (KPS), primary tumor type, number of brain metastases, and the interval from cancer diagnosis to WBRT. Additionally, subgroup analyses were performed for patients with involvement of one (lung vs. bone vs. liver vs. other metastasis) and two (lung + lymph nodes vs. lung + bone vs. lung + liver vs. liver + bone vs. other combinations) extracranial organs. Results: The 6-month survival rates for the involvement of 0, 1, 2, 3, and {>=} 4 extracranial organs were 51, 30, 16, 13, and 10 %, respectively (p < 0.001). On multivariate analysis, the number of involved extracranial organs maintained significance (risk ratio 1.26; 95 % confidence interval 1.18-1.34; p < 0.001). According to the multivariate analysis, age (p < 0.001), gender (p = 0.002), and KPS (p < 0.001) were also independent prognostic factors for survival. In the subgroup analyses of patients with involvement of one and two extracranial organs, survival was not significantly different based on the extracranial organ involved. Conclusion: The number of involved extracranial organs proved to be an independent prognostic factor in patients with brain metastasis, regardless of the organs involved. The number of involved extracranial organs should be considered in future trials designed for patients with brain metastasis. (orig.)

  3. A case of leukoencephalopathy caused by radiation and chemotherapy for brain metastasis of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shigeru; Sonoo, Hiroshi; Nomura, Tsunehisa; Ohkubo, Sumiko; Yamamoto, Yutaka; Tanaka, Katsuhiro; Kurebayashi, Junichi; Hiratsuka, Junichi [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2002-08-01

    A case of treatment-related leukoencephalopathy is presented. A patient with breast cancer metastasis to the brain, liver, bone and distant lymph nodes was treated with whole brain radiation and docetaxcel. Eleven months after radiation, magnetic resonance imaging showed diffuse leukoencephalopathy. Twenty-two months after radiation, the patient had gait disturbance, parkinsonism, dementia and urinary incontinence. From this experience, stereotactic radiosurgery such as cyber knife and gamma knife therapy, representing a new modality for delivering intense focal radiation, should be come preferred techniques for treating patients with brain metastases, to avoid the potential cognitive side effects of fractionated whole-brain radiotherapy. (author)

  4. Functional role of endothelial adhesion molecules in the early stages of brain metastasis.

    Science.gov (United States)

    Soto, Manuel Sarmiento; Serres, Sébastien; Anthony, Daniel C; Sibson, Nicola R

    2014-04-01

    Cellular adhesion molecules (CAMs), which are normally associated with leukocyte trafficking, have also been shown to play an essential role in tumor metastasis to non-CNS sites. However, the role played by CAMs in brain metastasis is largely unexplored. It is known that leukocyte recruitment to the brain is very atypical and that mechanisms of disease in peripheral tissues cannot be extrapolated to the brain. Here, we have established the spatiotemporal expression of 12 key CAMs in the initial phases of tumor seeding in 2 different models of brain metastasis. BALB/c or SCID mice were injected intracardially (10(5) cells/100 μL phosphate-buffered saline with either 4T1-GFP or MDA231BR-GFP cells, respectively (n = 4-6/group), and expression of the CAMs was determined by immunohistochemistry and immunofluorescence colocalisation. Endothelial expression of E-selectin, VCAM-1, ALCAM, ICAM-1, VLA-4, and β4 integrin was markedly increased early in tumor seeding. At the same time, the natural ligands to these adhesion molecules were highly expressed on the metastatic tumor cells both in vitro and in vivo. Two of these ligands showed particularly high tumor cell expression (ALCAM and VLA-4), and consequently their functional role in tumor seeding was determined. Antibody neutralization of either ALCAM or VLA-4 significantly reduced tumor seeding within the brain (>60% decrease in tumor number/mm(2) brain; P seeding in the brain. Moreover, this work identifies a specific subset of ligand-receptor interactions that may yield new therapeutic and diagnostic targets for brain metastasis.

  5. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    Directory of Open Access Journals (Sweden)

    Couraud Pierre-Olivier

    2009-07-01

    Full Text Available Abstract Background The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BKCa channels in breast cancer metastasis and invasion. Methods We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BKCa channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A, non-metastatic breast cancer (MCF-7, non-brain metastatic breast cancer cells (MDA-MB-231, and brain-specific metastatic breast cancer cells (MDA-MB-361 to study whether BKCa channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX. Results The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BKCa channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Conclusion Determining the relative abundance of BKCa channel expression in breast

  6. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain.

    Science.gov (United States)

    Khaitan, Divya; Sankpal, Umesh T; Weksler, Babette; Meister, Edward A; Romero, Ignacio A; Couraud, Pierre-Olivier; Ningaraj, Nagendra S

    2009-07-29

    The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa) channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming alpha-subunit of BKCa channels in breast cancer metastasis and invasion. We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BKCa channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A), non-metastatic breast cancer (MCF-7), non-brain metastatic breast cancer cells (MDA-MB-231), and brain-specific metastatic breast cancer cells (MDA-MB-361) to study whether BKCa channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX). The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BKCa channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Determining the relative abundance of BKCa channel expression in breast cancer metastatic to brain and the mechanism of its action in

  7. Global Analysis of miRNA-mRNA Interaction Network in Breast Cancer with Brain Metastasis.

    Science.gov (United States)

    Li, Zhixin; Peng, Zhiqiang; Gu, Siyu; Zheng, Junfang; Feng, Duiping; Qin, Qiong; He, Junqi

    2017-08-01

    MicroRNAs (miRNAs) have been linked to a number of cancer types including breast cancer. The rate of brain metastases is 10-30% in patients with advanced breast cancer which is associated with poor prognosis. The potential application of miRNAs in the diagnostics and therapeutics of breast cancer with brain metastasis is an area of intense interest. In an initial effort to systematically address the differential expression of miRNAs and mRNAs in primary breast cancer which may provide clues for early detection of brain metastasis, we analyzed the consequent changes in global patterns of gene expression in Gene Expression Omnibus (GEO) data set obtained by microarray from patients with in situ carcinoma and patients with brain metastasis. The miRNA-pathway regulatory network and miRNA-mRNA regulatory network were investigated in breast cancer specimens from patients with brain metastasis to screen for significantly dysregulated miRNAs followed by prediction of their target genes and pathways by Gene Ontology (GO) analysis. Functional coordination of the changes of gene expression can be modulated by individual miRNAs. Two miRNAs, hsa-miR-17-5p and hsa-miR-16-5p, were identified as having the highest associations with targeted mRNAs [such as B-cell lymphoma 2 (BCL2), small body size/mothers against decapentaplegic 3 (SMAD3) and suppressor of cytokine signaling 1 (SOCS1)] and pathways associated with epithelial-mesenchymal transitions and other processes linked with cancer metastasis (including cell cycle, adherence junctions and extracellular matrix-receptor interaction). mRNAs for two genes [HECT, UBA and WWE domain containing 1 (HUWE1) and BCL2] were found to have the highest associations with miRNAs, which were down-regulated in brain metastasis specimens of breast cancer. The change of 11 selected miRNAs was verified in The Cancer Genome Atlas (TCGA) breast cancer dataset. Up-regulation of hsa-miR-17-5p was detected in triple-negative breast cancer tissues in

  8. Analysis of tumor- and stroma-supplied proteolytic networks reveals a brain metastasis-promoting role for cathepsin S

    Science.gov (United States)

    Sevenich, Lisa; Bowman, Robert L.; Mason, Steven D.; Quail, Daniela F.; Rapaport, Franck; Elie, Benelita T.; Brogi, Edi; Brastianos, Priscilla K.; Hahn, William C.; Holsinger, Leslie J.; Massagué, Joan; Leslie, Christina S.; Joyce, Johanna A.

    2014-01-01

    Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumor microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analyzed tumor-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumor cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration via proteolytic processing of the junctional adhesion molecule (JAM)-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease. PMID:25086747

  9. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.

    Science.gov (United States)

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi R; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M; Fidler, Isaiah J; Cantley, Lewis C; Locasale, Jason W; Weihua, Zhang

    2015-02-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. ©2014 American Association for Cancer Research.

  10. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer

    Science.gov (United States)

    Yin, Mingzhu; Li, Xia; Tan, Shu; Zhou, Huanjiao Jenny; Ji, Weidong; Bellone, Stefania; Xu, Xiaocao; Zhang, Haifeng; Santin, Alessandro D.; Lou, Ge

    2016-01-01

    Tumor-associated macrophages (TAMs) can influence ovarian cancer growth, migration, and metastasis, but the detailed mechanisms underlying ovarian cancer metastasis remain unclear. Here, we have shown a strong correlation between TAM-associated spheroids and the clinical pathology of ovarian cancer. Further, we have determined that TAMs promote spheroid formation and tumor growth at early stages of transcoelomic metastasis in an established mouse model for epithelial ovarian cancer. M2 macrophage–like TAMs were localized in the center of spheroids and secreted EGF, which upregulated αMβ2 integrin on TAMs and ICAM-1 on tumor cells to promote association between tumor cells and TAM. Moreover, EGF secreted by TAMs activated EGFR on tumor cells, which in turn upregulated VEGF/VEGFR signaling in surrounding tumor cells to support tumor cell proliferation and migration. Pharmacological blockade of EGFR or antibody neutralization of ICAM-1 in TAMs blunted spheroid formation and ovarian cancer progression in mouse models. These findings suggest that EGF secreted from TAMs plays a critical role in promoting early transcoelomic metastasis of ovarian cancer. As transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our findings uncover a mechanism for TAM-mediated spheroid formation and provide a potential target for the treatment of ovarian cancer and other transcoelomic metastatic cancers. PMID:27721235

  11. Prolonged survival after diagnosis of brain metastasis from breast cancer: contributing factors and treatment implications.

    Science.gov (United States)

    Honda, Yayoi; Aruga, Tomoyuki; Yamashita, Toshinari; Miyamoto, Hiromi; Horiguchi, Kazumi; Kitagawa, Dai; Idera, Nami; Goto, Risa; Kuroi, Katsumasa

    2015-08-01

    The prognosis of breast cancer-derived brain metastasis is poor, but new drugs and recent therapeutic strategies have helped extend survival in patients. Prediction of therapeutic responses and outcomes is not yet possible, however. In a retrospective study, we examined prognostic factors in patients with breast cancer-derived brain metastasis, and we tested the prognostic utility of a breast cancer-specific Graded Prognostic Assessment in these patients. Sixty-three patients diagnosed with brain metastasis from breast cancer treated surgically and adjuvantly were included. We examined clinical variables per primary tumor subtype: ER+/HER2- (luminal), HER2+ (human epidermal growth factor receptor type 2-enriched) or ER-/PR-/HER2- (triple negative). We also categorized patients' breast cancer-specific Graded Prognostic Assessment scores and analyzed post-brain metastasis survival time in relation to these categories. The breast cancers comprised the following subtypes: luminal, n = 18; human epidermal growth factor receptor type 2-enriched, n = 27 and triple-negative, n = 18; median survival per subtype was 11, 37 and 3 months, respectively. Survival of human epidermal growth factor receptor type 2-enriched patients was longer, though not significantly (P = 0.188), than that of luminal patients. Survival of triple-negative patients was significantly short (vs. human epidermal growth factor receptor type 2-enriched patients, P cancer-specific Graded Prognostic Assessment scores reflected disease-free intervals and survival times. Our data indicate that breast cancer-specific Graded Prognostic Assessment-based prediction will be helpful in determining appropriate therapeutic strategies for patients with brain metastasis from breast cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis

    Science.gov (United States)

    Hanniford, Doug; Zhong, Judy; Koetz, Lisa; Gaziel-Sovran, Avital; Lackaye, Daniel J.; Shang, Shulian; Pavlick, Anna; Shapiro, Richard; Berman, Russell; Darvishian, Farbod; Shao, Yongzhao; Osman, Iman; Hernando, Eva

    2015-01-01

    Purpose Brain metastasis is the major cause of mortality among melanoma patients. A molecular prognostic test that can reliably stratify patients at initial melanoma diagnosis by risk of developing brain metastasis may inform the clinical management of these patients. Experimental Design We performed a retrospective, cohort-based study analyzing genome-wide and targeted microRNA expression profiling of primary melanoma tumors of three patient cohorts (n= 92, n= 119, n= 45) with extensive clinical follow up. We used Cox regression analysis to establish a microRNA-based signature that improves the ability of the current clinicopathologic staging system to predict the development of brain metastasis. Results Our analyses identified a 4-microRNA (miR-150–5p, miR-15b-5p, miR-16–5p, and miR-374b-3p) prognostic signature that, in combination with stage, distinguished primary melanomas that metastasized to the brain from non-recurrent and non-brain-metastatic primary tumors (training cohort: C-index=81.4%, validation cohort: C-index=67.4%, independent cohort: C-index=76.9%). Corresponding Kaplan-Meier curves of high- vs. low-risk patients displayed a clear separation in brain-metastasis-free and overall survival (training: pmelanomas metastatic to brain, correlated with presence of CD45+ tumor infiltrating lymphocytes. Conclusions A prognostic assay based on the described miRNA expression signature combined with the currently used staging criteria may improve accuracy of primary melanoma patient prognoses and aid clinical management of patients, including selection for adjuvant treatment or clinical trials of adjuvant therapies. PMID:26089374

  13. Brain metastasis from male breast cancer treated 12 years ago ...

    African Journals Online (AJOL)

    The brain MRI showed a huge right temporal process with a shift of the midline structures (figure). A biopsy was also performed and demonstrated a cerebral relapsed breast primitive with the same disease profile (HR positive and HER2 negative). Brain metastases traditionally occur in 10-16% of metastatic breast cancer ...

  14. Primary malignant melanoma of the vagina with repeated local recurrences and brain metastasis

    Directory of Open Access Journals (Sweden)

    Li-Te Lin

    2011-08-01

    Full Text Available Malignant melanoma of the vagina, a very rare malignancy, has a notoriously aggressive behavior associated with a high risk of local recurrence and distant metastasis. At present, there are various treatment options for this disease but no standard guideline. We describe a case of a 54-year-old woman with a locally advanced melanoma of the vagina, who underwent radical surgery, biochemotherapy with interferon-α-2b, chemotherapy, radiotherapy, and repeat excision of local recurrent lesions and brain metastasis. In conclusion, malignant melanoma of the vagina has a high risk for local recurrence. Repeated local excision followed by biochemotherapy is a tolerable treatment.

  15. Uterine cervical cancer with brain metastasis as the initial site of presentation.

    Science.gov (United States)

    Sato, Yumi; Tanaka, Kei; Kobayashi, Yoichi; Shibuya, Hiromi; Nishigaya, Yoshiko; Momomura, Mai; Matsumoto, Hironori; Iwashita, Mitsutoshi

    2015-07-01

    Brain metastasis from uterine cervical cancer is rare, with an incidence of 0.5%, and usually occurs late in the course of the disease. We report a case of uterine cervical cancer with brain metastasis as the initial site of presentation. A 50-year-old woman with headache, vertigo, amnesia and loss of appetite was admitted for persistent vomiting. Contrast enhanced computed tomography showed a solitary right frontal cerebral lesion with ring enhancement and uterine cervical tumor. She was diagnosed with uterine cervical squamous cell carcinoma with parametrium invasion and no other distant affected organs were detected. The cerebral lesion was surgically removed and pathologically proved to be metastasis of uterine cervical squamous cell carcinoma. The patient underwent concurrent chemoradiotherapy, followed by cerebral radiation therapy, but multiple metastases to the liver and lung developed and the patient died 7 months after diagnosis of brain metastasis. © 2015 The Authors. Journal of Obstetrics and Gynaecology Research © 2015 Japan Society of Obstetrics and Gynecology.

  16. Glioblastoma multiforme versus solitary supratentorial brain metastasis. Differentiation based on morphology and magnetic resonance signal characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Martin H.; Wuestefeld, J.; Schaefer, M.L.; Wiener, E. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Synowitz, M.; Lohkamp, L.N. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Neurochirurgie; Badakshi, H. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Strahlentherapie

    2013-03-15

    Purpose: To evaluate the diagnostic potential of a multi-factor analysis of morphometric parameters and magnetic resonance (MR) signal characteristics of a mass and peritumoral area to distinguish solitary supratentorial metastasis from glioblastoma multiforme (GBM). Materials and Methods: MR examinations of 51 patients with histologically proven GBM and 44 with a single supratentorial metastasis were evaluated. A large variety of morphologic criteria and MR signal characteristics in different sequences were analyzed. The data were subjected to logistic regression to investigate their ability to discriminate between GBM and cerebral metastasis. Receiver-operating characteristic (ROC) analysis was used to select an optimal cut-off point for prediction and to assess the predictive value in terms of sensitivity, specificity, and accuracy of the final model. Results: The logistic regression analysis revealed that the ratio of the maximum diameter of the peritumoral area measured on T2-weighted images (d T2) to the maximum diameter of the enhancing mass area (d T1, post-contrast) is the only useful criterion to distinguish single supratentorial brain metastasis from GBM with a lower ratio favoring GBM (accuracy 68 %, sensitivity 84 % and specificity 45 %). The cut-off point for the ratio d T2/d T1 post-contrast was calculated as 2.35. Conclusion: Measurement of maximum diameters of the peritumoral area in relation to the enhancing mass can be evaluated easily in the clinical routine to discriminate GBM from solitary supratentorial metastasis with an accuracy comparable to that of advanced MRI techniques. (orig.)

  17. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2013-10-01

    antibodies to the endothelial marker, CD31 (Serotec, Raleigh, NC) followed by Cy3-conjugated secondary antibody ( Jackson Immunoresearch Laboratories...in the brain. Cancer Res 67, 4190-4198, doi:67/9/4190 [pii] 10.1158/0008-5472.CAN-06- 3316 (2007). 7 Percy , D. B. et al. In vivo characterization of

  18. A case report of thyroid carcinoma with multiple organ metastasis including brain metastasis effectively treated by surgery and [sup 131]I treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masahito; Yoshida, Satoru; Kubota, Masahiro; Tsuda, Takatoshi; Morita, Kazuo (Sapporo Medical Coll. (Japan))

    1993-12-01

    Reported is a case of a multiple organ metastases that also included a brain metastasis from a thyroid cancer for which surgery, followed by [sup 131]I therapy, proved very effective and enabled the patient to live for over 15 more years. The treatment for a differentiated thyroid cancer has somewhat been established. The outcome of this case, however, is considered extremely rare, in that a bone metastasis that was surgically removed resulted in no paraplegia and [sup 131]I therapy appeared to cause the disappearance of the brain metastasis. The authors report the encouraging news that for 15 years that followed the initial thyroidectomy, the patient's condition remained good. (author).

  19. A pilot study of accelerated irradiation for brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Michinao; Tokuuye, Koichi; Akine, Yasuyuki; Akimoto, Tetsuo; Ogino, Takashi; Tsukiyama, Iwao; Ono, Ryosuke; Egawa, Sunao (National Cancer Center, Tokyo (Japan). Hospital)

    1992-12-01

    Twenty-eight patients with brain metastases received brain radiotherapy with a total dose of 48 Gy, at 2 Gy per fraction, twice a day with a minimum interfractional period of 4 hours, and 5 days per week. This was intended to shorten the treatment period without increasing the morbidity, since most of these patients had a limited survival expectancy. Twenty-six of the 28 patients completed the radiotherapy. Three of the 26 patients experienced nausea and/or vomiting during the treatment. Radiotherapy was interrupted in two patients: one developed hemiplegia, and the other somnolence, both of which resulted from the progressive intracerebral disease. This radiotherapy regimen appears to be comparable to the conventional scheme in alleviation of symptoms. No patient needed interruption of the planned course of treatment because of acute irradiation toxicity. Based on these results, a multi-institutional randomized trial has been initiated to compare the twice-a-day and once-a-day radiotherapy schemes on patients with brain metastases. (author).

  20. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain.

    OpenAIRE

    Khaitan, Divya; Sankpal, Umesh; Weksler, Babette; Meister, Edward; Romero, Ignacio; Couraud, Pierre-Olivier; Ningaraj, Nagendra

    2009-01-01

    Abstract Background The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa) channels are significantly upregulated in breast cancer cells. In this study we investigated the role ...

  1. Resonance Raman Spectroscopy of human brain metastasis of lung cancer analyzed by blind source separation

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-Hui; Pu, Yang; Cheng, Gangge; Yu, Xinguang; Zhou, Lixin; Lin, Dongmei; Zhu, Ke; Alfano, Robert R.

    2017-02-01

    Resonance Raman (RR) spectroscopy offers a novel Optical Biopsy method in cancer discrimination by a means of enhancement in Raman scattering. It is widely acknowledged that the RR spectrum of tissue is a superposition of spectra of various key building block molecules. In this study, the Resonance Raman (RR) spectra of human metastasis of lung cancerous and normal brain tissues excited by a visible selected wavelength at 532 nm are used to explore spectral changes caused by the tumor evolution. The potential application of RR spectra human brain metastasis of lung cancer was investigated by Blind Source Separation such as Principal Component Analysis (PCA). PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components (PCs). The results show significant RR spectra difference between human metastasis of lung cancerous and normal brain tissues analyzed by PCA. To evaluate the efficacy of for cancer detection, a linear discriminant analysis (LDA) classifier is utilized to calculate the sensitivity, and specificity and the receiver operating characteristic (ROC) curves are used to evaluate the performance of this criterion. Excellent sensitivity of 0.97, specificity (close to 1.00) and the Area Under ROC Curve (AUC) of 0.99 values are achieved under best optimal circumstance. This research demonstrates that RR spectroscopy is effective for detecting changes of tissues due to the development of brain metastasis of lung cancer. RR spectroscopy analyzed by blind source separation may have potential to be a new armamentarium.

  2. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer.

    Directory of Open Access Journals (Sweden)

    H Billur Engin

    Full Text Available Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes, by using the "guilt-by-association" principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB. Finally, we mapped mutations to interface structures (real and modeled, in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.

  3. Peritumoral and intratumoral hemorrhage after stereotactic radiosurgery for renal cell carcinoma metastasis to the brain

    Science.gov (United States)

    Ronchini, Nello; Godowicz, Tomasz Tadeusz; Cavazzani, Paolo; Severi, Paolo

    2011-01-01

    Stereotactic Radiosurgery (SRS), provides in a single session, a high dose of radiation to a localized brain tumor volume. Acute adverse reactions after treatment are not uncommon, but are usually transient and generally are well controlled by medication. The authors wish to report this rare complication of intratumoral and peritumoral hemorrhage immediately after LINAC SRS treatment of single temporal lobe metastasis from renal cell carcinoma and discuss plausible causes for this case and its management. A review of the literature on acute intracranial hemorrhage after radiosurgery for metastatic lesions is provided. A 68-year-old man underwent SRS treatment for a single left temporal lobe metastasis. No complications were noticed during frame fixation, treatment itself, or frame removal. Thirty minutes after the end of treatment session the patient acutely became aphasic and right hemiplegic. An urgent CT-scan revealed peritumoral and intratumoral hemorrhage. Patient underwent urgent surgical treatment during which was performed gross total excision of the brain metastasis and total removal of the clot. The patient had a good recovery after surgery and he was discharged with moderate aphasia but able to walk with no other neurological deficits. Stereotactic radiosurgery for metastatic brain tumors should not be considered as a risk-free procedure, especially in cases of neoplasms with high propensity for intratumoral bleeding and, while extremely rare, hemorrhagic complications can occur after treatment. The possibility of acute complications and their consequences have to be discussed with the patient and his or her relatives before radiosurgical treatment. PMID:29296311

  4. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Rhone-Alpes (France); Tessier, A [Centre Hospitalier Universitaire, La Tronche, Rhone-Alpes (France); Vautrin, M; Benkebil, M [DOSIsoft, Cachan, Ile de France (France); Sihanath, R [Centre Hospitalier Universitaire, La Tronche, Rhone- Alpes (France)

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator) were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.

  5. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients.

    Science.gov (United States)

    Qin, Fengxia; Zhang, Huikun; Ma, Li; Liu, Xiaoli; Dai, Kun; Li, Wenliang; Gu, Feng; Fu, Li; Ma, Yongjie

    2015-09-24

    Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast cancer brain metastasis for the first time. Our results demonstrated that (1) Invasive ductal carcinoma patients with low expression of Slit2 or Robo1 exhibited worse prognosis and brain-specific metastasis, but not liver, bone or lung. (2) Lower expression of Slit2 and Robo1 were observed in patients with brain metastasis, especially in their brain metastasis tumors, compared with patients without brain metastasis. (3) The interval from diagnosis of breast cancer to brain metastasis and brain metastasis to death were both much shorter in patients with low expression of Slit2 or Robo1 compared with the high expression group. Overall, our findings indicated that Slit2/Robo1 axis possibly be regarded as a significant clinical parameter for predicting brain metastasis in breast cancer patients.

  6. RAS mutations affect pattern of metastatic spread and increase propensity for brain metastasis in colorectal cancer.

    Science.gov (United States)

    Yaeger, Rona; Cowell, Elizabeth; Chou, Joanne F; Gewirtz, Alexandra N; Borsu, Laetitia; Vakiani, Efsevia; Solit, David B; Rosen, Neal; Capanu, Marinela; Ladanyi, Marc; Kemeny, Nancy

    2015-04-15

    RAS and PIK3CA mutations in metastatic colorectal cancer (mCRC) have been associated with worse survival. We sought to evaluate the impact of RAS and PIK3CA mutations on cumulative incidence of metastasis to potentially curable sites of liver and lung and other sites such as bone and brain. We performed a computerized search of the electronic medical record of our institution for mCRC cases genotyped for RAS or PIK3CA mutations from 2008 to 2012. Cases were reviewed for patient characteristics, survival, and site-specific metastasis. Among the 918 patients identified, 477 cases were RAS wild type, and 441 cases had a RAS mutation (394 at KRAS exon 2, 29 at KRAS exon 3 or 4, and 18 in NRAS). RAS mutation was significantly associated with shorter median overall survival (OS) and on multivariate analysis independently predicted worse OS (HR, 1.6; P brain metastasis and on multivariate analysis was an independent predictor of involvement of these sites (HR, 1.5, 1.6, and 3.7, respectively). PIK3CA mutations occurred in 10% of the 786 cases genotyped, did not predict for worse survival, and did not exhibit a site-specific pattern of metastatic spread. The metastatic potential of CRC varies with the presence of RAS mutation. RAS mutation is associated with worse OS and increased incidence of lung, bone, and brain metastasis. An understanding of this site-specific pattern of spread may help to inform physicians' assessment of symptoms in patients with mCRC. © 2014 American Cancer Society.

  7. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid.

    Science.gov (United States)

    Lok, Edwin; Chung, Amy S; Swanson, Kenneth D; Wong, Eric T

    2014-04-01

    The aggressiveness of melanoma is believed to be correlated with tumor-stroma-associated immune cells. Cytokines and chemokines act to recruit and then modulate the activities of these cells, ultimately affecting disease progression. Because melanoma frequently metastasizes to the brain, we asked whether global differences in immunokine profiles could be detected in the cerebrospinal fluid (CSF) of melanoma patients and reveal aspects of tumor biology that correlate with patient outcomes. We therefore measured the levels of 12 cytokines and 12 chemokines in melanoma patient CSF and the resulting data were analyzed to develop unsupervised hierarchical clustergrams and heat maps. Unexpectedly, the overall profiles of immunokines found in these samples showed a generalized reconfiguration of their expression in melanoma patient CSF, resulting in the segregation of individuals with melanoma brain metastasis from nondisease controls. Chemokine CCL22 and cytokines IL1α, IL4, and IL5 were reduced in most samples, whereas a subset including CXCL10, CCL4, CCL17, and IL8 showed increased expression. Further, analysis of clusters identified within the melanoma patient set comparing patient outcome suggests that suppression of IL1α, IL4, IL5, and CCL22, with concomitant elevation of CXCL10, CCL4, and CCL17, may correlate with more aggressive development of brain metastasis. These results suggest that global immunokine suppression in the host, together with a selective increase in specific chemokines, constitute a predominant immunomodulatory feature of melanoma brain metastasis. These alterations likely drive the course of this disease in the brain and variations in the immune profiles of individual patients may predict outcomes.

  8. Sequential Change of Hypometabolic Metastasis from Non-small-cell Lung Cancer on Brain FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Yang, Sei Hoon; Yang, Chung Yong; Choi, Keum Ha [Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan (Korea, Republic of)

    2009-10-15

    A 60-year-old woman, who had non-small-cell lung cancer (NSCLC) in left lower lobe underwent brain F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for evaluation of cerebral metastasis. On follow-up FDG-PET/CT, only hypometaolic lesion was detected and progressed in right frontal lobe at 6 months and 10 months, later. Hypermetabolic metastasis was not detected even at last scan time of FDG-PET/CT. Brain MRI showed brain metastasis in right frontal lobe. As might be expected, the physician should take cerebral metastasis into consideration even though there is only hypometabolic change on subsequent FDG-PET/CT in patients with NSCLC.

  9. Quality of life and symptoms control in brain metastasis after palliative whole brain radiotherapy using two different protocols.

    Science.gov (United States)

    Akhtar, Muhammad Sohail; Kousar, Farzana; Fatmi, Shahab; Jabeen, Kaukab; Akhtar, Kalsoom

    2012-05-01

    To compare the quality of life and symptomatic improvement after palliative radiotherapy to brain metastasis using two different treatment protocols. Comparative study. Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, from January 2009 to November 2010. Patients presenting with brain metastasis referred to Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur for whole brain radiotherapy (WBRT) were included. Patients were divided in two groups. In group A WBRT 30 Gys in 10 fractions were given. While in group B 30 Gys in 15 fractions to whole brain followed by 20 Gys in 10 fractions boost to primary metastatic site with 2 cm margins were given. Follow-up was done at 1 and 3 months. A total of 46 patients with brain metastasis were enrolled with median Karnofsky performance score 50. Median age was 64 years. Most common presenting symptoms were headache, weakness, balance problem and early fatigability. Fifty percent of patients had improvement in their presenting symptoms after completion of palliative radiotherapy at one month and three months follow-up. There was a statistically significant improvement in headache, nausea or vomiting, focal weakness, dizziness, balance problem and problems with smell, hearing and tingling sensation in group B patients as compared to group A. More controlled and better quality of life was observed in patient given 30 Gys in 15 fractions followed by a boost of 20 fractions to primary metastatic site versus WBRT with 30 Gys in 10 fractions and in patients with metastatic sites are less than three and having difference not more than 2 cm apart between two metastatic sites.

  10. Prognostic factors for patients with brain metastasis from gynecological cancer: a significance of treatment-free interval of more than 6 months.

    Science.gov (United States)

    Takeshita, Sho; Todo, Yukiharu; Furuta, Yu; Okamoto, Kazuhira; Minobe, Shinichiro; Yamashiro, Katsushige; Kato, Hidenori

    2017-07-01

    Treatment-free interval has been confirmed as a significant prognostic factor in recurrent gynecological cancers. However, treatment-free interval has not been evaluated in previous studies investigating brain metastasis from gynecological malignancies. The aim of the study was to establish a predictive model of survival period after brain metastasis from gynecological cancer. Of a total of 2848 patients with gynecological cancer, patients with brain metastasis were included in the study. Data at the time of brain metastasis diagnosis, which included primary origin, presence of extracranial metastasis, the Eastern Cooperative Oncology Group (ECOG) performance status, the number of brain metastases, brain-metastasis free-interval, treatment-free interval and treatment for brain metastasis were collected. Survival data were analyzed using Kaplan-Meier methods and Cox proportional hazards models. Incidences of brain metastasis were 1.7% (47/2848). Median survival period after diagnosis of brain metastasis was 20 weeks (4-5 months). The 6-, 12- and 24-month survival rates after brain metastasis were 44.0%, 22.0% and 16.5%, respectively. Cox regression analysis showed that extracranial metastasis (hazard ratio [HR], 5.2; 95% confidence interval [CI]: 1.04-26.3), ECOG performance status of 3-4 (HR, 3.1; 95% CI: 1.20-7.91), treatment-free interval of cancer treatment for brain metastasis (HR, 3.6; 95% CI: 1.34-9.41) were significantly and independently related to poor survival. Treatment-free interval should be assessed in a future study to verify prognostic predictors of brain metastasis from gynecological cancer.

  11. Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain.

    Directory of Open Access Journals (Sweden)

    Feng Li

    Full Text Available Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life, and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast carcinoma cells are poorly understood. Here, we used 2D-DIGE (Difference in Gel Electrophoresis proteomic analysis followed by LC-tandem mass spectrometry to identify the proteins differentially expressed in brain-targeting breast carcinoma cells (MB231-Br compared with parental MDA-MB-231 cell line. Between the two cell lines, we identified 12 proteins consistently exhibiting greater than 2-fold (p<0.05 difference in expression, which were associated by the Ingenuity Pathway Analysis (IPA with two major signaling networks involving TNFα/TGFβ-, NFκB-, HSP-70-, TP53-, and IFNγ-associated pathways. Remarkably, highly related networks were revealed by the IPA analysis of a list of 19 brain-metastasis-associated proteins identified recently by the group of Dr. A. Sierra using MDA-MB-435-based experimental system (Martin et al., J Proteome Res 2008 7:908-20, or a 17-gene classifier associated with breast cancer brain relapse reported by the group of Dr. J. Massague based on a microarray analysis of clinically annotated breast tumors from 368 patients (Bos et al., Nature 2009 459: 1005-9. These findings, showing that different experimental systems and approaches (2D-DIGE proteomics used on brain targeting cell lines or gene expression analysis of patient samples with documented brain relapse yield highly related signaling networks, suggest strongly that these signaling networks could be essential for a successful colonization of the brain by metastatic breast carcinoma cells.

  12. RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis.

    Science.gov (United States)

    Sato, Ryo; Nakano, Teppei; Hosonaga, Mari; Sampetrean, Oltea; Harigai, Ritsuko; Sasaki, Takashi; Koya, Ikuko; Okano, Hideyuki; Kudoh, Jun; Saya, Hideyuki; Arima, Yoshimi

    2017-01-01

    Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non-small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.

  13. RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Ryo Sato

    2017-01-01

    Full Text Available Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.

  14. Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar

    Science.gov (United States)

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.

    2011-01-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446

  15. Chemotherapy and biological treatment options in breast cancer patients with brain metastasis: an update.

    Science.gov (United States)

    Arslan, Cagatay; Dizdar, Omer; Altundag, Kadri

    2014-08-01

    Breast cancer (BC) is the second most common cause of CNS metastasis. Ten to 20% of all, and 38% of human epidermal growth factor-2(+), metastatic BC patients experience brain metastasis (BM). Prolonged survival with better control of systemic disease and limited penetration of drugs to CNS increased the probability of CNS metastasis as a sanctuary site of relapse. Treatment of CNS disease has become an important component of overall disease control and quality of life. Current standard therapy for BM is whole-brain radiotherapy, surgery, stereotactic body radiation therapy for selected cases, corticosteroids and systemic chemotherapy. Little progress has been made in chemotherapy for the treatment of BM in patients with BC. Nevertheless, new treatment choices have emerged. In this review, we aimed to update current and future treatment options in systemic treatment for BM of BC. Cornerstone local treatment options for BM of BC are radiotherapy and surgery in selected cases. Efficacy of cytotoxic chemotherapeutics is limited. Among targeted therapies, lapatinib has activity in systemic treatment of BM particularly when used in combination with capecitabine. Novel agents are currently investigated.

  16. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.

    Science.gov (United States)

    Peng, Wenjing; Zhang, Yu; Zhu, Rui; Mechref, Yehia

    2017-09-01

    Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is currently considered an issue of concern among breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis, involving cell adhesion and penetration of blood-brain barrier. To understand the mechanism of breast cancer brain metastasis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in conjunction with enrichment of membrane proteins to analyze the proteomes from five different breast cancer and a brain cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which is a brain seeking breast cancer cell line, thus representing brain metastasis characteristics. Label-free proteomics of the six cell lines facilitates the identification of 1238 proteins and the quantification of 899 proteins of which more than 70% were membrane proteins. Unsupervised principal component analysis (PCA) of the label-free proteomics data resulted in a distinct clustering of cell lines, suggesting quantitative differences in the expression of several proteins among the different cell lines. Unique protein expressions in 231BR were observed for 28 proteins. The up-regulation of STAU1, AT1B3, NPM1, hnRNP Q, and hnRNP K and the down-regulation of TUBB4B and TUBB5 were noted in 231BR relative to 231 (precursor cell lines from which 231BR is derived). These proteins might contribute to the breast cancer brain metastasis. Ingenuity pathway analysis (IPA) supported the great brain metastatic propensity of 231BR and suggested the importance of the up-regulation of integrin proteins and down-regulation of EPHA2 in brain metastasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  18. Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors

    NARCIS (Netherlands)

    Sanz-Pamplona, Rebeca; Aragüés, Ramón; Driouch, Keltouma; Martín, Berta; Oliva, Baldo; Gil, Miguel; Boluda, Susana; Fernández, Pedro L.; Martínez, Antonio; Moreno, Víctor; Acebes, Juan J.; Lidereau, Rosette; Reyal, Fabien; van de Vijver, Marc J.; Sierra, Angels

    2011-01-01

    The increasing incidence of breast cancer brain metastasis in patients with otherwise well-controlled systemic cancer is a key challenge in cancer research. It is necessary to understand the properties of brain-tropic tumor cells to identify patients at risk for brain metastasis. Here we attempt to

  19. PDGFRB Promotes Liver Metastasis Formation of Mesenchymal-Like Colorectal Tumor Cells

    Directory of Open Access Journals (Sweden)

    Ernst J.A. Steller

    2013-02-01

    Full Text Available In epithelial tumors, the platelet-derived growth factor receptor B (PDGFRB is mainly expressed by stromal cells of mesenchymal origin. Tumor cells may also acquire PDGFRB expression following epithelial-to-mesenchymal transition (EMT, which occurs during metastasis formation. Little is known about PDGFRB signaling in colorectal tumor cells. We studied the relationship between PDGFRB expression, EMT, and metastasis in human colorectal cancer (CRC cohorts by analysis of gene expression profiles. PDGFRB expression in primary CRC was correlated with short disease-free and overall survival. PDGFRB was co-expressed with genes involved in platelet activation, transforming growth factor beta (TGFB signaling, and EMT in three CRC cohorts. PDGFRB was expressed in mesenchymal-like tumor cell lines in vitro and stimulated invasion and liver metastasis formation in mice. Platelets, a major source of PDGF, preferentially bound to tumor cells in a non-activated state. Platelet activation caused robust PDGFRB tyrosine phosphorylation on tumor cells in vitro and in liver sinusoids in vivo. Platelets also release TGFB, which is a potent inducer of EMT. Inhibition of TGFB signaling in tumor cells caused partial reversion of the mesenchymal phenotype and strongly reduced PDGFRB expression and PDGF-stimulated tumor cell invasion. These results suggest that PDGFRB may contribute to the aggressive phenotype of colorectal tumors with mesenchymal properties, most likely downstream of platelet activation and TGFB signaling.

  20. Stereotactic Radiosurgery: Treatment of Brain Metastasis Without Interruption of Systemic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Colette J.; Kummerlowe, Megan N.; Redmond, Kristin J. [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States); Rigamonti, Daniele [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Johns Hopkins Aramco Healthcare, Dhahran (Saudi Arabia); Lim, Michael K. [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Kleinberg, Lawrence R., E-mail: kleinla@jhmi.edu [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States)

    2016-06-01

    Purpose: To evaluate the prevalence, outcomes, and toxicities of concurrent delivery of systemic therapy with stereotactic radiosurgery (SRS) for treatment of brain metastases. Methods and Materials: We conducted a retrospective review of 193 patients treated at our institution with SRS without prior whole-brain radiation therapy (WBRT) for brain metastases between 2009 and 2014. Outcome metrics included administration of concurrent systemic therapy, myelosuppression, neurotoxicity, and survival. Results: One hundred ninety-three patients with a median age of 61 years underwent a total of 291 SRS treatments. Thirty-seven percent of SRS treatments were delivered concurrently with systemic therapy, of which 46% were with conventional myelosuppressive chemotherapy, and 54% with targeted and immune therapy agents. Myelosuppression was minimal after treatment with both systemic therapy and SRS, with 14% grade 3-4 toxicity for lymphopenia and 4-9% for leukopenia, neutropenia, anemia, and thrombocytopenia. Neurotoxicity was also minimal after combined therapy, with no grade 4 and <5% grade 3 toxicity, 34% dexamethasone requirement, and 4% radiation necrosis, all similar to treatments with SRS alone. Median overall survival was similar after SRS alone (14.4 months) versus SRS with systemic therapy (12.9 months). In patients with a new diagnosis of primary cancer with brain metastasis, early treatment with concurrent systemic therapy and SRS correlated with improved survival versus SRS alone (41.6 vs 21.5 months, P<.05). Conclusions: Systemic therapy can be safely given concurrently with SRS for brain metastases: our results suggest minimal myelosuppression and neurotoxicity. Concurrent therapy is an attractive option for patients who have both intracranial and extracranial metastatic disease and may be particularly beneficial in patients with a new diagnosis of primary cancer with brain metastasis.

  1. Stereotactic irradiation using a linear accelerator for brain metastasis from renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Kazuyuki; Shirato, Hiroki; Miyasaka, Kazuo [Hokkaido Univ., Sapporo (Japan). School of Medicine; Takamura, Akira; Shinohara, Nobuo; Sawamura, Yutaka

    1997-07-01

    The role of stereotactic irradiation using a linear accelerator for brain metastasis from renal cell carcinoma was investigated. Fifteen brain metastases in 11 patients with a history of renal cell carcinoma were treated using convergent narrow x-ray beams from a linear accelerator and rigid fixation of the head with a stereotactic frame. Twelve metastatic tumors in 8 patients were irradiated with 25 Gy at the center in a single fraction, and single tumors in 3 patients received the following doses: 25 Gy in 5 fractions, 28 Gy in 3 fractions, or 35 Gy in 4 fractions. The actuarial local control rate at 12 months was 90.6%. Twelve (92%) of 13 lesions that produced neurologic symptoms before stereotactic irradiation showed an improvement of symptoms. No complication related to the irradiation was observed. The median survival time was 6 months. Stereotactic irradiation is more effective in achieving local control than is conventional radiotherapy, and achieves improvement in symptoms and survival rates similar to those of surgical resection of the brain metastasis from renal cell carcinoma. Urologists and oncologists should be aware of the usefulness of stereotactic radiation in the management of patients with renal cell carcinoma. (author)

  2. Prognostic factors in patients with brain metastasis from non-small cell lung cancer treated with whole-brain radiotherapy.

    Science.gov (United States)

    Harada, Hideyuki; Asakura, Hirofumi; Ogawa, Hirofumi; Mori, Keita; Takahashi, Toshiaki; Nakasu, Yoko; Nishimura, Tetsuo

    2016-01-01

    The purpose of this study was to evaluate the prognostic factors associated with overall survival (OS) in nonsmall cell lung cancer (NSCLC) patients with brain metastasis who received whole-brain radiotherapy (WBRT). This study included 264 consecutive NSCLC patients with brain metastasis who received WBRT. Patients with leptomeningeal metastasis and those who underwent craniotomy or stereotactic radiotherapy before WBRT were excluded. The evaluated prognostic factors for OS included gender, neurological deficit, histology, epidermal growth factor receptor (EGFR) mutation status, previous cytotoxic chemotherapy, previous EGFR-tyrosine kinase inhibitor treatment, recursive partitioning analysis (RPA) class, and diagnosis-specific graded prognostic assessment (DS-GPA) score. All factors with a P < 0.05 in univariate analysis were entered into multivariate analysis using Cox regression and a confidence interval of 99%. Two hundred thirty patients had died, 14 patients were alive, and 20 patients were lost to follow-up. The median follow-up time was 20.9 months. The median survival time was 5.5 months (95% confidence interval; 4.8-6.3). Univariate analysis showed that gender, neurological deficit, histology, EGFR mutation status, RPA class, and DS-GPA score were significant prognostic factors for OS. In multivariate analysis, RPA class and histology were found to be significant prognostic factors for OS, with P values of 0.0039 and 0.0014, respectively. RPA Class I or II (Karnofsky Performance Status ≥70) and adenocarcinoma histology were associated with longer OS. These factors should be taken into account when considering indication for WBRT.

  3. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α.

    Science.gov (United States)

    Xing, F; Sharma, S; Liu, Y; Mo, Y-Y; Wu, K; Zhang, Y-Y; Pochampally, R; Martinez, L A; Lo, H-W; Watabe, K

    2015-09-10

    The median survival time of breast cancer patients with brain metastasis is less than 6 months, and even a small metastatic lesion often causes severe neurological disabilities. Because of the location of metastatic lesions, a surgical approach is limited and most chemotherapeutic drugs are ineffective owing to the blood brain barrier (BBB). Despite this clinical importance, the molecular basis of the brain metastasis is poorly understood. In this study, we have isolated RNA from samples obtained from primary breast tumors and also from brain metastatic lesions followed by microRNA profiling analysis. Our results revealed that the miR-509 is highly expressed in the primary tumors, whereas the expression of this microRNA is significantly decreased in the brain metastatic lesions. MicroRNA target prediction and the analysis of cytokine array for the cells ectopically expressed with miR-509 demonstrated that this microRNA was capable of modulating the two genes essential for brain invasion, RhoC and TNF-α that affect the invasion of cancer cells and permeability of BBB, respectively. Importantly, high levels of TNF-α and RhoC-induced MMP9 were significantly correlated with brain metastasis-free survival of breast cancer patients. Furthermore, the results of our in vivo experiments indicate that miR-509 significantly suppressed the ability of cancer cells to metastasize to the brain. These findings suggest that miR-509 has a critical role in brain metastasis of breast cancer by modulating the RhoC-TNF-α network and that this miR-509 axis may represent a potential therapeutic target or serve as a prognostic tool for brain metastasis.

  4. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    Science.gov (United States)

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  5. Risk of intracranial hemorrhage and cerebrovascular accidents in non-small cell lung cancer brain metastasis patients.

    Science.gov (United States)

    Srivastava, Geetika; Rana, Vishal; Wallace, Suzy; Taylor, Sarah; Debnam, Matthew; Feng, Lei; Suki, Dima; Karp, Daniel; Stewart, David; Oh, Yun

    2009-03-01

    Brain metastases confer significant morbidity and a poorer survival in non-small cell lung cancer (NSCLC). Vascular endothelial growth factor-targeted antiangiogenic therapies (AAT) have demonstrated benefit for patients with metastatic NSCLC and are expected to directly inhibit the pathophysiology and morbidity of brain metastases, yet patients with brain metastases have been excluded from most clinical trials of AAT for fear of intracranial hemorrhage (ICH). The underlying risk of ICH from NSCLC brain metastases is low, but needs to be quantitated to plan clinical trials of AAT for NSCLC brain metastases. Data from MD Anderson Cancer Center Tumor Registry and electronic medical records from January 1998 to March 2006 was interrogated. Two thousand one hundred forty-three patients with metastatic NSCLC registering from January 1998 to September 2005 were followed till March 2006. Seven hundred seventy-six patients with and 1,367 patients without brain metastases were followed till death, date of ICH, or last date of study, whichever occurred first. The incidence of ICH seemed to be higher in those with brain metastasis compared with those without brain metastases, in whom they occurred as result of cerebrovascular accidents. However, the rates of symptomatic ICH were not significantly different. All ICH patients with brain metastasis had received radiation therapy for them and had been free of anticoagulation. Most of the brain metastasis-associated ICH's were asymptomatic, detected during increased radiologic surveillance. The rates of symptomatic ICH, or other cerebrovascular accidents in general were similar and not significantly different between the two groups. In metastatic NSCLC patients, the incidence of spontaneous ICH appeared to be higher in those with brain metastases compared with those without, but was very low in both groups without a statistically significant difference. These data suggest a minimal risk of clinically significant ICH for NSCLC

  6. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Ryool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-03-15

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

  7. Primary monophasic synovial sarcoma lung with brain metastasis diagnosed on transthoracic FNAC: Report of a case with literature review

    Directory of Open Access Journals (Sweden)

    Paras Nuwal

    2012-01-01

    Full Text Available Synovial sarcoma is highly malignant tumor of soft tissues, occurring chiefly in the extremities and limb girdle with a propensity for local recurrence and sometimes metastases to the lungs. Primary synovial sarcoma arising in the lungs is rare and brain metastasis as presentation is further uncommon. We report a case of primary monophasic synovial sarcoma lung presenting with brain metastasis in a 35-year-old male patient. The diagnosis was made on percutaneous transthoracic needle aspiration from left-sided pulmonary mass and later confirmed by immunohistochemistry. The utility of preoperative diagnosis by percutaneous aspiration cytology is also stressed.

  8. Pharmacologic inhibition of MLK3 kinase activity blocks the in vitro migratory capacity of breast cancer cells but has no effect on breast cancer brain metastasis in a mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Kun Hyoe Rhoo

    Full Text Available Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3 in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.

  9. The enamel matrix derivative (Emdogain) enhances human tongue carcinoma cells gelatinase production, migration and metastasis formation.

    Science.gov (United States)

    Laaksonen, Matti; Suojanen, Juho; Nurmenniemi, Sini; Läärä, Esa; Sorsa, Timo; Salo, Tuula

    2008-08-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment to regenerate lost connective tissue and to improve the attachment of the teeth. Gelatinases (MMP-2 and -9) have an essential role in the promotion and progression of oral cancer growth and metastasis formation. We studied the effects of EMD on human tongue squamous cell carcinoma (HSC-3) cells in vitro and in vivo. In vitro, EMD (100 microg/ml and 200 microg/ml) remarkably induced the MMP-2 and -9 production from HSC-3 cells analysed by zymography and enzyme-linked immunosorbent assay. EMD also slightly induced the MMP-2 and -9 production from benign human mucosal keratinocytes (HMK). Furthermore, EMD clearly induced the transmigration of HSC-3 cells but had no effect on the HMK migration in transwell assays. The in vitro wound closure of HSC-3 cells was notably accelerated by EMD, whereas it had only minor effect on the wound closure of HMKs. The migration of both cell lines was inhibited by a selective cyclic anti-gelatinolytic peptide CTT-2. EMD had no effect on HSC-3 cell proliferation or apoptosis and only a limited effect on cell attachment to various extracellular matrix components. The in vivo mice experiment revealed that EMD substantially induced HSC-3 xenograft metastasis formation. Our results suggest that the use of EMD for patients with oral mucosal carcinomas or premalignant lesions should be carefully considered, possibly avoided.

  10. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  11. Solitary epidural brain metastasis of Neuroepithelioma (a Primitive Neuroectodermal Tumor: case report

    Directory of Open Access Journals (Sweden)

    Farnaz Farshidfar

    2008-08-01

    Full Text Available A 14 years old male was referred to Computerized tomography scan (CT of our hospital for evaluation of headache. The patient was known case of cervical soft tissue Primitive neuroectodermal tumor (PNET which has undergone surgery and radiotherapy 4 years ago. The CT scan showed large solitary extra axial, epidural lesion in right parietal region, with mass effect and bony involvement. Then surgery was done for him and the resultant biopsy was Neuroepithelioma. After diagnosis the patient has undergone chemotherapy and radiotherapy. He has no signs or symptoms of malignancy, and also follow up CT scan of the brain, chest, and abdomen were normal after two years of surgery. This is the first reported case of epidural metastasis of a head and neck PNET in an adolescent.

  12. Reenlargement of radiation necrosis after stereotactic radiotherapy for brain metastasis from lung cancer during bevacizumab treatment.

    Science.gov (United States)

    Furuuchi, Koji; Nishiyama, Akihiro; Yoshioka, Hiroshige; Yokoyama, Toshihide; Ishida, Tadashi

    2017-03-01

    We describe a 55-year-old man who received stereotactic radiotherapy (SRT) for the treatment of brain metastasis from lung adenocarcinoma. Fourteen months after SRT, right-sided hemiparesis developed, and magnetic resonance imaging revealed progression of perifocal edema and an enhanced lesion. Cerebral radiation necrosis was diagnosed, and treatment with bevacizumab was initiated. The lesion clearly responded to bevacizumab therapy, but reenlarged 8 months later and was surgically resected. Histopathological analysis of the resected specimen revealed large areas of necrosis; however, viable tumor cells were detected in the necrotic areas. Reenlargement of the necrotic lesion was attributed to the recurrence of lung cancer. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  13. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  14. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis.

    Science.gov (United States)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-01-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality. Copyright © 2017 American Association of Medical Dosimetrists. All rights reserved.

  15. Dosimetric comparison of Helical Tomotherapy and Gamma Knife Stereotactic Radiosurgery for single brain metastasis

    Directory of Open Access Journals (Sweden)

    Linskey Mark E

    2006-08-01

    Full Text Available Abstract Background Helical Tomotherapy (HT integrates linear accelerator and computerized tomography (CT technology to deliver IMRT. Targets are localized (i.e. outlined as gross tumor volume [GTV] and planning target volume [PTV] on the planning kVCT study while daily MVCT is used for correction of patient's set-up and assessment of inter-fraction anatomy changes. Based on dosimetric comparisons, this study aims to find dosimetric equivalency between single fraction HT and Gamma Knife® stereotactic radiosurgery (GKSRS for the treatment of single brain metastasis. Methods The targeting MRI data set from the GKSRS were used for tomotherapy planning. Five patients with single brain metastasis treated with GKSRS were re-planned in the HT planning station using the same prescribed doses. There was no expansion of the GTV to create the PTV. Sub-volumes were created within the PTV and prescribed to the maximum dose seen in the GKSRS plans to imitate the hot spot normally seen in GKSRS. The PTV objective was set as a region at risk in HT planning using the same prescribed dose to the PTV periphery as seen in the corresponding GKSRS plan. The tumor volumes ranged from 437–1840 mm3. Results Conformality indices are inconsistent between HT and GKSRS. HT generally shows larger lower isodose line volumes, has longer treatment time than GKSRS and can treat a much larger lesion than GKSRS. Both HT and GKSRS single fraction dose-volume toxicity may be prohibitive in treating single or multiple lesions depending on the number and the sizes of the lesions. Conclusion Based on the trend for larger lower dose volumes and more constricted higher dose volumes in HT as compared to GKSRS, dosimetric equivalency was not reached between HT and GKSRS.

  16. Dosimetric superiority of flattening filter free beams for single-fraction stereotactic radiosurgery in single brain metastasis.

    Science.gov (United States)

    Lai, Youqun; Chen, Shanyu; Xu, Changdong; Shi, Liwan; Fu, Lirong; Ha, Huiming; Lin, Qin; Zhang, Zhen

    2017-05-23

    For single-fraction stereotactic radiosurgery (SRS) using linac in brain metastases, more accurate treatment delivery with higher tumor absorbed doses and lower absorbed doses to normal tissues remains an enormous challenge. The purpose of this study was to investigate the dosimetric superiority in flattening filter free beams (FFF) for volumetric modulated arc therapy (VMAT) in single brain metastasis. 68 patients with single brain metastasis were included in this study. Every patient was subjected to VMAT treatment plans using 6 MV standard flattened (FF) beams (VMAT_FF) and 6 MV FFF beams (VMAT_FFF) with single fraction doses of 20 Gy. Dosimetric evaluation was performed by analysis of target coverage, dose gradients, beam-on time (BOT), gantry speed and number of monitor units (MU). There were no differences between VMAT_FF and VMAT_FFF plans in conformity and MU. VMAT_FFF plans showed obvious superiority in homogeneity, dose gradients and efficiency. For the mean BOT, VMAT_FFF plans provided a significant decrease by 42.8% compared with VMAT_FF. By the use of FFF beams, brain irradiation was minimized with about 2% reductions in low-dose regions (about 5-10 Gy). FFF beams not only resulted in more efficiency by reducing treatment time, but also provided further brain sparing compared to traditional techniques for SRS in single brain metastasis.

  17. Brain metastasis from non-small cell lung cancer (NSCLC). Prognostic importance of the number of involved extracranial organs

    Energy Technology Data Exchange (ETDEWEB)

    Gerdan, L. [University of Luebeck, Department of Radiation Oncology, Luebeck (Germany); University of Luebeck, Section of Nuclear Medicine, Luebeck (Germany); Segedin, B. [Institute of Oncology, Department of Radiation Oncology, Ljubljana (Slovenia); Nagy, V. [Oncology Institute Ion Ciricuta, Department of Radiotherapy, Cluj-Napoca (Romania); Khoa, M.T. [Hanoi Medical University, Department of Nuclear Medicine, Hanoi (Viet Nam); Bach Mai Hospital, Nuclear Medicine and Oncology Center, Hanoi (Viet Nam); Trang, N.T. [Bach Mai Hospital, Nuclear Medicine and Oncology Center, Hanoi (Viet Nam); Schild, S.E. [Mayo Clinic Scottsdale, Department of Radiation Oncology, Scottsdale, AZ (United States); Rades, D. [University of Luebeck, Department of Radiation Oncology, Luebeck (Germany)

    2014-01-15

    This study investigated the potential prognostic value of the number of involved extracranial organs in patients with brain metastasis from non-small cell lung cancer (NSCLC). A total of 472 patients who received whole-brain radiotherapy (WBRT) alone with 5 x 4 Gy or 10 x 3 Gy for brain metastasis from NSCLC were included in this retrospective study. In addition to the number of involved extracranial organs, 6 further potential prognostic factors were investigated including WBRT regimen, age, gender, Karnofsky Performance Score (KPS), number of brain metastases, and the interval from cancer diagnosis to WBRT. Subgroup analyses were performed for patients with metastatic involvement of one (lung vs. bone vs. other metastasis) and two (lung+bone vs. lung+lymph nodes vs. other combinations) extracranial organs. The survival rates at 6 months of the patients with involvement of 0, 1, 2, 3, and ≥4 extracranial organs were 52, 27, 17, 4, and 14%, respectively (p<0.001). On multivariate analysis, the number of involved extracranial organs remained significant (risk ratio 1.32; 95% confidence interval 1.19-1.46; p<0.001). Age <65 years (p=0.004), KPS ≥70 (p<0.001), and only 1-3 brain metastases (p=0.022) were also significantly associated with survival in the multivariate analysis. In the separate analyses of patients with involvement of one and two extracranial organs, survival was not significantly different based on the pattern of extracranial organ involvement. The number of involved extracranial organs is an independent prognostic factor of survival in patients with brain metastasis from NSCLC, irrespective of the pattern of extracranial organ involvement. (orig.)

  18. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts.

    Directory of Open Access Journals (Sweden)

    Marion David

    2010-03-01

    Full Text Available Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2 is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD activity, ATX controls the level of lysophosphatidic acid (LPA in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX to immunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and

  19. Short interfering RNA directed against Slug blocks tumor growth, metastasis formation, and vascular leakage in bladder cancer.

    Science.gov (United States)

    Wang, Xinsheng; Zhang, Kejun; Sun, Lijiang; Liu, Jianqiang; Lu, Haipin

    2011-12-01

    In a previous study, we have identified Slug as selectively overexpressed in the highly invasive bladder cancer cells. Furthermore, Slug overexpression was correlated with metastasis in bladder cancer tissues. Here, we investigated the role and underlying mechanism of Slug in the process of growth, invasion and metastasis formation, and vascular leakage in a bladder cancer cell line T24. We knocked down in a bladder cancer cell line T24 by Slug siRNA, and the effects on invasion, metastasis, and proliferation were evaluated in vitro. A pseudometastatic model of bladder cancer in severe combined immunodeficient mice was used to assess the effects of Slug silencing on metastasis and angiogenesis development. Slug-specific siRNA in T24 cells led to a significant decrease in invasiveness and metastasis, proliferation rates, and angiogenesis in vitro. Slug-specific siRNA induced strong changes in cell invasiveness mainly through a mechanism of up-regulation of epithelial markers E-cadherin expression. Interestingly, E-cadherin-specific siRNA attenuated Slug siRNA-induced Matrigel invasion. Moreover, Slug-specific siRNA induced strong changes in microvessel counts in angiogenesis mainly through decreased activity of MMP-2, but not through cadherin expression and decreased activity of MMP-9. Restoration of MMP-2 expression in the Slug-silenced T24 cells resulted in an increased cell angiogenesis. Moreover, Slug-specific siRNA significantly reduced tumor growth by approximately 60% and inhibited metastasis and angiogenesis in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and a decreased expression of MMP-2 in tumor tissues. These data suggest that Slug regulates tumor growth, invasion and metastasis, and angiogenesis through E-cadherrin and MMPS passway. Blocking Slug signaling in bladder cancer may represent a novel strategy in the future to reduce metastatic disease burden in bladder cancer patients.

  20. Characterization of metastasis formation and virotherapy in the human C33A cervical cancer model.

    Directory of Open Access Journals (Sweden)

    Ulrike Donat

    Full Text Available More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases.

  1. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients

    OpenAIRE

    Fengxia Qin; Huikun Zhang; Li Ma; Xiaoli Liu; Kun Dai; Wenliang Li; Feng Gu; Li Fu; Yongjie Ma

    2015-01-01

    Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast canc...

  2. A clinical analysis of brain metastasis in gynecologic cancer: a retrospective multi-institute analysis.

    Science.gov (United States)

    Kim, Young Zoon; Kwon, Jae Hyun; Lim, Soyi

    2015-01-01

    This study analyzes the clinical characteristics of the brain metastasis (BM) of gynecologic cancer based on the type of cancer. In addition, the study examines the factors influencing the survival. Total 61 BM patients of gynecologic cancer were analyzed retrospectively from January 2000 to December 2012 in terms of clinical and radiological characteristics by using medical and radiological records from three university hospitals. There were 19 (31.1%) uterine cancers, 32 (52.5%) ovarian cancers, and 10 (16.4%) cervical cancers. The mean interval to BM was 25.4 months (21.6 months in ovarian cancer, 27.8 months in uterine cancer, and 33.1 months in cervical cancer). The mean survival from BM was 16.7 months (14.1 months in ovarian cancer, 23.3 months in uterine cancer, and 8.8 months in cervical cancer). According to a multivariate analysis of factors influencing survival, type of primary cancer, Karnofsky performance score, status of primary cancer, recursive partitioning analysis class, and treatment modality, particularly combined therapies, were significantly related to the overall survival. These results suggest that, in addition to traditional prognostic factors in BM, multiple treatment methods such as neurosurgery and combined chemoradiotherapy may play an important role in prolonging the survival for BM patients of gynecologic cancer.

  3. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer

    Science.gov (United States)

    Wu, Sheng-Kai; Chiang, Chi-Feng; Hsu, Yu-Hone; Lin, Tzu-Hung; Liou, Houng-Chi; Fu, Wen-Mei; Lin, Win-Li

    2014-01-01

    The blood–brain/tumor barrier inhibits the uptake and accumulation of chemotherapeutic drugs. Hyperthermia can enhance the delivery of chemotherapeutic agent into tumors. In this study, we investigated the effects of short-time focused ultrasound (FUS) hyperthermia on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for brain metastasis of breast cancer. Murine breast cancer 4T1-luc2 cells expressing firefly luciferase were injected into female BALB/c mice striatum tissues and used as a brain metastasis model. The mice were intravenously injected with PLD (5 mg/kg) with/without 10-minute transcranial FUS hyperthermia on day 6 after tumor implantation. The amounts of doxorubicin accumulated in the normal brain tissues and tumor tissues with/without FUS hyperthermia were measured using fluorometry. The tumor growth for the control, hyperthermia, PLD, and PLD + hyperthermia groups was measured using an IVIS spectrum system every other day from day 3 to day 11. Cell apoptosis and tumor characteristics were assessed using immunohistochemistry. Short-time FUS hyperthermia was able to significantly enhance the PLD delivery into brain tumors. The tumor growth was effectively inhibited by a single treatment of PLD + hyperthermia compared with both PLD alone and short-time FUS hyperthermia alone. Immunohistochemical examination further demonstrated the therapeutic efficacy of PLD plus short-time FUS hyperthermia for brain metastasis of breast cancer. The application of short-time FUS hyperthermia after nanodrug injection may be an effective approach to enhance nanodrug delivery and improve the treatment of metastatic cancers. PMID:25278753

  4. Medical and health economic assessment of radiosurgery for the treatment of brain metastasis

    Directory of Open Access Journals (Sweden)

    von der Schulenburg, Johann-Matthias

    2009-03-01

    Full Text Available Background: Radiotherapy for patients suffering from malignant neoplasms has developed greatly during the past decades. Stereotactic radiosurgery (SRS is one important radiotherapeutic option which is defined by a single and highly focussed application of radiation during a specified time interval. One of its important indications is the treatment of brain metastases. Objectives: The objective of this HTA is to summarise the current literature concerning the treatment of brain metastasis and to compare SRS as a single or additional treatment option to alternative treatment options with regard to their medical effectiveness/efficacy, safety and cost-effectiveness as well as their ethical, social and legal implications. Methods: A structured search and hand search of identified literature are performed from January 2002 through August 2007 to identify relevant publications published in English or German. Studies targeting patients with single or multiple brain metastases are included. The methodological quality of included studies is assessed according to quality criteria, based on the criteria of evidence based medicine. Results: Of 1,495 publications 15 medical studies meet the inclusion criteria. Overall study quality is limited and with the exception of two randomized controlleed trials (RCT and two meta-analyses only historical cohort studies are identified. Reported outcome measures are highly variable between studies. Studies with high methodological quality provide evidence, that whole-brain radiotherapy (WBRT in addition to SRS and SRS in addition to WBRT is associated with improved local tumour control rates and neurological function. However, only in patients with single brain metastasis, RPA-class 1 (RPA = Recursive partitioning analysis and certain primary tumour entities, this combination of SRS and WBRT is associated with superior survival compared to WBRT alone. Studies report no significant differences in adverse events between

  5. Risk factors for brain metastasis as a first site of disease recurrence in patients with HER2 positive early stage breast cancer treated with adjuvant trastuzumab.

    Science.gov (United States)

    Tonyali, Onder; Coskun, Ugur; Yuksel, Sinemis; Inanc, Mevlude; Bal, Oznur; Akman, Tulay; Yazilitas, Dogan; Ulas, Arife; Kucukoner, Mehmet; Aksoy, Asude; Demirci, Umut; Uysal, Mukremin; Tanriverdi, Ozgur; Gunaydin, Yusuf; Sumbul, Ahmet Taner; Yildiz, Ramazan; Karaca, Halit; Oksuzoglu, Berna; Ciltas, Aydin; Buyukberber, Suleyman; Benekli, Mustafa

    2016-02-01

    The aim of this study was to determine risk factors for brain metastasis as the first site of disease recurrence in patients with HER2-positive early-stage breast cancer (EBC) who received adjuvant trastuzumab. Medical records of 588 female patients who received 52-week adjuvant trastuzumab from 14 centers were evaluated. Cumulative incidence functions for brain metastasis as the first site of disease recurrence and the effect of covariates on brain metastasis were evaluated in a competing risk analysis and competing risks regression, respectively. Median follow-up time was 36 months. Cumulative incidence of brain metastasis at 12 months and 24 months was 0.6% and 2%, respectively. HER2-enriched subtype (ER- and PR-) tumor (p = 0.001, RR: 3.4, 95% CI: 1.33-8.71) and stage 3 disease (p = 0.0032, RR: 9.39, 95% CI: 1.33-8.71) were significant risk factors for development of brain metastasis as the first site of recurrence. In patients with HER2 positive EBC who received adjuvant trastuzumab, HER2-enriched subtype (ER- and PR-) tumor and stage 3 disease were associated with increased risk of brain metastasis as the first site of disease recurrence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    Science.gov (United States)

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  7. HGF/c-MET Axis in Tumor Microenvironment and Metastasis Formation

    Directory of Open Access Journals (Sweden)

    Anna Spina

    2015-01-01

    Full Text Available Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Metastasis formation is a multistep process that requires acquisition by tumor cells of a malignant phenotype that allows them to escape from the primary tumor site and invade other organs. Each step of this mechanism involves a deep crosstalk between tumor cells and their microenvironment where the host cells play a key role in influencing metastatic behavior through the release of many secreted factors. Among these signaling molecules, Hepatocyte Growth Factor (HGF is released by many cell types of the tumor microenvironment to target its receptor c-MET within the cells of the primary tumor. Many studies reveal that HGF/c-MET axis is implicated in various human cancers, and genetic and epigenetic gain of functions of this signaling contributes to cancer development through a variety of mechanisms. In this review, we describe the specific types of cells in the tumor microenvironment that release HGF in order to promote the metastatic outgrowth through the activation of extracellular matrix remodeling, inflammation, migration, angiogenesis, and invasion. We dissect the potential use of new molecules that interfere with the HGF/c-MET axis as therapeutic targets for future clinical trials in cancer disease.

  8. The number of involved extracranial organs: a new predictor of survival in breast cancer patients with brain metastasis.

    Science.gov (United States)

    Gerdan, Lavinia; Segedin, Barbara; Nagy, Viorica; Khoa, Mai T; Trang, Ngo T; Schild, Steven E; Rades, Dirk

    2013-10-01

    This study was performed to investigate the potential impact of the number of involved extracranial organs on survival in patients with brain metastasis from breast cancer. The data of 196 patients treated with whole-brain radiotherapy (WBRT) alone for brain metastases from breast cancer were retrospectively analyzed. Six potential prognostic factors were evaluated for associations with survival. These factors included WBRT regimen, age, Karnofsky performance score (KPS), number of brain metastases, interval from breast cancer diagnosis to WBRT, and the number of involved extracranial organs. The 6-month survival rates of patients with involvement of 0, 1, 2, 3 and ≥4 extracranial organs were 59%, 49%, 26%, 26% and 13%, respectively, and the 12-month survival rates were 45%, 36%, 17%, 17% and 13%, respectively (pnumber of involved extracranial organs (risk ratio 1.17; 95%-confidence interval 1.02-1.35; p=0.028) maintained significance, as did KPS (pnumber of involved extracranial organs is an independent prognostic factor of survival in patients with brain metastasis from breast cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Association Between Radiation Necrosis and Tumor Biology After Stereotactic Radiosurgery for Brain Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob A. [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Bennett, Elizabeth E. [Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio (United States); Xiao, Roy [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Kotecha, Rupesh [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Chao, Samuel T. [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Vogelbaum, Michael A.; Barnett, Gene H.; Angelov, Lilyana [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio (United States); Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Murphy, Erin S.; Yu, Jennifer S. [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Ahluwalia, Manmeet S. [Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio (United States); Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); and others

    2016-12-01

    Background: The primary dose-limiting toxicity of stereotactic radiosurgery (SRS) is radiation necrosis (RN), which occurs after approximately 5% to 10% of treatments. This adverse event may worsen neurologic deficits, increase the frequency and cost of imaging, and necessitate prolonged treatment with steroids or antiangiogenic agents. Previous investigations have primarily identified lesion size and dosimetric constraints as risk factors for RN in small populations. We hypothesized that disease histology, receptor status, and mutational status are associated with RN. Methods and Materials: All patients presenting with brain metastasis between 1997 and 2015 who underwent SRS and subsequent radiographic follow-up at a single tertiary-care institution were eligible for inclusion. The primary outcome was the cumulative incidence of radiographic RN. Multivariate competing risks regression was used to identify biological risk factors for RN. Results: 1939 patients (5747 lesions) were eligible for inclusion; 285 patients (15%) experienced radiographic RN after the treatment of 427 (7%) lesions. After SRS, the median time to RN was 7.6 months. After multivariate analysis, graded prognostic assessment, renal pathology, lesion diameter, and the heterogeneity index remained independently predictive of RN in the pooled cohort. In subset analyses of individual pathologies, HER2-amplified status (hazard ratio [HR] 2.05, P=.02), BRAF V600+ mutational status (HR 0.33, P=.04), lung adenocarcinoma histology (HR 1.89, P=.04), and ALK rearrangement (HR 6.36, P<.01) were also associated with RN. Conclusions: In the present investigation constituting the largest series of RN, several novel risk factors were identified, including renal histology, lung adenocarcinoma histology, HER2 amplification, and ALK/BRAF mutational status. These risk factors may be used to guide clinical trial design incorporating biological risk stratification or dose escalation. Future studies determining the

  10. Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies.

    Science.gov (United States)

    Choong, Ee Siang; Lo, Serigne; Drummond, Martin; Fogarty, Gerald B; Menzies, Alexander M; Guminski, Alexander; Shivalingam, Brindha; Clarke, Kathryn; Long, Georgina V; Hong, Angela M

    2017-04-01

    With new systemic therapies demonstrating activity in melanoma brain metastasis, most of the previously reported stereotactic radiosurgery (SRS) data are superseded. In this study, we report the outcomes (overall survival [OS] and brain control [BC]) and identify factors that associate with such outcomes in the era of modern systemic therapy. A total of 108 patients treated with SRS from 2010 to 2015 were included. Systemic treatment use within 6 weeks of SRS was noted. OS was defined as time from SRS to death or last follow-up, and BC was defined as absence of any active intracranial disease during follow-up. Univariate and multivariate Cox proportional hazard analyses were performed on clinico-pathological prognostic features associated with OS and BC. The median age was 64.3 years, and the median follow-up was 8.6 months. Seventy-nine (73.1%) patients received systemic treatment. The median OS were as follows: anti-CTLA4 - 7.5 months (95% CI: 4.4-15.6), anti-PD1 - 20.4 months (95% CI: 8.8 - N/A) and BRAF inhibitor (BRAFi) ± MEK inhibitor (MEKi) - 17.8 months (95% CI: 11.8 - N/A). Median BC was as follows: anti-CTLA4 - 7.5 months (95% CI: 4.0-15.6), anti-PD1 - 12.7 months (95% CI: 5.5 - N/A) and BRAFi ± MEKi - 12.7 months (95% CI: 8.3-18.5). In multivariate analysis, age and type of systemic therapy were strongly associated with OS. Age, Eastern Cooperative Oncology Group performance status, Graded Prognostic Assessment (GPA) score, and presence of symptoms were associated with BC. Favourable outcomes are seen in patients treated with SRS and with the best survival seen in patients treated with anti-PD1. Known independent prognostic factors for survival such as age and performance status and GPA score remain relevant in this setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. More than Just the Number of Brain Metastases: Evaluating the Impact of Brain Metastasis Location and Relative Volume on Overall Survival After Stereotactic Radiosurgery.

    Science.gov (United States)

    Emery, Ashley; Trifiletti, Daniel M; Romano, Kara D; Patel, Nirav; Smolkin, Mark E; Sheehan, Jason P

    2017-03-01

    Most evidence describing outcomes of patients with brain metastases is based on number of brain metastases, rather than location or volume. We evaluated the impact of tumor location and relative volume on overall survival (OS) among a large cohort of patients treated with stereotactic radiosurgery. Clinical, radiographic, and dosimetric data were collected on patients treated with first (if multiple) stereotactic radiosurgery for brain metastases. Multivariate analyses were performed to investigate the impact of brain metastasis relative location and volume on OS after stereotactic radiosurgery. Analysis included 300 patients with 817 tumors (116 patients with single brain metastasis). The most common tumor locations were supratentorial (75% of tumors), cerebellar (19%), and brainstem (5%). Median tumor volume was 0.4 mL (range, 0.003-65.0 mL). Tumor-specific factors associated with inferior OS included brainstem location versus both supratentorial and cerebellum locations for particular assumed values of cube root tumor volume (P < 0.001 for each) and increasing total supratentorial tumor volume (P = 0.004). Patients with supratentorial tumors and cerebellar tumors demonstrated similar OS, and cube root total tumor volume within the cerebellum and brainstem did not predict for OS. The presence of brainstem metastases and cumulative supratentorial tumor volume are adverse features that result in inferior survival. These results can be used to inform patient prognosis and future clinical trial design. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer

    Science.gov (United States)

    Xing, Fei; Liu, Yin; Sharma, Sambad; Wu, Kerui; Chan, Michael D.; Lo, Hui-Wen; Carpenter, Richard L.; Metheny-Barlow, Linda J.; Zhou, Xiaobo; Qasem, Shadi A.; Pasche, Boris; Watabe, Kounosuke

    2016-01-01

    Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remains poorly understood. Here we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL-8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle which generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. PMID:27364556

  13. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.

    2016-03-01

    Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.

  14. Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis

    DEFF Research Database (Denmark)

    Téglási, Vanda; Reiniger, Lilla; Fabian, Katalin

    2017-01-01

    Background. Management of lung cancer patients who suffer from brain metastases represents a major challenge. Considering the promising results with immune checkpoint inhibitor treatment, evaluating the status of immune cell (IC) infiltrates in the prognosis of brain metastasis may lead to better...

  15. The Impact of Immune System in Regulating Bone Metastasis Formation by Osteotropic Tumors

    Directory of Open Access Journals (Sweden)

    Lucia D’Amico

    2015-01-01

    Full Text Available Bone metastases are frequent and debilitating consequence for many tumors, such as breast, lung, prostate, and kidney cancer. Many studies report the importance of the immune system in the pathogenesis of bone metastasis. Indeed, bone and immune system are strictly linked to each other because bone regulates the hematopoietic stem cells from which all cells of the immune system derive, and many immunoregulatory cytokines influence the fate of bone cells. Furthermore, both cytokines and factors produced by immune and bone cells promote the growth of tumor cells in bone, contributing to supporting the vicious cycle of bone metastasis. This review summarizes the current knowledge on the interactions among bone, immune, and tumor cells aiming to provide an overview of the osteoimmunology field in bone metastasis from solid tumors.

  16. [Diagnosis of the metastasis of cranial tumors].

    Science.gov (United States)

    Kuckein, D

    1982-12-01

    Ependymal and meningeal metastases of brain tumors may frequently be demonstrated by computerized tomography. The mode of metastasis formation and appearance of some CT findings are described. Essential criteria in the differential diagnosis of neoplastic, metastatic, inflammatory and vascular changes are discussed.

  17. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential.

    Directory of Open Access Journals (Sweden)

    Aleksandra Markiewicz

    Full Text Available INTRODUCTION: Circulating tumor cells (CTCs that present mesenchymal phenotypes can escape standard methods of isolation, thus limiting possibilities for their characterization. Whereas mesenchymal CTCs are considered to be more malignant than epithelial CTCs, factors responsible for this aggressiveness have not been thoroughly defined. This study analyzed the molecular profile related to metastasis formation potential of CTC-enriched blood fractions obtained by marker unbiased isolation from breast cancer patients without (N- and with lymph nodes metastases (N+. MATERIALS AND METHODS: Blood samples drawn from 117 patients with early-stage breast cancer were enriched for CTCs using density gradient centrifugation and negative selection with anti-CD45 covered magnetic particles. In the resulting CTC-enriched blood fractions, expression of CK19, MGB1, VIM, TWIST1, SNAIL, SLUG, HER2, CXCR4 and uPAR was analyzed with qPCR. Results were correlated with patients' clinicopathological data. RESULTS: CTCs (defined as expression of either CK19, MGB1 or HER2 were detected in 41% (20/49 of N- and 69% (34/49 of N+ patients (P = 0.004. CTC-enriched blood fractions of N+ patients were more frequently VIM (P = 0.02, SNAIL (P = 0.059 and uPAR-positive (P = 0.03. Positive VIM, CXCR4 and uPAR status correlated with >3 lymph nodes involved (P = 0.003, P = 0.01 and P = 0.045, respectively. In the multivariate logistic regression MGB1 and VIM-positivity were independently related to lymph node involvement with corresponding overall risk of 3.2 and 4.2. Moreover, mesenchymal CTC-enriched blood fractions (CK19-/VIM+ and MGB1+ or HER2+ had 4.88 and 7.85-times elevated expression of CXCR4 and uPAR, respectively, compared with epithelial CTC-enriched blood fractions (CK19+/VIM- and MGB1+ or HER2+. CONCLUSIONS: Tumors of N+ patients have superior CTC-seeding and metastatic potential compared with N- patients. These differences can be attributed

  18. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Grum-Schwensen, Birgitte; Beck, Mette K

    2012-01-01

    microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment...... of an efficient anti-metastatic therapy....

  19. Brain Metastasis Velocity: A Novel Prognostic Metric Predictive of Overall Survival and Freedom From Whole-Brain Radiation Therapy After Distant Brain Failure Following Upfront Radiosurgery Alone

    Energy Technology Data Exchange (ETDEWEB)

    Farris, Michael, E-mail: mfarris@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); McTyre, Emory R.; Cramer, Christina K.; Hughes, Ryan; Randolph, David M.; Ayala-Peacock, Diandra N.; Bourland, J. Daniel [Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Ruiz, Jimmy [Department of Medicine - Hematology & Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Watabe, Kounosuke [Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Laxton, Adrian W.; Tatter, Stephen B. [Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Zhou, Xiaobo [Center for Bioinformatics & Systems Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Chan, Michael D. [Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States)

    2017-05-01

    Purpose: Prior statistical models attempted to identify risk factors for time to distant brain failure (DBF) or time to salvage whole-brain radiation therapy (WBRT) to predict the benefit of early WBRT versus stereotactic radiosurgery (SRS) alone. We introduce a novel clinical metric, brain metastasis velocity (BMV), for predicting clinical outcomes after initial DBF following upfront SRS alone. Methods and Materials: BMV was defined as the cumulative number of new brain metastases that developed over time since first SRS in years. Patients were classified by BMV into low-, intermediate-, and high-risk groups, consisting of <4, 4 to 13, and >13 new metastases per year, respectively. Histology, number of metastases at the time of first SRS, and systemic disease status were assessed for effect on BMV. Results: Of 737 patients treated at our institution with upfront SRS without WBRT, 286 had ≥1 DBF event. A lower BMV predicted for improved overall survival (OS) following initial DBF (log-rank P<.0001). Median OS for the low, intermediate, and high BMV groups was 12.4 months (95% confidence interval [CI], 10.4-16.9 months), 8.2 months (95% CI, 5.0-9.7 months), and 4.3 months (95% CI, 2.6-6.7 months), respectively. Multivariate analysis showed that BMV remained the dominant predictor of OS, with a hazard ratio of 2.75 for the high BMV group (95% CI, 1.94-3.89; P<.0001) and a hazard ratio of 1.65 for the intermediate BMV group (95% CI, 1.18-2.30; P<.004). A lower BMV was associated with decreased rates of salvage WBRT (P=.02) and neurologic death (P=.008). Factors predictive for a higher BMV included ≥2 initial brain metastases (P=.004) and melanoma histology (P=.008). Conclusions: BMV is a novel metric associated with OS, neurologic death, and need for salvage WBRT after initial DBF following upfront SRS alone.

  20. A novel brain metastasis xenograft model for convection‑enhanced delivery of targeted toxins via a micro‑osmotic pump system enabled for real‑time bioluminescence imaging.

    Science.gov (United States)

    Huang, Jun; Li, Yan Michael; Cheng, Quan; Vallera, Daniel A; Hall, Walter A

    2015-10-01

    Brain metastasis is a common cause of mortality in patients with cancer, and is associated with poor prognosis. There is a current requirement for the identification of relevant brain metastasis tumor models, which may be used to test novel therapeutic agents and delivery systems in pre‑clinical studies. The present study aimed to investigate the development of a murine model of brain metastasis, and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to targeted toxins (TT). A luciferase‑modified human brain metastasis cell line was implanted into the caudate‑putamen of athymic mice using a stereotactic frame. Tumor growth was monitored by BLI, and tumor volume was calculated from three‑dimensional measurements of serial histopathological sections. Histopathological analyses revealed the presence of tumor growth within the caudate‑putamen of all of the mice, and BLI was shown to be correlated with tumor volume. To evaluate whether this model would allow the detection of a therapeutic response, mice bearing metastatic brain tumor cell xenografts were treated with TT delivered by convection‑enhanced delivery (CED), via a micro‑osmotic pump system. The TT‑treated groups were submitted to metastatic brain tumor cell experiments, the results of which suggested that TT treatment delayed tumor growth, as determined by BLI monitoring, and significantly extended the survival of the mice. The results of the present study demonstrated the efficacy of a brain metastasis model for CED of TT via a micro‑osmotic pump system in athymic mice, in which tumor growth and response to therapy were accurately monitored by BLI. In conclusion, this model may be well‑suited for pre‑clinical testing of potential therapeutics for the treatment of patients with metastatic brain tumors.

  1. Anti-S100A4 Antibody Suppresses Metastasis Formation by Blocking Stroma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Jörg Klingelhöfer

    2012-12-01

    Full Text Available The small Ca-binding protein, S100A4, has a well-established metastasis-promoting activity. Moreover, its expression is tightly correlated with poor prognosis in patients with numerous types of cancer. Mechanistically, the extracellular S100A4 drives metastasis by affecting the tumor microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts its activity by suppressing stroma cell recruitment to the site of the growing tumor. Our epitope mapping studies suggested that the antibody recognition site overlaps with the target binding interface of human S100A4. We conclude here that this antibody could serve as a solid basis for development of an efficient anti-metastatic therapy.

  2. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis.

    Directory of Open Access Journals (Sweden)

    Richard B Bankert

    Full Text Available Ovarian cancer is the most common cause of death from gynecological cancer. Understanding the biology of this disease, particularly how tumor-associated lymphocytes and fibroblasts contribute to the progression and metastasis of the tumor, has been impeded by the lack of a suitable tumor xenograft model. We report a simple and reproducible system in which the tumor and tumor stroma are successfully engrafted into NOD-scid IL2Rγ(null (NSG mice. This is achieved by injecting tumor cell aggregates derived from fresh ovarian tumor biopsy tissues (including tumor cells, and tumor-associated lymphocytes and fibroblasts i.p. into NSG mice. Tumor progression in these mice closely parallels many of the events that are observed in ovarian cancer patients. Tumors establish in the omentum, ovaries, liver, spleen, uterus, and pancreas. Tumor growth is initially very slow and progressive within the peritoneal cavity with an ultimate development of tumor ascites, spontaneous metastasis to the lung, increasing serum and ascites levels of CA125, and the retention of tumor-associated human fibroblasts and lymphocytes that remain functional and responsive to cytokines for prolonged periods. With this model one will be able to determine how fibroblasts and lymphocytes within the tumor microenvironment may contribute to tumor growth and metastasis, and will make it possible to evaluate the efficacy of therapies that are designed to target these cells in the tumor stroma.

  3. Induction of Slug by Chronic Exposure to Single-Walled Carbon Nanotubes Promotes Tumor Formation and Metastasis.

    Science.gov (United States)

    Wang, Peng; Voronkova, Maria; Luanpitpong, Sudjit; He, Xiaoqing; Riedel, Heimo; Dinu, Cerasela Z; Wang, Liying; Rojanasakul, Yon

    2017-07-17

    Carbon nanotubes (CNTs) represent a major class of engineered nanomaterials that are being used in diverse fields. However, their use has increasingly become a concern because of their carcinogenic potential. Accumulating evidence has demonstrated that certain types of CNTs are carcinogenic or tumor-promoting in animal models. However, the underlying molecular and cellular mechanisms are unclear. Here, we report that chronic exposure to single-walled (SW) CNTs results in the induction of Slug, a key transcription factor that induces an epithelial-mesenchymal transition (EMT), in human lung epithelial cells. We show that SWCNT-induced Slug upregulation plays a critical role in the aggressive phenotype of SWCNT-exposed cells, which includes increased cell migration, invasion, and anchorage-independent cell growth. Our in vivo studies also show that SWCNT-induced Slug upregulation and EMT activation play a pivotal role in tumor formation and metastasis. Our findings illustrate a direct link between CNT-induced Slug upregulation, EMT activation, and tumor formation and metastasis, and they highlight the potential of CNT-induced Slug upregulation as a target for future risk assessment and prevention of CNT-associated diseases.

  4. In Vitro Treatment of Melanoma Brain Metastasis by Simultaneously Targeting the MAPK and PI3K Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Inderjit Daphu

    2014-05-01

    Full Text Available Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type BRAF and PTEN loss, with the MAPK (BRAF inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.

  5. Metastasis-associated kinase modulates Wnt signaling to regulate brain patterning and morphogenesis

    OpenAIRE

    Kibardin, Alexey; Ossipova, Olga; Sokol, Sergei Y.

    2006-01-01

    Wnt signaling is a major pathway regulating cell fate determination, cell proliferation and cell movements in vertebrate embryos. Distinct branches of this pathway activate β-catenin/TCF target genes and modulate morphogenetic movements in embryonic tissues by reorganizing the cytoskeleton. The selection of different molecular targets in the pathway is driven by multiple phosphorylation events. Here, we report that metastasis-associated kinase (MAK) is a novel regulator of Wnt signaling durin...

  6. Brain networks for integrative rhythm formation.

    Directory of Open Access Journals (Sweden)

    Michael H Thaut

    2008-05-01

    Full Text Available Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms.Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1:1 on-the-beat or with a 3:2 or a 2:3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3:2 or 2:3 rhythmic movements automatically. Both the isorhythmic 1:1 and the polyrhythmic 3:2 or 2:3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3:2 or 2:3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum.The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities.

  7. Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis treated with whole-brain radiotherapy and thoracic chemoradiation

    Directory of Open Access Journals (Sweden)

    Arrieta Oscar

    2011-11-01

    Full Text Available Abstract Background Brain metastases occur in 30-50% of Non-small cell lung cancer (NSCLC patients and confer a worse prognosis and quality of life. These patients are usually treated with Whole-brain radiotherapy (WBRT followed by systemic therapy. Few studies have evaluated the role of chemoradiotherapy to the primary tumor after WBRT as definitive treatment in the management of these patients. Methods We reviewed the outcome of 30 patients with primary NSCLC and brain metastasis at diagnosis without evidence of other metastatic sites. Patients were treated with WBRT and after induction chemotherapy with paclitaxel and cisplatin for two cycles. In the absence of progression, concurrent chemoradiotherapy for the primary tumor with weekly paclitaxel and carboplatin was indicated, with a total effective dose of 60 Gy. If disease progression was ruled out, four chemotherapy cycles followed. Results Median Progression-free survival (PFS and Overall survival (OS were 8.43 ± 1.5 and 31.8 ± 15.8 months, respectively. PFS was 39.5% at 1 year and 24.7% at 2 years. The 1- and 2-year OS rates were 71.1 and 60.2%, respectively. Three-year OS was significantly superior for patients with N0-N1 stage disease vs. N2-N3 (60 vs. 24%, respectively; Response rate [RR], 0.03; p= 0.038. Conclusions Patients with NSCLC and brain metastasis might benefit from treatment with WBRT and concurrent thoracic chemoradiotherapy. The subgroup of N0-N1 patients appears to achieve the greatest benefit. The result of this study warrants a prospective trial to confirm the benefit of this treatment.

  8. Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis treated with whole-brain radiotherapy and thoracic chemoradiation.

    Science.gov (United States)

    Arrieta, Oscar; Villarreal-Garza, Cynthia; Zamora, Jesús; Blake-Cerda, Mónika; de la Mata, María D; Zavala, Diego G; Muñiz-Hernández, Saé; de la Garza, Jaime

    2011-11-25

    Brain metastases occur in 30-50% of Non-small cell lung cancer (NSCLC) patients and confer a worse prognosis and quality of life. These patients are usually treated with Whole-brain radiotherapy (WBRT) followed by systemic therapy. Few studies have evaluated the role of chemoradiotherapy to the primary tumor after WBRT as definitive treatment in the management of these patients. We reviewed the outcome of 30 patients with primary NSCLC and brain metastasis at diagnosis without evidence of other metastatic sites. Patients were treated with WBRT and after induction chemotherapy with paclitaxel and cisplatin for two cycles. In the absence of progression, concurrent chemoradiotherapy for the primary tumor with weekly paclitaxel and carboplatin was indicated, with a total effective dose of 60 Gy. If disease progression was ruled out, four chemotherapy cycles followed. Median Progression-free survival (PFS) and Overall survival (OS) were 8.43 ± 1.5 and 31.8 ± 15.8 months, respectively. PFS was 39.5% at 1 year and 24.7% at 2 years. The 1- and 2-year OS rates were 71.1 and 60.2%, respectively. Three-year OS was significantly superior for patients with N0-N1 stage disease vs. N2-N3 (60 vs. 24%, respectively; Response rate [RR], 0.03; p= 0.038). Patients with NSCLC and brain metastasis might benefit from treatment with WBRT and concurrent thoracic chemoradiotherapy. The subgroup of N0-N1 patients appears to achieve the greatest benefit. The result of this study warrants a prospective trial to confirm the benefit of this treatment.

  9. Multimodal optical imaging database from tumour brain human tissue: endogenous fluorescence from glioma, metastasis and control tissues

    Science.gov (United States)

    Poulon, Fanny; Ibrahim, Ali; Zanello, Marc; Pallud, Johan; Varlet, Pascale; Malouki, Fatima; Abi Lahoud, Georges; Devaux, Bertrand; Abi Haidar, Darine

    2017-02-01

    Eliminating time-consuming process of conventional biopsy is a practical improvement, as well as increasing the accuracy of tissue diagnoses and patient comfort. We addressed these needs by developing a multimodal nonlinear endomicroscope that allows real-time optical biopsies during surgical procedure. It will provide immediate information for diagnostic use without removal of tissue and will assist the choice of the optimal surgical strategy. This instrument will combine several means of contrast: non-linear fluorescence, second harmonic generation signal, reflectance, fluorescence lifetime and spectral analysis. Multimodality is crucial for reliable and comprehensive analysis of tissue. Parallel to the instrumental development, we currently improve our understanding of the endogeneous fluorescence signal with the different modalities that will be implemented in the stated. This endeavor will allow to create a database on the optical signature of the diseased and control brain tissues. This proceeding will present the preliminary results of this database on three types of tissues: cortex, metastasis and glioblastoma.

  10. Enhanced efficacy of AZD3759 and radiation on brain metastasis from EGFR mutant non-small cell lung cancer.

    Science.gov (United States)

    Li, Xue; Wang, Yingchun; Wang, Jia; Zhang, Tianwei; Zheng, Li; Yang, Zhenfan; Xing, Ligang; Yu, Jinming

    2018-02-12

    The prognosis of patients with brain metastasis (BM) is poor. In this study, we demonstrated that AZD3759, an EGFR tyrosine kinase inhibitors (TKIs) with excellent blood-brain barrier (BBB) penetration, combined with radiation enhanced the antitumor efficacy in BM model from EGFR mutant (EGFRm) NSCLC. Besides, the antitumor activity displayed no difference between radiation concurrently with AZD3759 and radiation sequentially with AZD3759. Mechanistically, we found that two factors determined the enhanced efficacy: cells with EGFRm which were sensitive to AZD3759, and a relative high concentration of AZD3759. We have validated mechanisms underlying the radio-sensitizing effect of AZD3759, which were involved in decreased cell proliferation and survival, and suppressed repair of DNA damage. Moreover, our study found that AZD3759 inhibited both the non-homologous end joining (NHEJ) and homologous recombination (HR) DNA double stands breaks (DSBs) repair pathway, and abrogated the G2/M checkpoint to suppress DNA damage repair. We also detected the BBB penetration of AZD3759 when combined with cranial radiation. The results showed the BBB penetration of AZD3759 was decreased within 24 hours after radiation, however, the free concentration of AZD3759 in brain kept at a high level in the context of radiation. In conclusion, our findings suggest that AZD3759 combined with radiation enhances the antitumor activity in BM from EGFRm NSCLC, this combination therapy may be an effective treatment option for BM from EGFRm NSCLC. This article is protected by copyright. All rights reserved. © 2018 UICC.

  11. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase {sup 18}F-FET PET accuracy without dynamic scans

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Philipp; Stoffels, Gabriele; Stegmayr, Carina; Neumaier, Bernd [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); Ceccon, Garry [University of Cologne, Department of Neurology, Cologne (Germany); Rapp, Marion; Sabel, Michael; Kamp, Marcel A. [Heinrich Heine University Duesseldorf, Department of Neurosurgery, Duesseldorf (Germany); Filss, Christian P. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Shah, Nadim J. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Langen, Karl-Josef [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Galldiks, Norbert [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany)

    2017-07-15

    We investigated the potential of textural feature analysis of O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic {sup 18}F-FET PET. Tumour-to-brain ratios (TBRs) of {sup 18}F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR{sub mean} alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR{sub max} alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR{sub max}. Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic {sup 18}F-FET PET scans. (orig.)

  12. miRNA-197 and miRNA-184 are associated with brain metastasis in EGFR-mutant lung cancers.

    Science.gov (United States)

    Remon, J; Alvarez-Berdugo, D; Majem, M; Moran, T; Reguart, N; Lianes, P

    2016-02-01

    The prognostic value of EGFR mutation in lung cancer patients with brain metastases is uncertain and therapeutic efficacy with EGFR TKI is limited. Looking for biomarkers closely related with early tumor changes and brain metastases in non-small cell lung cancer is warranted. MicroRNAs (miRNAs) are frequently deregulated in lung cancer. The objective of this study was to investigate whether some miRNAs are related with brain metastasis risk in EGFR-mutant non-small cell lung cancer patients. miRNA quantification was retrospectively performed in formalin-fixed, extracranial paraffin-embedded adenocarcinoma tumor tissue available from 17 human samples of advanced non-small cell lung cancer patients. Samples were classified as brain metastasis group (5 EGFR-mutant patients with initial BM, EGFRm-BM+; and 6 EGFR wild-type patients with initial BM) and the control group (6 EGFR-mutant NSCLC patients without BM). The RNA obtained was preamplified and retro-transcribed, and the miRNA was quantified with the TaqMan OpenArray Human MiRNA Panel in the QuantStudio™ 12 K Flex Real-Time PCR system. miRNA-197 and miRNA-184 showed a significant higher expression in EGFRm-BM+ group than in the control group (p = 0.017 and p = 0.01, for miRNA-197 and miRNA-184, respectively), with a trend toward overexpression in BM group compared with the control group (p = 0.08 and p = 0.065, for miRNA-197 and miRNA-184, respectively), without differences in expression in BM group according to EGFR mutational status (EGFR wild type vs. EGFR-mutant: p = 0.175 and p = 0.117, for miRNA-197, miRNA-184 respectively). miRNA-197 and miRNA-184 are overexpressed in EGFR-mutant patients with BM and they might be a new biomarker for stratifying the risk of BM in this subpopulation.

  13. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase18F-FET PET accuracy without dynamic scans.

    Science.gov (United States)

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  14. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...

  15. Mesothelin-specific Immune Responses Predict Survival of Patients With Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Liu Zhenjiang

    2017-09-01

    Interpretation: This is the first evidence that immune responses to mesothelin serve as a marker of increased overall survival in patients with brain metastases, regardless of the primary tumor origin. Analyses of immunological markers could potentially serve as prognostic markers in patients with brain metastases and help to select patients in need for adjunct, immunological, treatment strategies.

  16. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption

    NARCIS (Netherlands)

    Kobus, T.; Zervantonakis, I.K.; Zhang, Y; McDannold, N.J.

    2016-01-01

    HER2-targeting antibodies (i.e. trastuzumab and pertuzumab) prolong survival in HER2-positive breast cancer patients with extracranial metastases. However, the response of brain metastases to these drugs is poor, and it is hypothesized that the blood-brain barrier (BBB) limits drug delivery to the

  17. What’s the clinical significance of adding diffusion and perfusion MRI in the differentiation of glioblastoma multiforme and solitary brain metastasis?

    Directory of Open Access Journals (Sweden)

    Amr F. Mourad

    2017-09-01

    Full Text Available Objective: To evaluate the additional diagnostic value of diffusion and perfusion MRI in the differentiation of glioblastoma multiforme (GBM and solitary brain metastasis. Patients and methods: This retrospective study included 24 patients with histologically proven brain tumors who underwent conventional MRI with analysis of diffusion (DWI and perfusion (PWI MRI findings of each tumor. The Apparent Diffusion Coefficient (ADC values were calculated in the minimum (ADC-MIN, mean (ADC-MEAN, and maximum (ADC-MAX in all the tumors and the peritumoral regions. The PWI data was expressed as maximum regional cerebral blood volume (rCBV of the tumors and peritumoral regions. Results: After adding diffusion and perfusion to conventional MRI findings, we found that the accuracy of differentiation between glioblastoma multiforme (GBM and solitary metastasis increased from 70% to 90%.There is a significant difference in DWI signal intensity between GBM and metastatic tumors (P < 0.05. The ADC values of GBM were lower than that of metastatic tumors. On perfusion MRI, the maximum rCBV of the peritumoral region (rCBVP of GBM was higher than that of brain metastases (P < 0.001. Conclusion: The addition of diffusion and perfusion to the MRI protocol increases the accuracy of differentiation between GBM and solitary brain metastasis and should be considered routinely. Keywords: Diffusion MRI, Perfusion MRI, GBM, Solitary brain metastases

  18. Diagnostic yield of double-dose gadobutrol in the detection of brain metastasis: intraindividual comparison with double-dose gadopentetate dimeglumine.

    Science.gov (United States)

    Kim, E S; Chang, J H; Choi, H S; Kim, J; Lee, S-K

    2010-06-01

    Accurate assessment of the number and lesion characteristics of brain metastasis is very important in GKS. The purpose of this study was to compare the diagnostic efficacy of DD gadobutrol in the detection of brain metastases compared with a DD 0.5-mol/L gadolinium contrast, gadopentetate dimeglumine. Records of 27 patients (male to female ratio, 15:12; mean age, 57.1 years) diagnosed with brain metastasis and having undergone GKS were retrospectively analyzed. All patients underwent the first 3D-T1-GRE MR imaging with a DD of gadopentetate dimeglumine. The second MR imaging with a DD of gadobutrol was performed during GKS by using the same parameters used for the first scan. Two neuroradiologists counted the number of enhancing lesions on 2 consecutive MR imaging examinations and reached consensus. Lesion-brain CNR was measured from 45 lesions, and paired t test analysis was performed between DD gadopentetate dimeglumine and gadobutrol MR imaging. On DD gadopentetate dimeglumine-enhanced images, a total of 130 lesions were detected visually. With DD gadobutrol, 25 additional lesions were detected on GKS MR imaging. There was no missing lesion on DD gadobutrol MR imaging. The mean lesion-brain CNR was higher on DD gadobutrol MR imaging than on DD gadopentetate dimeglumine imaging (2.17 +/- 0.19 versus 1.90 +/- 0.26; P = .00011, paired t test, 2-tailed). Only 2 cases showed lower CNR on DD gadobutrol images: 1 with hemorrhagic metastasis from renal cell carcinoma and the other with steroid treatment after the first MR imaging. DD 1.0-mol/L gadobutrol provides higher lesion conspicuity and enhances lesion detection in brain metastasis compared with DD 0.5-mol/L gadolinium contrast agents.

  19. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis

    Science.gov (United States)

    Jassam, Samah A.; Maherally, Zaynah; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.

    2017-01-01

    Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell–brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells (p cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell–brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (p brain metastasis. PMID:28698503

  20. Assessment of the Molecular Expression and Structure of Gangliosides in Brain Metastasis of Lung Adenocarcinoma by an Advanced Approach Based on Fully Automated Chip-Nanoelectrospray Mass Spectrometry

    Science.gov (United States)

    Zamfir, Alina D.; Serb, Alina; Vukeli, Željka; Flangea, Corina; Schiopu, Catalin; Fabris, Dragana; Kalanj-Bognar, Svjetlana; Capitan, Florina; Sisu, Eugen

    2011-12-01

    Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di- O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.

  1. The Prognostic Role of Tumor Volume in the Outcome of Patients with Single Brain Metastasis After Stereotactic Radiosurgery.

    Science.gov (United States)

    Bennett, E Emily; Angelov, Lilyana; Vogelbaum, Michael A; Barnett, Gene H; Chao, Samuel T; Murphy, Erin S; Yu, Jennifer S; Suh, John H; Jia, Xuefei; Stevens, Glen H J; Ahluwalia, Manmeet S; Mohammadi, Alireza M

    2017-08-01

    Patients with single brain metastasis (SBM) have better outcomes after stereotactic radiosurgery (SRS). We analyzed our SRS database to evaluate possible prognostic factors in patients with SBM. A total of 584 patients with SBM were treated with SRS at our institution (2000-2012). Study end points were overall survival (OS), and distant and local intracranial progression-free survival (DPFS and LPFS, respectively). Multivariable analysis was performed to develop prognostic models. Median OS was 10.8 months. A total of 196 patients (36.7%) had distant progression and 102 patients (19.2%) had local progression. New SBM prognostic indices (SPIs) were devised for OS, DPFS, and LPFS. Graded prognostic assessment, neurologic symptoms (P = 0.01), and tumor volume (P = 0.02) were independently associated with OS. The SPI for OS was defined: unfavorable (OS, 7.3 months), intermediate (OS, 10.6 months), and favorable (OS, 19.8 months). For DPFS, age (P = 0.0029), tumor volume (P = 0.0002), and previous whole-brain radiotherapy (P = 0.027) were prognostic and were used to define SPI for DPFS: favorable (6-month cumulative incidence failure [CIF], 10.9%), intermediate (6-month CIF, 16.7%), and unfavorable (6-month CIF, 26.0%) (P CIF, 12.3%) and favorable (6-month CIF, 6%) (P < 0.001). This is the largest series of patients with SBM treated with SRS analyzed for OS, LPFS, and DPFS. SPI was devised for end points. Tumor volume had a significant association with all 3 end points. Neurologic symptoms, age, and previous whole-brain radiotherapy were also found to be prognostic. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Resection Followed by Involved-Field Fractionated Radiotherapy in the Management of Single Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Samuel M Shin

    2015-09-01

    Full Text Available Introduction: We expanded upon our previous experience using involved-field fractionated radiotherapy (IFRT as an alternative to whole brain radiotherapy (WBRT or stereotactic radiosurgery (SRS for patients with surgically resected brain metastases.Material and Methods: All patients with single brain metastases who underwent surgical resection followed by IFRT at our institution from 2006-2013 were evaluated. Local recurrence-free survival, distant failure-free survival and overall survival were determined. Analyses were performed associating clinical variables with local recurrence and distant failure. Salvage approaches and toxicity of treatment for each patient were also assessed.Results: Median follow-up was 19.1 months. Fifty-six patients were treated with a median dose of 40.05 Gy/15 fractions with IFRT to the resection cavity. Local recurrence-free survival was 91.4%, distant failure-free survival was 68.4%, and overall survival was 77.7% at 12 months. No variables were associated with increased local recurrence, however melanoma histopathology and infratentorial location were associated with distant failure on multivariate analysis. Local recurrences were salvaged in 5/8 patients, and distant failures were salvaged in 24/29 patients. Two patients developed radionecrosis.Conclusions: Adjuvant IFRT is feasible and safe for well-selected patients with surgically resected single brain metastases. Acceptable rates of local control and salvage of distal intracranial recurrences continue to be achieved with continued follow-up.

  3. Significant tumor shift in patients treated with stereotactic radiosurgery for brain metastasis

    Directory of Open Access Journals (Sweden)

    Eline D. Hessen

    2017-02-01

    Conclusion: Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS.

  4. Integrin Alpha-v and HER2 in Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-10-01

    ZOOM live cell imaging machine (ESSEN Bioscience; Figure 2). c. Interactions of αv integrin and HER2 in breast cancer brain metastases. We found...HCC1954 breast cancer cells. C) Real time live cell imaging of MM2BH cells treated with cilengitide (0, .3, 1, 3, and 10 µg/mL) using IncuCyte ZOOM

  5. O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis.

    Science.gov (United States)

    Heinzel, Alexander; Müller, Dirk; Yekta-Michael, Sareh Said; Ceccon, Garry; Langen, Karl-Josef; Mottaghy, Felix M; Wiesmann, Martin; Kocher, Martin; Hattingen, Elke; Galldiks, Norbert

    2017-09-01

    Conventional MRI is the standard method to diagnose recurrence of brain metastases after radiation. However, following radiation therapy, reactive transient blood-brain barrier alterations with consecutive contrast enhancement can mimic brain metastasis recurrence. Recent studies have suggested that O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET improves the correct differentiation of brain metastasis recurrence from radiation injury. Based on published evidence and clinical expert opinion, we analyzed effectiveness and cost-effectiveness of the use of FET PET in addition to MRI compared with MRI alone for the diagnosis of recurrent brain metastases. A decision-tree model was designed to compare the 2 diagnostic strategies from the perspective of the German Statutory Health Insurance (SHI) system. Effectiveness was defined as correct diagnosis of recurrent brain metastasis and was compared between FET PET with MRI and MRI alone. Costs were calculated for a baseline scenario and for a more expensive scenario. Robustness of the results was tested using sensitivity analyses. Compared with MRI alone, FET PET in combination with MRI increases the rate of correct diagnoses by 42% (number needed to diagnose of 3) with an incremental cost-effectiveness ratio of €2821 (baseline scenario) and €4014 (more expensive scenario) per correct diagnosis. The sensitivity analyses confirmed the robustness of the results. The model suggests that the additional use of FET PET with conventional MRI for the diagnosis of recurrent brain metastases may be cost-effective. Integration of FET PET has the potential to avoid overtreatment with corresponding costs as well as unnecessary side effects.

  6. Metástase cerebral: tratamento paliativo com radiocirurgia Brain metastasis: palliative treatment with radiosurgery

    Directory of Open Access Journals (Sweden)

    Sérgio L. Faria

    1995-09-01

    Full Text Available O artigo faz avaliação de 52 pacientes com metástase cerebral tratados com radiocirurgia estereotática na Universidade McGill, em Montreal. A radiocirurgia foi realizada com a técnica dinâmica em que, ao mesmo tempo, giram a mesa e a cabeça do acelerador linear de 10 MV. Todos os pacientes (56 tratamentos ao todo foram tratados com um único isocentro e uma dose única mediana de 1800 cGy na periferia da metástase. Em 88% dos casos a radiocirurgia foi usada após falha de tratamento radioterápico fracionado em todo cérebro. Todos os 52 casos tiveram avaliação com CT pós radiocirurgia. O seguimento mediano foi de 6 meses (variou entre 1 e 37 meses e a taxa de resposta, parcial ou completa, foi de 64%. Apenas 4 pacientes (7% tiveram algum tipo de complicação tardia relacionada ao tratamento. Estes achados vão de encontro com dados da literatura. A radiocirurgia é tratamento pouco agressivo, bem tolerado e com alta taxa de resposta para lesões locais e pode ser útil para pacientes selecionados. O seu valor definitivo, como tratamento único ou combinado com radioterapia em todo cérebro, está sendo avaliado de forma prospectiva e randomizada.This is a retrospective review of 52 patients with metastatic brain disease who underwent stereotactic radiosurgery at McGill University in Montreal. The radiosurgical treatment was performed with the dynamic rotation technique in which there is continuous and simultaneous movement of treatment couch and machine gantry of a 10 MV linac. All patients were treated with a single isocenter and a median dose of 1800 cGy was delivered. In 88% of the cases radiosurgery was given after failure from whole brain conventional irradiation. All 52 cases were assessed with brain CT post radiosurgery. The median follow up time was 6 months (range 1 -37 months and the response rate (partial or complete was 64%. Only 4 patientes (7% developed late complications related to the treatment. These findings are

  7. Greater efficacy of chemotherapy plus bevacizumab compared to chemo- and targeted therapy alone on non-small cell lung cancer patients with brain metastasis.

    Science.gov (United States)

    Tang, Ning; Guo, Jun; Zhang, Qianqian; Wang, Yali; Wang, Zhehai

    2016-01-19

    Control of non-small-cell lung cancer (NSCLC) with brain metastasis is clinically challenging. This study retrospectively evaluated the efficacy of different adjuvant therapies for 776 cases of advanced NSCLCs with brain metastasis who treated with chemotherapy, chemotherapy plus bevacizumab, tyrosine kinase inhibitor (TKI) alone, or supportive care. The median progression-free survival (mPFS) and median overall survival (mOS) of patients treated with chemotherapy plus bevacizumab were 8.5 and 10.5 months, respectively, which were better than those of patients treated with other three therapies(P chemotherapy plus bevacizumab but was significantly better than that of other therapies. Moreover, for patients with EGFR wild-type NSCLC, the mPFS and mOS after chemotherapy plus bevacizumab were greater than those with other two therapies (P Chemotherapy plus bevacizumab was more effective for NSCLC patients with brain metastasis. Further studies will investigate the benefit of TKI alone for patients with EGFR-mutated. For patients with EGFR wild-type, chemotherapy plus bevacizumab did improve PFS and OS. Furthermore, regimens including pemetrexed led to a greater RR.

  8. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel [Cedars-Sinai Medical Center, Department of Medical Imaging, Los Angeles, CA (United States); Erly, William; Nael, Kambiz [University of Arizona Medical Center, Department of Medical Imaging, Tucson, AZ (United States)

    2015-07-15

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K{sup trans}, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K{sup trans}, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K{sup trans} were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  9. Mesothelin-specific Immune Responses Predict Survival of Patients With Brain Metastasis

    DEFF Research Database (Denmark)

    Zhenjiang, Liu; Rao, Martin; Luo, Xiaohua

    2017-01-01

    for cytokine production in response to a broad panel of defined viral and TAA target antigens, including full-length mesothelin. Incubation of immune cells with antigenic targets was carried out in i) medium alone, (ii) in a cytokine cocktail of interleukin (IL)-2/IL-15/IL-21, or (iii) IL-2/IL-7. Supernatants......BACKGROUND: Patients with advanced malignancies, e.g. lung cancer, ovarian cancer or melanoma, frequently present with brain metastases. Clinical presentation and disease progression of cancer is in part shaped by the interaction of the immune system with malignant cells. Antigen-targeted immune...

  10. WE-EF-BRA-10: Prophylactic Cranial Irradiation Reduces the Incidence of Brain Metastasis in a Mouse Model of Metastatic Breast Cancerr

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D; Debeb, B; Larson, R; Diagaradjane, P; Woodward, W [MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with acute lymphoblastic leukemia and small-cell lung cancer. We examined whether PCI could benefit breast cancer patients at high risk of developing brain metastases. Methods: We utilized our mouse model in which 500k green fluorescent protein (GFP)-labeled breast cancer cells injected into the tail vein of SCID/Beige mice resulted in brain metastases in approximately two-thirds of untreated mice. To test the efficacy of PCI, one set of mice was irradiated five days after cell injection with a single fraction of 4-Gy (two 2-Gy opposing fields) whole-brain irradiation on the XRAD 225Cx small-animal irradiator. Four controls were included: a non-irradiated group, a group irradiated two days prior to cell injection, and two groups irradiated 3 or 6 weeks after cell injection. Mice were sacrificed four and eight weeks post-injection and were evaluated for the presence of brain metastases on a fluorescent stereomicroscope. Results: The incidence of brain metastasis in the non-irradiated group was 77% and 90% at four and eight weeks, respectively. The PCI group had a significantly lower incidence, 20% and 30%, whereas the other three control groups had incidence rates similar to the non-treated control (70% to 100%). Further, the number of metastases and the metastatic burden were also significantly lower in the PCI group compared to all other groups. Conclusion: The timing of irradiation to treat subclinical disease is critical, as a small dose of whole-brain irradiation given five days after cell injection abrogated tumor burden by greater than 90%, but had no effect when administered twenty-one days after cell injection. PCI is likely to benefit breast cancer patients at high risk of developing brain metastases and should be strongly considered in the clinic.

  11. Survival benefit of anti-HER2 therapy after whole-brain radiotherapy in HER2-positive breast cancer patients with brain metastasis.

    Science.gov (United States)

    Zhang, Qian; Chen, Jian; Yu, Xiaoli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Hu, Chaosu; Guo, Xiaomao; Sun, Jing; Chen, Jiayi

    2016-09-01

    We aimed to assess the survival benefit of epidermal growth factor receptor 2 (HER2)-positive breast cancer patients with brain metastasis (BM) after whole-brain radiotherapy (WBRT) in combination with systemic treatments, especially anti-HER2 therapy. This retrospective study analyzed the overall survival (OS) of 60 HER2-positive breast cancer patients with BM after WBRT in combination with systemic treatments. Among them, 42 patients received chemotherapy while 18 patients did not receive after WBRT. With regard to anti-HER2 therapy, after WBRT, 17 patients received anti-HER2 treatment without prior adjuvant trastuzumab-based therapy, 7 patients received anti-HER2 treatment with prior adjuvant trastuzumab-based therapy, and 36 patients did not receive further anti-HER2 treatment. All patients were followed up regularly until January 23, 2013. The median OS of patients with BM was 12 months. Patients who received anti-HER2 therapy and chemotherapy after WBRT had significantly better survival compared with patients who did not receive further treatment. Patients who received anti-HER2 treatment after WBRT but did not receive adjuvant trastuzumab-based therapy for early breast cancer had better OS, followed by patients who received anti-HER2 agent both in adjuvant treatment and after WBRT and patients who did not receive anti-HER2 treatment. Multivariate analysis showed that Karnofsky Performance Status, control of extracranial metastases, chemotherapy after WBRT, and anti-HER2 therapy combined with WBRT were all independent predictors for OS. Both chemotherapy and anti-HER2 therapy after WBRT could improve OS. Moreover, patients without prior exposure to adjuvant anti-HER2 treatment may have survival benefit superior to those of patients with prior exposure.

  12. Bone Metastasis

    Science.gov (United States)

    ... help reduce pain and other symptoms of bone metastases. Symptoms Sometimes, bone metastasis causes no signs and ... cancers most likely to cause bone metastasis include: Breast cancer Kidney cancer Lung cancer Lymphoma Multiple myeloma Prostate ...

  13. The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study

    Science.gov (United States)

    Siam, Laila; Bleckmann, Annalen; Chaung, Han-Ning; Mohr, Alexander; Klemm, Florian; Barrantes-Freer, Alonso; Blazquez, Raquel; Wolff, Hendrik A.; Lüke, Florian; Rohde, Veit; Stadelmann, Christine; Pukrop, Tobias

    2015-01-01

    The current approach to brain metastases resection is macroscopic removal of metastasis until reaching the glial pseudo-capsule (gross total resection (GTR)). However, autopsy studies demonstrated infiltrating metastatic cells into the parenchyma at the metastasis/brain parenchyma (M/BP)-interface. Aims/Methods: To analyze the astrocyte reaction and metastatic infiltration pattern at the M/BP-interface with an organotypic brain slice coculture system. Secondly, to evaluate the significance of infiltrating metastatic tumor cells in a prospective biopsy study. Therefore, after GTR, biopsies were obtained from the brain parenchyma beyond the glial pseudo-capsule and analyzed histomorphologically. Results: The coculture revealed three types of cancer cell infiltration. Interestingly, the astrocyte reaction was significantly different in the coculture with a benign, neuroectodermal-derived cell line. In the prospective biopsy study 58/167 (34.7%) samples revealed infiltrating metastatic cells. Altogether, 25/39 patients (64.1%) had proven to exhibit infiltration in at least one biopsy specimen with significant impact on survival (OS) (3.4 HR; p = 0.009; 2-year OS was 6.6% versus 43.5%). Exceptionally, in the non-infiltrating cohort three patients were long-term survivors. Conclusions: Metastatic infiltration has a significant impact on prognosis. Secondly, the astrocyte reaction at the M/BP-interface is heterogeneous and supports our previous concept of the organ-specific defense against metastatic (organ-foreign) cells. PMID:26299612

  14. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis.

    Science.gov (United States)

    Pishko, Gregory L; Muldoon, Leslie L; Pagel, Michael A; Schwartz, Daniel L; Neuwelt, Edward A

    2015-02-17

    Blockade of vascular endothelial growth factor (VEGF) to promote vascular normalization and inhibit angiogenesis has been proposed for the treatment of brain metastases; however, vascular normalization has not been well-characterized in this disease. We investigated the effect of treatment with bevacizumab anti-VEGF antibody on magnetic resonance imaging (MRI) biomarkers of brain tumor vascular characteristics in comparison to small molecule delivery in a rat model of human lung cancer brain metastasis. Athymic rats with A549 human lung adenocarcinoma intracerebral xenografts underwent MRI at 11.75 T before and one day after treatment with bevacizumab (n = 8) or saline control (n = 8) to evaluate tumor volume, free water content (edema), blood volume and vascular permeability (Ktrans). One day later, permeability to 14C-aminoisobutyric acid (AIB) was measured in tumor and brain to assess the penetration of a small drug-like molecule. In saline control animals, tumor volume, edema and permeability increased over the two day assessment period. Compared to controls, bevacizumab treatment slowed the rate of tumor growth (P = 0.003) and blocked the increase in edema (P = 0.033), but did not alter tumor blood volume. Bevacizumab also significantly reduced Ktrans (P = 0.033) and AIB passive permeability in tumor (P = 0.04), but not to peritumoral tissue or normal brain. Post-treatment Ktrans correlated with AIB levels in the bevacizumab-treated rats but not in the saline controls. The correlation of an MRI biomarker for decreased vascular permeability with decreased AIB concentration in tumor after antiangiogenic treatment suggests that bevacizumab partially restored the normal low permeability characteristics of the blood-brain barrier in a model of human lung cancer brain metastasis.

  15. Temporal Map Formation in the Barn Owl's Brain

    Science.gov (United States)

    Leibold, Christian; Kempter, Richard; van Hemmen, J. Leo

    2001-12-01

    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise.

  16. Emotional brain states carry over and enhance future memory formation.

    Science.gov (United States)

    Tambini, Arielle; Rimmele, Ulrike; Phelps, Elizabeth A; Davachi, Lila

    2017-02-01

    Emotional arousal can produce lasting, vivid memories for emotional experiences, but little is known about whether emotion can prospectively enhance memory formation for temporally distant information. One mechanism that may support prospective memory enhancements is the carry-over of emotional brain states that influence subsequent neutral experiences. Here we found that neutral stimuli encountered by human subjects 9-33 min after exposure to emotionally arousing stimuli had greater levels of recollection during delayed memory testing compared to those studied before emotional and after neutral stimulus exposure. Moreover, multiple measures of emotion-related brain activity showed evidence of reinstatement during subsequent periods of neutral stimulus encoding. Both slow neural fluctuations (low-frequency connectivity) and transient, stimulus-evoked activity predictive of trial-by-trial memory formation present during emotional encoding were reinstated during subsequent neutral encoding. These results indicate that neural measures of an emotional experience can persist in time and bias how new, unrelated information is encoded and recollected.

  17. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The expression of E-cadherin-catenin complex in patients with advanced gastric cancer: role in formation of metastasis.

    Directory of Open Access Journals (Sweden)

    Marek Ustymowicz

    2010-06-01

    Full Text Available The E-cadherin-catenin complex plays an important role in the process of cell adhesion. Its dysfunction is associated with a decrease in cell differentiation and with increased invasiveness and metastasis. Our aim was to evaluate the expression of E-cadherin and B-catenin in advanced gastric cancer in relation to selected clinico-pathomorphological parameters. Formalin-fixed, paraffin-embedded tissue specimens were immunohistochemically stained with monoclonal antibodies E-cadherin (NCL-E-Cad, Novocastra Laboratiries Ltd; dilution 1:50, beta-catenin (NCL-B-CAT, Novocastra Laboratories Ltd; dilution 1:100, alpha-catenin (alpha-E-caten, Santa Cruz Biotechnology; dilution 1:300 and gamma-catenin (gamma-catenin, Santa Cruz Biotechnology; dilution 1:100. The expressions of E-cadherin and alpha-, beta-, gamma-catenins in the main mass of tumor and lymph node metastasis were investigated in 91 patients with gastric cancer. No statistically significant correlation was observed between the expressions of E-cadherin, alpha-, beta-catenins and histological differentiation and between the expressions of E-cadherin, alpha-, gamma-catenins and location or depth of invasion. Moreover, the expression of alpha-, gamma-catenins in the main mass of tumor was not associated with lymph node metastasis. However, we found a relationship between the expression of beta-catenin in the main mass of tumor and lymph node metastasis and tumor location. The depth of invasion was correlated with positive expression of beta-catenin in the main mass of gastric cancer. A statistically significant association was observed between the expressions of E-cadherin and beta-catenin in the main mass of tumor and lymph node involvement. The expression of alpha-catenin in the main mass of tumor was also associated with histological differentiation and Lauren's classification. Statistical analysis showed an association between the expression of E-cadherin and postoperative survival time. No

  19. SU-E-QI-21: Iodinated Contrast Agent Time Course In Human Brain Metastasis: A Study For Stereotactic Synchrotron Radiotherapy Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Esteve, F; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Isere (France); Tessier, A; Balosso, J [Centre Hospitalier Universitaire, La Tronche, Isere (France)

    2014-06-15

    Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0 and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.

  20. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema.

    Science.gov (United States)

    Wang, Yang; Wang, Enmin; Pan, Li; Dai, Jiazhong; Zhang, Nan; Wang, Xin; Liu, Xiaoxia; Mei, Guanghai; Sheng, Xiaofang

    2014-09-01

    Bevacizumab blocks the effects of vascular endothelial growth factor in leakage-prone capillaries and has been suggested as a new treatment for cerebral radiation edema and necrosis. CyberKnife is a new, frameless stereotactic radiosurgery system. This work investigated the safety and efficacy of CyberKnife followed by early bevacizumab treatment for brain metastasis with extensive cerebral edema. The eligibility criteria of the patients selected for radiosurgery followed by early use of adjuvant bevacizumab treatment were: (1) brain tumors from metastasis with one solitary brain lesion and symptomatic extensive cerebral edema; (2) >18 years of age; (3) the patient refused surgery due to the physical conditions and the risk of surgery; (4) no contraindications for bevacizumab. (5) bevacizumab was applied for a minimum of 2 injections and a maximum of 6 injections with a 2-week interval between treatments, beginning within 2 weeks of the CyberKnife therapy; (6) Karnofsky performance status (KPS) ≥30. Tumor size and edema were monitored by magnetic resonance imaging (MRI). Dexamethasone dosage, KPS, adverse event occurrence and associated clinical outcomes were also recorded. Eight patients were accrued for this new treatment. Radiation dose ranged from 20 to 33 Gy in one to five sessions, prescribed to the 61-71 % isodose line. Bevacizumab therapy was administered 3-10 days after completion of CyberKnife treatment for a minimum of two cycles (5 mg/kg, at 2-week intervals). MRI revealed average reductions of 55.8 % (post-gadolinium) and 63.4 % (T2/FLAIR). Seven patients showed significant clinical neurological improvements. Dexamethasone was reduced in all patients, with five successfully discontinuing dexamethasone treatment 4 weeks after bevacizumab initiation. Hypertension, a bevacizumab-related adverse event, occurred in one patient. After 3-8 months, all patients studied were alive and primary brain metastases were under control, 2 developed new brain

  1. [Biology of cancer metastasis].

    Science.gov (United States)

    Robert, Jacques

    2013-04-01

    Metastatic dissemination represents the true cause of the malignant character of cancers. Its targeting is much more difficult than that of cell proliferation, because metastasis, like angiogenesis, involves a number of complex interactions between tumour and stroma; the contribution of adhesion and motility pathways is added to that of proliferation and survival pathways. Long distance extension, discontinuous in respect to the primitive tumour, is a major feature of cancer and the main cause of patients' death. Cancer cells use two main dissemination pathways: the lymphatic pathway, leading to the invasion of the lymph nodes draining the organs where the tumour evolves; and the blood pathway, leading to the invasion of distant organs such as liver, brain, bone or lung. Metastasis is inscribed within the properties of the primitive tumour, as shown by the comparative molecular analysis of the primitive tumour and its own metastases: their similarity is always more important than what could be expected from the general activation of "metastasis genes" or the inhibition of "metastasis suppressor genes". Among the signalling pathways involved in metastasis, one can mention the integrin pathway, the transforming growth factor beta (TGFβ) pathway, the chemokine pathway, the dependence receptor pathway and many others. These pathways allow the possibility of therapeutic targeting, thanks to therapeutic antibodies or small molecules inhibiting the kinases involved in these signalling pathways, but not a single properly anti-metastatic drug has yet been proposed: the complexity and the diversity of the processes allowing metastasis emergence, as well as the fact that the activation mechanisms are more often epigenetic than genetic and are generally physiological processes misled by the malignant cell, render especially difficult the therapeutic approach of metastasis.

  2. Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis.

    Science.gov (United States)

    Arrieta, Oscar; Saavedra-Perez, David; Kuri, Roberto; Aviles-Salas, Alejandro; Martinez, Luis; Mendoza-Posada, Daniel; Castillo, Patricia; Astorga, Alma; Guzman, Enrique; De la Garza, Jaime

    2009-04-22

    Central nervous system is a common site of metastasis in NSCLC and confers worse prognosis and quality of life. The aim of this prospective study was to evaluate the prognostic significance of clinical-pathological factors (CPF), serum CEA levels, and EGFR and HER2 tissue-expression in brain metastasis (BM) and overall survival (OS) in patients with advanced NSCLC. In a prospective manner, we studied 293 patients with NSCLC in IIIB-IV clinical stage. They received standard chemotherapy. CEA was measured prior to treatment; EGFR and HER2 were evaluated by immunohistochemistry. BM development was confirmed by MRI in symptomatic patients. BM developed in 27, and 32% of patients at 1 and 2 years of diagnosis with adenocarcinoma (RR 5.2; 95% CI, 1.002-29; p = 0.05) and CEA > or = 40 ng/mL (RR 11.4; 95% CI, 1.7-74; p or = 40 ng/mL (RR 1.5; 95% CI, 1.09-2.2; p = 0.014) and EGFR expression (RR 1.6; 95% CI, 1.4-1.9; p = 0.012) were independent associated factors to worse OS. High CEA serum level is a risk factor for BM development and is associated with poor prognosis in patients with advanced NSCLC. Surface expression of CEA in tumor cells could be the physiopathological mechanism for invasion to CNS.

  3. What Would Catherine of Sienna Do? Spiritual Formation and the Brains of Adolescent Girls

    Science.gov (United States)

    Baker, Dori; Edwards, Ned

    2012-01-01

    This article explores how new knowledge about the adolescent female brain lends theoretical support to narrative and contemplative practices of spiritual formation of girls. Current brain research supports the use of particular methods of religious formation for teenagers in general, and teenage girls in particular. This article suggests that…

  4. From brain formation to plasticity: insights on Otx2 homeoprotein.

    Science.gov (United States)

    Sugiyama, Sayaka; Prochiantz, Alain; Hensch, Takao K

    2009-04-01

    The shaping of neuronal circuits is essential during postnatal brain development. A window of neuronal remodeling by sensory experience typically occurs during a unique time in early life. The many types of behavior and perception, like human language, birdsong, hearing and vision are refined by experience during these distinct 'critical periods'. The onset of critical periods for vision is delayed in animals that remain in complete darkness from birth. It is then predicted that a 'messenger' within the visual pathway signals the amount of sensory experience that has occurred. Our recent results indicate that Otx2 homeoprotein, an essential morphogen for embryonic head formation, is reused later in life as this 'messenger' for critical period plasticity. The homeoprotein is stimulated by visual experience to propagate into the visual cortex, where it is internalized by GABAergic interneurons, especially Parvalbumin-positive cells (PV-cells). Otx2 promotes the maturation of PV-cells, consequently activating critical period onset in the visual cortex. Here, we discuss recent data that are beginning to illuminate the physiological function of non-cell autonomous homeoproteins, as well as the restriction of their transfer to PV-cells in vivo.

  5. High αv Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats.

    Science.gov (United States)

    Wu, Yingjen Jeffrey; Pagel, Michael A; Muldoon, Leslie L; Fu, Rongwei; Neuwelt, Edward A

    2017-08-01

    Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA level in advanced non-small cell lung cancer: a prospective analysis

    Directory of Open Access Journals (Sweden)

    Castillo Patricia

    2009-04-01

    Full Text Available Abstract Background Central nervous system is a common site of metastasis in NSCLC and confers worse prognosis and quality of life. The aim of this prospective study was to evaluate the prognostic significance of clinical-pathological factors (CPF, serum CEA levels, and EGFR and HER2 tissue-expression in brain metastasis (BM and overall survival (OS in patients with advanced NSCLC. Methods In a prospective manner, we studied 293 patients with NSCLC in IIIB-IV clinical stage. They received standard chemotherapy. CEA was measured prior to treatment; EGFR and HER2 were evaluated by immunohistochemistry. BM development was confirmed by MRI in symptomatic patients. Results BM developed in 27, and 32% of patients at 1 and 2 years of diagnosis with adenocarcinoma (RR 5.2; 95% CI, 1.002–29; p = 0.05 and CEA ≥ 40 ng/mL (RR 11.4; 95% CI, 1.7–74; p p = 0.048, poor performance status (RR 1.8; 95% CI, 1.5–2.3; p = 0.002, advanced clinical stage (RR 1.44; 95% CI, 1.02–2; p = 0.04, CEA ≥ 40 ng/mL (RR 1.5; 95% CI, 1.09–2.2; p = 0.014 and EGFR expression (RR 1.6; 95% CI, 1.4–1.9; p = 0.012 were independent associated factors to worse OS. Conclusion High CEA serum level is a risk factor for BM development and is associated with poor prognosis in patients with advanced NSCLC. Surface expression of CEA in tumor cells could be the physiopathological mechanism for invasion to CNS.

  7. The Role of MMP-1 in Breast Cancer Growth and Metastasis to the Brain in a Xenograft Model

    Science.gov (United States)

    2012-12-07

    latter from chemotherapy-induced apoptosis , an effect dependent upon gap-junction communications between the different cell types [5,42]. While not...27. Huang SHF -J, Chou P-C, Sawaya R, Steeg PS: Inhibition of signal transducer and activator of transcription 3 activation suppresses the brain

  8. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer

    DEFF Research Database (Denmark)

    Lund, Rikke R; Leth-Larsen, Rikke; Caterino, Tina Di

    2015-01-01

    Metastasis is the main cause of cancer-related deaths and remains the most significant challenge to management of the disease. Metastases are established through a complex multistep process involving intracellular signaling pathways. To gain insight to proteins central to specific steps...... (NRH2). The altered expression levels were validated at the protein and transcriptional levels, and analysis of breast cancer biopsies from two cohorts of patients demonstrated a significant correlation between high CYB5R3 expression and poor disease-free and overall survival in patients with estrogen...... in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using stable isotopic labeling by amino acids in cell culture and subcellular fractionation, the nuclear, cytosol, and mitochondria proteomes...

  9. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI.

    Science.gov (United States)

    Hernández Pinzón, J; Mena, D; Aguilar, M; Biafore, F; Recondo, G; Bastianello, M

    2016-01-01

    The use of (18)F-DOPA PET/CT with magnetic resonance imaging fusion and the use of visual methods and quantitative analysis helps to differentiate between changes post-radiosurgery vs. suspicion of disease progression in a patient with brain metastases from melanoma, thus facilitating taking early surgical action. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  10. Brain metastasis in patients with metastatic breast cancer in the real world: a single-institution, retrospective review of 12-year follow-up.

    Science.gov (United States)

    Matsuo, Satomi; Watanabe, Junichiro; Mitsuya, Koichi; Hayashi, Nakamasa; Nakasu, Yoko; Hayashi, Mitsuhiro

    2017-02-01

    The data of 589 metastatic breast cancer (MBC) patients in a single institution were reviewed to determine the outcomes of patients with brain metastasis (BM) and assess the efficacy of BM screening. The patients with BM among the 589 MBC patients who underwent treatment at Shizuoka Cancer Center (Shizuoka, Japan) from 09/2002 to 03/2014 were retrospectively analyzed. During the study period, BM developed in 187 (31.7%) patients. The tumor subtypes were as follows: luminal (hormone receptor [HR]+, HER2-), 44.9%; luminal-HER2 (HR+, HER2+), 14.9%; HER2 (HR-, HER2+), 21.3%; and triple-negative (TN), 16.0%. BM was detected in 48.6% of the patients by screening MRI. While 137 of 187 patients underwent local therapy, whole-brain irradiation was the most frequently applied therapy (63.5%). The median overall survival from the diagnosis of BM was as follows: luminal, 7.0 months (M); luminal-HER2, 13.3 M; HER2, 17.7 M; TN, 4.2 M. The HER2 status (hazard ratio [HR]: 0.58, 95% confidence interval [CI] 0.38-0.88) and nonprogressive extracranial lesion(s) (HR: 0.45, 95% CI 0.29-0.71) were identified as prognostic factors in a multivariate analysis. When limited to HER2-overexpressed MBC patients, the multivariate analysis revealed that non-progressive extracranial lesion(s) (HR: 0.20, 95% CI 0.088-0.47) and stereotactic irradiation (STI) as an initial treatment (HR: 0.18, 95% CI 0.061-0.56) were prognostic factors. Our retrospective review showed that early detection of BM by screening MRI, followed by STI, improved the prognosis of HER2-overexpressed MBC patients with BM. A further prospective randomized study is needed to confirm our findings.

  11. Survival Patterns of 5750 Stereotactic Radiosurgery-Treated Patients with Brain Metastasis as a Function of the Number of Lesions.

    Science.gov (United States)

    Ali, Mir Amaan; Hirshman, Brian R; Wilson, Bayard; Carroll, Kate T; Proudfoot, James A; Goetsch, Steven J; Alksne, John F; Ott, Kenneth; Aiyama, Hitoshi; Nagano, Osamu; Carter, Bob S; Fogarty, Gerald; Hong, Angela; Serizawa, Toru; Yamamoto, Masaaki; Chen, Clark C

    2017-11-01

    The number of brain metastases (BMs) plays an important role in the decision between stereotactic radiosurgery (SRS) and whole-brain radiation therapy. We analyzed the survival of 5750 SRS-treated patients with BM as a function of BM number. Survival analyses were performed with Kaplan-Meier analysis as well as univariate and multivariate Cox proportional hazards models. Patients with BMs were first categorized as those with 1, 2-4, and 5-10 BMs based on the scheme proposed by Yamamoto et al. (Lancet Oncology 2014). Median overall survival for patients with 1 BM was superior to those with 2-4 BMs (7.1 months vs. 6.4 months, P = 0.009), and survival of patients with 2-4 BMs did not differ from those with 5-10 BMs (6.4 months vs. 6.3 months, P = 0.170). The median survival of patients with >10 BMs was lower than those with 2-10 BMs (6.3 months vs. 5.5 months, P = 0.025). In a multivariate model that accounted for age, Karnofsky Performance Score, systemic disease status, tumor histology, and cumulative intracranial tumor volume, we observed a ∼10% increase in hazard of death when comparing patients with 1 versus 2-10 BMs (P 10 BMs (P < 0.001). When BM number was modeled as a continuous variable rather than using the classification by Yamamoto et al., we observed a step-wise 4% increase in the hazard of death for every increment of 6-7 BM (P < 0.001). The contribution of BM number to overall survival is modest and should be considered as one of the many variables considered in the decision between SRS and whole-brain radiation therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    Science.gov (United States)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  13. Melanoma metastasis: new concepts and evolving paradigms.

    Science.gov (United States)

    Damsky, W E; Theodosakis, N; Bosenberg, M

    2014-05-08

    Melanoma progression is typically depicted as a linear and stepwise process in which metastasis occurs relatively late in disease progression. Significant evidence suggests that in a subset of melanomas, progression is much more complex and less linear in nature. Epidemiologic and experimental observations in melanoma metastasis are reviewed here and are incorporated into a comprehensive model for melanoma metastasis, which takes into account the varied natural history of melanoma formation and progression.

  14. [Cancer metastasis].

    Science.gov (United States)

    Berner, A; Bryne, M; Thrane, P S

    1996-03-20

    Despite increasing insight into the biology of tumour development, the number of cancer deaths has not been subsequently reduced. This may be because approximately half of the cancers have metastasized already at the time of initial diagnosis. It seems important therefore, to learn more about the complex metastatic process. This process includes several linked sequential steps, and depends on an intimate interaction between the metastatic cells and the environment. In this review, we discuss these steps with emphasis on recent studies of the various cellular interactions that take place. Understanding these factors should result in diagnostic improvements and more effective treatment of cancer metastasis.

  15. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  16. Familial influence on plaque formation in the beagle brain.

    Science.gov (United States)

    Russell, M J; White, R; Patel, E; Markesbery, W R; Watson, C R; Geddes, J W

    1992-12-01

    Aged canines exhibit central neuropathological changes strikingly similar to those seen in patients with Alzheimer's disease. In this study, brain tissue from pure bred beagles raised in a controlled environment were examined for Alzheimer-like pathology. The mean age of the animals was 15.6 years. The incidence of plaques among these 29 dogs was 65.5%. Of the 19 samples that demonstrated Alzheimer-like pathology, 18 were characterized as diffuse and one as neuritic. Plaque density was found to be independent of age. Plaque numbers were highest in the perirhinal cortex and the adjacent temporal cortex. Familial influence on plaque development is supported by congruence within 15 of the 16 litters examined (p < 0.001). In this environmentally controlled group the diffuse plaques were rarely converted to the dense neuritic plaques found in Alzheimer's disease.

  17. Selectively altering belief formation in the human brain.

    Science.gov (United States)

    Sharot, Tali; Kanai, Ryota; Marston, David; Korn, Christoph W; Rees, Geraint; Dolan, Raymond J

    2012-10-16

    Humans form beliefs asymmetrically; we tend to discount bad news but embrace good news. This reduced impact of unfavorable information on belief updating may have important societal implications, including the generation of financial market bubbles, ill preparedness in the face of natural disasters, and overly aggressive medical decisions. Here, we selectively improved people's tendency to incorporate bad news into their beliefs by disrupting the function of the left (but not right) inferior frontal gyrus using transcranial magnetic stimulation, thereby eliminating the engrained "good news/bad news effect." Our results provide an instance of how selective disruption of regional human brain function paradoxically enhances the ability to incorporate unfavorable information into beliefs of vulnerability.

  18. Strategies to prevent brain metastasis in high-risk non-small-cell lung cancer: lessons learned from a randomized study of maintenance temozolomide versus observation.

    Science.gov (United States)

    Boggs, D Hunter; Robins, H Ian; Langer, Corey J; Traynor, Anne M; Berkowitz, Maurice J; Mehta, Minesh P

    2014-11-01

    This study investigated whether maintenance temozolomide (TMZ) after definitive therapy for locally advanced non-small-cell lung cancer (NSCLC) could decrease the incidence of brain metastasis (BM). Eligible patients included those with stage IIIA, IIIB, or IV (for stage IV, only with malignant pleural/pericardial effusion) NSCLC with no BM at diagnosis and stable disease, partial response, or complete response after first-line chemotherapy using at least 2 agents. Patients were randomized to observation or TMZ (75 mg/m(2) for 21 consecutive days followed by a 7-day rest for up to 6 cycles or progression). The primary end point was incidence of radiographically diagnosed BM within 12 months from day 1 of first-line chemotherapy. Secondary end points included overall survival (OS), time to progression, incidence of BM at first progression, and toxicity. The study was closed early on the basis of a futility analysis; 45 of 53 enrolled patients were evaluable from an original target of 100. No difference was noted in the incidence of BM at 1 year in the TMZ and observation groups (18% and 13%, respectively), in median time to progression (11.7 and 10.7 months, respectively), or in median OS (27.1 and 22.5 months, respectively). Common Terminology Criteria for Adverse Events grade 3 or 4 adverse events were 46% in the TMZ group and 19% in the observation group. TMZ monotherapy does not appear to decrease the incidence of BM in patients with locally advanced NSCLC. These results considered in the context of the existing literature have implications for future clinical trial design. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Consecutive acquisition of time-resolved contrast-enhanced MR angiography and perfusion MR imaging with added dose of gadolinium-based contrast agent aids diagnosis of suspected brain metastasis.

    Science.gov (United States)

    Tsuchiya, Kazuhiro; Aoki, Shigeki; Shimoji, Keigo; Mori, Harushi; Kunimatsu, Akira

    2013-01-01

    Time-resolved contrast-enhanced magnetic resonance (MR) angiography (TCMRA) and perfusion MR imaging (PWI) have been used to assess the hemodynamics of brain tumors. We assessed the feasibility and value of consecutive performance of these techniques to evaluate suspected brain metastasis following supplementary injection of gadolinium-based contrast medium. In 69 patients with suspected brain metastasis, we obtained precontrast MR images followed by TCMRA and postcontrast T1-weighted images after administration of 0.1 mmol/kg gadoteridol. When findings were negative or equivocal, we injected an additional 0.1-mmol/kg dose of gadoteridol and obtained PWI and second postcontrast T1-weighted images. We used a 3-point scale to grade perfusion maps and TCMRA and assessed whether these techniques added information to conventional MR imaging in the differential diagnosis. We also evaluated whether the second contrast injection improved the conspicuity and/or number of enhancing lesions and used a 4-point scoring system to quantitatively analyze diagnostic yield of TCMRA and PWI. We could assess tumor hemodynamics on PWI maps and TCMRA images in all 69 patients. In 14 cases (20%), PWI and/or TCMRA added information to conventional MR findings. After second injection of contrast medium, lesion conspicuity improved in 58 of the 69 cases (84%), and the number of detected lesions increased in 11 of 31 cases diagnosed with metastatic disease (36%). Quantitative analysis revealed TCMRA and PWI provided significant additional diagnostic information (Kruskal-Wallis test, PPWI using supplementary contrast injection can facilitate differential diagnosis of suspected brain metastasis and improve the number and conspicuity of detected lesions.

  20. An Interview with Marcia Tate: Formative Assessment and Brain Based Learning

    OpenAIRE

    Shaughnessy, Michael

    2016-01-01

    In this interview, Dr. Marcia Tate discusses her work and focuses on critical issues in brain based learning, and the need for both formative and summative assessment. Tangential issues such as grade retention, and response to intervention are also discussed. It is hope that this interview will assist teachers in the instructional and learning process and aid in both formative and summative assessment.  

  1. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    Science.gov (United States)

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Central role of maladapted astrocytic plasticity in ischemic brain edema formation

    Directory of Open Access Journals (Sweden)

    Yu-Feng eWang

    2016-05-01

    Full Text Available Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the ensuing reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas; the two processes are interactive closely under the driving of maladapted astrocytic plasticity. The astrocytic plasticity includes both morphologic and functional plasticity. The former involves a reactive gliosis and the ensuing glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier. The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein and water channel protein aquaporin 4 to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the blood-brain barrier. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the blood-brain barrier, but also lead to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  3. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  4. Definitive Chemoradiation Therapy Following Surgical Resection or Radiosurgery Plus Whole-Brain Radiation Therapy in Non-Small Cell Lung Cancer Patients With Synchronous Solitary Brain Metastasis: A Curative Approach

    Energy Technology Data Exchange (ETDEWEB)

    Parlak, Cem, E-mail: cemparlak@gmail.com [Department of Radiation Oncology, Baskent University, Adana Medical Faculty, Adana (Turkey); Mertsoylu, Hüseyin [Department of Medical Oncology, Baskent University, Adana Medical Faculty, Adana (Turkey); Güler, Ozan Cem; Onal, Cem; Topkan, Erkan [Department of Radiation Oncology, Baskent University, Adana Medical Faculty, Adana (Turkey)

    2014-03-15

    Purpose/Objectives: The aim of this study was to evaluate the impact of definitive thoracic chemoradiation therapy following surgery or stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) on the outcomes of patients with non-small cell lung cancer (NSCLC) with synchronous solitary brain metastasis (SSBM). Methods and Materials: A total of 63 NSCLC patients with SSBM were retrospectively evaluated. Patients were staged using positron emission tomography-computed tomography in addition to conventional staging tools. Thoracic radiation therapy (TRT) with a total dose of 66 Gy in 2 Gy fractions was delivered along with 2 cycles of cisplatin-based chemotherapy following either surgery plus 30 Gy of WBRT (n=33) or SRS plus 30 Gy of WBRT (n=30) for BM. Results: Overall, the treatment was well tolerated. All patients received planned TRT, and 57 patients (90.5%) were also able to receive 2 cycles of chemotherapy. At a median follow-up of 25.3 months (7.1-52.1 months), the median months of overall, locoregional progression-free, neurological progression-free, and progression-free survival were 28.6, 17.7, 26.4, and 14.6, respectively. Both univariate and multivariate analyses revealed that patients with a T1-T2 thoracic disease burden (P=.001), a nodal stage of N0-N1 (P=.003), and no weight loss (P=.008) exhibited superior survival. Conclusions: In the present series, surgical and radiosurgical treatments directed toward SSBM in NSCLC patients were equally effective. The similarities between the present survival outcomes and those reported in other studies for locally advanced NSCLC patients indicate the potentially curative role of definitive chemoradiation therapy for highly selected patients with SSBM.

  5. miR-20b is up-regulated in brain metastases from primary breast cancers

    Science.gov (United States)

    Ahmad, Aamir; Ginnebaugh, Kevin R.; Sethi, Seema; Chen, Wei; Ali, Rouba; Mittal, Sandeep; Sarkar, Fazlul H.

    2015-01-01

    Brain metastases are frequent in patients with advanced breast cancer and are associated with poor prognosis. However, unique molecular biomarkers have not yet been established. We hypothesized that microRNA-20b (miR-20b) plays a role in breast cancer brain metastasis. Our study cohort comprised of eleven breast cancer patients with brain metastasis and nine control patients (age, stage, and follow-up matched) with breast cancer without brain metastasis. Cases were reviewed microscopically to select tumor blocks with >50% tumor cells, RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks and expression of miR-20b analyzed using qRT-PCR. We further tested the effect of miR-20b overexpression on colony formation and invasion in vitro using MCF-7 and MDA-MB-231 cells. In the patient-derived samples, miR-20b expression was significantly higher in brain metastases of breast cancer patients, compared to primary breast tumors as well as the patients without brain metastasis. miR-20b also significantly induced the colony formation and invasiveness of breast cancer cells. Further, miR-20b levels were observed to be high in brain-metastasizing cells, compared to bone-metastasizing cells. Together, our findings suggest a novel role of miR-20b in breast cancer brain metastasis that warrants further investigation for its potential to be developed as prognostic and/or therapeutic target. PMID:25893380

  6. Chemokines in the melanoma metastasis biomarkers portrait.

    Science.gov (United States)

    Neagu, Monica; Constantin, Carolina; Longo, Caterina

    2015-01-01

    Skin tumorigenesis is linked to inflammatory chemokines accumulation that can induce cancer-associated immune-suppression. Deregulation of the CXCR4/CXCL12 axis was reported in melanoma tumorigenesis while also linked to BRAF mutation. Some chemokine-receptor patterns can direct the organ-specific metastasis. CXCL10 can help to prognosticate high-risk patients as it is a chemokine that differentiated patients with vs. metastasis free ones. Besides serum/plasma, chemokine identification in the cerebrospinal fluid of melanoma patients can indicate brain metastasis. Interplay between suppressed and elevated chemokines in cerebrospinal fluid can pinpoint an aggressive melanoma brain metastasis. Chemokines are gaining rapid momentum in the biomarker discovery domain aiding melanoma prognosis and high-risk patients' stratification.

  7. Gene repressive mechanisms in the mouse brain involved in memory formation.

    Science.gov (United States)

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  8. Surgery on motor area metastasis.

    Science.gov (United States)

    Rossetto, Marta; Ciccarino, Pietro; Lombardi, Giuseppe; Rolma, Giuseppe; Cecchin, Diego; Della Puppa, Alessandro

    2016-01-01

    The role of surgery on central area metastasis remains unclear, and outcome data are still controversial. The aim of our study is to analyze the predictive value of clinical and surgical data on motor and functional outcome of patients, taking into account new emerging data on boundary irregularity of brain metastasis. We retrospectively analyzed 47 consecutive patients who underwent surgery assisted by neurophysiologic monitoring for a solitary metastasis in central area between 2010 and 2013. Inclusion criteria were as follows: good functional status (Karnofsky Performance Status (KPS) ≥70), controlled systemic disease, and absence of extra-cranial dissemination. At 1-month follow up, motor and functional outcomes were compared with preoperative clinical status, response to corticosteroids, extent of tumor resection, boundary irregularity, and size of tumor. Gross total resection was achieved in 93.6% of cases. In preoperative symptomatic patients, motor outcome (according to Medical Research Council grading scale) improved in 55.5% and worsened in 16.7%, while functional outcome (according to KPS score) improved in 50% and worsened in 14.2% of cases. No worsening occurred in preoperative asymptomatic patients. Motor outcome resulted to be not correlated with preoperative deficits, tumor volume, or preoperative response to corticosteroid treatment. Remarkably, motor outcome and extent of surgical resection appeared strongly correlated with tumor boundary irregularity (p < 0.05). Surgery with neurophysiologic monitoring on motor area metastasis can improve functional and motor condition in selected patients. Tumor volume does not represent a limit in surgery. The high correlation between clinical outcome, resection rate, and tumor boundary irregularity strengthens a new belief on the infiltrative growing pattern of brain metastasis. Motor function was evaluated according to Medical Research Council grading scale (Ott et al. 2014) while functional status was

  9. Metastasis of Pregnancy-Associated Breast Cancer (Suspected to Be Hereditary Breast and Ovarian Cancer to the Brain, Diagnosed at 18 Weeks’ Gestation: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Tomohiro Okuda

    2016-01-01

    Full Text Available We report a case of pregnancy-associated breast cancer with metastasis to the brain, likely resulting from hereditary breast and ovarian cancer (HBOC. A 35-year-old woman (gravida 2, para 0-1-0-1 underwent a right mastectomy and right axillary dissection after a cesarean section at 30 years of age; her mother died at 47 years of age due to breast cancer. Histopathological examination indicated an invasive ductal carcinoma with triple-negative cancer (cancer stage 2B [pT3N0M0]. The patient refused adjuvant therapy because of the risk of infertility. After 4 years, she became pregnant naturally. At 18 weeks’ gestation, she experienced aphasia and dyslexia due to brain metastasis. The pregnancy was terminated at 21 weeks’ gestation after thorough counseling. Her family history, young-onset disease, and histopathological findings suggested HBOC. She declined genetic testing for BRCA1/2, though genetic counseling was provided. In cases of pregnancy-related breast cancer, consideration must be given to whether the pregnancy should be continued and to posttreatment fertility. HBOC should also be considered. Genetic counseling should be provided and the patient should be checked for the BRCA mutation, as it is meaningful for the future of any potential children. Genetic counseling should be provided even if the cancer is advanced or recurrent.

  10. Mechanisms involved in breast cancer liver metastasis.

    Science.gov (United States)

    Ma, Rui; Feng, Yili; Lin, Shuang; Chen, Jiang; Lin, Hui; Liang, Xiao; Zheng, Heming; Cai, Xiujun

    2015-02-15

    Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment. Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.

  11. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    Science.gov (United States)

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  12. Decoding Melanoma Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Damsky, William E. Jr. [Department of Dermatology, Yale School of Medicine, New Haven, Connecticut (United States); Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont (United States); Rosenbaum, Lara E.; Bosenberg, Marcus, E-mail: Marcus.Bosenberg@yale.edu [Department of Dermatology, Yale School of Medicine, New Haven, Connecticut (United States)

    2010-12-30

    Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.

  13. DCB - Tumor Metastasis Research

    Science.gov (United States)

    Tumor metastasis research examines the mechanisms that allow cancer cells to leave the primary tumor and spread to another part of the body. Learn about recent tumor metastasis research studies supported by the Division of Cancer Biology.

  14. [Formation of paroxysmal brain activity in the liquidators of the consequences of the Chernobyl nuclear disaster].

    Science.gov (United States)

    Podsonnaya, I V; Shumacher, G I; Efremushkin, G G; Gelobetskaya, E D

    2015-01-01

    To investigate the effect of ionizing radiation on the formation of paroxysmal brain activity (PBA) in the liquidators of the consequences of the Chernobyl nuclear disaster in view of their age on the date of exposure to radiation. EEG examinations were performed in 105 liquidators of the consequences of the nuclear disaster (LCND) and 90 people without radiation anamnesis (control group). It has been determined that the formation of paroxysmal brain activity in LCND occurs 3.5 times more frequent (p<0.001) and 15-17 years earlier (p<0.001) than in the control group and mainly during the first 10 years after the exposure to radiation. The history of the exposure to ionizing radiation is associated with the increased risk of the development of convulsive PBA as focal seizures by 5.5 times (p<0.001), interictal epileptiform discharges (IED) in EEG by 3.3 times (p<0.001). Radiation effect on LCND under 30 years old increases (as compared to the control group) the risk of the formation of elevated paroxysmal brain activity by 19 times (p<0.001), convulsive epileptic seizures by 33.3 times (p<0.001), interictal epileptiform discharges in EEG by 12 times (p<0.001), asymptomatic focal epileptoid nidus in EEG by 9.3 times (p<0.001). Stimulating effect of ionizing radiation on the development of PBA related to the age on the date of exposure to radiation was found.

  15. Oxidative stress-mediated brain dehydroepiandrosterone (DHEA formation in Alzheimer’s disease diagnosis

    Directory of Open Access Journals (Sweden)

    Geogres eRammouz

    2011-11-01

    Full Text Available Neurosteroids are steroids made by brain cells independently of peripheral steroidogenic sources. The biosynthesis of most neurosteroids is mediated by proteins and enzymes similar to those identified in the steroidogenic pathway of adrenal and gonadal cells. Dehydroepiandrosterone (DHEA is a major neurosteroid identified in the brain. Over the years we have reported that, unlike other neurosteroids, DHEA biosynthesis in rat, bovine, and human brain is mediated by an oxidative stress-mediated mechanism, independent of the cytochrome P450 17a-hydroxylase/17,20-lyase (CYP17A1 enzyme activity found in the periphery. This alternative pathway is induced by pro-oxidant agents, such as Fe2+ and b-amyloid peptide. Neurosteroids are involved in many aspects of brain function, and as such, are involved in various neuropathologies, including Alzheimer’s disease (AD. AD is a progressive, yet irreversible neurodegenerative disease for which there are limited means for ante-mortem diagnosis. Using brain tissue specimens from control and AD patients, we provided evidence that DHEA is formed in the AD brain by the oxidative stress-mediated metabolism of an unidentified precursor, thus depleting levels of the precursor in the blood stream. We tested for the presence of this DHEA precursor in human serum using a Fe2+-based reaction and determined the amounts of DHEA formed. Fe2+ treatment of the serum resulted in a dramatic increase in DHEA levels in control patients, whereas only a moderate or no increase was observed in AD patients. The DHEA variation after oxidation correlated with the patients’ cognitive and mental status. In this review, we present the cumulative evidence for oxidative stress as a natural regulator of DHEA formation and the use of this concept to develop a blood-based diagnostic tool for neurodegenerative diseases linked to oxidative stress, such as AD.

  16. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    Science.gov (United States)

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Nitric oxide in cancer metastasis.

    Science.gov (United States)

    Cheng, Huiwen; Wang, Lei; Mollica, Molly; Re, Anthony T; Wu, Shiyong; Zuo, Li

    2014-10-10

    Cancer metastasis is the spread and growth of tumor cells from the original neoplasm to further organs. This review analyzes the role of nitric oxide (NO), a signaling molecule, in the regulation of cancer formation, progression, and metastasis. The action of NO on cancer relies on multiple factors including cell type, metastasis stage, and organs involved. Various chemotherapy drugs cause cells to release NO, which in turn induces cytotoxic death of breast, liver, and skin tumors. However, NO has also been clinically connected to a poor cancer prognosis because of its role in angiogenesis and intravasation. This supports the claim that NO can be characterized as both pro-metastatic and anti-metastatic, depending on specific factors. The inhibition of cell proliferation and anti-apoptosis pathways by NO donors has been proposed as a novel therapy to various cancers. Studies suggest that NO-releasing non-steroidal anti-inflammatory drugs act on cancer cells in several ways that may make them ideal for cancer therapy. This review summarizes the biological significance of NO in each step of cancer metastasis, its controversial effects for cancer progression, and its therapeutic potential. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    Science.gov (United States)

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  19. [Nontraditional "large-cell" neuroendocrine formations (accessory nuclei) in the brain of Anamnia and Amniota].

    Science.gov (United States)

    Grinevich, V V; Polenov, A L; Danilova, O A; Kuzik, V V; Romanova, I V

    1995-01-01

    Using immunochemical PAP-method nonapeptidergic neuroendocrine formations in the hypothalamus and adjacent brain areas of fishes (the sterlet Acipenser ruthenus, the shark Scylliorhinus canicula), amphibians (the frog Rana temporaria), reptiles (the snake Natrix natrix), mammals (rats and dogs) and human have been studied. In Amniota and human accessory nuclei (AN) in addition to main "magnocellular" nuclei (supraoptic, postoptic and paraventricular) were discovered. Two AN, circular and dorsolateral ones, were found in snakes, and circular, dorsolateral, forniceal and extrahypothalamic AN were revealed in rat, dog and human brain. In Anamnia, sharks and frogs, in contrast to sterlets, the dorsolateral sub-nucleus inside preoptic nucleus was identified. AN similarity in the phylogenetic row of vertebrates and mechanisms of AN creation in phylo- and ontogenesis were discussed.

  20. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain.

    Science.gov (United States)

    Flynn, Kevin C; Hellal, Farida; Neukirchen, Dorothee; Jacob, Sonja; Tahirovic, Sabina; Dupraz, Sebastian; Stern, Sina; Garvalov, Boyan K; Gurniak, Christine; Shaw, Alisa E; Meyn, Liane; Wedlich-Söldner, Roland; Bamburg, James R; Small, J Victor; Witke, Walter; Bradke, Frank

    2012-12-20

    Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Integrins and metastasis

    Science.gov (United States)

    Ganguly, Kirat Kumar; Pal, Sekhar; Moulik, Shuvojit; Chatterjee, Amitava

    2013-01-01

    Metastasis is a combination of biological events that makes the difference between cancer and other diseases. Metastasis requires flow of erroneous but precisely coordinated basic cellular activities like cell migration–invasion, cell survival–apoptosis, cell proliferation, etc. All of these processes require efficient regulation of cell attachment and detachment, which recruit integrin receptors in this flow of events. World literatures show several aspects of interrelation of integrins and metastasis. Integrin molecules are being used as prime target to battle metastasis. In this review we are collating the observations showing importance of integrin biology in regulation of metastasis and the strategies where integrin receptors are being used as targets to regulate metastasis. PMID:23563505

  2. Intracranial metastasis from a sacrococcygeal chordoma. Case report.

    LENUS (Irish Health Repository)

    Kamel, Mahmoud Hamdy

    2012-02-03

    Chordoma is a locally invasive tumor of low metastatic potential. Only six cases of chordoma that metastasized to the brain are found in the English literature. Most of these lesions were clinically silent and all were associated with extraneural metastases. The authors report a case of symptomatic brain metastasis from a sacrococcygeal chordoma in the absence of other metastases. The incidence, sites, and factors predictive of chordoma metastasis are discussed.

  3. Regulation of Prostate Cancer Bone Metastasis by DKK1

    Science.gov (United States)

    2012-09-01

    blocks the formation of osteoblastic bone lesions in animal models of bone metastasis. We have now shown that human prostate cancer cell lines...that produce osteolytic, but not osteoblastic, bone lesions in animal models of bone metastasis express significant amounts of DKK1 and this expression...cancer bone metastasis typically results in massive osteolysis from the secretion of osteoclast-activating factors, such as parathyroid hormone-related

  4. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  5. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    Science.gov (United States)

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  6. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    Science.gov (United States)

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tumour exosome integrins determine organotropic metastasis.

    Science.gov (United States)

    Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Tesic Mark, Milica; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M; Dumont-Cole, Vanessa D; Kramer, Kimberly; Wexler, Leonard H; Narendran, Aru; Schwartz, Gary K; Healey, John H; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H; Grandgenett, Paul M; Hollingsworth, Michael A; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K; Jarnagin, William R; Brady, Mary S; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J; Bissell, Mina J; Garcia, Benjamin A; Kang, Yibin; Rajasekhar, Vinagolu K; Ghajar, Cyrus M; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David

    2015-11-19

    Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

  8. Tumour exosome integrins determine organotropic metastasis

    Science.gov (United States)

    Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Mark, Milica Tesic; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E.; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M.; Dumont-Cole, Vanessa D.; Kramer, Kimberly; Wexler, Leonard H.; Narendran, Aru; Schwartz, Gary K.; Healey, John H.; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H.; Grandgenett, Paul M.; Hollingsworth, Michael A.; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K.; Jarnagin, William R.; Brady, Mary S.; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J.; Bissell, Mina J.; Garcia, Benjamin A.; Kang, Yibin; Rajasekhar, Vinagolu K.; Ghajar, Cyrus M.; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David

    2015-01-01

    Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis. PMID:26524530

  9. Metabolic advantages and vulnerabilities in brain metastases.

    Science.gov (United States)

    Ciminera, Alexandra K; Jandial, Rahul; Termini, John

    2017-10-23

    Metabolic adaptations permit tumor cells to metastasize to and thrive in the brain. Brain metastases continue to present clinical challenges due to rising incidence and resistance to current treatments. Therefore, elucidating altered metabolic pathways in brain metastases may provide new therapeutic targets for the treatment of aggressive disease. Due to the high demand for glucose in the brain, increased glycolytic activity is favored for energy production. Primary tumors that undergo Warburg-like metabolic reprogramming become suited to growth in the brain microenvironment. Indeed, elevated metabolism is a predictor of metastasis in many cancer subtypes. Specifically, metabolic alterations are seen in primary tumors that are associated with the formation of brain metastases, namely breast cancer, lung cancer, and melanoma. Because of this selective pressure, inhibitors of key metabolic factors may reduce tumor cell viability, thus exploiting metabolic pathways for cancer therapeutics. This review summarizes the metabolic advantages and vulnerabilities of brain metastases.

  10. Experience of treating late cerebral lungcancer metastasis using photodynamic therapy

    Directory of Open Access Journals (Sweden)

    A. I. Ryabova

    2013-01-01

    Full Text Available Treatment outcomes for a patient with solitary brain metastasis after long-term relapse-free follow-up of invasive lung carcinoma were presented. Brain metastasis without other signs of disease progression was diagnosed 10 years after combined modality treatment for stage II lung cancer. Removal of intracerebral metastasis with intraoperative photodynamic therapy was performed. Histology microspecimens of the primary tumor and metastasis were similar. No signs of disease progression in the brain 9 months after surgery were found. This case demonstrates that it is important to increase cancer suspicion for patients with long-term relapse-free follow-up. The use of intraoperative photodynamic therapy with photoditazine as a sensitizer in the treatment of cerebral metastases results in a favorable anti-tumor effect, thus improving life quality of patients

  11. Physiopathology of Spine Metastasis

    Directory of Open Access Journals (Sweden)

    Giulio Maccauro

    2011-01-01

    Full Text Available The metastasis is the spread of cancer from one part of the body to another. Two-thirds of patients with cancer will develop bone metastasis. Breast, prostate and lung cancer are responsible for more than 80% of cases of metastatic bone disease. The spine is the most common site of bone metastasis. A spinal metastasis may cause pain, instability and neurological injuries. The diffusion through Batson venous system is the principal process of spinal metastasis, but the dissemination is possible also through arterial and lymphatic system or by contiguity. Once cancer cells have invaded the bone, they produce growth factors that stimulate osteoblastic or osteolytic activity resulting in bone remodeling with release of other growth factors that lead to a vicious cycle of bone destruction and growth of local tumour.

  12. [Functional asymmetry of electric processes in the rabbit brain cortex at formation of the hunger dominant].

    Science.gov (United States)

    Rusinova, E V

    2011-01-01

    The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.

  13. Sweet grass protection against oxidative stress formation in the rat brain.

    Science.gov (United States)

    Łuczaj, Wojciech; Jarocka-Karpowicz, Iwona; Bielawska, Katarzyna; Skrzydlewska, Elżbieta

    2015-02-01

    The aims of this study were to investigate the influences of sweet grass on chronic ethanol-induced oxidative stress in the rat brain. Chronic ethanol intoxication decreased activities and antioxidant levels resulting in enhanced lipid peroxidation. Administration of sweet grass solution to ethanol-intoxicated rats partially normalized the activity activities of Cu,Zn-superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, as well as levels of reduced glutathione and vitamins C, E, and A. Sweet grass also protected unsaturated fatty acids (arachidonic and docosahexaenoic) from oxidations and decreased levels of lipid peroxidation products: 4-hydroxynonenal, isoprostanes, and neuroprostanes. The present in vivo study confirms previous in vitro data demonstrating the bioactivity of sweet grass and suggests a possible role for sweet grass in human health protection from deleterious consequences associated with oxidative stress formation.

  14. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  15. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  16. Angiogenesis in wound healing and tumor metastasis

    NARCIS (Netherlands)

    Ruiter, D. J.; Schlingemann, R. O.; Westphal, J. R.; Denijn, M.; Rietveld, F. J.; de Waal, R. M.

    1993-01-01

    Formation of new blood vessels is essential for several physiological and pathological events, e.g. embryogenesis, wound healing and tumor growth and metastasis. In order to increase the insight into the mechanisms of angiogenesis we have visualized the different components of the microvasculature

  17. Cervical carcinoma with skin metastasis – case report

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-01-01

    Full Text Available Although cervical carcinoma is common, cutaneous metastasis is rare. In advanced disease, metastases may be present in the adnexa, abdomen, lungs, bone, liver and lymph nodes or. elsewhere. Cutaneous metastasis is uncommon. Unusual sites of metastasies seems to be skin, brain, heart and spleen. In this case, a 45 years old female was diagnosed to have squamous cell carcinoma of cervix on february 2013, who took radiotherapy treatment presented with cutaneous metastasis after a year. She received 4400 cGy/22 fractions of Extended Beam radiotherapy, followed by 4 doses of 700 cGy Cavity Radiotherapy (Brachytherapy. She completed her treatment on march, 6, 2013 with complete remission, without any complication. She was considered cured by the oncologists until after a year when she presented with cutaneous metastasis, which was proven with skin biopsy. The case is reported as this kind of case seems to be rare as far as our knowledge is concerned.

  18. Gastric Metastasis of Triple Negative Invasive Lobular Carcinoma.

    Science.gov (United States)

    Geredeli, Caglayan; Dogru, Osman; Omeroglu, Ethem; Yilmaz, Farise; Cicekci, Faruk

    2015-05-05

    Invasive lobular carcinomas are the second most common type (5% to 15%) of invasive breast carcinomas. The most frequent sites of breast cancer metastasis are the local and distant lymph nodes, brain, lung, liver, and bones; metastasis to the gastrointestinal system, especially to the stomach, is rare. When a mass is detected in an unusual place in a patient with invasive lobular carcinoma, it should be kept in mind that such a mass may be either a second primary carcinoma or the metastasis of an invasive lobular carcinoma. In this report, we present a case of gastric metastasis from triple-negative invasive lobular breast cancer. It is important to make an accurate diagnosis by distinguishing gastric metastasis from breast cancer in order to select the best initial treatment for systemic diseases of breast cancer. Considering our case, healthcare professionals should take into account that cases with invasive lobular breast cancer may experience unusual metastases.

  19. MMP-8, A Breast Cancer Bone Metastasis Suppressor Gene

    National Research Council Canada - National Science Library

    Selvamurugan, Nagarajan

    2006-01-01

    .... But the expression level of MMP-8 was not detected by Western blot analysis. The molecular mechanisms of how TGF-BetaI mediates stimulation of invasion and formation of bone metastasis have yet to be completely determined. ATF-3...

  20. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    DEFF Research Database (Denmark)

    Gajdosechova, Z.; Lawan, M. M.; Urgast, D. S.

    2016-01-01

    Se) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals...

  1. Xanthurenic Acid Formation from 3-Hydroxykynurenine in the Mammalian Brain: Neurochemical Characterization and Physiological Effects.

    Science.gov (United States)

    Sathyasaikumar, K V; Tararina, M; Wu, H-Q; Neale, S A; Weisz, F; Salt, T E; Schwarcz, R

    2017-12-26

    Xanthurenic acid (XA), formed from 3-hydroxykynurenine (3-HK) in the kynurenine pathway of tryptophan degradation, may modulate glutamatergic neurotransmission by inhibiting the vesicular glutamate transporter and/or activating Group II metabotropic glutamate receptors. Here we examined the molecular and cellular mechanisms by which 3-HK controls the neosynthesis of XA in rat, mouse and human brain, and compared the physiological actions of 3-HK and XA in the rat brain. In tissue homogenates, XA formation from 3-HK was observed in all three species and traced to a major role of kynurenine aminotransferase II (KAT II). Transamination of 3-HK to XA was also demonstrated using human recombinant KAT II. Neosynthesis of XA was significantly increased in the quinolinate-lesioned rat striatum, indicating a non-neuronal localization of the process. Studies using rat cortical slices revealed that newly produced XA is rapidly released into the extracellular compartment, and that XA biosynthesis can be manipulated experimentally in the same way as the production of kynurenic acid from kynurenine (omission of Na+ or glucose, depolarizing conditions, or addition of 2-oxoacids). The synthesis of XA from 3-HK was confirmed in vivo by striatal microdialysis. In slices from the rat hippocampus, both 3-HK and XA reduced the slopes of dentate gyrus field EPSPs. The effect of 3-HK was reduced in the presence of the KAT inhibitor aminooxyacetic acid. Finally, both 3-HK and XA reduced the power of gamma-oscillatory activity recorded from the hippocampal CA3 region. Endogenous XA, newly formed from 3-HK, may therefore play a physiological role in attentional and cognitive processes. Copyright © 2017. Published by Elsevier Ltd.

  2. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    Science.gov (United States)

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  3. Evaluation of a structured group format memory rehabilitation program for adults following brain injury.

    Science.gov (United States)

    Thickpenny-Davis, Kirsten L; Barker-Collo, Suzanne L

    2007-01-01

    To evaluate the impact of an 8-session structured group format memory rehabilitation program on impaired memory functioning. Adults with traumatic brain injury (N = 10) or cerebral vascular accidents (N = 2). A waitlist control study with pregroup, postgroup, and 1-month follow-up assessments. WECHSLER MEMORY SCALE-REVISED: Neuropsychological assessments of memory (California Verbal Learning Test, Wechsler Memory Scale-Revised logical memory, visual-paired associates, and Rey Complex Figure) and both self-report and significant other report of behaviors indicative of memory difficulties and the use of memory strategies. Participation in the memory group increased participants' knowledge of memory and memory strategies as well as use of memory aids and strategies; reduced behaviors indicative of memory impairment; and had a positive effect on neuropsychological assessments of memory (eg, delayed recall for words and figures). All significant improvements exceeded change experienced by waiting-list controls and were maintained at 1-month follow-up assessment. While extension of the findings is needed, the memory group has a positive impact on both neuropsychological measures of memory and everyday memory functioning.

  4. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.).

    Science.gov (United States)

    Suenami, Shota; Iino, Shiori; Kubo, Takeo

    2018-01-12

    Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC) in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect. © 2018. Published by The Company of Biologists Ltd.

  5. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    Science.gov (United States)

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  6. Genomics screens for metastasis genes

    Science.gov (United States)

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  7. Brain metastases from colorectal cancer

    DEFF Research Database (Denmark)

    Vagn-Hansen, Chris Aksel; Rafaelsen, Søren Rafael

    2001-01-01

    Brain metastases from colorectal cancer are rare. The prognosis for patients with even a single resectable brain metastasis is poor. A case of surgically treated cerebral metastasis from a rectal carcinoma is reported. The brain tumour was radically resected. However, cerebral, as well...... as extracerebral, disease recurred 12 months after diagnosis. Surgical removal of colorectal metastatic brain lesions in selected cases results in a longer survival time....

  8. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps.

    Science.gov (United States)

    Iaria, Giuseppe; Chen, Jen-Kai; Guariglia, Cecilia; Ptito, Alain; Petrides, Michael

    2007-02-01

    The ability to orientate within familiar environments relies on the formation and use of a mental representation of the environment, namely a cognitive map. Neuropsychological and neuroimaging studies suggest that the retrosplenial and hippocampal brain regions are involved in topographical orientation. We combined functional magnetic resonance imaging with a virtual-reality paradigm to investigate the functional interaction of the hippocampus and retrosplenial cortex during the formation and utilization of cognitive maps by human subjects. We found that the anterior hippocampus is involved during the formation of the cognitive map, while the posterior hippocampus is involved when using it. In conjunction with the hippocampus, the retrosplenial cortex was active during both the formation and the use of the cognitive map. In accordance with earlier studies in non-human animals, these findings suggest that, while navigating within the environment, the retrosplenial cortex complements the hippocampal contribution to topographical orientation by updating the individual's location as the frame of reference changes.

  9. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  10. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Science.gov (United States)

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  11. Breast Cancer Metastasis

    Science.gov (United States)

    Marino, Natascia; Woditschka, Stephan; Reed, L. Tiffany; Nakayama, Joji; Mayer, Musa; Wetzel, Maria; Steeg, Patricia S.

    2014-01-01

    Despite important progress in adjuvant and neoadjuvant therapies, metastatic disease often develops in breast cancer patients and remains the leading cause of their deaths. For patients with established metastatic disease, therapy is palliative, with few breaks and with mounting adverse effects. Many have hypothesized that a personalized or precision approach (the terms are used interchangeably) to cancer therapy, in which treatment is based on the individual characteristics of each patient, will provide better outcomes. Here, we discuss the molecular basis of breast cancer metastasis and the challenges in personalization of treatment. The instability of metastatic tumors remains a leading obstacle to personalization, because information from a patient’s primary tumor may not accurately reflect the metastasis, and one metastasis may vary from another. Furthermore, the variable presence of tumor subpopulations, such as stem cells and dormant cells, may increase the complexity of the targeted treatments needed. Although molecular signatures and circulating biomarkers have been identified in breast cancer, there is lack of validated predictive molecular markers to optimize treatment choices for either prevention or treatment of metastatic disease. Finally, to maximize the information that can be obtained, increased attention to clinical trial design in the metastasis preventive setting is needed. PMID:23895915

  12. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse Kristoffer

    2013-01-01

    Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling...... thereby reducing the glutamine level in brain. Thus, GS could be a potential drug target in the treatment of hyperammonemia in patients with hepatic encephalopathy....

  13. Solitary skull metastasis as initial manifestation of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Cho Jun

    2008-06-01

    Full Text Available Abstract Background A solitary skull metastasis from hepatocellular carcinoma (HCC prior to diagnosis of the primary tumor without liver dysfunction is a very rare event. Case presentation A 71-year-old male, without known liver disease, presented to our institution with a palpable occipital scalp mass. On brain magnetic resonance imaging (MRI, a highly enhanced and osteolytic skull tumor was observed. The histological diagnosis obtained from the percutaneous needle biopsy was a cranial metastasis from HCC. The metastatic tumor was removed via occipital craniectomy, and the two primary liver mass lesions were subsequently treated by transarterial chemoembolization. Conclusion An isolated skull metastasis may be the sole initial presentation of HCC. Early diagnosis is essential in order to treat the primary disease. A skull metastasis from HCC should be considered in the differential diagnosis in patients with subcutaneous scalp mass and osteolytic defects on X-ray.

  14. Synapse Formation and Cognitive Brain Development: effect of docosahexaenoic (DHA) and other dietary constituents

    Science.gov (United States)

    Wurtman, R. J.

    2008-01-01

    The brain is unusual among organs in that the rates of many of its characteristic enzymatic reactions are controlled by the local concentrations of their substrates, which also happen to be nutrients that cross the blood-brain barrier. Thus, for example, brain levels of tryptophan, tyrosine, or choline can control the rates at which neurons synthesize serotonin, dopamine, or acetylcholine, respectively. The rates at which brain cells produce membrane phospholipids like phosphatidylcholine (PC) are also under such control, both in adult animals and, especially, during early development. If pregnant rats are fed the three dietary constituents needed for PC synthesis - docosahexaenoic acid (DHA), uridine, and choline - starting 10 days before parturition and continuing for 20 days during nursing, brain levels of PC and of the other membrane phosphatides (per cell or per mg protein) are increased by 50% or more. In adult animals this treatment is also known to increase synaptic proteins (e.g. synapsin-l; syntaxin-3; GluR-l; PSD-95) but not ubiquitous proteins like beta-tubulin, and to increase (by 30% or more) the number of dendritic spines on hippocampal neurons. DHA currently is widely used, in human infants, to diminish the negative effects of prematurity on cognitive development. Moreover, DHA, uridine (as UMP), and choline are all found in mother's milk, and included in most infant formulas. It is proposed that these substances are part of a regulatory mechanism through which plasma composition influences brain development. PMID:18803968

  15. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    Science.gov (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  16. Parenchymal cystatin C focal deposits and glial scar formation around brain arteries in Hereditary Cystatin C Amyloid Angiopathy.

    Science.gov (United States)

    Osk Snorradottir, Asbjorg; Isaksson, Helgi J; Kaeser, Stephan A; Skodras, Angelos A; Olafsson, Elias; Palsdottir, Astridur; Thor Bragason, Birkir

    2015-10-05

    Hereditary Cystatin C Amyloid Angiopathy (HCCAA) is an amyloid disorder in Icelandic families caused by an autosomal dominant mutation in the cystatin C gene. Mutant cystatin C forms amyloid deposits in brain arteries and arterioles which are associated with changes in the arterial wall structure, notably deposition of extracellular matrix proteins. In this post-mortem study we examined the neuroinflammatory response relative to the topographical distribution of cystatin C deposition, and associated haemorrhages, in the leptomeninges, cerebrum, cerebellum, thalamus, and midbrain of HCCAA patients. Cystatin C was deposited in all brain areas, grey and white matter alike, most prominently in arteries and arterioles; capillaries and veins were not, or minimally, affected. We also observed perivascular deposits and parenchymal focal deposits proximal to affected arteries. This study shows for the first time, that cystatin C does not exclusively form CAA and perivascular amyloid but also focal deposits in the brain parenchyma. Haemorrhages were observed in all patients and occurred in all brain areas, variable between patients. Microinfarcts were observed in 34.6% of patients. The neuroinflammatory response was limited to the close vicinity of affected arteries and perivascular as well as parenchymal focal deposits. Taken together with previously reported arterial accumulation of extracellular matrix proteins in HCCAA, our results indicate that the central nervous system pathology of HCCAA is characterised by the formation of a glial scar within and around affected arteries. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genomic Alteration During Metastasis of Lung Adenocarcinoma.

    Science.gov (United States)

    Tan, Qiang; Cui, Jian; Huang, Jia; Ding, Zhengping; Lin, Hao; Niu, Xiaomin; Li, Zhiming; Wang, Guan; Luo, Qingquan; Lu, Shun

    2016-01-01

    Recurrent gene mutation has been identified by the analysis of exonic DNA from lung adenocarcinoma, but its progression has not been extensively profiled. The investigation of the mutational landscape of tumors provides new insights into cancer genome evolution and further discovers the interplay of somatic mutation, adaptation of clones to their environment and natural selection. Cancer development involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Comparative whole exome sequencing of both primary and metastatic tumor tissues from four patients of stage IV lung adenocarcinoma patients with chest wall metastasis was performed. Both primary and metastatic tumors were diagnosed through biopsy followed by surgical resection. All tumor specimens were cut into several pieces to assess potential heterogenic clones within the tumor tissue. Adjacent normal lung tissue was also obtained to provide germline mutation background. By modeling and analyzing progression of the cancer metastasis based on non-synonymous variants, we defined the extent of heterogeneity of cancer genomes and identified similar cancer evolution pattern in the four patients: metastasis was an early event occurring right after the primary cancer formation and evolution in the metastatic tumor was continuously and simultaneously in progression with that in the primary tumor. By characterizing the clonal hierarchy of genetic lesions, we further charted a pathway of oncogenic events along which genes may drive lung adenocarcinoma metastasis, such as TAS2R31 and UMODL1, involving in G-protein coupled receptor protein signaling pathway. The candidate genes identified in this study may become targets for the treatment of lung adenocarcinoma metastasis. © 2016 S. Karger AG, Basel.

  18. Epigenetic regulator RBP2 is critical for breast cancer progression and metastasis

    Science.gov (United States)

    Cao, Jian; Liu, Zongzhi; Cheung, William K.C.; Zhao, Minghui; Chen, Sophia Y.; Chan, Siew Wee; Booth, Carmen J.; Nguyen, Don X.; Yan, Qin

    2014-01-01

    Summary Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that epigenetic aberrations contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene expression datasets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes. In addition, RBP2 loss suppresses tumor formation in the MMTV-neu transgenic mice. These results suggest that therapeutically targeting RBP2 is a potential strategy to inhibit tumor progression and metastasis. PMID:24582965

  19. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation.

    Science.gov (United States)

    Stettler, Olivier; Moya, Kenneth L

    2014-11-01

    The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  1. Cerebral metastasis of cervical cancer, report of two cases and review of the literature.

    Science.gov (United States)

    Setoodeh, Reza; Hakam, Ardeshir; Shan, Yuan

    2012-01-01

    Cervical cancers spread locally through the angiolymphatic apparatus and very rarely metastasize to the brain. The intracranial metastasis is a late event and a sign of poor prognosis. We present two cases of uterine cervical carcinomas with brain metastasis presenting with severe headaches in one case and hemiparesis and aphasia in the other one. Palliative craniotomy and debulking of the tumor was performed in both patients.

  2. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice.

    Science.gov (United States)

    Yokota, N; Zarpellon, A; Chakrabarty, S; Bogdanov, V Y; Gruber, A; Castellino, F J; Mackman, N; Ellies, L G; Weiler, H; Ruggeri, Z M; Ruf, W

    2014-01-01

    Tumor cell tissue factor (TF)-initiated coagulation supports hematogenous metastasis by fibrin formation, platelet activation and monocyte/macrophage recruitment. Recent studies identified host anticoagulant mechanisms as a major impediment to successful hematogenous tumor cell metastasis. Here we address mechanisms that contribute to enhanced metastasis in hyperthrombotic mice with functional thrombomodulin deficiency (TM(Pro) mice). Pharmacological and genetic approaches were combined to characterize relevant thrombin targets in a mouse model of experimental hematogenous metastasis. TF-dependent, but contact pathway-independent, syngeneic breast cancer metastasis was associated with marked platelet hyperreactivity and formation of leukocyte-platelet aggregates in immune-competent TM(Pro) mice. Blockade of CD11b or genetic deletion of platelet glycoprotein Ibα excluded contributions of these receptors to enhanced platelet-dependent metastasis in hyperthrombotic mice. Mice with very low levels of the endothelial protein C receptor (EPCR) did not phenocopy the enhanced metastasis seen in TM(Pro) mice. Genetic deletion of the thrombin receptor PAR1 or endothelial thrombin signaling targets alone did not diminish enhanced metastasis in TM(Pro) mice. Combined deficiency of PAR1 on tumor cells and the host reduced metastasis in TM(Pro) mice. Metastasis in the hyperthrombotic TM(Pro) mouse model is mediated by platelet hyperreactivity and contributions of PAR1 signaling on tumor and host cells. © 2013 International Society on Thrombosis and Haemostasis.

  3. Hypoxia-inducible factor 1 and breast cancer metastasis.

    Science.gov (United States)

    Liu, Zhao-Ji; Semenza, Gregg L; Zhang, Hua-Feng

    2015-01-01

    Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.

  4. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Yibin Kang

    2016-06-01

    Full Text Available Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1 in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis.

  5. Provocative Pedagogy : Or Youngsters Need the Brain to Challenge Worldview Formation

    NARCIS (Netherlands)

    prof. dr. Siebren Miedema; dr. Gerdien Bertram-Troost; dr. Ina ter Avest

    2012-01-01

    Brains and gender, separately and in their interrelatedness, are hot items today in popular journals and academic literature. It is in particular the complexity of the interdependence of physical-, psychological-, and contextual-related developments of feminization in education that we focus on

  6. Provocative Pedagogy or youngsters need the brain to challenge worldview formation

    NARCIS (Netherlands)

    ter Avest, I.; Bertram-Troost, G.D.; Miedema, S.

    2012-01-01

    Brains and gender, separately and in their interrelatedness, are hot items today in popular journals and academic literature. It is in particular the complexity of the interdependence of physical-, psychological-, and contextual-related developments of feminization in education that we focus on

  7. Provocative Pedagogy, or Youngsters Need the Brain to Challenge Worldview Formation

    Science.gov (United States)

    ter Avest, Ina; Bertram-Troost, Gerdien; Miedema, Siebren

    2012-01-01

    Brains and gender, separately and in their interrelatedness, are hot items today in popular journals and academic literature. It is in particular the complexity of the interdependence of physical-, psychological-, and contextual-related developments of feminization in education that we focus on these contributions. We argue that a combination of…

  8. Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury.

    Science.gov (United States)

    Hoane, Michael R; Wolyniak, Joseph G; Akstulewicz, Stacy L

    2005-10-01

    Previous studies have shown that administration of riboflavin, vitamin B2, significantly reduced edema formation following experimental stroke. The present study evaluated the ability of B2 to improve behavioral function, reduce edema formation, and limit glial fibrillary acidic protein (GFAP) expression following frontal cortex contusion injury. Groups of rats were assigned to B2 (7.5 mg/kg) or saline (1.0 ml/kg) treatment conditions and received contusion injuries or sham procedures. Drug treatment was administered 15 min and 24 h following injury. Rats were examined on a variety of tests to measure sensorimotor performance (bilateral tactile removal test), and cognitive ability (acquisition of reference and working memory) in the Morris water maze. Administration of B2 following injury significantly reduced the behavioral impairments observed on the bilateral tactile removal test and improved the acquisition of both reference and working memory tests compared to saline-treated rats. The lesion analysis showed that B2 reduced the size of the lesion. Examination of GFAP expression around the lesion revealed that B2 significantly reduced the number of GFAP+ astrocytes. Edema formation following injury was also significantly reduced by B2 administration. These findings are the first to show that B2 administration significantly improved behavioral outcome and reduced lesion volume, edema formation, and the expression of GFAP following traumatic brain injury. These findings suggest that B2 may have therapeutic potential for the treatment of TBI.

  9. Regional brain activity that determines successful and unsuccessful working memory formation.

    Science.gov (United States)

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie

    2016-08-01

    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  10. In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices.

    Science.gov (United States)

    Bessen, R A; Raymond, G J; Caughey, B

    1997-06-13

    The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal neurodegenerative diseases that are characterized by the conversion of the normal host cellular prion protein (PrPC), to the abnormal protease-resistant prion protein isoform (PrP-res). It has been proposed, though not proven, that the infectious TSE agent consists solely of PrP-res and that PrP-res-induced conformational conversion of PrPC to additional PrP-res represents agent replication. In this study we demonstrate in situ conversion of protease-sensitive PrPC to PrP-res in TSE-infected brain slices. One step in this process is the binding of soluble PrPC to endogenous PrP-res deposits. The newly formed PrP-res associated with the slices in a pattern that correlated with the pre-existing brain distribution of PrP-res. Punctate in situ PrP conversion was observed in brain regions containing PrP-res amyloid plaques, and a more dispersed conversion product was detected in areas containing diffuse PrP-res deposits. These studies provide direct evidence that PrP-res formation involves the incorporation of soluble PrPC into both nonfibrillar and fibrillar PrP-res deposits in TSE-infected brain. Our findings suggest that the in situ PrP conversion reaction leads to additional polymerization of endogenous PrP-res aggregates and is analogous to the process of PrP-res fibril and subfibril growth in vivo.

  11. Pin site metastasis of meningioma.

    Science.gov (United States)

    Ozer, Ercan; Kalemci, Orhan; Acar, Umit Dursun; Canda, Serafettin

    2007-10-01

    Metastasis of meningiomas due to iatrogenic implantation of tumour cells is extremely rare and only four cases have been reported to date. In this study, we report a 45-year-old female patient who presented with meningioma metastasis at the pin site of head holder applied in the original operation.

  12. Unravelling site-specific breast cancer metastasis : A microRNA expression profiling study

    NARCIS (Netherlands)

    Schrijver, Willemijne A M E; van Diest, Paul J.; Moelans, Cathy B.

    2017-01-01

    Distant metastasis is still the main cause of death from breast cancer. MicroRNAs (miRs) are important regulators of many physiological and pathological processes, including metastasis. Molecular breast cancer subtypes are known to show a sitespecific pattern of metastases formation. In this study,

  13. Novel candidate metastasis genes as putative drug targets for breast cancer

    NARCIS (Netherlands)

    Roosmalen, Wilhelmina Paulina Elisabeth van

    2012-01-01

    Despite extensive studies to unravel molecular mechanisms underlying breast cancer metastasis, still 3500 women die of the results of this disease in the Netherlands each year. Improving our understanding of metastasis formation remains a challenge for further drug development. The scope of this

  14. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    Science.gov (United States)

    2016-10-01

    During the last year we have worked on the first point of the hypothesis. We have found that administration of tau purified from shockwave-exposed mice...accomplished under these goals? We have found that administration of tau purified from shockwave-exposed mice onto wild-type mice markedly reduces 1...DeKosky, S.T., M.D. Ikonomovic, and S. Gandy, Traumatic brain injury-- football , warfare, and long-term effects. N Engl J Med, 2010. 363(14): p. 1293-6. 2

  15. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    Science.gov (United States)

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  16. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells

    DEFF Research Database (Denmark)

    Terp, Mikkel G; Olesen, Kristina A; Christensen, Eva Arnspang

    2013-01-01

    of circulating tumor cells to extravasate and colonize, leading to inhibition of metastasis. Ab-based CD73 cancer therapy should include a combination of Abs that target the catalytic activity of CD73, as well as those with the characteristics described in this article.......-linking of CD73, because both whole IgG anti-CD73 AD2 mAb and Fab' fragments thereof exhibited this effect. Ex vivo treatment of different breast cancer cell lines with anti-CD73 AD2 mAb before i.v. injection into mice inhibited extravasation/colonization of circulating tumor cells and significantly reduced...... metastasis development. This effect was also observed when the cancer cell-surface expression of CD73 was significantly reduced by small interfering RNA knockdown. The antimetastatic activity is epitope specific, as another Ab that efficiently binds CD73-expressing live cancer cells did not lead to CD73...

  17. Meeting report: Metastasis Research Society-Chinese Tumor Metastasis Society joint conference on metastasis.

    Science.gov (United States)

    Bankaitis, Katherine; Borriello, Lucia; Cox, Thomas; Lynch, Conor; Zijlstra, Andries; Fingleton, Barbara; Gužvić, Miodrag; Anderson, Robin; Neman, Josh

    2017-04-01

    During September 16th-20th 2016, metastasis experts from around the world convened for the 16th Biennial Congress of the Metastasis Research Society and 12th National Congress of the Chinese Tumor Metastasis Society in Chengdu, China to share most current data covering basic, translational, and clinical metastasis research. Presentations of the more than 40 invited speakers of the main congress and presentations from the associated Young Investigator Satellite Meeting are summarized in this report by session topic. The congress program also included three concurrent short talk sessions, an advocacy forum with Chinese and American metastatic patient advocates, a 'Meet the Professors Roundtable' session for young investigators, and a 'Meet the Editors' session with editors from Cancer Cell and Nature Cell Biology. The goal of integrating expertise and exchanging the latest findings, ideas, and practices in cancer metastasis research was achieved magnificently, thanks to the excellent contributions of many leaders in the field.

  18. Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits.

    Science.gov (United States)

    Petsophonsakul, Petnoi; Richetin, Kevin; Andraini, Trinovita; Roybon, Laurent; Rampon, Claire

    2017-08-01

    During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.

  19. Ampullary carcinoma with cutaneous metastasis

    Directory of Open Access Journals (Sweden)

    I-Ting Liu

    2016-06-01

    Full Text Available Carcinoma of the ampulla of Vater is a rare gastrointestinal tumor. Additionally, cutaneous metastasis from such an internal malignancy is also uncommon. We reported the case of a 55-year-old man afflicted with ampullary carcinoma with cutaneous metastasis. The patient did not undergo the standard Whipple procedure but received chemotherapy due to apparent left neck lymph node metastasis noted by initial PET/CT imaging. The skin metastasis presented as a left neck infiltrating purpuric lesion, which was confirmed by skin biopsy approximately one year after the patient's disease was first diagnosed. Thereafter, the patient received further chemotherapy pursuant to his course of medical management. Skin metastasis usually represents a poor patient prognosis. In these cases, treatment of cutaneous metastasis typically includes systemic chemotherapy and local management such as radiation therapy or tumor excision. And when choosing a chemotherapy regimen for the ampullary cancer, the histological subtypes (intestinal or pancreatobiliary should be comprehensively considered. In our review of the literature, the intestinal type seems to have less distant lymph node metastasis, advanced local invasion, as well as recurrence than pancreatobiliary type of ampullary cancer.

  20. Cancer metastasis: issues and challenges.

    Science.gov (United States)

    Qian, Chao-Nan; Mei, Yan; Zhang, Jian

    2017-04-03

    Metastasis is the major cause of treatment failure in cancer patients and of cancer-related deaths. This editorial discusses how cancer metastasis may be better perceived and controlled. Based on big-data analyses, a collection of 150 important pro-metastatic genes was studied. Using The Cancer Genome Atlas datasets to re-analyze the effect of some previously reported metastatic genes-e.g., JAM2, PPARGC1A, SIK2, and TRAF6-on overall survival of patients with renal and liver cancers, we found that these genes are actually protective factors for patients with cancer. The role of epithelial-mesenchymal transition (EMT) in single-cell metastasis has been well-documented. However, in metastasis caused by cancer cell clusters, EMT may not be necessary. A novel role of epithelial marker E-cadherin, as a sensitizer for chemoresistant prostate cancer cells by inhibiting Notch signaling, has been found. This editorial also discusses the obstacles for developing anti-metastatic drugs, including the lack of high-throughput technologies for identifying metastasis inhibitors, less application of animal models in the pre-clinical evaluation of the leading compounds, and the need for adjustments in clinical trial design to better reflect the anti-metastatic efficacy of new drugs. We are confident that by developing more effective high-throughput technologies to identify metastasis inhibitors, we can better predict, prevent, and treat cancer metastasis.

  1. Overlap of saccadic and pursuit eye movement systems in the brain stem reticular formation.

    Science.gov (United States)

    Yan, Y J; Cui, D M; Lynch, J C

    2001-12-01

    Recent physiological studies have suggested that there are several sites of interaction between the neural pathways that control saccadic eye movements and those that control visual pursuit movements. To address the question of saccade/pursuit interaction from a neuroanatomical point of view, we have studied the connections from the smooth and saccadic eye movement subregions of the frontal eye field (FEFsem and FEFsac, respectively) to the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) in four Cebus apella monkeys. The riMLF has traditionally been considered to be a premotor center for vertical saccadic eye movements on the basis of single neuron recording experiments, microstimulation experiments, and surgical or chemical lesion experiments. We localized the functional subregions of the FEF with the use of low-threshold (smooth pursuit eye movements and supports the hypothesis that there is interaction between the saccadic and pursuit subsystems at the brain stem level.

  2. Theoretical approaches to holistic biological features: Pattern formation, neural networks and the brain-mind relation.

    Science.gov (United States)

    Gierer, Alfred

    2002-06-01

    The topic of this article is the relation between bottom-up and top-down, reductionist and holistic approaches to the solution of basic biological problems. While there is no doubt that the laws of physics apply to all events in space and time, including the domains of life, understanding biology depends not only on elucidating the role of the molecules involved, but, to an increasing extent, on systems theoretical approaches in diverse fields of the life sciences. Examples discussed in this article are the generation of spatial patterns in development by the interplay of autocatalysis and lateral inhibition; the evolution of integrating capabilities of the human brain, such as cognition-based empathy; and both neurobiological and epistemological aspects of scientific theories of consciousness and the mind.

  3. Neurophysiological mechanisms of formation of non-chemical dependence through self-stimulation of positive emotiogenic areas of rats’ brains

    Directory of Open Access Journals (Sweden)

    O. G. Berchenko

    2016-05-01

    Full Text Available The aim of our research was to study the limbic-neocortical mechanisms of addictive behaviour in rats formed throughthe arousal of intense emotions on the model of self-stimulation reaction of the brain. We carried out investigations by conducting a chronic experiment on 15 nonlinear laboratory male rats weighing 250 to 320 grams, at the ages of 5 to 6 months. As a model of receiving positive emotions we used the behaviour of animals held in a Skinner box which was formed through self stimulation of the positive emotional zones of the posterior ventrolateral hypothalamus. We registered the frequency of self-stimulation reactions of the ventrolateral hypothalamus daily for 4 days and on the 7th day after its ccessation (state of deprivation. We performed visual and spectral analysis of the electrical activity of the brain using "Neuron-spektr.net" software. We assessed the absolute spectral density of the power of rhythm signals of the following frequency bands: delta (0.5–4.0 Hz, theta (4.0–7.0 Hz, alpha (8.0–12.0 Hz and low frequency beta (14.0–20.0 Hz. The formation of behaviour dependent on receiving intense emotions as a result of self-stimulation of the positive zones of the ventrolateral hypothalamus is caused by the initial high level of need for positive emotional reinforcement and further growth in the implementation of desire and is associated with activation of emotional memory mechanisms, changes in electrogenesis in the hippocampus and the reticular formation in the form of decrease in the spectral power of rhythms of alpha and beta bands and increased spectral power of biopotentials of the delta range in the hippocampus and theta range in the reticular formation with severe manifestations of seizure and paroxysmal activity components and increased activity of the sympatho-adrenal system. The syndrome of withdrawal fromthe receiving of positive emotions in some rats with implementation of a programme of a phobic character

  4. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.

    Science.gov (United States)

    Recasens, Marc; Leung, Sumie; Grimm, Sabine; Nowak, Rafal; Escera, Carles

    2015-03-01

    The formation of echoic memory traces has traditionally been inferred from the enhanced responses to its deviations. The mismatch negativity (MMN), an auditory event-related potential (ERP) elicited between 100 and 250ms after sound deviation is an indirect index of regularity encoding that reflects a memory-based comparison process. Recently, repetition positivity (RP) has been described as a candidate ERP correlate of direct memory trace formation. RP consists of repetition suppression and enhancement effects occurring in different auditory components between 50 and 250ms after sound onset. However, the neuronal generators engaged in the encoding of repeated stimulus features have received little interest. This study intends to investigate the neuronal sources underlying the formation and strengthening of new memory traces by employing a roving-standard paradigm, where trains of different frequencies and different lengths are presented randomly. Source generators of repetition enhanced (RE) and suppressed (RS) activity were modeled using magnetoencephalography (MEG) in healthy subjects. Our results show that, in line with RP findings, N1m (~95-150ms) activity is suppressed with stimulus repetition. In addition, we observed the emergence of a sustained field (~230-270ms) that showed RE. Source analysis revealed neuronal generators of RS and RE located in both auditory and non-auditory areas, like the medial parietal cortex and frontal areas. The different timing and location of neural generators involved in RS and RE points to the existence of functionally separated mechanisms devoted to acoustic memory-trace formation in different auditory processing stages of the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Nasopharyngeal carcinoma with pericardial metastasis

    Directory of Open Access Journals (Sweden)

    Shang-Wen Chen

    2011-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is prevalent in Taiwan and is characterized by a high frequency of nodal metastasis. The most common organs with distal metastases are the bones, lungs, and liver, with extremely rare cases to the pericardium. Herein, we report a rare case with NPC who presented with dyspnea and orthopnea. Serial studies, including pericardial biopsy, revealed NPC with pericardial metastasis and pericardial effusion. The tumor cells of both the original and metastatic tumors were positive for Epstein–Barr virus by in situ hybridization. This is the first histologically confirmed case of NPC with pericardial metastasis.

  6. Is Selenium a Potential Treatment for Cancer Metastasis?

    Directory of Open Access Journals (Sweden)

    Yu-Chi Chen

    2013-04-01

    Full Text Available Selenium (Se is an essential micronutrient that functions as a redox gatekeeper through its incorporation into proteins to alleviate oxidative stress in cells. Although the epidemiological data are somewhat controversial, the results of many studies suggest that inorganic and organic forms of Se negatively affect cancer progression, and that several selenoproteins, such as GPXs, also play important roles in tumor development. Recently, a few scientists have examined the relationship between Se and metastasis, a late event in cancer progression, and have evaluated the potential of Se as an anti-angiogenesis or anti-metastasis agent. In this review, we present the current knowledge about Se compounds and selenoproteins, and their effects on the development of metastasis, with an emphasis on cell migration, invasion, and angiogenesis. In the cancers of breast, prostate, colorectal, fibrosarcoma, melanoma, liver, lung, oral squamous cell carcinoma, and brain glioma, there is either clinical evidence linking selenoproteins, such as thioredoxin reductase-1 to lymph node metastasis; in vitro studies indicating that Se compounds and selenoproteins inhibited cell motility, migration, and invasion, and reduced angiogenic factors in some of these cancer cells; or animal studies showing that Se supplementation resulted in reduced microvessel density and metastasis. Together, these data support the notion that Se may be an anti-metastastatic element in addition to being a cancer preventative agent.

  7. Role of the nervous system in cancer metastasis.

    Science.gov (United States)

    Li, Sha; Sun, Yanlai; Gao, Dongwei

    2013-04-01

    The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.

  8. Thrombocytosis of Liver Metastasis from Colorectal Cancer as Predictive Factor

    DEFF Research Database (Denmark)

    Josa, Valeria; Krzystanek, Marcin; Vass, Tamas

    2015-01-01

    There is increasing evidence that thrombocytosis is associated with tumor invasion and metastasis formation. It was shown in several solid tumor types that thrombocytosis prognosticates cancer progression. The aim of this study was to evaluate preoperative thrombocytosis as a potential prognostic...

  9. Norepinephrine and veratrine stimulated formation of inositol phosphates in rat brain slices

    Energy Technology Data Exchange (ETDEWEB)

    Maier, K.U.; Rutledge, C.O.

    1986-03-05

    Stimulation of phosphoinositide (PIn) hydrolysis by depolarization with veratrine was compared to that produced by stimulation of alpha/sub 1/ adrenoceptors by norepinephrine (NE). The PIns in rat cerebral cortex were labelled with /sup 3/H-myoinositol and the effects of the drugs on the formation of the three /sup 3/H-inositol phosphates (IP, IP2, IP3) were determined. The amounts of IP and IP2 formed by a maximal concentration of veratrine were about 50% of that formed by a maximal concentration of NE while the amount of IP3 formed after stimulation by veratrine was only about 10% of that produced by NE. The increase in IP was linear with time (30 min) for both NE and veratrine. IP2 and IP3 stimulation by veratrine reached a maximum at 5 min whereas that produced by NE continued to increase for 30 min. Blockade of voltage dependent calcium channels with manganese produced nearly complete antagonism of the veratrine response while only partially antagonizing the NE response. NE-induced IP2 formation was less sensitive to manganese than IP or IP3. These data suggest that veratrine causes hydrolysis of either a different pool of PIn or that the hydrolysis occurs by a different mechanism compared to NE. The data also suggest that IP2 may be produced directly from phosphatidylinositol 4-phosphate rather than solely as a metabolite of IP3.

  10. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

    Directory of Open Access Journals (Sweden)

    Nicky Pirotte

    2015-01-01

    Full Text Available Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI or apocynin (APO causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS, in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

  11. Cutaneous metastasis in anorectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Krishnendra Varma

    2015-01-01

    Full Text Available Cutaneous metastasis in anorectal adenocarcinoma is a rare entity. Here, we report the case of a 40-year-old female who presented with yellowish-brown, irregular, solid, elevated rashes over the pubis with a recent history off palliative colostomy for anorectal adenocarcinoma. Clinically, we suspected metastasis that was proved on biopsy. We report this case due to the rare presenting site (i.e., perineum of a metastatic adenocarcinoma.

  12. Selectins mediate small cell lung cancer systemic metastasis.

    Directory of Open Access Journals (Sweden)

    Franziska Heidemann

    Full Text Available Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181. However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.

  13. Site of metastasis and breast cancer mortality: a Danish nationwide registry-based cohort study.

    Science.gov (United States)

    Ording, Anne Gulbech; Heide-Jørgensen, Uffe; Christiansen, Christian Fynbo; Nørgaard, Mette; Acquavella, John; Sørensen, Henrik Toft

    2017-01-01

    Survival among patients with metastatic breast cancer may vary according to the site of metastasis and receptor status. We used Danish nationwide medical registries to establish a cohort of patients with metastatic breast cancer (870 with de novo metastatic disease and 3518 with recurrent disease with distant metastasis) diagnosed during 1997-2011. We examined 1-year and >1 to 5-year mortality associated with first site of metastasis and receptor expression status of the primary tumor. Cox proportional regression was used to compute confounder-adjusted mortality rate ratios (MRRs) associated with site of metastasis, stratified by receptor status. Overall 1-year and >1 to 5-year mortality risks were 36 and 69 %, respectively. Risk of death within 1 year was highest for brain-only (62 %) and liver-only (43 %) involvement and nearly the same for patients with lung-only (32 %), bone-only (32 %) involvement, and other/combination of sites (34 %). Using bone-only metastasis as reference, women with brain-only metastasis had more than two-fold increased risk of dying. The adjusted MRR for women with liver-only metastasis also was increased, though less pronounced. Patients with lung-only [adjusted MRR 0.9 (95 % confidence interval (CI) 0.8, 1.1)] or other metastases [adjusted MRR 1.0 (95 % CI 0.9, 1.2)] had similar mortality as patients with bone-only metastasis. Positive hormonal receptor status was a favorable prognostic factor. Metastatic breast cancer has a serious prognosis. Patients with brain-only metastasis had the highest mortality. Positive hormonal receptor status on the primary tumor was a favorable prognostic factor for all metastatic sites.

  14. Lumican inhibits B16F1 melanoma cell lung metastasis.

    Science.gov (United States)

    Brezillon, S; Zeltz, C; Schneider, L; Terryn, C; Vuillermoz, B; Ramont, L; Perrau, C; Pluot, M; Diebold, M D; Radwanska, A; Malicka-Blaszkiewicz, M; Maquart, F-X; Wegrowski, Y

    2009-10-01

    Lumican is a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM) involved in the control of melanoma growth and invasion. The aim of the present study was to analyse the role of lumican in the regulation of the development of lung metastasis. B16F1 melanoma cells stably transfected with lumican expressing plasmid (Lum-B16F1) were injected to syngenic mice. The lung metastasis was compared to mice injected with mock-transfected B16F1 cells (Mock-B16F1). The expression of lumican, cyclin D1, apoptotic markers, vascular endothelium growth factor (VEGF) and Von Willebrand Factor (vWF) within lung metastasis nodules was investigated by immunohistochemistry. In parallel, cells cultured in presence of lumican were assayed for apoptosis and motility. We observed that the number and the size of lung metastasis nodules were significantly decreased in mice injected with Lum-B16F1 cells in comparison to Mock-B16F1 cells. This was associated with an increase of tumour cell apoptosis within metastasis nodules but the cell proliferation rate remained constant in the two mice groups. In contrast, the VEGF immunostaining and the number of blood vessels within the lung metastasis nodules were decreased in the lumican-expressing tumours. In vitro, a significant decrease of apoptotic markers in wild type B16F1 cells incubated with increasing amounts of lumican core protein was observed. In addition, pseudotubes formation on Matrigel(R) and the migratory capacity of endothelial cells was inhibited by lumican. Altogether, our results indicate that lumican decreases lung metastasis development not only by inducing tumour cell apoptosis but also by inhibiting angiogenesis.

  15. Pancreatic acinar cell carcinoma with intracranial metastasis in a dog.

    Science.gov (United States)

    Chang, Shih-Chieh; Liao, Jiunn-Wang; Lin, Yung-Chang; Liu, Cheng-I; Wong, Min-Liang

    2007-01-01

    This report concerns a case of pancreatic carcinoma with widespread metastases to many organs including intracranial metastasis. An eleven-year-old, male, mixed-breed dog showed emaciation, ataxia, and multiple visible tumors within the neck. A MRI examination of the patient was conducted because of ataxia, and it was found that the intracranial invasive growth had resulted in compression of the brain stem. Necropsy was performed after the patient died. Based on gross and microscopic examination, the primary tumor cells were located in the left lobe of the pancreas and widespread metastasis was found into various organs, including the brain, lungs, liver, kidneys, tonsils, serosal surface of the esophagus, and submandibular, pulmonary hilar, mediastinal, and mesenteric lymph nodes. This case indicates that pancreatic adenocarcinoma should be included in the differential diagnosis list when cervical neck masses are detected.

  16. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  17. MDA-9/syntenin: a positive gatekeeper of melanoma metastasis.

    Science.gov (United States)

    Das, Swadesh K; Bhutia, Sujit K; Kegelman, Timothy P; Peachy, Leyla; Oyesanya, Regina A; Dasgupta, Santanu; Sokhi, Upneet K; Azab, Belal; Dash, Rupesh; Quinn, Bridget A; Kim, Keetae; Barral, Paola M; Su, Zhao-zhong; Boukerche, Habib; Sarkar, Devanand; Fisher, Paul B

    2012-01-01

    Melanoma differentiation associated gene-9 (MDA-9), synonymous with syntenin, is an adapter protein that provides a central role in regulating cell-cell and cell-matrix adhesion. MDA-9/syntenin transduces signals from the cell-surface to the interior through its interaction with a plethora of additional proteins and actively participates in intracellular trafficking and cell-surface targeting, synaptic transmission, and axonal outgrowth. Recent studies demarcate a seminal role of MDA-9/syntenin in cancer metastasis. In the context of melanoma, MDA-9/syntenin functions as a positive regulator of melanoma progression and metastasis through interactions with c-Src and promotes the formation of an active FAK/c-Src signaling complex leading to NF-k B and matrix metalloproteinase (MMP) activation. The present review provides a current perspective of our understanding of the important features of MDA-9/syntenin and its significant role in tumor cell metastasis with special focus on molecular mechanism of action.

  18. A case of giant cell glioblastoma: a mimicker of a cerebral metastasis.

    Science.gov (United States)

    Nagao, Eiki; Yoshiura, Takashi; Hiwatashi, Akio; Togao, Osamu; Yamashita, Kouji; Kamano, Hironori; Mizoguchi, Masahiro; Amano, Toshiyuki; Honda, Hiroshi

    2010-07-01

    We report a rare case of giant cell glioblastoma that was difficult to distinguish from cerebral metastasis. The MRI finding was a ring-enhancing well-circumscribed solitary brain tumor that was very similar to cerebral metastasis. Even when MRI results were considered together with the findings by magnet resonance spectroscopy and perfusion-weighted MRI, it was hard to distinguish between giant cell glioblastoma and cerebral metastasis before surgery. When we find a solitary ring-enhancing intracranial mass with little tendency of invasion, we need to consider the possibility of giant cell GBM as a differential diagnosis.

  19. Regulation of hematogenous tumor metastasis by acid sphingomyelinase

    Science.gov (United States)

    Carpinteiro, Alexander; Becker, Katrin Anne; Japtok, Lukasz; Hessler, Gabriele; Keitsch, Simone; Požgajovà, Miroslava; Schmid, Kurt W; Adams, Constantin; Müller, Stefan; Kleuser, Burkhard; Edwards, Michael J; Grassmé, Heike; Helfrich, Iris; Gulbins, Erich

    2015-01-01

    Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis. PMID:25851537

  20. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions

    Directory of Open Access Journals (Sweden)

    Robert Kraft

    2013-01-01

    The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the ‘filagree’ phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity. The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the ‘beads-on-a-string’ defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery.

  1. Intracardiac metastasis originated from chondrosarcoma.

    Science.gov (United States)

    Maurea, Nicola; Ragone, Gianluca; Coppola, Carmela; Caronna, Antonietta; Tocchetti, Carlo G; Agozzino, Lucio; Apice, Gaetano; Iaffaioli, Rosario V

    2017-05-01

    Primary cardiac tumors are extremely rare. By comparison, metastatic involvement of the heart is over 20 times more common and has been reported in autopsy series in up to one in five patients dying of cancer. Cardiac metastasis of chondrosarcoma is absolutely not frequent. In the recent literature, a cardiac metastasis from chondrosarcoma has never been described. We report the case of an 18-year-old man with a diagnosis of cardiac metastasis that originated from a left scapular chondrosarcoma. Chondrosarcoma is a skeletal tumor with various grades of malignancy, rapidly evolving, and with a strong tendency to metastasize, with low responsiveness to chemotherapy. The onset of characteristic systemic symptoms in the late stage of the disease led to the diagnosis of a mass localized in the right atrium. Management and differential diagnosis of infective heart lesions were also very complex in a rapidly evolving life-threatening condition.

  2. GAGE12 mediates human gastric carcinoma growth and metastasis.

    Science.gov (United States)

    Lee, Eun Kyung; Song, Kyung-A; Chae, Ji-Hye; Kim, Kyoung-Mee; Kim, Seok-Hyung; Kang, Myung-Soo

    2015-05-15

    The spontaneous metastasis from human gastric carcinoma (GC) remains poorly reproduced in animal models. Here, we established an experimental mouse model in which GC progressively developed in the orthotopic stomach wall and metastasized to multiple organs; the tumors colonized in the ovary exhibited typical characteristics of Krukenberg tumor. The expression of mesenchymal markers was low in primary tumors and high in those in intravasating and extravasating veins. However, the expression of epithelial markers did not differ, indicating that the acquisition of mesenchymal markers without a concordant loss of typical epithelial markers was associated with metastasis. We identified 35 differentially expressed genes (DEGs) in GC cells metastasized to ovary, among which overexpression of GAGE12 family genes, the top-ranked DEGs, were validated. In addition, knockdown of the GAGE12 gene family affected transcription of many of the aforementioned 35 DEGs and inhibited trans-well migration, tumor sphere formation in vitro and tumor growth in vivo. In accordance, GAGE12 overexpression augmented migration, tumor sphere formation and sustained in vivo tumor growth. Taken together, the GAGE12 gene family promotes GC growth and metastasis by modulating the expression of GC metastasis-related genes. © 2014 UICC.

  3. The challenge of targeting metastasis.

    Science.gov (United States)

    Fidler, Isaiah J; Kripke, Margaret L

    2015-12-01

    Metastases that are resistant to conventional therapy are the major cause of death from cancer. In most patients, metastasis has already occurred by the time of diagnosis. Thus, the prevention of metastasis is unlikely to be of therapeutic benefit. The biological heterogeneity of metastases presents a major obstacle to treatment. However, the growth and survival of metastases depend on interactions between tumor cells and host homeostatic mechanisms. Targeting these interactions, in addition to the tumor cells, can produce synergistic therapeutic effects against existing metastases.

  4. Metastasis genetics, epigenetics, and the tumor microenvironment

    Science.gov (United States)

    KISS1 is a member of a family of genes known as metastasis suppressors, defined by their ability to block metastasis without blocking primary tumor development and growth. KISS1 re-expression in multiple metastatic cell lines of diverse cellular origin suppresses metastasis; yet, still allows comple...

  5. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  6. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    Science.gov (United States)

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  7. Right ventricular metastasis of leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Stagmo Martin

    2009-05-01

    Full Text Available Abstract Metastatic presentation of leiomyosarcoma in the heart is very rare. We present transthoracic echocardiography and combined PET/CT images of a case with a large right ventricular metastasis of leiomyosarcoma. The patient was placed on cytostatic drugs for palliative purposes, but passed away one month later because of an untreatable ventricular tackycardia.

  8. Pulmonary Metastasis from Pseudomyxoma Peritonei

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kitai

    2012-01-01

    Full Text Available Pseudomyxoma peritonei (PMP is a rare clinical condition, where copious mucinous ascites accumulate in the peritoneal cavity due to dissemination of mucin-producing tumor. Because of this disseminating, yet nonmetastasizing, behavior, PMP attracts much interest from surgical oncologists in that aggressive locoregional therapy can give the opportunity of long survival and even cure. Although extra-abdominal metastasis is exceptionally rare, the lung is the most likely site in such a case. In this paper, the clinical findings and treatment of eleven cases with pulmonary metastasis from PMP were reviewed, including ten cases in the literature and one case which we experienced. The clinical features of PMP cases with pulmonary metastasis were similar to cases without pulmonary metastasis. The histological type was low-grade mucinous neoplasm in most cases. Pulmonary lesions were resected in seven cases in which abdominal lesions were controlled by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy or another therapeutic modality. Disease-free state was maintained in five cases at the end of the follow-up period. However, it should be noted that rapid progression after resection was seen in two cases, suggesting that biological features may have changed by surgical intervention.

  9. Maxillofacial metastasis from breast cancer.

    Science.gov (United States)

    Namad, Tariq; Benbrahim, Zineb; Najib, Rajae; Mohammed, Afif; Baggar, Soufiane; Bouyahia, Nezar; Arifi, Samia; Mellas, Nawfel

    2014-01-01

    Metastatic tumors to paranasal sinuses are exclusively rare. In this paper, we report a case of breast carcinoma metastasizing to the right maxilla. The metastasis occurred 5 years after radical mastectomy and presented as a primary sinonasal mass. The diagnosis was confirmed with histopathologic and immunohistochemical examination however the patient died before starting any specific treatment because of tumor bleeding.

  10. Cerebral Metastasis from a Previously Undiagnosed Appendiceal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Antonio Biroli

    2012-01-01

    Full Text Available Brain metastases arise in 10%–40% of all cancer patients. Up to one third of the patients do not have previous cancer history. We report a case of a 67-years-old male patient who presented with confusion, tremor, and apraxia. A brain MRI revealed an isolated right temporal lobe lesion. A thorax-abdomen-pelvis CT scan showed no primary lesion. The patient underwent a craniotomy with gross-total resection. Histopathology revealed an intestinal-type adenocarcinoma. A colonoscopy found no primary lesion, but a PET-CT scan showed elevated FDG uptake in the appendiceal nodule. A right hemicolectomy was performed, and the specimen showed a moderately differentiated mucinous appendiceal adenocarcinoma. Whole brain radiotherapy was administrated. A subsequent thorax-abdomen CT scan revealed multiple lung and hepatic metastasis. Seven months later, the patient died of disease progression. In cases of undiagnosed primary lesions, patients present in better general condition, but overall survival does not change. Eventual identification of the primary tumor does not affect survival. PET/CT might be a helpful tool in detecting lesions of the appendiceal region. To the best of our knowledge, such a case was never reported in the literature, and an appendiceal malignancy should be suspected in patients with brain metastasis from an undiagnosed primary tumor.

  11. Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis

    OpenAIRE

    Sun, Yu; SONG, GUO-DONG; Sun, Ning; CHEN, JIAN-QIU; YANG, SHAO-SHI

    2014-01-01

    Detection of metastasis of hepatocellular carcinoma (HCC) is crucial for early diagnosis. Epithelial-mesenchymal transition (EMT) is a common event in the metastasis of tumor cells. Slug and Snail are homologous proteins, which play an important role in EMT. The present study aimed to investigate whether Slug and Snail overexpression is associated with the invasiveness of HCC in vitro and in vivo. Invasion, colony formation and wound healing assays, as well as flow cytometry analysis, were pe...

  12. Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments

    NARCIS (Netherlands)

    Burbach, J.P.H.; Kloet, E.R. de; Wied, D. de

    1980-01-01

    The enzymatic conversion of oxytocin by brain peptidases has been studied. Oxytocin was incubated with synaptosomal plasma membranes (SPM) isolated from the rat brain. Qualitative studies using a microdansylation technique revealed two types of oxytocin converting peptidases, e.g. aminopeptidase and

  13. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan.

    Science.gov (United States)

    Miyata, Shinji; Kitagawa, Hiroshi

    2017-10-01

    The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hand1 overexpression inhibits medulloblastoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Asuthkar, Swapna; Guda, Maheedhara R. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Martin, Sarah E. [Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Antony, Reuben; Fernandez, Karen [Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Lin, Julian [Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Tsung, Andrew J. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Illinois Neurological Institute, Peoria, IL 61656 (United States); Velpula, Kiran K., E-mail: velpula@uic.edu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States)

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  15. Patient-derived xenografts from non-small cell lung cancer brain metastases are valuable translational platforms for the development of personalized targeted therapy.

    Science.gov (United States)

    Lee, Hye Won; Lee, Jung-Il; Lee, Se Jeong; Cho, Hyun Jung; Song, Hye Jin; Jeong, Da Eun; Seo, Yun Jee; Shin, Sang; Joung, Je-Gun; Kwon, Yong-Jun; Choi, Yoon-La; Park, Woong-Yang; Lee, Hyun Moo; Seol, Ho Jun; Shim, Young Mog; Joo, Kyeung Min; Nam, Do-Hyun

    2015-03-01

    The increasing prevalence of distant metastases from non-small cell lung cancer (NSCLC) indicates an urgent need for novel therapeutic modalities. Brain metastasis is particularly common in NSCLC, with severe adverse effects on clinical prognosis. Although the molecular heterogeneity of NSCLC and availability of various targeted agents suggest personalized therapeutic approaches for such brain metastases, further development of appropriate preclinical models is needed to validate the strategies. We established patient-derived xenografts (PDX) using NSCLC brain metastasis surgical samples and elucidated their possible preclinical and clinical implications for personalized treatment. NSCLC brain metastases (n = 34) showed a significantly higher successful PDX establishment rate than primary specimens (n = 64; 74% vs. 23%). PDXs derived from NSCLC brain metastases recapitulated the pathologic, genetic, and functional properties of corresponding parental tumors. Furthermore, tumor spheres established in vitro from the xenografts under serum-free conditions maintained their in vivo brain metastatic potential. Differential phenotypic and molecular responses to 20 targeted agents could subsequently be screened in vitro using these NSCLC PDXs derived from brain metastases. Although PDX establishment from primary NSCLCs was significantly influenced by histologic subtype, clinical aggressiveness, and genetic alteration status, the brain metastases exhibited consistently adequate in vivo tumor take rate and in vitro tumor sphere formation capacity, regardless of clinical and molecular conditions. Therefore, PDXs from NSCLC brain metastases may better represent the heterogeneous advanced NSCLC population and could be utilized as preclinical models to meet unmet clinical needs such as drug screening for personalized treatments. ©2014 American Association for Cancer Research.

  16. Breast Cancer Metastasis to Pituitary Infandibulum

    Directory of Open Access Journals (Sweden)

    Maryam Poursadegh Fard

    2011-06-01

    Full Text Available Metastasis from breast cancer to other parts of the body is very common, but the spread of the tumor to pituitary gland, especially to infandibulum, is a rare presentation. At the time of pituitary metastasis, a majority of the patients have clinical and radiological evidence of the disease. It seems that the posterior area of the gland is the most common site of metastasis, probably due to highly rich blood supply through the hypophyseal artery. The present report introduces a case of a 55-years-old woman presented with diabetes insipidus resulting from metastasis of the tumor to pituitary infandibulum, which is a rare site for metastasis, without significant complaint resulting from metastasis to other part of the body, or other primary diseases. Further evaluation revealed that in spite of previous reports, which metastasis usually happens in end stage of cancer, the patients had primary breast cancer. In subsequent evaluations of the case, hypofunction of adenohypophysis was also detected

  17. Review of Animal Models of Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Jessica K. Simmons

    2014-06-01

    Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.

  18. Animal Models of Bone Metastasis

    Science.gov (United States)

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  19. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  20. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis.

    Science.gov (United States)

    Park, Jino; Schlederer, Michaela; Schreiber, Martin; Ice, Ryan; Merkel, Olaf; Bilban, Martin; Hofbauer, Sebastian; Kim, Soojin; Addison, Joseph; Zou, Jie; Ji, Chunyan; Bunting, Silvia T; Wang, Zhengqi; Shoham, Menachem; Huang, Gang; Bago-Horvath, Zsuzsanna; Gibson, Laura F; Rojanasakul, Yon; Remick, Scot; Ivanov, Alexey; Pugacheva, Elena; Bunting, Kevin D; Moriggl, Richard; Kenner, Lukas; Tse, William

    2015-08-21

    AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties.

  1. Raman spectroscopy of bone metastasis

    Science.gov (United States)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  2. Canine spirocercosis-associated extraskeletal osteosarcoma with central nervous system metastasis

    Directory of Open Access Journals (Sweden)

    Paolo Pazzi

    2013-02-01

    Full Text Available A five-year-old male Boerboel presented for examination, collapsed for an unknown period of time. On clinical examination, multifocal subcutaneous masses and enlarged prescapular lymph nodes as well as neurological deficits that suggested a multifocal neurological syndrome were found. Fine needle aspirates of the prescapular lymph nodes revealed cells suggestive of osteosarcoma. Radiographs showed foci of mineralisation within the soft tissue masses as well as diffuse pulmonary metastasis and a caudodorsal mediastinal mass believed to be a Spirocerca lupi nodule. Computed tomography imaging, necropsy and histopathology confirmed S. lupi oesophageal neoplastic transformation (extraskeletal osteosarcoma, believed to be the primary lesion, and the majority of secondary metastasis to the brain, spine, heart, multiple muscular groups and abdominal organs. This is the first known report of extraskeletal osteosarcoma metastasis to the brain and spinal cord in a dog.

  3. Canine spirocercosis-associated extraskeletal osteosarcoma with central nervous system metastasis

    Directory of Open Access Journals (Sweden)

    Paolo Pazzi

    2013-04-01

    Full Text Available A five-year-old male Boerboel presented for examination, collapsed for an unknown period of time. On clinical examination, multifocal subcutaneous masses and enlarged prescapular lymph nodes as well as neurological deficits that suggested a multifocal neurological syndrome were found. Fine needle aspirates of the prescapular lymph nodes revealed cells suggestive of osteosarcoma. Radiographs showed foci of mineralisation within the soft tissue masses as well as diffuse pulmonary metastasis and a caudodorsal mediastinal mass believed to be a Spirocerca lupi nodule. Computed tomography imaging, necropsy and histopathology confirmed S. lupi oesophageal neoplastic transformation (extraskeletal osteosarcoma, believed to be the primary lesion, and the majority of secondary metastasis to the brain, spine, heart, multiple muscular groups and abdominal organs. This is the first known report of extraskeletal osteosarcoma metastasis to the brain and spinal cord in a dog.

  4. [A Case of Difficult-to-Diagnose Carcinomatous Meningitis Caused by Prostate Cancer Metastasis].

    Science.gov (United States)

    Shinohara, Masatake; Kiba, Keisuke; Yamada, Atsushi; Hatakeyama, Kinta; Mita, Yasunobu; Saka, Toshihisa; Hirao, Yoshihik

    2016-05-01

    A 66-year-old man was referred to our hospital because of right leg pain. Computed tomography (CT) revealed multiple osteolytic changes. His serum prostate-specific antigen (PSA) level was increased to 77.83 ng/ml at the time of hospitalization. A prostate biopsy was performed, and histological examination results indicated poorly differentiated adenocarcinoma. Under the diagnosis of multiple bone metastasis of prostate cancer, androgen deprivation therapy was started. However, 1 month later, the patient was confused and lost appetite. Brain CT image demonstrated brain metastasis, and magnetic resonance image showed hydrocephalus. Although the patient underwent ventricular drainage because of a depressed level of consciousness, he died of primary disease complicated by pneumonia 3 months after the first visit. Perioperative cerebrospinal fluid cytological examination revealed adenocarcinoma cells. Therefore, a diagnosis of carcinomatous meningitis caused by prostate cancer metastasis was made.

  5. Postmortem concentrations of gamma-hydroxybutyrate (GHB) in peripheral blood and brain tissue - Differentiating between postmortem formation and antemortem intake

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Brian Schou; Johansen, Sys Stybe

    2017-01-01

    to fermentation processes. The endogenous nature of GHB leads to difficulty in interpretation of concentrations, as the source of GHB is not obvious. Postmortem brain and blood samples were collected from 221 individuals at autopsy. Of these, 218 were not suspected of having ingested GHB, while GHB intake...... was reported for the last three (cases A-C). Decomposition level was estimated and cases classified into no/minor and advanced decomposition. Brain samples were extracted from the frontal lobe; only gray matter from the cerebral cortex was used. Blood was drawn from the femoral vein. Brain samples were...... homogenized and diluted with water. Brain homogenates or femoral blood were then prepared using protein precipitation and GHB was quantified with UHPLC-MS/MS. For 189 cases where ingestion of GHB was not suspected and where no/minor decomposition had occurred the concentrations were in the range 4.8-45.4mg...

  6. Cutaneous Metastasis From Sacral Chordoma.

    Science.gov (United States)

    Gleghorn, Kristyna; Goodwin, Brandon; Sanchez, Ramon

    2017-04-01

    Chordoma is a rare primary bone malignancy of notochord origin, representing 1-4% of malignant bone tumors., Typically, chordomas follow a slow progressive course with aggressive local extension, multiple recurrences, and metastases. Of particular interest to this case, cutaneous metastasis is exceedingly rare. Diagnosis of this entity can be a challenge due to the rarity of chordoma, as well as the infrequent presentation of distant cutaneous metastasis and non-specific clinical skin findings. We report a case of a 61-year-old male with a history of sacral chordoma treated by wide local excision 8 years prior to presentation developed a nodule on his scalp for 6 weeks. Physical examination revealed a 1 cm rubbery, pink, shiny dome-shaped nodule on his left occipital scalp. Hematoxylin and eosin sections revealed a lobular dermal proliferation of small ovoid cells and larger physaliferous cells with hyperchromatic, displaced nuclei and finely vacuolated "soap-bubble" cytoplasm in a myxoid stroma. Immunohistochemistry of tumor cells showed positivity for both S-100 protein and pancytokeratin (AE1/AE3), while smooth muscle actin (SMA), P63, and CK7 were negative. Additionally, tumor cells stained positive for brachyury. The medical history, clinical presentation, histopathological appearance and immunohistochemical profile are consistent with cutaneous metastasis from sacral chordoma, known as chordoma cutis. This case illustrates the integral role of dermatopathology in the diagnosis of a rare and critical condition.

  7. Mitochondrial dysfunction and cancer metastasis.

    Science.gov (United States)

    Chen, Emily I

    2012-12-01

    Mitochondria have an essential role in powering cells by generating ATP following the metabolism of pyruvate derived from glycolysis. They are also the major source of generating reactive oxygen species (ROS), which have regulatory roles in cell death and proliferation. Mutations in mitochondrial DNA (mtDNA) and dysregulation of mitochondrial metabolism have been frequently described in human tumors. Although the role of oxidative stress as the consequence of mtDNA mutations and/or altered mitochondrial functions has been demonstrated in carciongenesis, a causative role of mitochondria in tumor progression has only been demonstrated recently. Specifically, the subject of this mini-review focuses on the role of mitochondria in promoting cancer metastasis. Cancer relapse and the subsequent spreading of cancer cells to distal sites are leading causes of morbidity and mortality in cancer patients. Despite its clinical importance, the underlying mechanisms of metastasis remain to be elucidated. Recently, it was demonstrated that mitochondrial oxidative stress could actively promote tumor progression and increase the metastatic potential of cancer cells. The purpose of this mini-review is to summarize current investigations of the roles of mitochondria in cancer metastasis. Future development of diagnostic and therapeutic strategies for patients with advanced cancer will benefit from the new knowledge of mitochondrial metabolism in epithelial cancer cells and the tumor stroma.

  8. [The management of bone metastasis].

    Science.gov (United States)

    Bonetto, Rémi; Tallet, Agnès; Mélot, Anthony; Calderon, Benoît; Barlesi, Fabrice

    2017-06-01

    Bone metastasis are the most common cause of pain related to cancer, reducing patients' quality of life, and sometimes threatening their life-expectancy. Their management has to be pluridisciplinary, because of all the therapeutic options and the diversity of bone metastasis locations. The aim of this work is to propose a rational decisional algorithm for the treatment strategy of these secondary locations. Anti-resorbtive drugs with systemic action, surgery, conventional or stereotactic radiation therapy, and new techniques of interventional radiology are options that could be used separately or combined. They have shown benefits on symptomatic treatment, improving quality of life. Their indications vary according to the tumor site (short vs. long bones, carrier vs. non-carrier bones), the symptomatology (pain, neurologic symptoms), and the presence of complications (most of all fractures). The diverse presentations lead us to define this decisional algorithm, to guide the practice, while giving the maximal benefit to each patient according to each metastasis. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  9. Metastasis: an early event in cancer progression.

    Science.gov (United States)

    Hu, Yijun; Yu, Xiya; Xu, Guixia; Liu, Shanrong

    2017-05-01

    Metastasis is the leading cause of death for a majority of cancer patients, and thus the need to understand the biology of metastasis becomes increasingly acute. When metastasis is initiated in tumor progression remains obscure. Better understanding of mechanisms regulating acquisition of metastatic ability in tumor cells will provide novel therapeutic targets and prevention of metastasis in clinics accompanied with the treatment of the primary tumor might be helpful in reducing metastasis-related mortality. A literature search was performed in multiple electronic databases. Research papers from clinical reports to experimental studies on metastasis were analyzed. The article discusses tumor heterogeneity and genomic instability in the context of metastasis and tumor cell dissemination. And then we review biological mechanism of metastasis at an early stage in both intracellular (CSCs and CTCs) and extracellular (microenvironment) context. Finally, current development of anti-metastatic therapies is summarized. Metastasis could be initiated at an early point of tumor progression. Therefore, early intervention on metastasis should be applied among cancer patients in clinical settings.

  10. Brain Metastases from Endometrial Carcinoma

    Science.gov (United States)

    Piura, Ettie; Piura, Benjamin

    2012-01-01

    This paper will focus on knowledge related to brain metastases from endometrial carcinoma. To date, 115 cases were documented in the literature with an incidence of 0.6% among endometrial carcinoma patients. The endometrial carcinoma was usually an advanced-stage and high-grade tumor. In most patients (~90%), brain metastasis was detected after diagnosis of endometrial carcinoma with a median interval from diagnosis of endometrial carcinoma to diagnosis of brain metastases of 17 months. Brain metastasis from endometrial carcinoma was either an isolated disease limited to the brain only (~50%) or part of a disseminated disease involving also other parts of the body (~50%). Most often, brain metastasis from endometrial carcinoma affected the cerebrum (~75%) and was solitary (~60%). The median survival after diagnosis of brain metastases from endometrial carcinoma was 5 months; however, a significantly better survival was achieved with multimodal therapy including surgical resection or stereotactic radiosurgery followed by whole brain radiotherapy (WBRT) and/or chemotherapy compared to WBRT alone. It is suggested that brain imaging studies should be considered in the routine follow up of patients with endometrial carcinoma and that the search for a primary source in females with brain metastases of unknown primary should include endometrial biopsy. PMID:22523707

  11. Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells.

    Science.gov (United States)

    Chuang, Han-Ning; Lohaus, Raphaela; Hanisch, Uwe-Karsten; Binder, Claudia; Dehghani, Faramarz; Pukrop, Tobias

    2013-10-09

    Patients with cerebral metastasis of carcinomas have a poor prognosis. However, the process at the metastatic site has barely been investigated, in particular the role of the resident (stromal) cells. Studies in primary carcinomas demonstrate the influence of the microenvironment on metastasis, even on prognosis(1,2). Especially the tumor associated macrophages (TAM) support migration, invasion and proliferation(3). Interestingly, the major target sites of metastasis possess tissue-specific macrophages, such as Kupffer cells in the liver or microglia in the CNS. Moreover, the metastatic sites also possess other tissue-specific cells, like astrocytes. Recently, astrocytes were demonstrated to foster proliferation and persistence of cancer cells(4,5). Therefore, functions of these tissue-specific cell types seem to be very important in the process of brain metastasis(6,7). Despite these observations, however, up to now there is no suitable in vivo/in vitro model available to directly visualize glial reactions during cerebral metastasis formation, in particular by bright field microscopy. Recent in vivo live imaging of carcinoma cells demonstrated their cerebral colonization behavior(8). However, this method is very laborious, costly and technically complex. In addition, these kinds of animal experiments are restricted to small series and come with a substantial stress for the animals (by implantation of the glass plate, injection of tumor cells, repetitive anaesthesia and long-term fixation). Furthermore, in vivo imaging is thus far limited to the visualization of the carcinoma cells, whereas interactions with resident cells have not yet been illustrated. Finally, investigations of human carcinoma cells within immunocompetent animals are impossible(8). For these reasons, we established a coculture system consisting of an organotypic mouse brain slice and epithelial cells embedded in matrigel (3D cell sphere). The 3D carcinoma cell spheres were placed directly next to

  12. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  13. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  14. The Expression of p-STAT3 in Stage IV Melanoma: Risk of CNS Metastasis and Survival

    Science.gov (United States)

    Bassett, Roland; Kong, Ling-Yuan; Schacherer, Christopher W.; Gershenwald, Jeffrey E.; Grimm, Elizabeth A.; Fuller, Gregory N.; Heimberger, Amy B.

    2012-01-01

    Purpose The signal transducer and activator of transcription 3 (STAT3) is a key molecular hub of tumorigenesis and immune suppression. The expression of phosphorylated STAT3 (p-STAT3) has been shown to be higher in melanoma metastasis to the central nervous system (CNS) relative to distant metastasis in the rest of the body (systemic). We sought to determine whether the increased expression of p-STAT3 in non-CNS systemic melanoma metastasis is associated with an increased risk of developing CNS metastasis and is a negative prognostic factor for overall survival time. Methods We retrospectively identified 299 patients with stage IV melanoma. In a tissue microarray of systemic non-CNS metastasis specimens from these patients, we used immunohistochemical analysis to measure the percentage of cells with p-STAT3 expression and Kaplan–Meier survival estimates to analyze the association of p-STAT3 expression with median survival time, time to first CNS metastasis, and development of CNS metastasis. Results Lung metastases exhibited the highest level of p-STAT3 expression while spleen lesions had the lowest. The p-STAT3 expression was not associated with an increased risk of developing CNS metastasis or time to CNS metastasis. However, p-STAT3 expression was a negative prognostic factor for overall survival time in patients that did not develop CNS metastasis. Conclusions Stage IV melanoma patients without CNS metastasis treated with p-STAT3 inhibitors in efficacy studies should be stratified based on tumor expression of p-STAT3; however since p-STAT3 expression is not associated with the risk of CNS disease, increased MRI surveillance of the brain is not likely necessary. PMID:22488042

  15. Perihippocampal metastasis following hippocampus-avoiding prophylactic cranial irradiation for small cell lung cancer: a case report

    Directory of Open Access Journals (Sweden)

    Yeo SG

    2017-08-01

    Full Text Available Seung-Gu Yeo Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea Abstract: Prophylactic cranial irradiation (PCI lowers the risk of brain metastasis (BM and increases survival in small cell lung cancer (SCLC patients, but it also entails a risk of neurocognitive dysfunction (NCD. One strategy to mitigate this neurotoxicity is hippocampus-avoiding (HA whole-brain radiation therapy, as the hippocampus is mainly responsible for radiation-related NCD and hippocampal or perihippocampal metastases are rare. A few prospective clinical trials have demonstrated a reduction in NCD following HA whole-brain radiation therapy. The 59-year-old male patient described in this report had limited-stage SCLC and a complete response to thoracic chemoradiotherapy. Seven months after receiving HA-PCI of 25 Gy in 10 fractions using intensity-modulated radiation therapy, a 36 mm solitary metastasis was detected in the right perihippocampal region. The mass was surgically removed but the patient died 2 months later. The development of a solitary HA region metastasis is uncommon, considering that metastasis in this area usually occurs in patients with high numbers of BMs. Our case demonstrates the need for further validation of HA-PCI for SCLC patients in terms of both neurocognitive protection and the absence of compromise in terms of BM prevention. Keywords: hippocampus-sparing, lung cancer, neurotoxicity, cognition, brain metastasis, whole brain radiation therapy

  16. Task-Related Edge Density (TED-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Directory of Open Access Journals (Sweden)

    Gabriele Lohmann

    Full Text Available The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED. TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  17. The Effect of Levocarnitine on Dynamics of the Brain Bioelectrical Activity Formation in Term Infants Delivered by Cesarean Section: Open Randomized Study Results

    Directory of Open Access Journals (Sweden)

    Tatiana S. Tumaevа

    2017-01-01

    Full Text Available The brain activity of a newborn affects postnatal adaptation, the disorder of which can cause dysfunction of organs and systems of the immature organism and the development of diseases in more distant periods of maturation.Objective: Our aim was to study the effect of levocarnitine on dynamics of the brain bioelectrical activity formation in term infants delivered by cesarean section.Methods. The study included term infants (gestation period 38–40 weeks delivered by cesarean section, with perinatal hypoxic lesion of the central nervous system (cerebral ischemia. Children were randomized into groups of standard (recommended treatment and standard treatment enhanced with levocarnitine (plus levocarnitine — 30% oral solution at a dose of 100 mg/kg per day for 3 weeks starting from the 7th day of life. The brain bioelectrical activity was assessed with electroencephalography (EEG of the natural sleep period on the 3rd–6th day and then at 3, 6, and 12 months.Results. 45 children were randomized into groups of standard treatment and standard treatment plus levocarnitine, of which 44 and 40 children completed the study, respectively. Initially, the delayed formation of age-related brain activity was detected in 16/40 (40% children receiving levocarnitine and in 19/44 (43% in the experimental group (p = 0.767, disturbances in the EEG sleep pattern with generation of background anomalies — in 17 (43% and 16 (36% (p = 0.565, pathological graph elements — in 1 (3% and 2 (5% children (p = 0.536, respectively. According to the dynamic EEG control results, it was found that after 1 year the cerebral dysfunction was registered less frequently in children receiving levocarnitine — in 32 (80% vs. 42 (96% children in the group of standard treatment (p = 0.028.Conclusion. Adminisration of levocarnitine in the neonatal period reduces the risk of developing cerebral dysfunction by the end of the first year of life. 

  18. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Science.gov (United States)

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  19. Adaptive hypofractionated gamma knife radiosurgery for a large brainstem metastasis

    DEFF Research Database (Denmark)

    Sinclair, Georges; Bartek, Jiri; Martin, Heather

    2016-01-01

    BACKGROUND: To demonstrate how adaptive hypofractionated radiosurgery by gamma knife (GK) can be successfully utilized to treat a large brainstem metastasis - a novel approach to a challenging clinical situation. CASE DESCRIPTION: A 42-year-old woman, diagnosed with metastatic nonsmall cell lung...... months and 18-fluoro-deoxyglucose positron emission tomography of the brain at 13 months showed decreased edema with no signs of tumor recurrence. Despite disease progression during the last months of her life, the patient's condition remained overall acceptable. CONCLUSION: GK-based stereotactic...

  20. [Meningeal metastasis of uterine leiomyosarcoma. Case report and literature review].

    Science.gov (United States)

    Sosa, Pablo; Cuadra, Gabriela; Hidalgo, Raul

    2017-10-04

    Brain metastases are the most commonly seen intracranial lesions in adults. What is more, meningiomas are the most common primary intracranial tumours after gliomas and their imaging characteristics are well known in both CT and MRI scans. However, there are lesions that can mimic meningiomas in imaging studies, including metastases of extracranial tumours, confronting us with a diagnostic and therapeutic challenge. We present the case of a patient with meningeal metastasis of a uterine leiomyosarcoma that was not known at the time of the surgical intervention. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Tumor to tumor metastasis: Adenocarcinoma of lung metastatic to meningioma

    Directory of Open Access Journals (Sweden)

    A Talukdar

    2014-01-01

    Full Text Available Tumor-to-tumor metastasis (T2Tmets is an established entity but often overlooked and underdiagnosed. Merely 84 such cases are reported in literature till date. The authors here describe a 65-year-old man presenting with first episode of focal seizure and incidentally turned out to be a case of adenocarcinoma of lung metastatic to a meningioma. The diagnosis of T2Tmets was based solely on histopathological criteria. Recent advent of brain imaging revolutionized its diagnosis and it has moved from the realm of thologists to that of radiologists. In our case, diagnosis was also established by immunohistochemistry.

  2. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    Science.gov (United States)

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  3. Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.

    Science.gov (United States)

    van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob

    2015-04-01

    Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.

  4. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis

    Science.gov (United States)

    Sinkevicius, Kerstin W.; Kriegel, Christina; Bellaria, Kelly J.; Lee, Jaewon; Lau, Allison N.; Leeman, Kristen T.; Zhou, Pengcheng; Beede, Alexander M.; Fillmore, Christine M.; Caswell, Deborah; Barrios, Juliana; Wong, Kwok-Kin; Sholl, Lynette M.; Schlaeger, Thorsten M.; Bronson, Roderick T.; Chirieac, Lucian R.; Winslow, Monte M.; Haigis, Marcia C.; Kim, Carla F.

    2014-01-01

    Lung cancer is notorious for its ability to metastasize, but the pathways regulating lung cancer metastasis are largely unknown. An in vitro system designed to discover factors critical for lung cancer cell migration identified brain-derived neurotrophic factor, which stimulates cell migration through activation of tropomyosin-related kinase B (TrkB; also called NTRK2). Knockdown of TrkB in human lung cancer cell lines significantly decreased their migratory and metastatic ability in vitro and in vivo. In an autochthonous lung adenocarcinoma model driven by activated oncogenic Kras and p53 loss, TrkB deficiency significantly reduced metastasis. Hypoxia-inducible factor-1 directly regulated TrkB expression, and, in turn, TrkB activated Akt signaling in metastatic lung cancer cells. Finally, TrkB expression was correlated with metastasis in patient samples, and TrkB was detected more often in tumors that did not have Kras or epidermal growth factor receptor mutations. These studies demonstrate that TrkB is an important therapeutic target in metastatic lung adenocarcinoma. PMID:24982195

  5. Oral gingival metastasis: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Nalini Aswath

    2017-01-01

    Full Text Available Oral cavity is a rare target for metastasis with an incidence of 1% among all oral cancers. In 24% of such cases, oral metastasis is the first indication of an undiagnosed primary. Metastatic oral malignancies have been reported in the mandible, tongue, and gingiva. Although gingival metastasis has been reported from lung, prostate, rectal carcinoma in men and carcinoma of breast, adrenal glands, and genitalia in females, gingival metastasis from carcinoma of the penis has not been reported. Herein, a case of metastatic gingival carcinoma that developed after extraction of teeth from primary carcinoma of the penis is presented. An extensive literature search revealed no such similar case reports.

  6. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  7. Rare Gingival Metastasis by Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Li-Jun Xue

    2017-01-01

    Full Text Available Hepatocellular carcinoma (HCC uncommonly metastasizes to the gingiva, which always means a poor outcome. We reported a rare HCC case with multiple metastases to gingiva, lungs, and brain. A 60-year-old man was initially diagnosed as HCC with metastases to double lungs. He was subjected to a transarterial chemoembolization (TACE (5-fluorouracil, 750 mg and two cycles of intravenous chemotherapy (gemcitabine 1.8 g at days 1 and 8, oxaliplatin 200 mg at day 2, every 4 weeks. However, the volume of liver tumor still increased. A bean-size gingival nodule growing with occasional bleeding was also found. TACE (5-fluorouracil 750 mg, perarubicin 40 mg, cisplatin 20 mg was performed again and an oral sorafenib therapy (400 mg, twice per day was adopted. The disease maintained relatively stable for about 6 months until a second obvious progress. The gingival nodule was then palliatively excised and identified as a poorly differentiated metastatic HCC by histopathological examination. Best supportive treatments were made since the performance score was too bad. Finally, cerebral metastases occurred and the patient died of systemic failure. Upon review of previous reports, we discussed risk factors, clinical and pathological characteristics, treatments, and prognosis of gingival metastasis by HCC.

  8. EFFECTIVENESS OF RADIATION TREATMENT IN METASTATIC BRAIN DISEASES

    Directory of Open Access Journals (Sweden)

    Prema

    2016-03-01

    Full Text Available BACKGROUND Brain metastasis are a major cause of mortality and morbidity in cancer patients. Most common primary sites are lung, breast, malignant melanoma and kidney. Whole brain radiation treatment has remained the treatment of choice for brain metastasis. Though it provides early symptomatic relief, survival is limited to 3-6 months. AIM To study the effect of radiation on relief of symptoms and on the survival of patients with brain metastasis, also analysing the incidence of brain metastasis from different primary sites. METHODS This study was conducted in Radiotherapy department of Government Medical College, Calicut during 1997-1999, involving 50 patients with radiologically proven brain metastasis. All patients received whole brain radiation treatment to a dose of 3000 cGY /10 F/2 weeks and were analysed for symptomatic relief and survival. RESULT About ¾th of the patients obtained symptomatic relief within 2 weeks after starting radiation treatment. 72% of patients survived upto 6 months after radiotherapy. CONCLUSION External beam irradiation to whole brain in the dose of 3000 cGY/10F/2 weeks is an effective method of treatment of brain metastasis both in terms of early symptomatic relief and survival.

  9. Pancreatic Metastasis from Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Julian Jacob

    2010-01-01

    Full Text Available The pancreas is an unusual location for metastases from other primary cancers. Rarely, pancreatic metastases from kidney or colorectal cancers have been reported. However, a variety of other cancers may also spread to the pancreas. We report an exceptional case of pancreatic metastasis from prostate cancer. Differences in management between primary and secondary pancreatic tumors make recognition of metastases to the pancreas an objective of first importance. Knowledge of unusual locations for metastatic spread will reduce diagnostic delay and lead to a timely delivery of an appropriate treatment.

  10. Role of the Endothelium during Tumor Cell Metastasis: Is the Endothelium a Barrier or a Promoter for Cell Invasion and Metastasis?

    Directory of Open Access Journals (Sweden)

    Claudia Tanja Mierke

    2008-01-01

    Full Text Available The malignancy of cancer disease depends on the ability of the primary tumor to metastasize to distant organs. The process of the metastasis formation has largely been analyzed, but still main pathways regarding the extravasation step at the end of the metastasis formation process are controversially discussed. An agreement has been reached about the importance of the endothelium to promote metastasis formation either by enhancing the growth of the primary tumor or by homing (targeting the tumor cells to blood or lymph vessels. The mechanical properties of the invading tumor cells become the focus of several studies, but the endothelial cell mechanical properties are still elusive. This paper describes the different roles of the endothelium in the process of metastasis formation and focuses on a novel role of the endothelium in promoting tumor cell invasion. It discusses how novel biophysical tools and in vivo animal models help to determine the role of the endothelium in the process of tumor cell invasion. Evidence is provided that cell mechanical properties, for example, contractile force generation of tumor cells, are involved in the process of tumor cell invasion.

  11. Effect of genetic polymorphism on the inhibition of dopamine formation from p-tyramine catalyzed by brain cytochrome P450 2D6.

    Science.gov (United States)

    Niwa, Toshiro; Shizuku, Marina; Yamano, Kaori

    2017-04-15

    The inhibitory effects of steroid hormones, including glucocorticoids such as cortisol, and related compounds on dopamine formation from p-tyramine, catalyzed by cytochrome P450 (CYP) 2D6.2 (Arg296Cys, Ser486Thr) and CYP2D6.10 (Pro34Ser, Ser486Thr) were compared with the effects of those catalyzed by CYP2D6.1 (wild type), to investigate the effect of a CYP2D6 polymorphism on neuroactive amine metabolism in the brain. Inhibition constants (Ki) or 50% inhibitory concentrations of six steroid hormones (cortisol, cortisone, corticosterone, dehydroepiandrosterone, progesterone, and pregnenolone) and quinidine and quinine-typical potent inhibitors of the human CYP2D6 and rat CYP2D subfamily, respectively-toward dopamine formation catalyzed by CYP2D6.1, CYP2D6.2, and CYP2D6.10 expressed in recombinant Escherichia coli were compared. Although most steroid hormones had no or minor inhibitory effects on the dopamine formation by all CYP2D6 variants, progesterone inhibited the metabolism and Ki value against CYP2D6.10 was approximately twice that for CYP2D6.1 and CYP2D6.2. Quinidine exhibited stronger inhibition than quinine; however, these two compounds inhibited the CYP2D6.10-mediated reaction more weakly than the CYP2D6.1 and CYP2D6.2 reactions. These results suggest that CYP2D6 polymorphism would affect drug interaction through dopamine formation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Case of Lung Cancer with Brain Metastases Diagnosed After Epileptic Seizure

    Directory of Open Access Journals (Sweden)

    Murat Eroglu

    2014-03-01

    Full Text Available    Epileptic seizures can accompany benign diseases, also can be the first sign of malign tumors. In brain metastasis, epileptic seizures can be seen before the symptoms of the primary lesion. Brain metastasis is bad prognostic factor in all malignancies and it is determined that lung cancers are the most metastatic tumors to the brain. Especially in new onset epileptic seizures in elderly patients, metastatic brain tumors are frequent in etiology. We aimed to present a lung cancer patient with brain metastasis who admitted emergency department with first epileptic seizure.

  13. Rhabdoid meningioma with lung metastasis in a paediatric patient: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Hussein Kheshaifati

    2016-01-01

    Full Text Available Meningioma is a common intracranial tumour which is usually benign. It is well-known to be high grade as atypical or anaplastic with grade II or III. Meningiomas are rarely found in paediatric patients. Extracranial metastasis from brain meningioma is rare but can occur in the lungs, pleura, liver, lymph node and bones. In this paper, we report a 16-year-old female with an extracranial metastasis of grade III meningioma to the lung. She underwent gross total resection along with chemo- and radiotherapy. The outcome and treatment modality would also be discussed.

  14. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy.

    Science.gov (United States)

    Liang, Chao; Xu, Ligeng; Song, Guosheng; Liu, Zhuang

    2016-11-07

    Metastasis is directly or indirectly responsible for the majority of cancer deaths. Anti-metastasis treatment is thus the key to cure cancer. Recent development in nanomedicine has shown great promise for tackling cancer metastasis. In recent years, nanoparticle-based drug delivery systems have been extensively explored for improving cancer treatment, showing the ability to reduce the risk of tumor metastasis compared with conventional chemotherapy. Photothermal therapy, by employing nano-theranostic agents, has also been found to be able to inhibit lymphatic tumor metastasis. Moreover, the post-immunological effects of certain types of nano-therapies may also be utilized to treat tumor metastasis, presenting an exciting new avenue towards successful cancer treatment. In this review article, we would like to summarize the latest research advances in the development of various emerging nanomedicine approaches for cancer metastasis treatment, and discuss future prospects in this emerging field as well as the clinical translation potential of these techniques.

  15. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila

    Directory of Open Access Journals (Sweden)

    Simona Paglia

    2017-01-01

    Full Text Available Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM, may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl: PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.

  16. Contiguous spinal metastasis mimicking infectious spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Lee, Seung Hun [Dept. of Radiology, Hanyang University Hospital, Seoul (Korea, Republic of); Bae, Ji Yoon [Dept. of Pathology, National Police Hospital, Seoul (Korea, Republic of)

    2015-12-15

    Differential diagnosis between spinal metastasis and infectious spondylodiscitis is one of the occasional challenges in daily clinical practice. We encountered an unusual case of spinal metastasis in a 75-year-old female breast cancer patient that mimicked infectious spondylodiscitis. Magnetic resonance imaging (MRI) showed diffuse bone marrow infiltrations with paraspinal soft tissue infiltrative changes in 5 contiguous cervical vertebrae without significant compression fracture or cortical destruction. These MRI findings made it difficult to differentiate between spinal metastasis and infectious spondylodiscitis. Infectious spondylodiscitis such as tuberculous spondylodiscitis was regarded as the more appropriate diagnosis due to the continuous involvement of > 5 cervical vertebrae. The patient's clinical presentation also supported the presumptive diagnosis of infectious spondylodiscitis rather than spinal metastasis. Intravenous antibiotics were administered, but clinical symptoms worsened despite treatment. After pathologic confirmation by computed tomography-guided biopsy, we were able to confirm a final diagnosis of spinal metastasis.

  17. Gestational Choriocarcinoma Presenting with Lacrimal Gland Metastasis: A First Reported Case

    Directory of Open Access Journals (Sweden)

    Naushad A. B. Ahamed

    2015-01-01

    Full Text Available Background. Gestational choriocarcinoma (GC is a recognized clinicopathological subtype of gestational trophoblastic neoplasia that usually metastasizes hematogenously to highly vascular organs like the lung, liver, and brain. However, orbital metastasis to the choroid and lacrimal gland is a rare occurrence. Case Presentation. A 21-year-old female presented with headache and left orbital swelling one year after resection of a complete hydatidiform mole followed by adjuvant methotrexate chemotherapy. A metastatic imaging screening revealed multiple metastases in the lungs, brain, and adrenal gland, in addition to the choroid and lacrimal gland. Based on her modified WHO risk factors scoring she was started on chemotherapy and whole brain radiotherapy, which resulted in a complete response. At two-year follow-up, serum b-HCG level was with normal limits; imaging surveillance was uneventful. Conclusion. We present the first case of lacrimal gland metastasis in a young girl from GC relapse.

  18. Obstructive Small Bowel Metastasis from Uterine Leiomyosarcoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Mutahir A. Tunio

    2014-01-01

    Full Text Available Background. Uterine leiomyosarcoma is a rare and aggressive gynecologic malignancy with an overall poor prognosis. Lungs, bones, and brain are common sites of metastases of uterine leiomyosarcoma. Metastases of uterine leiomyosarcoma to the small bowel are extremely rare, and only four case reports have been published to date. Case presentation. A 55-year-old Saudi woman diagnosed with a case of uterine leiomyosarcoma treated with total abdominal hysterectomy (TAH and bilateral salpingooophorectomy (BSO presented in emergency room after sixteen months with acute abdomen. Subsequent work-up showed a jejunal mass for which resection and end-to-end anastomosis were performed. Biopsy confirmed the diagnosis of small bowel metastasis from uterine leiomyosarcoma. Further staging work-up showed wide spread metastasis in lungs and brain. After palliative cranial irradiation, systemic chemotherapy based on single agent doxorubicin was started. Conclusion. Metastatic leiomyosarcoma of small bowel from uterine leiomyosarcoma is a rare entity and is sign of advanced disease. It should be differentiated from primary leiomyosarcoma of small bowel as both are treated with different systemic chemotherapeutic agents.

  19. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse.

    Science.gov (United States)

    Kerjaschki, Dontscho; Bago-Horvath, Zsuzsanna; Rudas, Margaretha; Sexl, Veronika; Schneckenleithner, Christine; Wolbank, Susanne; Bartel, Gregor; Krieger, Sigurd; Kalt, Romana; Hantusch, Brigitte; Keller, Thomas; Nagy-Bojarszky, Katalin; Huttary, Nicole; Raab, Ingrid; Lackner, Karin; Krautgasser, Katharina; Schachner, Helga; Kaserer, Klaus; Rezar, Sandra; Madlener, Sybille; Vonach, Caroline; Davidovits, Agnes; Nosaka, Hitonari; Hämmerle, Monika; Viola, Katharina; Dolznig, Helmut; Schreiber, Martin; Nader, Alexander; Mikulits, Wolfgang; Gnant, Michael; Hirakawa, Satoshi; Detmar, Michael; Alitalo, Kari; Nijman, Sebastian; Offner, Felix; Maier, Thorsten J; Steinhilber, Dieter; Krupitza, Georg

    2011-05-01

    In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.

  20. A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Luo, Zai-Li; Cheng, Shu-Qun; Shi, Jie; Zhang, Hui-Lu; Zhang, Cun-Zhen; Chen, Hai-Yang; Qiu, Bi-Jun; Tang, Liang; Hu, Cong-Li; Wang, Hong-Yang; Li, Zhong

    2015-10-07

    Merlin, which is encoded by the tumour suppressor gene Nf2, plays a crucial role in tumorigenesis and metastasis. However, little is known about the functional importance of Merlin splicing forms. In this study, we show that Merlin is present at low levels in human hepatocellular carcinoma (HCC), particularly in metastatic tumours, where it is associated with a poor prognosis. Surprisingly, a splicing variant of Merlin that lacks exons 2, 3 and 4 ((Δ2-4)Merlin) is amplified in HCC and portal vein tumour thrombus (PVTT) specimens and in the CSQT2 cell line derived from PVTT. Our studies show that (Δ2-4)Merlin interferes with the capacity of wild-type Merlin to bind β-catenin and ERM, and it is expressed in the cytoplasm rather than at the cell surface. Furthermore, (Δ2-4)Merlin overexpression increases the expression levels of β-catenin and stemness-related genes, induces the epithelium-mesenchymal-transition phenotype promoting cell migration in vitro and the formation of lung metastasis in vivo. Our results indicate that the (Δ2-4)Merlin variant disrupts the normal function of Merlin and promotes tumour metastasis.

  1. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  2. Integrin-Associated CD151 Drives ErbB2-Evoked Mammary Tumor Onset and Metastasis

    Directory of Open Access Journals (Sweden)

    Xinyu Deng

    2012-08-01

    Full Text Available ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70–100 days in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4 and ErbB2 (and EGFR receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer.

  3. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  4. Adenoid Cystic Carcinoma of the Buccal Mucosa with Rare Delayed Frontal Bone Metastasis: A Case Report

    Directory of Open Access Journals (Sweden)

    Zohreh Dalirsani

    2016-10-01

    Full Text Available Adenoid cystic carcinoma (AdCC is a malignant neoplasm, which accounts for 5-10% of all salivary gland tumors (1. About 50% of these tumors originate from intraoral minor salivary glands usually in the hard palate (1. Three clinically obvious characteristics of AdCC include slow growth rate, perineural invasion and high incidence of distant metastasis (1. The most commonly-affected sites of distant metastasis are bone, liver and brain, followed by lungs (2. Lymph node metastases are rare;  The most common sites  involved by hematogenous spread are lungs (2.  This is a report about a patient with a rare form of AdCC on buccal mucosa with an unusual metastasis to the frontal region after a two-year follow up.

  5. Glioblastoma Multiforme in the Pineal Region with Leptomeningeal Dissemination and Lumbar Metastasis

    Science.gov (United States)

    Hironaka, Yasuo; Suigimoto, Tadashi; Nakase, Hiroyuki

    2015-01-01

    We report a case of a 31-year-old woman with glioblastoma multiforme (GBM) in the pineal region with associated leptomeningeal dissemination and lumbar metastasis. The patient presented with severe headache and vomiting. Magnetic resonance imaging (MRI) of the brain showed a heterogeneously enhanced tumor in the pineal region with obstructive hydrocephalus. After an urgent ventricular-peritoneal shunt, she was treated by subtotal resection and chemotherapy concomitant with radiotherapy. Two months after surgery, MRI showed no changes in the residual tumor but leptomeningeal dissemination surrounding the brainstem. One month later, she exhibited severe lumbago and bilateral leg pain. Thoracico-lumbar MRI showed drop like metastasis in the lumbar region. Finally she died five months after the initial diagnosis. Neurosurgeons should pay attention to GBM in the pineal region, not only as an important differential diagnosis among the pineal tumors, but due to the aggressive features of leptomeningeal dissemination and spinal metastasis. PMID:26713151

  6. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    Science.gov (United States)

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role SE plays in this process. Here, we show that mercury ...

  7. CREB expression in the brains of two closely related parasitic wasp species that differ in long-term memory formation

    NARCIS (Netherlands)

    Berg, van den M.; Verbaarschot, P.G.H.; Hontelez, S.; Vet, L.E.M.; Dicke, M.; Smid, H.M.

    2010-01-01

    The cAMP/PKA signalling pathway and transcription factor cAMP response element-binding protein (CREB) play key roles in long-term memory (LTM) formation. We used two closely related parasitic wasp species, Cotesia glomerata and Cotesia rubecula, which were previously shown to be different in LTM

  8. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1).

    Science.gov (United States)

    Jou, Mei-Jie; Jou, Shuo-Bin; Chen, Hung-Ming; Lin, Chi-Hung; Peng, Tsung-I

    2002-01-01

    Laser irradiation-induced phototoxicity has been intensively applied in clinical photodynamic therapy for the treatment of a variety of tumors. However, the precise laser damage sites as well as the underlying mechanisms at the subcellular level are unknown. Using a mitochondrial fluorescent marker, MitoTracker Green, severe mitochondrial swelling was noted in laser-irradiated rat brain astrocytes. Nucleus condensation and fragmentation revealed by propidium iodide nucleic acid staining indicated that laser-irradiated cells died from apoptosis. Using an intracellular reactive oxygen species (ROS) fluorescent dye, 2',7'-dichlorofluorescin diacetate, heterogeneous distribution of ROS inside astrocytes was observed after laser irradiation. The level of ROS in the mitochondrial compartment was found to be higher than in other parts of the cell. With another ROS fluorescent dye, dihydrorhodamine-123, and time-lapse laser scanning confocal microscopy, a substantial increase in mitochondrial ROS (mROS) was visualized in visible laser-irradiated astrocytes. The antioxidants melatonin and vitamin E largely attenuated laser irradiation-induced mROS formation and prevented apoptosis. Cyclosporin A (CsA), a mitochondrial permeability transition (MPT) blocker, did not prevent visible laser irradiation-induced mROS formation and apoptosis. In conclusion, mROS formation contributes significantly to visible laser irradiation-induced apoptosis via an MPT-independent pathway. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  9. Lymph Node Metastasis of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Seigo Kitano

    2011-04-01

    Full Text Available Despite a decrease in incidence in recent decades, gastric cancer is still one of the most common causes of cancer death worldwide [1]. In areas without screening for gastric cancer, it is diagnosed late and has a high frequency of nodal involvement [1]. Even in early gastric cancer (EGC, the incidence of lymph node (LN metastasis exceeds 10%; it was reported to be 14.1% overall and was 4.8 to 23.6% depending on cancer depth [2]. It is important to evaluate LN status preoperatively for proper treatment strategy; however, sufficient results are not being obtained using various modalities. Surgery is the only effective intervention for cure or long-term survival. It is possible to cure local disease without distant metastasis by gastrectomy and LN dissection. However, there is no survival benefit from surgery for systemic disease with distant metastasis such as para-aortic lymph node metastasis [3]. Therefore, whether the disease is local or systemic is an important prognostic indicator for gastric cancer, and the debate continues over the importance of extended lymphadenectomy for gastric cancer. The concept of micro-metastasis has been described as a prognostic factor [4-9], and the biological mechanisms of LN metastasis are currently under study [10-12]. In this article, we review the status of LN metastasis including its molecular mechanisms and evaluate LN dissection for the treatment of gastric cancer.

  10. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    Science.gov (United States)

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Habit formation.

    Science.gov (United States)

    Smith, Kyle S; Graybiel, Ann M

    2016-03-01

    Habits, both good ones and bad ones, are pervasive in animal behavior. Important frameworks have been developed to understand habits through psychological and neurobiological studies. This work has given us a rich understanding of brain networks that promote habits, and has also helped us to understand what constitutes a habitual behavior as opposed to a behavior that is more flexible and prospective. Mounting evidence from studies using neural recording methods suggests that habit formation is not a simple process. We review this evidence and take the position that habits could be sculpted from multiple dissociable changes in neural activity. These changes occur across multiple brain regions and even within single brain regions. This strategy of classifying components of a habit based on different brain signals provides a potentially useful new way to conceive of disorders that involve overly fixed behaviors as arising from different potential dysfunctions within the brain's habit network.

  12. The seed and soil hypothesis revisited - the role of tumor-stroma interactions in metastasis to different organs

    Science.gov (United States)

    Langley, Robert R.; Fidler, Isaiah J.

    2011-01-01

    The fact that certain tumors exhibit a predilection for metastasis to specific organs has been recognized for well over a century now. An extensive body of clinical data and experimental research has confirmed Stephen Paget's original “seed and soil” hypothesis that proposed the organ-preference patterns of tumor metastasis are the product of favorable interactions between metastatic tumor cells (the “seed”) and their organ microenvironment (the “soil”). Indeed, many of first-line therapeutic regimens currently in use for the treatment of human cancer are designed to target cancer cells (such as chemotherapy) and also to modulate the tumor microenvironment (such as anti-angiogenic therapy). While some types of tumors are capable of forming metastases in virtually every organ in the body, the most frequent target organs of metastasis are bone, brain, liver, and the lung. In this review, we discuss how tumor-stromal interactions influence metastasis in each of these organs. PMID:21365651

  13. The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma.

    Science.gov (United States)

    McCorkle, Joseph R; Leonard, Mary K; Kraner, Susan D; Blalock, Eric M; Ma, Deqin; Zimmer, Stephen G; Kaetzel, David M

    2014-01-01

    NME1 is a well-documented metastasis suppressor gene, with suppressor activity demonstrated across a wide spectrum of human cancers including melanoma and carcinomas of the breast, stomach and thyroid. A primary aim of the current study was to identify profiles of genes whose expression is regulated by NME1 in cell lines of melanoma and thyroid carcinoma origin. Impact of NME1 was determined by forcing its expression transiently in cell lines using a novel Ad5-based adenoviral vector (Ad5-NME1), followed 48 h later by analysis of RNA expression profiles using the U133A microarray chip. Robust NME1 expression was achieved following infection with the Ad5-NME1 adenovirus in the human metastasis-derived cell lines WM1158 (melanoma) and WRO82 (follicular thyroid carcinoma), resulting in wide-ranging effects on gene expression in both settings. A substantial proportion of the NME1-regulated genes identified in the analyses were of clear potential relevance to metastasis, such as matrix metalloproteinase-1 (MMP1), angiopoietin-2 (ANGPT2), SERPINB9 and colony stimulating factor receptor-2B (CSFR2B). Nine genes were identified (false discovery rate metastasis-relevant activities as stress fiber formation and focal adhesion (PPM1E, ZYX, PFN1), chemotaxis (CCR1) epithelial-mesenchymal signaling (WNT6), differentiation and morphogenesis (TBX4, ZFP36L2), and G protein modulation (GPR52 and PFN1). In addition, a number of the NME1-regulated genes were shown to be of prognostic value for distant disease-free survival and overall survival in melanoma and breast cancer. The combined expression of three NME1-regulated genes CSFR2B, MSF4A1 and SERPINB9 provided a strongly synergistic correlation with distant disease-free survival in the basal subtype of breast cancer (pmelanoma. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  14. A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNF?-TGF?-EGFR

    OpenAIRE

    Lau, T-S; Chan, L K-Y; Wong, E C-H; Hui, C W-C; Sneddon, K; Cheung, T-H; Yim, S-F; Lee, J H-S; Yeung, C S-Y; Chung, T K-H; Kwong, J.

    2017-01-01

    Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-?) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor ...

  15. Toxic damage increases angiogenesis and metastasis in fibrotic livers via PECAM-1.

    Science.gov (United States)

    Raskopf, Esther; Gonzalez Carmona, Maria Angeles; Van Cayzeele, Christina Jay; Strassburg, Christian; Sauerbruch, Tilman; Schmitz, Volker

    2014-01-01

    Excessive ethanol consumption is one of the main causes of liver fibrosis. However, direct effects of ethanol exposure on endothelial cells and their contribution to fibrogenesis and metastasis were not investigated. Therefore we analysed whether ethanol directly affects endothelial cells and if this plays a role during fibrogenesis and metastasis in the liver. Murine and human endothelial cells were exposed to ethanol for up to 72 hours. In vitro, effects on VEGF, HIF-1alpha, PECAM-1, and endothelial cell functions were analysed. In vivo, effects of continuous liver damage on blood vessel formation and metastasis were analysed by PECAM-1 immunohistochemistry. Ethanol increased HIF-1alpha and VEGF levels in murine and human endothelial cells. This resulted in enhanced intracellular signal transduction, and PECAM-1 expression as well as tube formation and wound healing. In vivo, toxic liver damage increased angiogenesis during fibrogenesis. Metastasis was also enhanced in fibrotic livers and located to PECAM-1 positive blood vessels compared to nonfibrotic mice. In conclusion, ethanol had strong effects on endothelial cells, which--at least in part--led to a profibrotic and prometastatic environment mediated by PECAM-1. Blockade of increased PECAM-1 expression could be a promising tool to inhibit fibrogenesis and metastasis in the liver.

  16. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Thaiz F. Borin

    2017-12-01

    Full Text Available Metastatic breast cancer (BC (also referred to as stage IV spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4 family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE, an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.

  17. Choroidal metastasis from leiomyosarcoma in two cases

    Directory of Open Access Journals (Sweden)

    Eric Feinstein

    2014-01-01

    Full Text Available Leiomyosarcoma is a malignant tumor of mesenchymal cells and is the most common soft-tissue sarcoma. Leiomyosarcoma is a notably rare tumor in the ophthalmic region and can be of primary, secondary or metastatic origin. To the best of our knowledge, there has only been one published case of leiomyosarcoma metastasis to the choroid. In this case study, we report two cases of primary leiomyosarcoma with metastasis to the choroid of the eye. Both cases displayed systemic metastasis and showed response to high dose plaque radiotherapy. Despite its prevalence as the leading form of sarcoma, leiomyosarcoma rarely metastasizes to the ocular region.

  18. Harmonic Training and the formation of pitch representation in a neural network model of the auditory brain

    Directory of Open Access Journals (Sweden)

    Nasir eAhmad

    2016-03-01

    Full Text Available Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which illicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simplified system in which pitch representing neurons are easily produced under a highly biological setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including missing fundamental sounds.

  19. In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures.

    Science.gov (United States)

    Perez, Pablo D; Hall, Gabrielle; Kimura, Tetsuya; Ren, Yan; Bailey, Rachel M; Lewis, Jada; Febo, Marcelo; Sahara, Naruhiko

    2013-02-04

    Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI) to investigate basal levels of brain activity in the rTg4510 and control mice. Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tau(P301L)-induced neurodegeneration.

  20. Sun-drying diminishes the antioxidative potentials of leaves of Eugenia uniflora against formation of thiobarbituric acid reactive substances induced in homogenates of rat brain and liver.

    Science.gov (United States)

    Kade, Ige Joseph; Ibukun, Emmanuel Oluwafemi; Nogueira, Cristina Wayne; da Rocha, Joao Batista Teixeira

    2008-08-01

    Extracts from leaves of Pitanga cherry (Eugenia uniflora) are considered to be effective against many diseases, and are therefore used in popular traditional medicines. In the present study, the antioxidative effect of sun-dried (PCS) and air-dried (PCA) ethanolic extracts of Pitanga cherry leaves were investigated. The antioxidant effects were tested by measuring the ability of both PCS and PCA to inhibit the formation of thiobarbituric acid reactive species (TBARS) induced by prooxidant agents such as iron (II) and sodium nitroprusside (SNP) in rat brain and liver tissues. The results showed that while PCA significantly (Pphenolic content of the PCS was significantly (Pphenolics in plants largely contributed to the antioxidative potency of plants, we conclude that air-drying should be employed in the preparation of extracts of Pitanga cherry leaves before it is administered empirically as a traditional medicament, and hence this study serves a public awareness to traditional medical practitioners.

  1. Roles of Chondroitin Sulfate and Dermatan Sulfate in the Formation of a Lesion Scar and Axonal Regeneration after Traumatic Injury of the Mouse Brain

    Science.gov (United States)

    Li, Hong-Peng; Komuta, Yukari; Kimura-Kuroda, Junko; van Kuppevelt, Toin H.

    2013-01-01

    Abstract Dermatan sulfate (DS) is synthesized from chondroitin sulfate (CS) by epimerization of glucuronic acid of CS to yield iduronic acid. In the present study, the role of CS and DS was examined in mice that received transection of nigrostriatal dopaminergic pathway followed by injection of glycosaminoglycan degrading enzymes into the lesion site. Two weeks after injury, fibrotic and glial scars were formed around the lesion, and transected axons did not regenerate beyond the fibrotic scar. Injection of chondroitinase ABC (ChABC), which degrades both CS and DS, completely suppressed the fibrotic scar formation, reduced the glial scar, and promoted the regeneration of dopaminergic axons. Injection of the DS-degrading enzyme chondroitinase B (ChB) also yielded similar results. By contrast, injection of chondroitinase AC (ChAC), a CS-degrading enzyme, did not suppress the fibrotic and glial scar formation, but reduced CS immunoreactivity and promoted the axonal regeneration. Addition of transforming growth factor-β1 (TGF-β1) to a co-culture of meningeal fibroblasts and cerebral astrocytes induces a fibrotic scar-like cell cluster. The effect of TGF-β1 on cluster formation was suppressed by treatment with ChABC or ChB, but not by ChAC. TGF-β1-induced cell cluster repelled neurites of neonatal cerebellar neurons, but addition of ChABC or ChAC suppressed the inhibitory property of clusters on neurite outgrowth. The present study is the first to demonstrate that DS and CS play different functions after brain injury: DS is involved in the lesion scar formation, and CS inhibits axonal regeneration. PMID:23438307

  2. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E.

    Directory of Open Access Journals (Sweden)

    Yingshi Ouyang

    Full Text Available Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53 was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E. Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago, a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has

  3. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    Science.gov (United States)

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Development of body, head and brain features in the Australian fat-tailed dunnart (Sminthopsis crassicaudata; Marsupialia: Dasyuridae); A postnatal model of forebrain formation.

    Science.gov (United States)

    Suárez, Rodrigo; Paolino, Annalisa; Kozulin, Peter; Fenlon, Laura R; Morcom, Laura R; Englebright, Robert; O'Hara, Patricia J; Murray, Peter J; Richards, Linda J

    2017-01-01

    Most of our understanding of forebrain development comes from research of eutherian mammals, such as rodents, primates, and carnivores. However, as the cerebral cortex forms largely prenatally, observation and manipulation of its development has required invasive and/or ex vivo procedures. Marsupials, on the other hand, are born at comparatively earlier stages of development and most events of forebrain formation occur once attached to the teat, thereby permitting continuous and non-invasive experimental access. Here, we take advantage of this aspect of marsupial biology to establish and characterise a resourceful laboratory model of forebrain development: the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-sized carnivorous Australian marsupial. We present an anatomical description of the postnatal development of the body, head and brain in dunnarts, and provide a staging system compatible with human and mouse developmental stages. As compared to eutherians, the orofacial region develops earlier in dunnarts, while forebrain development is largely protracted, extending for more than 40 days versus ca. 15 days in mice. We discuss the benefits of fat-tailed dunnarts as laboratory animals in studies of developmental biology, with an emphasis on how their accessibility in the pouch can help address new experimental questions, especially regarding mechanisms of brain development and evolution.

  5. Gastric Metastasis from a Primary Renal Leiomyosarcoma

    Science.gov (United States)

    Yodonawa, Satoshi; Ogawa, Isao; Yoshida, Susumu; Ito, Hiromichi; Kato, Akinori; Kubokawa, Ryoko; Tokoshima, Emika; Shimoyamada, Hiroaki

    2012-01-01

    Primary leiomyosarcoma of the kidney is rare. Here we report a case of metastasis of this tumor to the stomach. A 73-year-old man visited our hospital suffering from general weakness and intermittent tarry stools. He had undergone right nephrectomy for renal leiomyosarcoma 2 years previously. There had been no local recurrence or distant metastasis in the 2-year follow-up period. Endoscopy revealed two submucosal tumors in the stomach. These tumors were diagnosed histologically as leiomyosarcoma and distal gastrectomy was performed. Subsequent histochemical staining confirmed the diagnosis of gastric metastasis from renal leiomyosarcoma. The patient died due to metastases to the liver and bone 9 months after the operation. To the best of our knowledge, this is the first report of gastric metastasis from primary renal leiomyosarcoma. PMID:22754492

  6. Hyoid bone chondrosarcoma with cervical nodal metastasis:

    Directory of Open Access Journals (Sweden)

    Hisham Mostafa Abdel-Fattah

    2016-09-01

    Conclusions: Although the tumor was low grade, it showed cervical lymph node metastasis months after its surgical excision. This shows the importance of scheduled CT scan of the neck during follow-up of these cases.

  7. Isolated malignant melanoma metastasis to the pancreas

    DEFF Research Database (Denmark)

    Larsen, Anne K; Krag, Christen; Geertsen, Poul

    2013-01-01

    SUMMARY: Malignant melanomas rarely develop isolated pancreatic metastases. We describe a unique patient who is still alive 22 years following an isolated pancreatic melanoma metastasis, and we review the sparse literature in the field....

  8. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Grigorian, Mariam

    2010-01-01

    tumor stimulates infiltration of T cells and activates secretion of cytokines, thus triggering sequential events that fuel tumor cells to metastasize. Similar processes could occur in the premetastatic lungs, facilitating generation of inflammatory milieu favorable for metastasis formation....

  9. Osthole inhibits bone metastasis of breast cancer

    OpenAIRE

    Wu, Chunyu; Sun, Zhenping; Guo, Baofeng; Ye, Yiyi; Han, Xianghui; Qin, Yuenong; Liu, Sheng

    2017-01-01

    Bone is one of the most common sites for breast cancer metastasis, which greatly contributes to patient morbidity and mortality. Osthole, a major extract from Cnidium monnieri (L.), exhibits many biological and pharmacological activities, however, its potential as a therapeutic agent in the treatment of breast cancer bone metastases remain poorly understood. In this study, we set out to investigate whether osthole could inhibit breast cancer metastasis to bone in mice and clarified the potent...

  10. Metastasis Suppressors and the Tumor Microenvironment

    Science.gov (United States)

    Cook, Leah M.; Hurst, Douglas R.; Welch, Danny R.

    2011-01-01

    The most lethal and debilitating attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and a variety of molecules. Tumor cells are also faced with a number of insults, such as hemodynamic sheer pressure and immune selection. This brief review explores how metastasis suppressor proteins regulate interactions between tumor cells and the microenvironments in which tumor cells find themselves. PMID:21168504

  11. Regrowing the Adult Brain: NF-κB Controls Functional Circuit Formation and Tissue Homeostasis in the Dentate Gyrus

    Science.gov (United States)

    Imielski, Yvonne; Schwamborn, Jens C.; Lüningschrör, Patrick; Heimann, Peter; Holzberg, Magdalena; Werner, Hendrikje; Leske, Oliver; Püschel, Andreas W.; Memet, Sylvie; Heumann, Rolf; Israel, Alain; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2012-01-01

    Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus) of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders. PMID:22312433

  12. Dissecting and Targeting Latent Metastasis

    Science.gov (United States)

    2014-09-01

    physical medicine Suppl, 36- 49 (1966). 55 Deeken, J. F. & Loscher, W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses ...TRCN0000059775 (Cx43 sh2), TRCN0000055744 (PCDH7 sh1) and TRCN0000291663 (PCDH7 sh2). Virus -infected cells were selected with 5 µg/ml puromycin. For

  13. [Muscle metastasis of bronchopulmonary carcinoma].

    Science.gov (United States)

    Di Giorgio, A; Schiffino, L; Canavese, A; Arnone, P; Scarpini, M; Almansour, M

    1999-06-01

    Typical sites of bronchogenic carcinoma metastases are liver, brain, bones or adrenal glands. Rarely and in advanced dissemination phase it could involve the skeletal muscle. Two cases of metastases in the skeletal muscle from bronchogenic carcinoma, one of which revealed this neoplasia, are reported.

  14. Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models.

    Science.gov (United States)

    Lobos-Gonzalez, Lorena; Aguilar-Guzmán, Lorena; Fernandez, Jaime G; Muñoz, Nicolas; Hossain, Mehnaz; Bieneck, Simone; Silva, Veronica; Burzio, Veronica; Sviderskaya, Elena V; Bennett, Dorothy C; Leyton, Lisette; Quest, Andrew F G

    2014-04-01

    Melanomas are highly lethal skin tumours that are frequently treated by surgical resection. However, the efficacy of such procedures is often limited by tumour recurrence and metastasis. Caveolin-1 (CAV1) has been attributed roles as a tumour suppressor, although in late-stage tumours, its presence is associated with enhanced metastasis. The expression of this protein in human melanoma development and particularly how the presence of CAV1 affects metastasis after surgery has not been defined. CAV1 expression in human melanocytes and melanomas increases with disease progression and is highest in metastatic melanomas. The effect of increased CAV1 expression can then be evaluated using B16F10 murine melanoma cells injected into syngenic immunocompetent C57BL/6 mice or human A375 melanoma cells injected into immunodeficient B6Rag1-/- mice. Augmented CAV1 expression suppresses tumour formation upon a subcutaneous injection, but enhances lung metastasis of cells injected into the tail vein in both models. A procedure was initially developed using B16F10 melanoma cells in C57BL/6 mice to mimic better the situation in patients undergoing surgery. Subcutaneous tumours of a defined size were removed surgically and local tumour recurrence and lung metastasis were evaluated after another 14 days. In this postsurgery setting, CAV1 presence in B16F10 melanomas favoured metastasis to the lung, although tumour suppression at the initial site was still evident. Similar results were obtained when evaluating A375 cells in B6Rag1-/- mice. These results implicate CAV1 expression in melanomas as a marker of poor prognosis for patients undergoing surgery as CAV1 expression promotes experimental lung metastasis in two different preclinical models.

  15. Imaging Reporters for Proteasome Activity Identify Tumor- and Metastasis-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Amanda C. Stacer

    2015-08-01

    Full Text Available Tumor-initiating cells, also designated as cancer stem cells, are proposed to constitute a subpopulation of malignant cells central to tumorigenesis, metastasis, and treatment resistance. We analyzed the activity of the proteasome, the primary organelle for targeted protein degradation, as a marker of tumor- and metastasis-initiating cells. Using human and mouse breast cancer cells expressing a validated fluorescent reporter, we found a small subpopulation of cells with low proteasome activity that divided asymmetrically to produce daughter cells with low or high proteasome activity. Breast cancer cells with low proteasome activity had greater local tumor formation and metastasis in immunocompromised and immunocompetent mice. To allow flexible labeling of cells, we also developed a new proteasome substrate based on HaloTag technology. Patient-derived glioblastoma cells with low proteasome activity measured by the HaloTag reporter show key phenotypes associated with tumor-initiating cells, including expression of a stem cell transcription factor, reconstitution of the original starting population, and enhanced neurosphere formation. We also show that patient-derived glioblastoma cells with low proteasome activity have higher frequency of tumor formation in mouse xenografts. These studies support proteasome function as a tool to investigate tumor- and metastasis-initiating cancer cells and a potential biomarker for outcomes in patients with several different cancers.

  16. Imaging Reporters for Proteasome Activity Identify Tumor- and Metastasis-Initiating Cells.

    Science.gov (United States)

    Stacer, Amanda C; Wang, Hanxiao; Fenner, Joseph; Dosch, Joseph S; Salomonnson, Anna; Luker, Kathryn E; Luker, Gary D; Rehemtulla, Alnawaz; Ross, Brian D

    2015-08-01

    Tumor-initiating cells, also designated as cancer stem cells, are proposed to constitute a subpopulation of malignant cells central to tumorigenesis, metastasis, and treatment resistance. We analyzed the activity of the proteasome, the primary organelle for targeted protein degradation, as a marker of tumor- and metastasis-initiating cells. Using human and mouse breast cancer cells expressing a validated fluorescent reporter, we found a small subpopulation of cells with low proteasome activity that divided asymmetrically to produce daughter cells with low or high proteasome activity. Breast cancer cells with low proteasome activity had greater local tumor formation and metastasis in immunocompromised and immunocompetent mice. To allow flexible labeling of cells, we also developed a new proteasome substrate based on HaloTag technology. Patient-derived glioblastoma cells with low proteasome activity measured by the HaloTag reporter show key phenotypes associated with tumor-initiating cells, including expression of a stem cell transcription factor, reconstitution of the original starting population, and enhanced neurosphere formation. We also show that patient-derived glioblastoma cells with low proteasome activity have higher frequency of tumor formation in mouse xenografts. These studies support proteasome function as a tool to investigate tumor- and metastasis-initiating cancer cells and a potential biomarker for outcomes in patients with several different cancers.

  17. An evidence-based knowledgebase of metastasis suppressors to identify key pathways relevant to cancer metastasis.

    Science.gov (United States)

    Zhao, Min; Li, Zhe; Qu, Hong

    2015-10-21

    Metastasis suppressor genes (MS genes) are genes that play important roles in inhibiting the process of cancer metastasis without preventing growth of the primary tumor. Identification of these genes and understanding their functions are critical for investigation of cancer metastasis. Recent studies on cancer metastasis have identified many new susceptibility MS genes. However, the comprehensive illustration of diverse cellular processes regulated by metastasis suppressors during the metastasis cascade is lacking. Thus, the relationship between MS genes and cancer risk is still unclear. To unveil the cellular complexity of MS genes, we have constructed MSGene (http://MSGene.bioinfo-minzhao.org/), the first literature-based gene resource for exploring human MS genes. In total, we manually curated 194 experimentally verified MS genes and mapped to 1448 homologous genes from 17 model species. Follow-up functional analyses associated 194 human MS genes with epithelium/tissue morphogenesis and epithelia cell proliferation. In addition, pathway analysis highlights the prominent role of MS genes in activation of platelets and coagulation system in tumor metastatic cascade. Moreover, global mutation pattern of MS genes across multiple cancers may reveal common cancer metastasis mechanisms. All these results illustrate the importance of MSGene to our understanding on cell development and cancer metastasis.

  18. Thymic Epithelial Tumor with Heart Metastasis in a Horse

    Directory of Open Access Journals (Sweden)

    Farshid Shahriar

    2010-01-01

    Full Text Available Thymic malignancy is rare in horses. Thymic epithelial tumor was diagnosed in an 18-year-old mare with invasion and metastasis to the pericardium and heart. At necropsy, the cranial thoracic cavity was obliterated by a large mass located in the thymic region and the right atrium was also expanded and effaced by a similar mass. Histologically, the neoplasm was composed of sheets of spindle cells with intraparenchymal Hassall's corpuscles and formation of pseudorosettes around blood vessels compatible with type A thymic epithelial tumor according to World Health Organization classification. The neoplastic cells were diffusely immunoreactive for cytokeratin and negative for vimentin, S100, neuron specific enolase, glial fibrillar acidic protein, chromogranin A, synaptophysin, CD3 and CD79a markers. To the authors' knowledge, cardiac invasion and distinct histological pattern of pseudorosette formation have not been described in equine thymic epithelial tumors previously.

  19. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2013-10-01

    Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Controlled Release 2014 epub ahead of...Immunol 2005;174: 4880–91. 12. Troy A, Davidson P, AtkinsonC,Hart D. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer

  20. Mechanisms of CTC Biomarkers in Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-10-01

    applied the alkaline phosphatase from calf intestinal (CIP) methodology to raise the successful rate of pINDUCER11-mirRG and shRNA ligation...Trevigen ® PathClear Basement Membrane Extract ® (BME) and incubated for 96 hours at 37o C for adhesion assays; (D.) Four CTC subset-generated...capabilities, we grew those using 3-D basement membrane extract (BME) tumorsphere assays (Trevigen® Inc.)(13, 14). We observed high adhesion of

  1. Mechanisms of CTC Biomarkers in Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-10-01

    bioinformatics.istge.it/ clima /) and from each other (Fig. 2b). Third, we interrogated CTC subsets by their abilities to be viable and expand in vitro. We...employing cancer cell lines from available databases (http://bioinfor- matics.istge.it/ clima /) and from each other (Fig. 2b). Third, we interrogated CTC

  2. Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats.

    Science.gov (United States)

    Frye, C A; Koonce, C J; Walf, A A

    2014-09-01

    Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.

  3. Control of Metastasis by NK Cells.

    Science.gov (United States)

    López-Soto, Alejandro; Gonzalez, Segundo; Smyth, Mark J; Galluzzi, Lorenzo

    2017-08-14

    The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling.

    Science.gov (United States)

    Cheng, Shujie; Castillo, Victor; Eliaz, Isaac; Sliva, Daniel

    2015-01-01

    Renal cell carcinoma (RCC) is a common urological cancer worldwide and is known to have a high risk of metastasis, which is considered responsible for more than 90% of cancer associated deaths. Honokiol is a small-molecule biphenol isolated from Magnolia spp. bark and has been shown to be a potential anticancer agent involved in multiple facets of signal transduction. In this study, we demonstrated that honokiol inhibited the invasion and colony formation of highly metastatic RCC cell line 786-0 in a dose-dependent manner. DNA-microarray data showed the significant upregulation of metastasis-suppressor gene KISS1 and its receptor, KISS1R. The upregulation was confirmed by qRT-PCR analysis. Overexpression of KISS1 and KISS1R was detected by western blotting at the translation level as well. Of note, the decreased invasive and colonized capacities were reversed by KISS1 knockdown. Taken together, the results first indicate that activation of KISS1/KISS1R signaling by honokiol suppresses multistep process of metastasis, including invasion and colony formation, in RCC cells 786-0. Honokiol may be considered as a natural agent against RCC metastasis.

  5. In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l reveals reduced neural activity in memory formation structures

    Directory of Open Access Journals (Sweden)

    Perez Pablo D

    2013-02-01

    Full Text Available Abstract Background Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI to investigate basal levels of brain activity in the rTg4510 and control mice. Results Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Conclusion Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tauP301L-induced neurodegeneration.

  6. Prediction of Metastasis Using Second Harmonic Generation

    Science.gov (United States)

    2016-07-01

    and high F/B (representing a three-column version of the cartoon in Figure 5): Low F/B Medium F/B High F/B Coeff P- value Coeff P- value Coeff P...predict time to metastasis in ER+ IDC patients that received hormonal therapy? Aim 1a. Use a training set of F/B values to derive a predictive... values to test the ability of the F/B algorithm to predict time to metastasis. Test this F/B algorithm against, and in combination with, the predictive

  7. Duodenal Metastasis of Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Huang-Chi Chen

    2008-12-01

    Full Text Available Metastatic malignant mesothelioma of the pleura is uncommon at the time of initial diagnosis. The gastrointestinal lumen is rarely found at autopsy in patients with widespread disease. Here, we describe an extremely rare case of isolated duodenal metastasis of sarcomatoid mesothelioma of the pleura in a 73-year-old man, without memory of any direct exposure to asbestos. The possibility of gastrointestinal tract metastasis should be considered in the presence of anemia or positive occult blood test in patients with malignant pleural mesothelioma.

  8. A link between inflammation and metastasis

    DEFF Research Database (Denmark)

    Hansen, M. T.; Forst, B.; Cremers, N.

    2015-01-01

    S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional....... Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor...

  9. Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment.

    Science.gov (United States)

    Lu, Jun; Li, Jun; Liu, Shuo; Wang, Teng; Ianni, Alessandro; Bober, Eva; Braun, Thomas; Xiang, Rong; Yue, Shijing

    2017-09-22

    The metastases of malignant tumors develop through a cascade of events. The establishment of a pre-metastatic micro-environment is initiated by communication between tumors and host. Exosomes come into focus as the most potent intercellular communicators playing a pivotal role in this process. Cancer cells release exosomes into the extracellular environment prior to metastasis. Tetraspanin is a type of 4 times transmembrane proteins. It may be involved in cell motility, adhesion, morphogenesis, as well as cell and vesicular membrane fusion. The exosomal tetraspanin network is a molecular scaffold connecting various proteins for signaling transduction. The complex of tetraspanin-integrin determines the recruiting cancer exosomes to pre-metastatic sites. Tetraspanin is a key element for the target cell selection of exosomes uptake that may lead to the reprogramming of target cells. Reprogrammed target cells assist pre-metastatic niche formation. Previous reviews have described the biogenesis, secretion and intercellular interaction of exosomes in various tumors. However, there is a lack of reviews on the topic of exosomal tetraspanin in the context of cancer. In this review, we will describe the main characteristics of exosomal tetraspanin in cancer cells. We will also discuss how the cancer exosomal tetraspanin alters extracellular environment and regulates cancer metastasis.

  10. Regulation of microRNAs in Cancer Metastasis

    Science.gov (United States)

    Bouyssou, Juliette M.C.; Manier, Salomon; Huynh, Daisy; Issa, Samar; Roccaro, Aldo M.; Ghobrial, Irene M.

    2014-01-01

    Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process. PMID:24569228

  11. Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a.

    Science.gov (United States)

    Wolfe, Adam R; Debeb, Bisrat G; Lacerda, Lara; Larson, Richard; Bambhroliya, Arvind; Huang, Xuelin; Bertucci, Francois; Finetti, Pascal; Birnbaum, Daniel; Van Laere, Steven; Diagaradjan, Parmeswaran; Ruffell, Brian; Trenton, Nicholaus J; Chu, Khoi; Hittelman, Walter; Diehl, Michael; Levental, Ilya; Ueno, Naoto T; Woodward, Wendy A

    2015-12-01

    We previously reported using statins was correlated with improved metastasis-free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple-negative breast cancer (TNBC) cells. TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in eight public breast cancer gene expression datasets including 1479 patients. Simvastatin increased G1/S-phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pre-treatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted.

  12. Bilateral Choroid Plexus Metastasis from Papillary Thyroid Carcinoma: Case Report and Review of the Literature.

    Science.gov (United States)

    Sharifi, Guive; Bakhtevari, Mehrdad Hosseinzadeh; Alghasi, Mohsen; Nosari, Masood Asghsri; Rahmanzade, Ramin; Rezaei, Omidvar

    2015-10-01

    Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. It has an indolent clinical course and favorable prognosis. Brain metastasis is uncommon and complicates about 0.1%-5% of PTCs. Metastasis to the choroid plexus of the lateral ventricles has been reported in 7 cases of thyroid malignancies, all of which were unilateral. We report a case of a 52-year-old woman with a history of PTC who presented with severe headache, nausea and vomiting, right hemiparesis, and speech disturbance. Imaging studies depicted lesions in both lateral ventricles. The patient underwent microsurgical tumor resection. Histopathologic examination revealed choroid plexus metastasis from PTC. Metastases to the choroid plexus from extracranial tumors are very rare, with only a few cases reported thus far. A demographic analysis of these cases suggests there may be a tropism of some extracranial carcinomas, such as renal cell carcinoma, for choroid plexus, especially in the lateral ventricles. We report the eighth case of choroid plexus metastasis, but it is the first bilateral one arising from thyroid cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Breast Cancer Pathology, Receptor Status, and Patterns of Metastasis in a Rural Appalachian Population

    Directory of Open Access Journals (Sweden)

    Linda Vona-Davis

    2014-01-01

    Full Text Available Breast cancer patients in rural Appalachia have a high prevalence of obesity and poverty, together with more triple-negative phenotypes. We reviewed clinical records for tumor receptor status and time to distant metastasis. Body mass index, tumor size, grade, nodal status, and receptor status were related to metastatic patterns. For 687 patients, 13.8% developed metastases to bone (n=42 or visceral sites (n=53. Metastases to viscera occurred within five years, a latent period which was shorter than that for bone (P=0.042. More women with visceral metastasis presented with grade 3 tumors compared with the bone and nonmetastatic groups (P=0.0002. There were 135/574 women (23.5% with triple-negative breast cancer, who presented with lymph node involvement and visceral metastases (68.2% versus 24.3%; P=0.033. Triple-negative tumors that metastasized to visceral sites were larger (P=0.007. Developing a visceral metastasis within 10 years was higher among women with triple-negative tumors. Across all breast cancer receptor subtypes, the probability of remaining distant metastasis-free was greater for brain and liver than for lung. The excess risk of metastatic spread to visceral organs in triple-negative breast cancers, even in the absence of positive nodes, was combined with the burden of larger and more advanced tumors.

  14. Real-time visualization of early metastasis events in Danio rerio

    Science.gov (United States)

    Tanner, Kandice

    Metastasis, the process by which cancer cells travel from a primary tumor to establish lesions in distant organs, is the cause of most cancer-related deaths. One critical process during metastasis is the transit of cells from a primary tumor and through the vasculature or lymphatic systems to a distant site prior to metastatic colonization. However, visualization of cellular behavior in the vasculature is difficult in most model systems, where final cell destination is not known beforehand. Here, we used bone- and brain-tropic subclones of MDA-MB-231 breast adenocarcinoma cells (231BO and 231BR, respectively) injected into the circulation of embryonic zebrafish as a model xenograft system of metastasis. The zebrafish vasculature contains vessels on the scale of human capillaries. Real-time intravital imaging revealed metastatic spread to be an inefficient process, with less than 20% of cells passing through a given organ remaining there following 14 h of imaging. Additionally, there was no significant difference in the organ-specific residence time or migration speed of single 231BO and 231BR cells in the organ vasculature. Instead, cell capture was dependent on vessel topography and the function of integrin β1. Interestingly, a fraction of cells extravasated from the vasculature and survived in a perivascular position in the head and caudal venous plexus for up to two weeks. In conclusion, use of the zebrafish vasculature as a model capillary bed has revealed critical steps in early metastasis that are difficult to capture in other systems.

  15. Intracranial Dural Metastasis of Ewing's Sarcoma: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Yeop; Lee, Seung Koo; Kim, Dong Joon; Kim, Jin Na; Lee, Kyu Sung; Jung, Woo Hee; Kim, Dong Ik [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2008-02-15

    Ewing's sarcoma is a malignant bone tumor that can occur anywhere in the body, but it is most commonly observed in the long bones of the arms and legs, the pelvis and in the chest. The predominant sites of metastasis include the lung (38%), bone (including the spine; 31%), and the bone marrow (11%). Metastasis of Ewing's sarcoma to the central nervous system (CNS) is relatively rare, and most of the previous reports have demonstrated involvement of the bony calvarium or brain parenchyma. We describe here the imaging findings of dural metastasis of Ewing's sarcoma, and these imaging findings have not been previously reported on in the medical literature. In conclusion, dural metastasis of Ewing's sarcoma is very rare and its imaging characteristics are similar to those of a primary tumor, which mimic the findings of a schwannoma or meningioma. Despite its rarity, secondary Ewing's sarcoma may be included in the differential diagnosis of extra-axial dural masses.

  16. Popliteal lymph node metastasis of tibial osteoblastic osteosarcoma

    Directory of Open Access Journals (Sweden)

    Yalın Dirik

    2014-01-01

    CONCLUSION: Lymph node metastasis of osteosarcoma is a rare entity and metastatic patterns could not be clearly explained. On the other hand, the effects of lymph node metastasis on prognosis are also not clearly defined and further studies are needed.

  17. Bio-luminescent imaging and characterization of organ-specific metastasis of human cancer in NOD/SCID mice

    Science.gov (United States)

    Chun, Nicole A. L.; Murakami, Takashi

    2010-02-01

    Many clinical evidences demonstrate that the sites of distant metastasis are not random and certain malignant tumors show a tendency to develop metastases in specific organs (e.g., brain, liver, and lungs). However, an appropriate animal model to characterize the metastatic nature of transplantable human cancer cell lines has not been reported well. Recent advances in bio-luminescent imaging (BLI) technologies have facilitated the quantitative analysis of various cellular processes in vivo. To visualize the fate of tumor progression in the living mice, we are constructing a luciferaseexpressing human cancer cell library (including melanoma, colon, breast, and prostate cancer). Herein we demonstrate that the BLI technology in couple with a fine ultrasonic guidance realizes cancer cell-type dependent metastasis to the specific organs. For example, some melanoma cell lines showed frequent metastasis to brain, lungs, and lymph nodes in the mouse model. Notably, reflecting the clinical features of melanoma, breast, and prostate cancer, some of the cell lines showed preferential metastasis to the brain. Moreover, these cellular resources for BLI allow a high throughput screening for potential anti-cancer drugs. Thus, this BLI-mediated additional strategy with the luciferase-expressing cancer cell resources should promote many translational studies for human cancer therapy.

  18. Muc1 promotes migration and lung metastasis of melanoma cells

    OpenAIRE

    Wang, Xiaoli; Lan, Hongwen; LI, Jun; Su,Yushu; Xu, Lijun

    2015-01-01

    Early stages of melanoma can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both melanoma metastasis promoting and metastasis suppressor genes have been reported be related to metastasis, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the devel...

  19. Metastasis in renal cell carcinoma: Biology and implications for therapy

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2016-10-01

    Full Text Available Although multiple advances have been made in systemic therapy for renal cell carcinoma (RCC, metastatic RCC remains incurable. In the current review, we focus on the underlying biology of RCC and plausible mechanisms of metastasis. We further outline evolving strategies to combat metastasis through adjuvant therapy. Finally, we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.

  20. Alcohol consumption suppresses mammary tumor metastasis in a syngeneic tumor transplantation model.

    Science.gov (United States)

    Vorderstrasse, Beth A; Wang, Tao; Myers, Annette K; Wyrick, Katherine L; Meadows, Gary G

    2012-12-01

    Epidemiological studies indicate a positive correlation between alcohol consumption and the risk of developing breast cancer. However, little is known about whether alcohol consumption affects breast cancer metastasis. Considering that the primary cause of death in breast cancer patients is due to metastasis, further insight into whether alcohol consumption influences disease progression and survival is needed. We tested the effect of alcohol consumption on breast cancer metastasis using the 4T1.2 syngeneic mammary tumor model in Balb/c mice. The treatment groups included a High-consuming group (18 % w/v alcohol in drinking water), a Moderate-consuming group (5 % w/v), a Low-consuming group (1 % w/v), and a Water-drinking control group. 4T1.2 mammary tumor cells were injected orthotopically into the mammary fat pad. Metastases were enumerated in lungs and in distant mammary glands 4 weeks after injection. Consumption of High alcohol protected against metastasis, as High-consuming mice typically had 65-75 % fewer metastases compared to Water-drinking controls. A suggestive reduction in tumor spread was observed in the Moderate-drinking group, although the effects did not reach statistical significance. Consumption of the Low alcohol dose did not affect metastasis. CXCR4 expression in the primary tumors was significantly reduced by High alcohol consumption; however, expression of this chemokine receptor in the primary tumor did not correlate with metastatic potential. Additional studies were conducted to test for possible direct effects of 0.3 % w/v ethanol on tumor cell proliferation, migration, invasion, and colony formation of 4T1.2 cells in vitro. Our results indicate that, for this murine model, alcohol consumption does not exacerbate tumor metastasis, and that High alcohol consumption reduces tumor spread.

  1. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  2. Corepressor metastasis-associated protein 3 modulates epithelial-to-mesenchymal transition and metastasis.

    Science.gov (United States)

    Du, Liang; Ning, Zhifeng; Zhang, Hao; Liu, Fuxing

    2017-03-09

    Worldwide, metastasis is the leading cause of more than 90% of cancer-related deaths. Currently, no specific therapies effectively impede metastasis. Metastatic processes are controlled by complex regulatory networks and transcriptional hierarchy. Corepressor metastasis-associated protein 3 (MTA3) has been confirmed as a novel component of nucleosome remodeling and histone deacetylation (NuRD). Increasing evidence supports the theory that, in the recruitment of transcription factors, coregulators function as master regulators rather than passive passengers. As a master regulator, MTA3 governs the target selection for NuRD and functions as a transcriptional repressor. MTA3 dysregulation is associated with tumor progression, invasion, and metastasis in various cancers. MTA3 is also a key regulator of E-cadherin expression and epithelial-to-mesenchymal transition. Elucidating the functions of MTA3 might help to find additional therapeutic approaches for targeting components of NuRD.

  3. Diagnosis of bone metastasis from thyroid carcinoma

    DEFF Research Database (Denmark)

    Bechsgaard, Thor; Lelkaitis, Giedrius; Jensen, Karl E

    2015-01-01

    (MRI), but histology revealed a metastasis from thyroid carcinoma, although the patient had no previous history of thyroid malignancy and resection of the thyroid gland was without malignancy. Ultrasound-guided biopsy was possible due to cortical destruction and the multidisciplinary approach with re...

  4. Osthole inhibits bone metastasis of breast cancer.

    Science.gov (United States)

    Wu, Chunyu; Sun, Zhenping; Guo, Baofeng; Ye, Yiyi; Han, Xianghui; Qin, Yuenong; Liu, Sheng

    2017-08-29

    Bone is one of the most common sites for breast cancer metastasis, which greatly contributes to patient morbidity and mortality. Osthole, a major extract from Cnidium monnieri (L.), exhibits many biological and pharmacological activities, however, its potential as a therapeutic agent in the treatment of breast cancer bone metastases remain poorly understood. In this study, we set out to investigate whether osthole could inhibit breast cancer metastasis to bone in mice and clarified the potential mechanism of this inhibition. In the murine model of breast cancer osseous metastasis, mice that received osthole developed significantly less bone metastases and displayed decreased tumor burden when compared with mice in the control group. Osthole inhibited breast cancer cell growth, migration, and invasion, and induced apoptosis of breast cancer cells. Additionally, it also regulated OPG/RANKL signals in the interactions between bone cells (osteoblasts and osteoclasts) and cancer cells. Besides, it also inhibited TGF-β/Smads signaling in breast cancer metastasis to bone in MDA-231BO cells. The results of this study suggest that osthole has real potential as a therapeutic candidate in the treatment of breast cancer patients with bone metastases.

  5. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    Science.gov (United States)

    2015-10-01

    efferocytosis. The translation of this functional role during pathophysiological states such as tumor metastasis to the skeleton is unknown. The purpose of this...COLLABORATING ORGANIZATIONS What individuals have worked on the project? Name: L.C. Hofbauer Institution: Department of Endocrinology, Diabetes , and Bone

  6. Altered tumor cell glycosylation promotes metastasis

    Directory of Open Access Journals (Sweden)

    Irina eHäuselmann

    2014-02-01

    Full Text Available Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompasses aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors - lectins. In this review we will discuss current concepts how tumor cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins and selectins. Siglecs are present on virtually all hematopoetic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor cell survival. Selectins are vascular adhesion receptors that promote tumor cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis and aid to develop clinical strategies to prevent metastasis.

  7. CHOROIDAL SARCOID GRANULOMA SIMULATING PROSTATE CARCINOMA METASTASIS.

    Science.gov (United States)

    Turkoglu, Elif B; Lally, Sara E; Shields, Carol L

    2017-01-01

    To report a case of choroidal sarcoid granuloma simulating choroidal metastasis in a patient with prostate carcinoma. Case report. A 66-year-old man was found to have an asymptomatic choroidal mass in his left eye. He had known history of pulmonary sarcoidosis without systemic involvement and prostate carcinoma without metastasis. On examination, visual acuity was 20/20 in each eye. Anterior segment was normal, without inflammatory sign in either eye. The right fundus was healthy. The left fundus revealed a yellow choroidal mass of 2 mm diameter, temporal to the foveola and without subretinal fluid, retinitis, or vitritis. Optical coherence tomography demonstrated a homogenous hyporeflective choroidal mass with intact retinal pigment epithelium and compression of choroidal vascular structures. Given the medical history and rarity of prostate metastasis to the uvea, choroidal sarcoid granuloma was considered and oral prednisone with a slow taper was given. After 2 months of therapy, tumor resolution with reduction in size was confirmed on optical coherence tomography. Choroidal sarcoid granuloma is a rare condition that can simulate choroidal metastasis. Treatment with prednisone can assist in establishing the diagnosis.

  8. The protein C pathway in cancer metastasis

    NARCIS (Netherlands)

    Spek, C. Arnold; Arruda, Valder R.

    2012-01-01

    Cancer is frequently associated with activation of blood coagulation, which in turn has been suggested to promote tumor growth and metastasis. Indeed, low molecular weight heparin treatment significantly prolongs the survival of a wide variety of patients with cancer. Based on this notion that

  9. Detection of cancer before distant metastasis

    NARCIS (Netherlands)

    Coumans, Frank A. W.; Siesling, Sabine; Terstappen, Leon W. M. M.

    2013-01-01

    Background: To establish a distant metastasis (DM) cells must disseminate from the primary tumor and overcome a series of obstacles, the metastatic cascade. In this study we develop a mathematical model for this cascade to estimate the tumor size and the circulating tumor cell (CTC) load before the

  10. Isolated Pancreatic Metastasis from Malignant Melanoma: Is ...

    African Journals Online (AJOL)

    Isolated pancreatic metastasis from malignant melanoma (IPMMM) is rare because most melanoma patients already have a widespread disease at diagnosis. No adjuvant systemic treatment is known to be effi cient in this setting. Experience with pancreatic resection for IPMMM is limited and controversial. We report here ...

  11. Cardiac Metastasis in Renal Cell Carcinoma

    African Journals Online (AJOL)

    abp

    2015-10-21

    Oct 21, 2015 ... &Corresponding author: Zairi Ihsen, Department of Cardiology, Habib Thameur Public Hospital, Bab El Fallah, Tunis, Tunisia. Key words: .... Journal of Clinical. Pathology. 2007; 60(1): 27-34. PubMed | Google Scholar. 5. Roigas J et al. Renal cell cancer with a symptomatic heart metastasis. BJU Int. 2002 ...

  12. Notch1-WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis.

    Science.gov (United States)

    Shao, Hongwei; Cai, Long; Moller, Mecker; Issac, Biju; Zhang, Leiming; Owyong, Mark; Moscowitz, Anna Elizabeth; Vazquez-Padron, Roberto; Radtke, Freddy; Liu, Zhao-Jun

    2016-11-29

    Mesenchymal stem cells-derived fibroblasts (MSC-DF) constitute a significant portion of stromal fibroblasts in the tumor microenvironment (TME) and are key modulators of tumor progression. However, the molecular mechanisms that determine their tumor-regulatory function are poorly understood. Here, we uncover the Notch1 pathway as a molecular determinant that selectively controls the regulatory role of MSC-DF in melanoma metastasis. We demonstrate that the Notch1 pathway's activity is inversely correlated with the metastasis-regulating function of fibroblasts and can determine the metastasis-promoting or -suppressing phenotype of MSC-DF. When co-grafted with melanoma cells, MSC-DFNotch1-/- selectively promote, while MSC-DFN1IC+/+ preferentially suppress melanoma metastasis, but not growth, in mouse models. Consistently, conditioned media (CM) from MSC-DFNotch1-/- and MSC-DFN1IC+/+ oppositely, yet selectively regulates migration, but not growth of melanoma cells in vitro. Additionally, when co-cultured with metastatic melanoma cells in vitro, MSC-DFNotch1-/- support, while MSC-DFN1IC+/+ inhibit melanoma cells in the formation of spheroids. These findings expand the repertoire of Notch1 signaling as a molecular switch in determining the tumor metastasis-regulating function of MSC-DF. We also identified Wnt-induced secreted protein-1 (WISP-1) as a key downstream secretory mediator of Notch1 signaling to execute the influential role of MSC-DF on melanoma metastasis. These findings reveal the Notch1-WISP-1 axis as a crucial molecular determinant in governing stromal regulation of melanoma metastasis; thus, establishing this axis as a potential therapeutic target for melanoma metastasis.

  13. A case report of thyroid gland metastasis associated with lung metastasis from colon cancer.

    Science.gov (United States)

    Nakamura, Keisuke; Nozawa, Keijiro; Aoyagi, Yoshiko; Ishihara, Soichiro; Matsuda, Keiji; Fukushima, Junichi; Watanabe, Toshiaki

    2011-01-01

    Thyroid gland metastasis of malignant tumors is observed in 1.9% to 9.5% of histologically examined autopsy cases. Thyroid metastasis from colon cancer is extremely rare and the prognosis is poor. Here we report a case of lung metastasis and thyroid gland metastasis following sigmoid colon cancer surgery. In 2000, a 58-year-old woman underwent a sigmoid colectomy for sigmoid colon cancer. In 2005, a metastatic lung tumor was detected by chest CT. The patient underwent a partial thoracoscopic resection of the left lung in April 2005. On a CT scan taken 3 years and 4 months after the lung resection, a tumor mass was observed in the left lung and a low-absorption region with an unclear border was seen in the left lobe of the thyroid gland. Thyroid aspiration cytology showed adenocarcinoma, and a diagnosis of thyroid gland metastasis from sigmoid colon cancer was made. In April 2008 a subtotal thyroidectomy was performed. Following surgery, the patient underwent chemotherapy with mFOLFOX6 and bevacizumab. Nevertheless a number of lung metastases and expressions of lung metastasis were subsequently observed. Histopathological examination revealed a number of metastases of differentiated papillary adenocarcinoma in the thyroid gland from colon cancer.

  14. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum.

    Science.gov (United States)

    Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich

    2017-02-01

    LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.

  15. Isolated pachymeningeal metastasis from breast cancer: Clinical features and prognostic factors.

    Science.gov (United States)

    Heo, Mi Hwa; Cho, Yoo Jin; Kim, Hee Kyung; Kim, Ji-Yeon; Park, Yeon Hee

    2017-10-01

    To evaluate the clinical features and prognoses of patients with isolated pachymeningeal metastasis (IPM) from breast cancer. We reviewed the medical records of all patients with metastatic breast cancer (MBC) treated from January 2009 to August 2016. Eligibility criteria included diagnosis of pachymeningeal metastasis based on brain magnetic resonance imaging and histologic diagnosis of primary breast cancer. We excluded patients with concomitant parenchymal or leptomeningeal metastases. Thirty-eight patients who matched our inclusion criteria were included in this study. The incidence of IPM in breast cancer was 1.5% of all patients with MBC. The molecular subtype distribution was: triple negative, 29.0%; ER+/HER2-, 44.7%; ER+/HER2+, 18.4%; and ER-/HER2+, 7.9%. All isolated pachymeningeal involvement resulted from the direct extension of skull metastases. The median time to IPM from systemic metastasis was 28.6 (95% CI: 23.6-33.6) months. The median time to IPM from skull metastasis was 5.2 (95% CI: 0-10.9) months. The median overall survival (OS) from IPM was 4.0 (95% CI: 2.5-5.5) months. In patients who received chemotherapy the OS was longer than for those who received radiotherapy or supportive care only [median OS 8.9 (95% CI: 0.0-18.4), 2.8 (95% CI: 0.5-5.0), and 0.8 (95% CI: 0.6-1.1) months, respectively (p = 0.006)]. Multivariate analysis revealed that good performance status and chemotherapy were associated with better survival outcomes. Stratified evaluation is required for patients with skull metastasis from breast cancer, as pachymeningeal involvement can develop and be associated with unsuspected outcomes. Copyright © 2017. Published by Elsevier Ltd.

  16. Which metastasis management allows long-term survival of synchronous solitary M1b non-small cell lung cancer?

    Science.gov (United States)

    Mordant, Pierre; Arame, Alex; De Dominicis, Florence; Pricopi, Ciprian; Foucault, Christophe; Dujon, Antoine; Le Pimpec-Barthes, Françoise; Riquet, Marc

    2012-03-01

    OBJECTIVES; Patients with extrathoracic synchronous solitary metastasis and non-small cell lung cancer (NSCLC) are rare. The effectiveness of both tumour sites resection is difficult to evaluate because of the high variability among clinical studies. We reviewed our experience regarding the management and prognosis of these patients. The charts of 4668 patients who underwent lung cancer surgery from 1983 to 2006 were retrospectively reviewed. We analysed the epidemiology, treatment, pathology and prognostic characteristics of those with extrathoracic synchronous solitary metastasis amenable to lung cancer surgery on a curative intend. There were 94 patients (sex ratio M/F 3.2/1, mean age 56 years). Surgery included pneumonectomy (n = 27), lobectomy (n = 65) and exploratory thoracotomy (n = 2). Pathology revealed adenocarcinomas (n = 57), squamous cell carcinoma (n = 20), large cell carcinoma (n = 14) and other NSCLC histology (n = 3). Lymphatic extension was N0 (n = 46), N1 (n = 17) and N2 (n = 31). Metastasis involved the brain (n = 57), adrenal gland (n = 12), bone (n = 14), liver (n = 5) and skin (n = 6). Sixty-nine metastases were resected. Five-year survival rate was 16% (median 13 months). Induction therapy, adenocarcinoma, N0 staging and lobectomy were criteria of better prognosis, but metastasis resection was not. These results suggest that extrathoracic synchronous solitary metastasis of pN0 adenocarcinoma may achieve long-term survival in the case of lung resection with or without metastasis resection. This pattern may reflect a specific tumour biology whose solitary metastasis benefits both from surgical or non-surgical treatment.

  17. Survivin promotion of melanoma metastasis requires upregulation of α5 integrin.

    Science.gov (United States)

    McKenzie, Jodi A; Liu, Tong; Jung, Jae Y; Jones, Benjamin B; Ekiz, Huseyin A; Welm, Alana L; Grossman, Douglas

    2013-09-01

    Survivin is an apoptotic and mitotic regulator that is overexpressed in melanoma and a poor prognostic marker in patients with metastatic disease. We recently showed that Survivin enhances melanoma cell motility through Akt-dependent upregulation of α5 integrin. However, the functional role of Survivin in melanoma metastasis is not clearly understood. We found that overexpression of Survivin in LOX and YUSAC2 human melanoma cells increased colony formation in soft agar, and this effect was abrogated by knockdown of α5 integrin by RNA interference. We employed melanoma cell xenografts to determine the in vivo effect of Survivin overexpression on melanoma metastasis. Although Survivin overexpression did not affect primary tumor growth of YUSAC2 or LOX subcutaneous tumors, or indices of proliferation or apoptosis, it significantly increased expression of α5 integrin in the primary tumors and formation of metastatic colonies in the lungs. Additionally, Survivin overexpression resulted in enhanced lung colony formation following intravenous (i.v.) injection of tumor cells in vivo and increased adherence to fibronectin-coated plastic in vitro. Importantly, in vivo inhibition of α5 integrin via intraperitoneal injection of an α5β1 integrin-blocking antibody significantly slowed tumor growth and reduced Survivin-enhanced pulmonary metastasis. Knockdown of α5 integrin in cells prior to i.v. injection also blocked Survivin-enhanced lung colony formation. These findings support a direct role for Survivin in melanoma metastasis, which requires α5 integrin and suggest that inhibitors of α5 integrin may be useful in combating this process.

  18. Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation

    Science.gov (United States)

    2015-05-01

    Pathology, University of Foggia, Foggia, Italy 3 Department of Pediatric Dentistry and Orthodontics, University of Michigan, Ann Arbor, USA 4...of Michigan School of Dentistry 1011 N. University of Ave. Ann Arbor, MI 48109-1078 1. INTRODUCTION Bone metastasis leading to the formation of...George R. Brown Convention Center, Grand Ballroom A 13 * Chunxi Ge, Pom Univ of Michigan School of Dentistry , USA, Guisheng Zhao, University of

  19. Atypical Distant Metastasis of Breast Malignant Phyllodes Tumors: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tiphaine de Foucher

    2017-01-01

    Full Text Available Malignant phyllodes tumors (MPT are rare breast neoplasms. Preoperative diagnosis is often challenging due to the unspecific clinical, radiological, and histological characteristics of the tumor. Dissemination pathways are local with chest wall invasion, regional with lymph nodes metastasis, and distant, hematogenous, mostly to the lungs, bones, and brain. Distant metastasis (DM can be synchronous or appear months to years after the diagnosis and initial management. The current report describes the case of a 57-year-old woman presenting with a giant/neglected MPT of the breast, with no DM at initial staging, treated by radical modified mastectomy. Motor disorders due to medullar compression by a paravertebral mass appeared at short follow-up, also treated surgically. The patient died from several DM of rapid evolution. To our knowledge, this is the only case described of MPT with metastases to soft tissue causing medullar compression. We present a literature review on unusual metastatic localizations of MPT.

  20. Small RNA sequencing reveals metastasis-related microRNAs in lung adenocarcinoma

    DEFF Research Database (Denmark)

    Daugaard, Iben; Venø, Morten T; Yan, Yan

    2017-01-01

    The majority of lung cancer deaths are caused by metastatic disease. MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression and miRNA dysregulation can contribute to metastatic progression. Here, small RNA sequencing was used to profile the miRNA and piwi-interacting RNA (piRNA......) transcriptomes in relation to lung cancer metastasis. RNA-seq was performed using RNA extracted from formalin-fixed paraffin embedded (FFPE) lung adenocarcinomas (LAC) and brain metastases from 8 patients, and LACs from 8 patients without detectable metastatic disease. Impact on miRNA and piRNA transcriptomes...... was subtle with 9 miRNAs and 8 piRNAs demonstrating differential expression between metastasizing and non-metastasizing LACs. For piRNAs, decreased expression of piR-57125 was the most significantly associated with distant metastasis. Validation by RT-qPCR in a LAC cohort comprising 52 patients confirmed...

  1. Atypical Distant Metastasis of Breast Malignant Phyllodes Tumors: A Case Report and Literature Review

    Science.gov (United States)

    de Foucher, Tiphaine; Roussel, Hélène; Hivelin, Mikael; Rossi, Léa; Cornou, Caroline; Bats, Anne-Sophie; Deloménie, Myriam; Lécuru, Fabrice

    2017-01-01

    Malignant phyllodes tumors (MPT) are rare breast neoplasms. Preoperative diagnosis is often challenging due to the unspecific clinical, radiological, and histological characteristics of the tumor. Dissemination pathways are local with chest wall invasion, regional with lymph nodes metastasis, and distant, hematogenous, mostly to the lungs, bones, and brain. Distant metastasis (DM) can be synchronous or appear months to years after the diagnosis and initial management. The current report describes the case of a 57-year-old woman presenting with a giant/neglected MPT of the breast, with no DM at initial staging, treated by radical modified mastectomy. Motor disorders due to medullar compression by a paravertebral mass appeared at short follow-up, also treated surgically. The patient died from several DM of rapid evolution. To our knowledge, this is the only case described of MPT with metastases to soft tissue causing medullar compression. We present a literature review on unusual metastatic localizations of MPT.

  2. Progression of choroidal metastasis of ovarian serous cystoadenocarcinoma after intravitreal bevacizumab treatment

    Directory of Open Access Journals (Sweden)

    Victor E. Reviglio

    2013-02-01

    Full Text Available A 57-year-old woman presented to her ophthalmologist because of rapid deterioration in vision. Dilated funduscopic examination of the right eye showed an elevated, yellow-orange choroidal mass temporal to the fovea; a complete retinal detachment was present in the left eye. The patient was referred to an oncologist. Computerized tomography of the brain, thorax, abdomen, and pelvis were obtained. They revealed an 11-mm mass in the right parietal lobe, a 30-mm mass in the left temporal lobe, 23-mm mass in the right kidney, and multiple nodules in both lungs. Supported by published experience with intravitreal bevacizumab for choroidal metastasis, the patient was injected into the vitreous through the pars plana of the left eye. The tumor mass did not show signs of regression and the visual acuity was unchanged. The patient suffered from end-state complications tumor metastasis and expired one month after the invitreal injection.

  3. Animal models of colorectal cancer with liver metastasis.

    Science.gov (United States)

    Oh, Bo Young; Hong, Hye Kyung; Lee, Woo Yong; Cho, Yong Beom

    2017-02-28

    Liver metastasis is a leading cause of death in patients with colorectal cancer. Investigating the mechanisms of liver metastasis and control of disease progression are important strategies for improving survival of these patients. Liver metastasis is a multi-step process and relevant models representing these steps are necessary to understand the mechanism of liver metastasis and establish appropriate treatments. Recently, the development of animal models for use in metastasis research has greatly increased; however, there is still a lack of models that sufficiently represent human cancer. Thus, in order to select an optimal model for of a given study, it is necessary to fully understand the characteristics of each animal model. In this review, we describe the mouse models currently used for colorectal cancer with liver metastasis, their characteristics, and their pros and cons. This may help us specify the mechanism of liver metastasis and provide evidence relevant to clinical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis

    NARCIS (Netherlands)

    Stein, Torsten; Salomonis, Nathan; Nuyten, Dimitry S. A.; van de Vijver, Marc J.; Gusterson, Barry A.

    2009-01-01

    Mouse mammary gland involution resembles a wound healing response with suppressed inflammation. Wound healing and inflammation are also associated with tumour development, and a 'wound-healing' gene expression signature can predict metastasis formation and survival. Recent studies have shown that an

  5. Oncogenic K-Ras Turns Death Receptors Into Metastasis-Promoting Receptors in Human and Mouse Colorectal Cancer Cells

    NARCIS (Netherlands)

    Hoogwater, Frederik J. H.; Nijkamp, Maarten W.; Smakman, Niels; Steller, Ernst J. A.; Emmink, Benjamin L.; Westendorp, B. Florien; Raats, Danielle A. E.; Sprick, Martin R.; Schaefer, Uta; van Houdt, Winan J.; de Bruijn, Menno T.; Schackmann, Ron C. J.; Derksen, Patrick W. B.; Medema, Jan-Paul; Walczak, Henning; Borel Rinkes, Inne H. M.; Kranenburg, Onno

    2010-01-01

    BACKGROUND & AIMS: Death receptors expressed on tumor cells can prevent metastasis formation by inducing apoptosis, but they also can promote migration and invasion. The determinants of death receptor signaling output are poorly defined. Here we investigated the role of oncogenic K-Ras in

  6. Periodic acid Schiff loops and blood lakes associated with metastasis in cutaneous melanoma.

    Science.gov (United States)

    van Beurden, Anne; Schmitz, Roderick F; van Dijk, Cornelis M; Baeten, Coen I M

    2012-12-01

    Aggressive melanoma cells are able to form alternative routes for angiogenesis. The formation of extracellular matrix-rich vasculogenic-like networks [periodic acid Schiff (PAS) loops] and expression of endothelial-associated genes [allowing direct contact of erythrocytes (blood lakes)] are forms of vasculogenic mimicry (VM). The detection of these alternative routes may be used as an additional staging factor for cutaneous melanoma and predicts the route of metastasis in melanoma. We studied the association of the presence of VM with metastasis (lymphogenous and/or haematogenous) in patients diagnosed with cutaneous malignant melanoma in het Groene Hart Hospital, the Netherlands, between 1995 and 2000. Tumour tissue samples of 123 patients were assessed on PAS loops and blood lakes and correlated to clinical data. VM was detected in 42 (34%) and proven metastasis developed in 23 patients (18.7%). VM was associated with shorter survival (Pmetastasis (P=0.062 and 0.013). In 20 tumours, blood lakes were detected and correlated with haematogenous metastasis (Pmetastasis (Pmetastasis of cutaneous melanoma and were an independent determinant for survival. These interesting findings need further investigation, although we believe that implementation of this detection can directly lead to better staging of cutaneous melanoma.

  7. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Directory of Open Access Journals (Sweden)

    Paola Bendinelli

    2016-05-01

    Full Text Available Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine, and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients.

  8. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  9. Lysyl Oxidase-like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer.

    Science.gov (United States)

    Salvador, Fernando; Martin, Alberto; López-Menéndez, Celia; Moreno-Bueno, Gema; Santos, Vanesa; Vázquez-Naharro, Alberto; Santamaria, Patricia G; Morales, Saleta; Dubus, Pierre R; Muinelo-Romay, Laura; López-López, Rafael; Tung, Jason C; Weaver, Valerie M; Portillo, Francisco; Cano, Amparo

    2017-11-01

    The lysyl oxidase-like protein LOXL2 has been suggested to contribute to tumor progression and metastasis, but in vivo evidence has been lacking. Here we provide functional evidence that LOXL2 is a key driver of breast cancer metastasis in two conditional transgenic mouse models of PyMT-induced breast cancer. LOXL2 ablation in mammary tumor cells dramatically decreased lung metastasis, whereas LOXL2 overexpression promoted metastatic tumor growth. LOXL2 depletion or overexpression in tumor cells does not affect extracellular matrix stiffness or organization in primary and metastatic tumors, implying a function for LOXL2 independent of its conventional role in extracellular matrix remodeling. In support of this likelihood, cellular and molecular analyses revealed an association of LOXL2 action with elevated levels of the EMT regulatory transcription factor Snail1 and expression of several cytokines that promote premetastatic niche formation. Taken together, our findings established a pathophysiologic role and new function for LOXL2 in breast cancer metastasis. Cancer Res; 77(21); 5846-59. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.

    Science.gov (United States)

    Fischer, Kari R; Durrans, Anna; Lee, Sharrell; Sheng, Jianting; Li, Fuhai; Wong, Stephen T C; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Troeger, Juliane; Schwabe, Robert F; Vahdat, Linda T; Altorki, Nasser K; Mittal, Vivek; Gao, Dingcheng

    2015-11-26

    The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes in vivo. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.

  11. Brain Basics

    Medline Plus

    Full Text Available ... About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain Brain ... called the hypothalamic-pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life— ...

  12. Occurrence of cancer at multiple sites: Towards distinguishing multigenesis from metastasis

    Directory of Open Access Journals (Sweden)

    Zhang Chun

    2008-04-01

    Full Text Available Abstract Background Occurrence of tumors at multiple sites is a hallmark of malignant cancers and contributes to the high mortality of cancers. The formation of multi-site cancers (MSCs has conventionally been regarded as a result of hematogenous metastasis. However, some MSCs may appear as unusual in the sense of vascular dissemination pattern and therefore be explained by alternative metastasis models or even by non-metastatic independent formation mechanisms. Results Through literature review and incorporation of recent advance in understanding aging and development, we identified two alternative mechanisms for the independent formation of MSCs: 1 formation of separate tumors from cancer-initiating cells (CICs mutated at an early stage of development and then diverging as to their physical locations upon further development, 2 formation of separate tumors from different CICs that contain mutations in some convergent ways. Either of these processes does not require long-distance migration and/or vascular dissemination of cancer cells from a primary site to a secondary site. Thus, we classify the formation of these MSCs from indigenous CICs (iCICs into a new mechanistic category of tumor formation – multigenesis. Conclusion A multigenesis view on multi-site cancer (MSCs may offer explanations for some "unusual metastasis" and has important implications for designing expanded strategies for the diagnosis and treatment of cancers. Reviewers This article was reviewed by Carlo C. Maley nominated by Laura F. Landweber and Razvan T. Radulescu nominated by David R. Kaplan. For the full reviews, please go to the Reviewers' comments section.

  13. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    Science.gov (United States)

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  14. [Biology of brain metastases: current concepts].

    Science.gov (United States)

    Kehrli, P

    1999-12-01

    Brain metastasis results from complex interactions between host cells and primitive tumor cells. An analysis of the molecular pathways at the cellular level is provided in this review of the literature. The principal new therapeutic modalities are directly based on our comprehension of those molecular biology hypothesis.

  15. Pulmonary adenocarcinoma presenting with penile metastasis: a case report

    Directory of Open Access Journals (Sweden)

    Karanikas Christos

    2012-08-01

    Full Text Available Abstract Introduction Penile metastases are an extremely rare occurrence, and most primary malignancies are located in the urinary bladder, prostate, rectum, and rectosigmoid. Although very few cases of penile metastases have been reported, those of lung cancer as the primary tumor are very rare. Among the latter, squamous cell carcinomas constitute the majority, whereas adenocarcinomas are almost exceptions. To the best of our knowledge, only two cases have been reported. Case presentation We report the case of a 59-year-old Greek man who presented with persistent cough and chest pain that had started one month prior to a medical appointment. A physical examination, complete laboratory work-up, computed tomography scanning (of the chest, brain, and abdomen, pelvic magnetic resonance imaging, penile ultrasonography, bone scanning, and histological analyses were conducted. Afterward, a lung adenocarcinoma metastatic to the bones, brain, adrenals, lymph nodes, and penis was diagnosed. The primary lesion was a mass of 4cm in diameter in the apical segment of the lower lobe of the right lung. The patient was treated with bone and brain radiotherapy and various cycles of first- and second-line chemotherapy, and partial response was achieved five months after the initial appointment. Conclusions Although these metastatic sites are well known to occur from a primary pulmonary malignancy, penile metastasis is extremely rare. Its identification requires prompt awareness by the physician despite the dismal prognosis. Furthermore, since the penis usually is omitted from the physical examination and lung cancer is the leading cause of cancer-related deaths, more penile metastases may be detected in the future, making early detection and appropriate management of great importance.

  16. Melanoma metastasis to the spleen: Laparoscopic approach

    Directory of Open Access Journals (Sweden)

    Trindade Manoel Roberto

    2009-01-01

    Full Text Available We report a case of minimally invasive surgery in the management of metastasis to the spleen. A 67-year-old male patient with possible splenic soft tissue melanoma metastasis was referred to our hospital. He had a history of an excised soft tissue melanoma from his back eight months earlier, and the control abdominal computer tomography (CT scan revealed a hypodense spleen lesion. The patient underwent laparoscopic surgery to diagnose and treat the splenic lesion. The splenectomy was performed and the histological examination revealed a melanoma. The patient had a good postoperative course and was discharged on the second postoperative day. On his 12-month follow-up there was no sign of recurrence. The laparoscopic approach is a safe and effective alternative for treatment of splenic metastases.

  17. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis.

    Science.gov (United States)

    Roe, Jae-Seok; Hwang, Chang-Il; Somerville, Tim D D; Milazzo, Joseph P; Lee, Eun Jung; Da Silva, Brandon; Maiorino, Laura; Tiriac, Hervé; Young, C Megan; Miyabayashi, Koji; Filippini, Dea; Creighton, Brianna; Burkhart, Richard A; Buscaglia, Jonathan M; Kim, Edward J; Grem, Jean L; Lazenby, Audrey J; Grunkemeyer, James A; Hollingsworth, Michael A; Grandgenett, Paul M; Egeblad, Mikala; Park, Youngkyu; Tuveson, David A; Vakoc, Christopher R

    2017-08-24

    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Modeling tumor invasion and metastasis in Drosophila

    Directory of Open Access Journals (Sweden)

    Wayne O. Miles

    2011-11-01

    Full Text Available Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.

  19. Thyroid gland metastasis of rectal cancer.

    Science.gov (United States)

    Ozawa, Tsuyoshi; Saito, Shinsuke; Matsuura, Sohei; Kishi, Hirohisa; Maeda, Mamoru; Watanabe, Toshiaki

    2015-05-07

    A 72-year-old woman with a history of rectal cancer was admitted to our hospital to undergo thyroidectomy and left adrenalectomy. She had undergone low anterior resection and regional lymph node dissection for rectal cancer 52 months pre-admission (T3 N1 M0, stage IIIb according to International Union Against Cancer tumor-node-metastasis), and she had also undergone metastasectomy for lung metastases and right adrenal gland metastasis after the rectal surgery. Follow-up computed tomography scans detected nodules in the bilateral lobes of the thyroid gland and in the left adrenal gland. Subtotal thyroidectomy and left adrenalectomy were performed, and pathological examination revealed metastases of rectal cancer to the thyroid gland and left adrenal gland. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2015.

  20. MRI of metastasis-permissive microenvironments.

    Science.gov (United States)

    Penet, Marie-France; Chen, Zhihang; Bhujwalla, Zaver M

    2011-11-01

    One of the earliest documented observations of the importance of the microenvironment in metastasis was made by Stephen Paget in 1889. More than a century later, the metastatic cascade remains a major cause of mortality from cancer. Cancer meets the criterion of a successful organization that is able to survive by adapting to changing environments. In fact, the tumor microenvironment and stroma are co-opted and shaped by cancer cells to derive a survival advantage. Cohesive strategies integrating advances in molecular biology and chemistry, with noninvasive multimodality imaging, provide new insights into the role of the tumor microenvironment in promoting metastasis from primary tumors as well as insights into environments that attract and permit cancer cells to establish colonies in distant organs. This article provides an overview of molecular and functional imaging characterization of microenvironments that can promote or permit cancer cells to metastasize and the microenvironmental characteristics of distant metastases.

  1. Macroscopic stiffness of breast tumors predicts metastasis.

    Science.gov (United States)

    Fenner, Joseph; Stacer, Amanda C; Winterroth, Frank; Johnson, Timothy D; Luker, Kathryn E; Luker, Gary D

    2014-07-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer.

  2. Metastasis of Colon Cancer to the Breast

    Directory of Open Access Journals (Sweden)

    Swei H. Tsung

    2017-01-01

    Full Text Available Breast metastases from extramammary neoplasms are extremely rare, and even more so is metastasis of colon cancer to the breast. Despite its rarity, metastatic disease to the breast is an important diagnostic issue because its treatment differs greatly from that of primary cancer. Proper diagnosis of this rare event requires an accurate clinical history, proper immunohistochemical workup, and a high level of suspicion.

  3. On the Origin of Cancer Metastasis

    OpenAIRE

    Seyfried, Thomas N.; Huysentruyt, Leanne C.

    2013-01-01

    Metastasis involves the spread of cancer cells from the primary tumor to surrounding tissues and to distant organs and is the primary cause of cancer morbidity and mortality. In order to complete the metastatic cascade, cancer cells must detach from the primary tumor, intravasate into the circulatory and lymphatic systems, evade immune attack, extravasate at distant capillary beds, and invade and proliferate in distant organs. Currently, several hypotheses have been advanced to explain the or...

  4. Breast carcinoma metastasis to the lacrimal gland

    DEFF Research Database (Denmark)

    Nickelsen, Marie N.; Von Holstein, Sarah; Hansen, Alastair B.

    2015-01-01

    A 77-year-old female, with proptosis, reduced eye motility and diplopia which had developed over two to three months and a 69-year-old female with proptosis, oedema of the eyelid, reduced motility and ptosis, which had developed over three weeks, are presented in the present study. Computed tomog...... study aimed to describe two such cases and draw attention to breast carcinomas as a differential diagnosis and the most frequent cause of lacrimal gland metastasis....

  5. Isolated penile metastasis from bladder carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Demuren, O.A. [Department of Radiology and Imaging, Armed Forces Hospital, Riyadh (Saudi Arabia); Koriech, O. [Department of Oncology, Armed Forces Hospital, Riyadh (Saudi Arabia)

    1999-10-01

    Metastases of the penis are uncommon, with only approximately 300 cases reported since 1870. In up to 70 % of patients, the primary tumour is located in the urogenital tract. Furthermore, isolated metastases of the penis are exceptionally rare. We report a case of solitary squamous cell metastasis of the penis presenting with painful swelling initially thought to be inflammatory in origin. The CT and MR imaging findings are presented with a short review of the literature. (orig.) With 2 figs., 9 refs.

  6. Mandibular metastasis of cholangiocarcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    You, Tae Min [Dept. of Advanced General Dentistry, Dankook University, Cheonan (Korea, Republic of); Kim, Kee Dong; Jeong, Ho Gui; Park, Won Se [Advanced General Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2015-12-15

    Tumors metastasizing from distant regions to the oral and maxillofacial region are uncommon, comprising only 1%-2% of all malignancies. Cholangiocarcinoma is a malignancy that arises from cholangiocytes, which are epithelial cells that line the bile ducts. These cancers are difficult to diagnose and have a poor prognosis. In this paper, we report a rare case of mandibular metastasis of cholangiocarcinoma diagnosed at the primary site and discuss the radiographic findings observed in this case.

  7. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    Science.gov (United States)

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Profil Gangguan Kognitif pada Tumor Intrakranial Primer dan Metastasis

    Directory of Open Access Journals (Sweden)

    Kartika Maharani

    2015-12-01

    Full Text Available Gangguan kognitif sering menyertai pasien tumor intrakranial dan menjadi penyebab utama disabilitas. Perbedaan patofisiologi tumor intrakranial primer (TIP dan metastasis (TM menyebabkan perbedaan gambaran klinis dan derajat  gangguan kognitif. Tujuan penelitian ini untuk mengetahui prevalensi dan profil gangguan kognitif pasien TIP dan TM. Disain penelitian potong-lintang retrospektif menggunakan data sekunder dari Poliklinik Saraf RSCM pada bulan Januari 2011-Desember 2013. Subjek berusia 18-65 tahun yang didiagnosis TIP dan TM berdasarkan anamnesis, pemeriksaan fisik, CT scan atau MRI kepala, dan atau histopatologi. Terdapat 121 subjek, 79 TIP dan 27 TM; usia rerata TIP 43,7 tahun dan TM 50,9 tahun. Pada kelompok TM mayoritas (40,7% memiliki lesi di kedua hemisfer sedangkan TIP hanya di satu hemisfer. Lokasi tumor pada TM lebih dari 1 lobus (51,9%. Gangguan kognitif lebih banyak pada TM (81,5% dibandingkan TIK (52,5% dengan domain tersering gangguan visuospasial. Subjek TM mengalami gangguan kognitif lebih berat dibandingkan TIP (rerata MMSE 20,96 dan 22,61. Gangguan kognitif lebih banyak pada kelompok TM dibandingkan TIP dengan gangguan kognitif lebih berat karena mayoritas lesi tumor mengenai lebih dari 1 lobus. Kata kunci: gangguan kognitif, tumor intrakranial, neuro-onkologi.   Cognitve Impairment in Primary and Metastatic Brain Tumors Abstract Brain tumor patients are often accompanied by a wide range of cognitive impairment as a major cause of disablility. The different pathophysiology of primary and metastatic brain tumor influences patients’ clinical signs and symptoms, and also the severity of cognitive impairment. To determine the prevalence and profile of cognitive impairment in patients with primary and metastatic brain tumors, this cross-sectional study was done on subjects of 18 to 65 years old with the diagnosis of primary and metastatic brain tumors based on anamnesis, physical examination, imaging modalities, and

  9. Primary brain tumours, meningiomas and brain metastases in pregnancy

    DEFF Research Database (Denmark)

    Verheecke, Magali; Halaska, Michael J; Lok, Christianne A

    2014-01-01

    to obtain better insight into outcome and possibilities of treatment in pregnancy. METHODS: We collected all intracranial tumours (primary brain tumour, cerebral metastasis, or meningioma) diagnosed during pregnancy, registered prospectively and retrospectively by international collaboration since 1973....... Patients diagnosed postpartum were excluded. We summarised the demographic features, treatment decisions, obstetrical and neonatal outcomes. RESULTS: The mean age of the 27 eligible patients was 31years (range 23-41years), of which 13 and 12 patients were diagnosed in the second and third trimesters...... were reassuring. CONCLUSION: Adherence to standard protocol for the treatment of brain tumours during pregnancy appears to allow a term delivery and a higher probability of a vaginal delivery....

  10. Spinal Intramedullary Metastasis of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Recep Basaran

    2014-01-01

    Full Text Available Objective. Breast cancer accounts for approximately one-third of all cancers in females. Approximately 8.5 % of all central nervous system metastases are located in the spinal cord. These patients have rapidly progressing neurological deficits and require immediate examination. The aim of surgery is decompression of neural tissue and histological evaluation of the tumor. In this paper, we present a case of breast cancer metastasis in thoracic spinal intramedullary area which had been partially excised and then given adjuvant radiotherapy. Case. A 43-year-old female patient with breast cancer for 8 years was admitted to our hospital with complaints of weakness in both legs. Eight years ago, she received chemotherapy and radiotherapy. On her neurological examination, she had paraparesis (left lower extremity: 2/5, right lower extremity: 3/5 and urinary incontinence. Spinal MRI revealed a gadolinium enhancing intramedullary lesion. Pathologic examination of the lesion was consistent with breast carcinoma metastasis. The patient has been taken into radiotherapy. Conclusion. Spinal intramedullary metastasis of breast cancer is an extremely rare situation, but it has a high morbidity and mortality rate. Microsurgical resection is necessary for preservation or amelioration of neurological state and also for increased life expectancy and quality.

  11. Pathobiology of cancer metastasis: a short account

    Directory of Open Access Journals (Sweden)

    Feller Liviu

    2012-06-01

    Full Text Available Abstract Cancer-initiating cells display aberrant functional and phenotypic characteristics of normal stem cells from which they evolved by accumulation of multiple cytogenetic and/or epigenetic alterations. Signal transduction pathways which are essential for normal stem cell function are abnormally expressed by cancer cells, with a cancer cell phenotype playing an essential role in cancerization and metastasis. Local tumour progression, metastasis and metastatic tumour growth are mediated by direct cell-to-cell and paracrine reciprocal interactions between cancer cells and various stromal cells including fibroblasts, macrophages, bone marrow derived stem cells and progenitor cells. These interactions mediate breakdown of basement membrane barriers and angiogenesis both locally at the invasive front of the primary tumour and at the distant metastatic site; attract primary tumour cells to the candidate metastatic site; and promote proliferation, survival and growth of primary tumour cells and of metastatic cells at their distant site. It is the purpose of this article to highlight the analogies between some of the genetic programs of normal stem cells, and of cancer cells participating in the process of metastasis.

  12. Renal medullary carcinoma with an ophthalmic metastasis

    Directory of Open Access Journals (Sweden)

    Christine Ibilibor

    2017-01-01

    Full Text Available Renal medullary carcinoma (RMC is a rare, aggressive primary renal malignancy that classically occurs in adolescent males with sickle cell trait and universally presents with metastatic disease at presentation. We report a case of medullary carcinoma in a young man with likely ophthalmic metastasis. We also review relevant literature available to date. The patient is a 20-year-old African-American male with a past medical history significant to for sickle cell trait who presented to the University Medical Center with cough and the right eye pain for 1 month as well as painless gross hematuria for 1 week. A chest and abdominal computed tomography showed a 7 cm hypodense right renal mass with bilateral hilar adenopathy, and multiple bilateral pulmonary nodules. A renal biopsy was performed and showed RMC. Ophthalmic exam revealed the right retinal hemorrhage concerning for a metastatic lesion. Palliative chemotherapy was offered to the patient, however, he and his family chose to enroll in hospice care considering his poor prognosis. He subsequently passed away 33 days after presentation. To our knowledge, there is only one other case of ophthalmic metastasis in a patient with metastatic RMC. Thus, we present this case to contribute to current literature regarding orbital metastasis in this largely fatal disease.

  13. Gastric Metastasis of Ectopic Breast Cancer Mimicking Axillary Metastasis of Primary Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Selami Ilgaz Kayılıoğlu

    2014-01-01

    Full Text Available Ectopic breast tissue has the ability to undergo all the pathological changes of the normal breast, including breast cancer. Gastrointestinal metastasis of breast cancer is rarely observed and it is very difficult to differentiate gastric metastases from primary gastric cancer. We present a case of 52-year-old female, who suffered from abdominal pain. Physical examination showed a palpable mass in the left anterior axilla and computerized tomography revealed gastric wall thickening with linitis plastica. When gastroscopic biopsy showed no signs of malignancy, excisional biopsy was performed in the left axilla. Histological examination revealed invasive lobular carcinoma of the breast, consistent with ectopic breast cancer. Further gastroscopic submucosal biopsies and immunohistochemical studies revealed gastric metastases of invasive lobular carcinoma. Axillary ectopic breast tissue carcinomas can mimic axillary lymphadenopathies. Additionally, gastric metastasis of breast cancer is an uncommon but possible condition. To the best of our knowledge, this is the first report of ectopic breast cancer with gastric metastasis.

  14. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    Science.gov (United States)

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  15. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron (FeD)

    Science.gov (United States)

    Although the critical role of thyroid hormone (TH) in brain development is well established - severe deficiency producing significant neurological dysfunction - there is a paucity of data on neurological impairments that accompany modest degrees of TH disruption. Quantitative m...

  16. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data

    Science.gov (United States)

    Davis, Faith G.; Dolecek, Therese A.; McCarthy, Bridget J.; Villano, John L.

    2012-01-01

    Few population estimates of brain metastasis in the United States are available, prompting this study. Our objective was to estimate the expected number of metastatic brain tumors that would subsequently develop among incident cancer cases for 1 diagnosis year in the United States. Incidence proportions for primary cancer sites known to develop brain metastasis were applied to United States cancer incidence data for 2007 that were retrieved from accessible data sets through Centers for Disease Control and Prevention (CDC Wonder) and Surveillance, Epidemiology, and End Results (SEER) Program Web sites. Incidence proportions were identified for cancer sites, reflecting 80% of all cancers. It was conservatively estimated that almost 70 000 new brain metastases would occur over the remaining lifetime of individuals who received a diagnosis in 2007 of primary invasive cancer in the United States. That is, 6% of newly diagnosed cases of cancer during 2007 would be expected to develop brain metastasis as a progression of their original cancer diagnosis; the most frequent sites for metastases being lung and bronchus and breast cancers. The estimated numbers of brain metastasis will be expected to be higher among white individuals, female individuals, and older age groups. Changing patterns in the occurrence of primary cancers, trends in populations at risk, effectiveness of treatments on survival, and access to those treatments will influence the extent of brain tumor metastasis at the population level. These findings provide insight on the patterns of brain tumor metastasis and the future burden of this condition in the United States. PMID:22898372

  17. Role of Akt2 in regulation of metastasis suppressor 1 expression and colorectal cancer metastasis.

    Science.gov (United States)

    Agarwal, E; Robb, C M; Smith, L M; Brattain, M G; Wang, J; Black, J D; Chowdhury, S

    2017-06-01

    Survival signaling is critical for the metastatic program of cancer cells. The current study investigated the role of Akt survival proteins in colorectal cancer (CRC) metastasis and explored potential mechanisms of Akt-mediated metastasis regulation. Using an orthotopic implantation model in mice, which uniquely recapitulates the entire multistep process of CRC metastasis, combined with an inducible system of short hairpin RNA-mediated Akt isoform knockdown in human CRC cells, our studies confirm a role of Akt2 in CRC cell dissemination to distant organs in vivo. Akt2 deficiency profoundly inhibited the development of liver lesions in mice, whereas Akt1 had no effect under the experimental conditions used in the study. Array analysis of human metastatic genes identified the scaffolding protein metastasis suppressor 1 (MTSS1) as a novel Akt2-regulated gene. Inducible loss of Akt2 in CRC cells robustly upregulated MTSS1 at the messenger RNA and protein level, and the accumulated protein was functionally active as shown by its ability to engage an MTSS1-Src-cortactin inhibitory axis. MTSS1 expression led to a marked reduction in levels of functional cortacin (pcortactin Y421), an actin nucleation-promoting factor that has a crucial role in cancer cell invasion and metastasis. MTSS1 was also shown to mediate suppressive effects of Akt2 deficiency on CRC cell viability, survival, migration and actin polymerization in vitro. The relevance of these findings to human CRC is supported by analysis of The Cancer Genome Atlas (TCGA) and NCBI GEO data sets, which demonstrated inverse changes in expression of Akt2 and MTSS1 during CRC progression. Taken together, the data identify MTSS1 as a new Akt2-regulated gene, and point to suppression of MTSS1 as a key step in the metastasis-promoting effects of Akt2 in CRC cells.

  18. [Construction and improvement of animal models with different positional osseous metastasis of prostate cancer in vivo].

    Science.gov (United States)

    Bi, Y X; Xiao, M H; Zhang, N N; Li, X Y; Mao, X P; Zhang, K; Zhang, Z R; Zhao, L Y

    2017-08-18

    To provide an important tool for the study of diagnose and treatment of prostate cancer (PCa) osseous metastasis and change of bone stress force on prostate cancer (PCa) osseous metastasis and a platform, which is more congruous to clinical process, for prevention and cure of neoplastic bone metastases, and to carry out the construction and improvement of animal models of PCa with different positional osseous metastasis in vivo. Different gradient concentrations of RM-1 cells were inoculated into the cavity of left femoral bone or lumbar vertebra of mice (C57BL/6) respectively. The change of mouse activity, tumor formation, tumor size and survival time were observed respectively. And the femur tissue and spinal tissue were obtained from the mice after death. The gray value of iconography were measured by imageological examination of femur tissue, and the final histopathological examination were taken to determine the tumor type in both femur and spinal tissue. The tumor growth could be touched at the puncture site in all the mice after inoculated for 7 days. There were no obvious differences in the time of tumorigenesis, the rate of tumor growth and tumor size among the mice in the same group (P>0.05). As the result, the construction femoral bone and lumbar vertebra metastatic models of PCa had been confirmed by iconography and pathology detection. At the same time, the survival time of the mice inoculated with low concentrations of PCa cells was obviously longer than that of high concentrations of PCa cells ( at least 2 weeks longer). The animal models with different positional osseous metastasis (limbs and axial skeleton) of PCa using the same PCa cells (RM-1) had been first constructed successfully in our study. At the same time, a high success rate of construction of PCa animal model with bone metastasis was obtained by femoral bone marrow cavity injection of PCa cells. The rate of tumor growth was rapid, animal survival time was appropriate, and the PCa animal

  19. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1.

    Science.gov (United States)

    Pan, Yongqin; Jiao, Genlong; Wang, Cunchuan; Yang, Jingge; Yang, Wah

    2016-10-01

    Dysregulation of microRNAs is involved in the initiation and progression of several human cancers, including breast cancer, as strong evidence of miRNAs acting as oncogenes or tumour suppressor genes has been found. This study was performed to investigate the biological functions of microRNA-421 (miR-421) in breast cancer and the underlying mechanisms. The expression level of miR-421 was detected in 50 pairs of surgical specimens and human breast cancer cell lines. The results showed that miR-421 is downregulated in breast cancer tissues and metastatic cell lines. In addition, the decrease in miR-421 levels was significantly associated with lymph node metastasis, recurrence/metastasis, or pTNM stage. Functions of miR-421 in cell migration and invasion were assessed through its silencing and overexpression. The results showed that miR-421 knockdown promotes invasion and metastasis in MCF-7 cells and its overexpression suppresses invasion and metastasis in MDA-MB-231 cells. The specific target genes of miR-421 were predicted by TargetScan algorithm and determined by dual luciferase reporter assay, quantitative reverse transcriptase PCR, and western blot analysis. miR-421 could suppress luciferase activity of the reporter containing 3'-untranslated region of metastasis associated 1 (MTA1), a potent oncogene. miR-421 overexpression or knockdown had no effect on the mRNA expression of MTA1, but it could modulate MTA1 protein level. Furthermore, MTA1 knockdown receded the effect of miR-421 inhibitor on invasion and metastasis of MCF-7 cells, and its overexpression receded the effect of miR-421 on invasion and metastasis of MDA-MB-231 cells. Our findings clearly demonstrate that miR-421 suppresses breast cancer metastasis by directly inhibiting MTA1 expression. The present study provides a new insight into the tumour suppressor roles of miR-421 and suggests that miR-421/MTA1 pathway is a putative therapeutic target in breast cancer. Copyright © 2016 Elsevier Masson SAS