WorldWideScience

Sample records for brain mapping

  1. Optogenetic mapping of brain circuitry

    Science.gov (United States)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  2. BrainMap `95 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ``Human Brain Mapping and Modeling.`` The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center`s web site. A book will be published by John Wiley and Sons prior to the end of 1998.

  3. Dynamic brain mapping methodology and application.

    Science.gov (United States)

    Itil, T M; Mucci, A; Eralp, E

    1991-01-01

    Brain mapping has opened important perspectives for the neurophysiological evaluation of patients, for the discrimination of drug effects on the brain and for the study of the relationship between the brain and behavior. Our Dynamic Brain Mapping System is the result of many years of EEG quantification. It was designed as a software-oriented system to favor the largest clinical application and simultaneously stimulate new research objectives. Data collection and analysis procedures are critically important in brain mapping for a good understanding of the results. For clinical use, the maps should answer relevant EEG questions and be interpretable with the consolidated knowledge. Therefore, we have developed a new type of brain mapping technology which is called "Field blending interpolation" mapping offered together with the conventional technology with user-selectable interpolation algorithms. In addition to diagnosis, the use of computer-analyzed EEG and brain mapping can be instrumental in drug monitoring, drug selection and drug discriminations. Prospective studies are, however, required to validate the use of brain mapping in each of these new areas. Spatial analysis is the original goal of brain mapping. The development of a new data collection procedure and analysis will be instrumental in the determination of an adequate time and space resolution.

  4. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function......, or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative...... to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and instead generally prefer...

  5. Eloquent Brain, Ethical Challenges: Functional Brain Mapping in Neurosurgery.

    Science.gov (United States)

    Klein, Eran

    2015-06-01

    Functional brain mapping is an increasingly relied upon tool in presurgical planning and intraoperative decision making. Mapping allows personalization of structure-function relationships when surgical or other treatment of pathology puts eloquent functioning like language or vision at risk. As an innovative technology, functional brain mapping holds great promise but also raises important ethical questions. In this article, recent work in neuroethics on functional imaging and functional neurosurgery is explored and applied to functional brain mapping. Specific topics discussed in this article are incidental findings, responsible innovation, and informed consent.

  6. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  7. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  8. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  9. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  10. Applications of fMRI for Brain Mapping

    Directory of Open Access Journals (Sweden)

    Nivedita Daimiwal

    2012-11-01

    Full Text Available Brain-mapping techniques have proven to be vital in understanding the molecular, cellular, and functional mechanisms of the brain. Normal anatomical imaging can provide structural information on certain abnormalities in the brain. However there are many neurological disorders for which only structure studies are not sufficient. In such cases it is required to investigate the functional organization of the brain. Further it is necessary to study the brain functions under normal as well as diseased conditions. Brain mapping techniques can help in deriving useful and important information on these issues. Brain functions and brain area responsible for the particular activities like motor, sensory speech and memory process could be investigated. The authors provide an overview of various Brain Mapping techniques and fMRI signal processing methods.

  11. Computational Analysis of LDDMM for Brain Mapping

    Directory of Open Access Journals (Sweden)

    Can eCeritoglu

    2013-08-01

    Full Text Available One goal of computational anatomy is to develop tools to accurately segment brain structures in healthy and diseased subjects. In this paper, we examine the performance and complexity of such segmentation in the framework of the large deformation diffeomorphic metric mapping (LDDMM registration method with reference to atlases and parameters. First we report the application of a multi-atlas segmentation approach to define basal ganglia structures in healthy and diseased kids’ brains. The segmentation accuracy of the multi-atlas approach is compared with the single atlas LDDMM implementation and two state-of-the-art segmentation algorithms – Freesurfer and FSL – by computing the overlap errors between automatic and manual segmentations of the six basal ganglia nuclei in healthy subjects as well as subjects with diseases including ADHD and Autism. The high accuracy of multi-atlas segmentation is obtained at the cost of increasing the computational complexity because of the calculations necessary between the atlases and a subject. Second, we examine the effect of parameters on total LDDMM computation time and segmentation accuracy for basal ganglia structures. Single atlas LDDMM method is used to automatically segment the structures in a population of 16 subjects using different sets of parameters. The results show that a cascade approach and using fewer time steps can reduce computational complexity as much as five times while maintaining reliable segmentations.

  12. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the ... in People with Serious Mental Illness Clues for Schizophrenia in Rare Gene Glitch Recognizing Schizophrenia: Seeking Clues to a Difficult ...

  13. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  14. Control-display mapping in brain-computer interfaces

    NARCIS (Netherlands)

    Thurlings, M.E.; Erp, J.B.F. van; Brouwer, A.-M.; Blankertz, B.; Werkhoven, P.J.

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimu

  15. Mapping Human Brain Function with MRI at 7 Tesla

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  16. Human brain mapping: Experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  17. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  18. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  19. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine

    2003-01-01

    , or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative...

  20. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  1. A quantitative transcriptome reference map of the normal human brain.

    Science.gov (United States)

    Caracausi, Maria; Vitale, Lorenza; Pelleri, Maria Chiara; Piovesan, Allison; Bruno, Samantha; Strippoli, Pierluigi

    2014-10-01

    We performed an innovative systematic meta-analysis of 60 gene expression profiles of whole normal human brain, to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 39,250 known, mapped and 26,026 uncharacterized (unmapped) transcripts. To this aim, we used the software named Transcriptome Mapper (TRAM), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the brain transcriptome with those derived from human foetal brain gene expression, from a pool of human tissues (except the brain) and from the two normal human brain regions cerebellum and cerebral cortex, which are two of the main regions severely affected when cognitive impairment occurs, as happens in the case of trisomy 21. Data were downloaded from microarray databases, processed and analyzed using TRAM software and validated in vitro by assaying gene expression through several magnitude orders by 'real-time' reverse transcription polymerase chain reaction (RT-PCR). The excellent agreement between in silico and experimental data suggested that our transcriptome maps may be a useful quantitative reference benchmark for gene expression studies related to the human brain. Furthermore, our analysis yielded biological insights about those genes which have an intrinsic over-/under-expression in the brain, in addition offering a basis for the regional analysis of gene expression. This could be useful for the study of chromosomal alterations associated to cognitive impairment, such as trisomy 21, the most common genetic cause of intellectual disability.

  2. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian;

    2014-01-01

    PURPOSE: The R2* relaxation rate constant has been suggested as a sensitive measure for iron accumulation. The aim of this multi-center study was to assess the inter-scanner and inter-subject variability of R2* mapping and to investigate the relationship between brain volume and R2* in specific...

  3. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...

  4. Whole brain susceptibility mapping using compressed sensing.

    Science.gov (United States)

    Wu, Bing; Li, Wei; Guidon, Arnaud; Liu, Chunlei

    2012-01-01

    The derivation of susceptibility from image phase is hampered by the ill-conditioned filter inversion in certain k-space regions. In this article, compressed sensing is used to compensate for the k-space regions where direct filter inversion is unstable. A significantly lower level of streaking artifacts is produced in the resulting susceptibility maps for both simulated and in vivo data sets compared to outcomes obtained using the direct threshold method. It is also demonstrated that the compressed sensing based method outperforms regularization based methods. The key difference between the regularized inversions and compressed sensing compensated inversions is that, in the former case, the entire k-space spectrum estimation is affected by the ill-conditioned filter inversion in certain k-space regions, whereas in the compressed sensing based method only the ill-conditioned k-space regions are estimated. In the susceptibility map calculated from the phase measurement obtained using a 3T scanner, not only are the iron-rich regions well depicted, but good contrast between white and gray matter interfaces that feature a low level of susceptibility variations are also obtained. The correlation between the iron content and the susceptibility levels in iron-rich deep nucleus regions is studied, and strong linear relationships are observed which agree with previous findings.

  5. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  6. Brain maps of Iowa gambling task

    Directory of Open Access Journals (Sweden)

    Chiu Yao-Chu

    2008-07-01

    Full Text Available Abstract Background Somatic Marker Hypothesis (SMH, based on clinical observations, delineates neuronal networks for interpreting consciousness generation and decision-making. The Iowa gambling task (IGT was designed to verify the SMH. However, more and more behavioral and brain imaging studies had reported incongruent results that pinpointed a need to re-evaluate the central representations of SMH. The current study used event-related fMRI (functional Magnetic Resonance Imaging to examine neural correlates of anticipation vs. outcome, wins vs. losses, and differential decks' contingencies of IGT. Results Behavioral results showed a prominent effect of frequency in driving choices. The insula and basal ganglia were activated during the anticipation phase while the inferior parietal lobule was activated during the outcome phase. The activation of medial prefrontal cortex was especially targeted during the high punishment contingencies. The data suggest that under uncertainty the normal decision makers can become myopic. Conclusion The insula and basal ganglia might play a vital role in long-term guidance of decision-making. Inferior parietal lobule might participate in evaluating the consequence and medial prefrontal cortex may service the function of error monitoring.

  7. BrainMaps.org - Interactive High-Resolution Digital Brain Atlases and Virtual Microscopy.

    Science.gov (United States)

    Mikula, Shawn; Stone, James M; Jones, Edward G

    2008-01-01

    BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses.

  8. Three-dimensional brain mapping using fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio [Meiji Univ. of Oriental Medicine, Hiyoshi, Kyoto (Japan); Higuchi, Toshihiro; Naruse, Shoji

    1997-10-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield`s schema. (author)

  9. Light microscopy mapping of connections in the intact brain.

    Science.gov (United States)

    Kim, Sung-Yon; Chung, Kwanghun; Deisseroth, Karl

    2013-12-01

    Mapping of neural connectivity across the mammalian brain is a daunting and exciting prospect. Current approaches can be divided into three classes: macroscale, focusing on coarse inter-regional connectivity; mesoscale, involving a finer focus on neurons and projections; and microscale, reconstructing full details of all synaptic contacts. It remains to be determined how to bridge the datasets or insights from the different levels of study. Here we review recent light-microscopy-based approaches that may help in integration across scales.

  10. Visualization and modelling of STLmax topographic brain activity maps.

    Science.gov (United States)

    Mammone, Nadia; Principe, José C; Morabito, Francesco C; Shiau, Deng S; Sackellares, J Chris

    2010-06-15

    This paper evaluates the descriptive power of brain topography based on a dynamical parameter, the Short-Term Maximum Lyapunov Exponent (STLmax), estimated from EEG, for finding out a relationship of STLmax spatial distribution with the onset zone and with the mechanisms leading to epileptic seizures. Our preliminary work showed that visual assessment of STLmax topography exhibited a link with the location of seizure onset zone. The objective of the present work is to model the spatial distribution of STLmax in order to automatically extract these features from the maps. One-hour preictal segments from four long-term continuous EEG recordings (two scalp and two intracranial) were processed and the corresponding STLmax profiles were estimated. The spatial STLmax maps were modelled by a combination of two Gaussians functions. The parameters of the fitted model allow automatic extraction of quantitative information about the spatial distribution of STLmax: the EEG signal recorded from the brain region where seizures originate exhibited low-STLmax levels, long before the seizure onset, in 3 out of 4 patients (1 out of 2 of scalp patients and 2 out of 2 in intracranial patients). Topographic maps extracted directly from the EEG power did not provide useful information about the location, therefore we conclude that the analysis so far carried out suggests the possibility of using a model of STLmax topography as a tool for monitoring the evolution of epileptic brain dynamics. In the future, a more elaborate approach will be investigated in order to improve the specificity of the method.

  11. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  12. Mapping Multiplex Hubs in Human Functional Brain Networks

    Science.gov (United States)

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  13. Mapping brain activity with flexible graphene micro-transistors

    CERN Document Server

    Blaschke, Benno M; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V; Garrido, Jose A

    2016-01-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future gene...

  14. Mapping brain development during childhood, adolescence and young adulthood

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  15. Mapping brain activity at scale with cluster computing.

    Science.gov (United States)

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  16. Mapping multiplex hubs in human functional brain networks

    Directory of Open Access Journals (Sweden)

    Alex Arenas

    2016-07-01

    Full Text Available Typical brain networks consist of many peripheral regions and a few highly centralones, i.e. hubs, playing key functional roles in cerebral inter-regional interactions. Studieshave shown that networks, obtained from the analysis of specific frequency components ofbrain activity, present peculiar architectures with unique profiles of region centrality. However,the identification of hubs in networks built from different frequency bands simultaneouslyis still a challenging problem, remaining largely unexplored. Here we identify eachfrequency component with one layer of a multiplex network and face this challenge by exploitingthe recent advances in the analysis of multiplex topologies. First, we show that eachfrequency band carries unique topological information, fundamental to accurately modelbrain functional networks. We then demonstrate that hubs in the multiplex network, in generaldifferent from those ones obtained after discarding or aggregating the measured signalsas usual, provide a more accurate map of brain’s most important functional regions, allowingto distinguish between healthy and schizophrenic populations better than conventionalnetwork approaches.

  17. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Egsgaard, L L; Jensen, R; Buchgreitz, L

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  18. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  19. Brain Mapping Center Opens at Institute of Biophysics

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Agroup of world-class scie, ntists in brain imaging came to China's capital to .witness the inauguration of the Beijing MRI Center for Brain Research, which was officially opened on May 25 at the CAS Institute of Biophysics.

  20. Mapping how local perturbations influence systems-level brain dynamics

    OpenAIRE

    Gollo, Leonardo L.; James A. Roberts; Cocchi, Luca

    2016-01-01

    The human brain exhibits a relatively stable spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how and why local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then system...

  1. Mapping plasticity: sex/gender and the changing brain

    NARCIS (Netherlands)

    Kleinherenbrink, A.

    2014-01-01

    There is a consensus in the neuroscientific literature that brains are either male or female, and that ‘brain sex’ is a fixed, immutable trait. Feminist critics have challenged this idea, raising questions, for example, about brain plasticity (the role of sociocultural factors in the emergence and e

  2. Using data-driven model-brain mappings to constrain formal models of cognition.

    Directory of Open Access Journals (Sweden)

    Jelmer P Borst

    Full Text Available In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings.

  3. [QEEG and brain mapping. Historial develoment, clinical practices and epistemological issues].

    Science.gov (United States)

    Matusevich, Daniel; Ruiz, Martín; Vairo, María Carolina

    2002-01-01

    Although it has been more than two decades since brain mapping was introduced in medicine, its scientific value and clinical practice have not been proved. This paper makes an overview about the historical development of brain mapping, its usefulness in psychiatry and lays epistemological issues concerning the role of technology in medical settings. Both historical and technological development of qEEG gives us the opportunity to think about complexity between ethics, science, technology and medicine.

  4. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed.

  5. Using data-driven model-brain mappings to constrain formal models of cognition

    NARCIS (Netherlands)

    Borst, Jelmer P; Nijboer, Menno; Taatgen, Niels A; van Rijn, Hedderik; Anderson, John R

    2015-01-01

    In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping f

  6. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    Science.gov (United States)

    Popescu, Bogdan F. Gh; George, Martin J.; Bergmann, Uwe; Garachtchenko, Alex V.; Kelly, Michael E.; McCrea, Richard P. E.; Lüning, Katharina; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Harder, Sheri M.; Chapman, L. Dean; Pickering, Ingrid J.; Nichol, Helen

    2009-02-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  7. Differential recruitment of brain networks following route and cartographic map learning of spatial environments.

    Science.gov (United States)

    Zhang, Hui; Copara, Milagros; Ekstrom, Arne D

    2012-01-01

    An extensive neuroimaging literature has helped characterize the brain regions involved in navigating a spatial environment. Far less is known, however, about the brain networks involved when learning a spatial layout from a cartographic map. To compare the two means of acquiring a spatial representation, participants learned spatial environments either by directly navigating them or learning them from an aerial-view map. While undergoing functional magnetic resonance imaging (fMRI), participants then performed two different tasks to assess knowledge of the spatial environment: a scene and orientation dependent perceptual (SOP) pointing task and a judgment of relative direction (JRD) of landmarks pointing task. We found three brain regions showing significant effects of route vs. map learning during the two tasks. Parahippocampal and retrosplenial cortex showed greater activation following route compared to map learning during the JRD but not SOP task while inferior frontal gyrus showed greater activation following map compared to route learning during the SOP but not JRD task. We interpret our results to suggest that parahippocampal and retrosplenial cortex were involved in translating scene and orientation dependent coordinate information acquired during route learning to a landmark-referenced representation while inferior frontal gyrus played a role in converting primarily landmark-referenced coordinates acquired during map learning to a scene and orientation dependent coordinate system. Together, our results provide novel insight into the different brain networks underlying spatial representations formed during navigation vs. cartographic map learning and provide additional constraints on theoretical models of the neural basis of human spatial representation.

  8. Molecular mapping of brain areas involved in parrot vocal communication.

    Science.gov (United States)

    Jarvis, E D; Mello, C V

    2000-03-27

    Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.

  9. Elemental mapping inventory of the fish Liza aurata brain: a biomarker of metal pollution vulnerability.

    Science.gov (United States)

    Godinho, Rita M; Pereira, Patricia; Raimundo, Joana; Pacheco, Mário; Pinheiro, Teresa

    2015-02-01

    The elemental distributions in optic tectum of brains of wild Liza aurata a teleost fish captured in polluted and reference coastal areas were assessed quantitatively by nuclear microscopy providing insights into brain vulnerability to metal pollution. Elemental maps enabled us to visualize optic tectum layers and identify cellular arrangements. Whereas Cl, K and Ca contents identify meninges, the Ca, Fe and Zn concentrations distinguish the underneath grey matter, white matter and inner cellular layers. Exposed animals showed significantly decreased P concentrations and increased contents of Cu, Zn and Ni in all brain structures. These changes highlight homeostasis modification, altered permeability of the blood-brain barrier and suggest risk for neurological toxicity. Our study initiated for the first time an inventory of physiological measures containing images and elemental compositions of brain regions of fish exposed to different environmental conditions. This will help defining total and local brain vulnerability to metals and pollution levels.

  10. Non-invasive optical mapping of the piglet brain in real time

    Science.gov (United States)

    Fantini, Sergio; Franceschini, Maria Angela; Gratton, Enrico; Hueber, Dennis; Rosenfeld, Warren; Maulik, Dev; Stubblefield, Phillip; Stankovic, Mikjan

    1999-04-01

    We have performed non-invasive, real-time optical mapping of the piglet brain during a subcortical injection of autologous blood. The time resolution of the optical maps is 192 ms, thus allowing us to generate a real-time video of the growing subcortical hematoma. The increased absorption at the site of blood injection is accompanied by a decreased absorption at the contralateral brain side. This contralateral decrease in the optical absorption and the corresponding time traces of the cerebral hemoglobin parameters are consistent with a reduced cerebral blood flow caused by the increased intracranial pressure.

  11. Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping.

    Science.gov (United States)

    Lemaire, Jean-Jacques; Coste, Jérôme; Ouchchane, Lemlih; Caire, François; Nuti, Christophe; Derost, Philippe; Cristini, Vittorio; Gabrillargues, Jean; Hemm, Simone; Durif, Franck; Chazal, Jean

    2007-01-01

    In this article, we briefly review the concept of brain mapping in stereotactic surgery taking into account recent advances in stereotactic imaging. The gold standard continues to rely on probabilistic and indirect targeting, relative to a stereotactic reference, i.e., mostly the anterior (AC) and the posterior (PC) commissures. The theoretical position of a target defined on an atlas is transposed into the stereotactic space of a patient's brain; final positioning depends on electrophysiological analysis. The method is also used to analyze final electrode or lesion position for a patient or group of patients, by projection on an atlas. Limitations are precision of definition of the AC-PC line, probabilistic location and reliability of the electrophysiological guidance. Advances in MR imaging, as from 1.5-T machines, make stereotactic references no longer mandatory and allow an anatomic mapping based on an individual patient's brain. Direct targeting is enabled by high-quality images, an advanced anatomic knowledge and dedicated surgical software. Labeling associated with manual segmentation can help for the position analysis along non-conventional, interpolated planes. Analysis of final electrode or lesion position, for a patient or group of patients, could benefit from the concept of membership, the attribution of a weighted membership degree to a contact or a structure according to its level of involvement. In the future, more powerful MRI machines, diffusion tensor imaging, tractography and computational modeling will further the understanding of anatomy and deep brain stimulation effects.

  12. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    commisuralis - commisstri.ob 129 Commisural Nucleus of Stria Terminalis N. septi medialis pars ventralis -medseptal.ob 130 Medial Septal Nucleus N. taenia ...tecta -taentecta.ob 131 Taenia Tecta N. olfactorius anteriorus -olftrigone.ob 132 Olfactory Trigone Cortex insularis -insularcor.ob 135 Insular Cortex...septalvein.ob 143 great emmissary vein gremmisvn.ob 144 124 Brain 118 3 Yakolev Study stria terminals striaterm.ob 145 taenia tecta taentecta.ob 146 131

  13. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P putamen, substantia nigra, red nucleus and dentate nucleus were significantly higher (All P putamen (P putamen (P < 0.05). Our study indicated increased brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  14. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  15. Mapping and Reducing the Brain on the Cloud

    OpenAIRE

    Sahai, Esha; Sahai, Tuhin

    2012-01-01

    The emergence of cloud computing has enabled an incredible growth in available hardware resources at very low costs. These resources are being increasingly utilized by corporations for scalable analysis of "big data" problems. In this work, we explore the possibility of using commodity hardware such as Amazon EC2 for performing large scale scientific computation. In particular, we simulate interconnected cortical neurons using MapReduce. We build and model a network of 1000 spiking cortical n...

  16. R2* mapping for brain iron: associations with cognition in normal aging.

    Science.gov (United States)

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined.

  17. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT).

    Science.gov (United States)

    Weiskopf, Nikolaus; Lutti, Antoine; Helms, Gunther; Novak, Marianne; Ashburner, John; Hutton, Chloe

    2011-02-01

    Quantitative mapping of the longitudinal relaxation rate (R1=1/T1) in the human brain enables the investigation of tissue microstructure and macroscopic morphology which are becoming increasingly important for clinical and neuroimaging applications. R1 maps are now commonly estimated from two fast high-resolution 3D FLASH acquisitions with variable excitation flip angles, because this approach is fast and does not rely on special acquisition techniques. However, these R1 maps need to be corrected for bias due to RF transmit field (B1(+)) inhomogeneities, requiring additional B1(+) mapping which is usually time consuming and difficult to implement. We propose a technique that simultaneously estimates the B1(+) inhomogeneities and R1 values from the uncorrected R1 maps in the human brain without need for B1(+) mapping. It employs a probabilistic framework for unified segmentation based correction of R1 maps for B1(+) inhomogeneities (UNICORT). The framework incorporates a physically informed generative model of smooth B1(+) inhomogeneities and their multiplicative effect on R1 estimates. Extensive cross-validation with the established standard using measured B1(+) maps shows that UNICORT yields accurate B1(+) and R1 maps with a mean deviation from the standard of less than 4.3% and 5%, respectively. The results of different groups of subjects with a wide age range and different levels of atypical brain anatomy further suggest that the method is robust and generalizes well to wider populations. UNICORT is easy to apply, as it is computationally efficient and its basic framework is implemented as part of the tissue segmentation in SPM8.

  18. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    Science.gov (United States)

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  19. Mapping social behavior-induced brain activation at cellular resolution in the mouse.

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J; Rockland, Kathleen S; Seung, H Sebastian; Osten, Pavel

    2015-01-13

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  20. Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    2015-01-01

    Full Text Available Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  1. Spatiotemporal brain mapping during preparation, perception, and action.

    Science.gov (United States)

    Di Russo, Francesco; Lucci, Giuliana; Sulpizio, Valentina; Berchicci, Marika; Spinelli, Donatella; Pitzalis, Sabrina; Galati, Gaspare

    2016-02-01

    Deciding whether to act or not to act is a fundamental cognitive function. To avoid incorrect responses, both reactive and proactive modes of control have been postulated. Little is known, however, regarding the brain implementation of proactive mechanisms, which are deployed prior to an actual need to inhibit a response. Via a combination of electrophysiological and neuroimaging measures (recorded in 21 and 16 participants, respectively), we describe the brain localization and timing of neural activity that underlies the anticipatory proactive mechanism. From these results, we conclude that proactive control originates in the inferior Frontal gyrus, is established well before stimulus perception, and is released concomitantly with stimulus appearance. Stimulus perception triggers early activity in the anterior insula and intraparietal cortex contralateral to the responding hand; these areas likely mediate the transition from perception to action. The neural activities leading to the decision to act or not to act are described in the framework of a three-stage model that includes perception, action, and anticipatory functions taking place well before stimulus onset.

  2. Mapping functional brain development: Building a social brain through interactive specialization.

    Science.gov (United States)

    Johnson, Mark H; Grossmann, Tobias; Cohen Kadosh, Kathrin

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the social brain. They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social cognition and mentalizing computations in the brain. Second, they extend the implications of the IS view from the emergence of specialized functions within a cortical region to a focus on how different cortical regions with complementary functions become orchestrated into networks during human postnatal development.

  3. [Brain potential mapping by a new method of polynomial interpolation].

    Science.gov (United States)

    Pérez-Cobo, J C; Asencor, F J; Sánchez-Suero, S; Pérez-Arroyo, M

    1993-06-01

    The mapping of evoked cerebral activity is largely determined by the choice of the interpolation system used. When the number of electrodes is very large, practically any interpolation system is valid, but the geometrical and anatomical limitations imposed by the animals normally chosen for these experiments impede the use of a large number of electrodes; hence the overriding importance of a workable interpolation system. The polynomic interpolation method on the monomial structure is presented as valid, and compared with the pseudolineal interpolation method, which is more commonly used.

  4. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-01

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  5. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  6. On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus

    Science.gov (United States)

    Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-01-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072

  7. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination.

  8. Volumetric T1 and T2 magnetic resonance brain toolkit for relaxometry mapping simulation

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da Silva Senra Filho

    Full Text Available Abstract Introduction Relaxometry images are an important magnetic resonance imaging (MRI technique in the clinical routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated environment. Methods A pipeline of image processing techniques such as brain extraction, image segmentation, normalization to a common space and signal relaxation decay simulation, were applied to a brain structural ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry phantom. The FMRIB Software Library (FSL toolkits were used here as the base image processing needed to all the relaxometry reconstruction. Results All the image processing procedures are performed using automatic algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-frequency inhomogeneity noises. Conclusion The main goal of this project is to help researchers in their future image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration between researchers who may want to improve the software and its functionality.

  9. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  10. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  11. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Directory of Open Access Journals (Sweden)

    Woo Chul Jeong

    2015-08-01

    Full Text Available Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  12. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Science.gov (United States)

    Jeong, Woo Chul; Wi, Hun; Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-08-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  13. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects

    Science.gov (United States)

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2017-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms

  14. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  15. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  16. Whole brain myelin mapping using T1- and T2-weighted MR imaging data

    Directory of Open Access Journals (Sweden)

    Marco eGanzetti

    2014-09-01

    Full Text Available Despite recent advancements in MR imaging, non-invasive mapping of myelin in the brain still remains an open issue. Here we attempted to provide a potential solution. Specifically, we developed a processing workflow based on T1-w and T2-w MR data to generate an optimized myelin enhanced contrast image. The workflow allows whole brain mapping using the T1-w/T2-w technique, which was originally introduced as a non-invasive method for assessing cortical myelin content. The hallmark of our approach is a retrospective calibration algorithm, applied to bias-corrected T1-w and T2-w images, that relies on image intensities outside the brain. This permits standardizing the intensity histogram of the ratio image, thereby allowing for across-subject statistical analyses. Quantitative comparisons of image histograms within and across different datasets confirmed the effectiveness of our normalization procedure. Not only did the calibrated T1-w/T2-w images exhibit a comparable intensity range, but also the shape of the intensity histograms was largely corresponding. We also assessed the reliability and specificity of the ratio image compared to other MR-based techniques, such as magnetization transfer ratio, fractional anisotropy and fluid-attenuated inversion recovery. With respect to these other techniques, T1-w/T2-w had consistently high values, as well as low inter-subject variability, in brain structures where myelin is most abundant. Overall, our results suggested that the T1-w/T2-w technique may be a valid tool supporting the non-invasive mapping of myelin in the brain. Therefore, it might find important applications in the study of brain development, aging and disease.

  17. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI.

    Directory of Open Access Journals (Sweden)

    Jesus Pujol

    Full Text Available BACKGROUND: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-seven women (mean age: 47.8 years were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm(2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm(2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds consistently exceeded the stimulus application (9 seconds in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia to 4 kg/cm(2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm(2, control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.

  18. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  19. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain......Map database we found errors, e.g., stemming from confusion of centimeters and millimeters during entering and errors in the original article. Conditional probability density modeling also enables generation of probabilistic atlases and automatic probabilistic anatomical labeling of new coordinates...

  20. Local signal time-series during rest used for areal boundary mapping in individual human brains.

    Directory of Open Access Journals (Sweden)

    Satoshi Hirose

    Full Text Available It is widely thought that resting state functional connectivity likely reflects functional interaction among brain areas and that different functional areas interact with different sets of brain areas. A method for mapping areal boundaries has been formulated based on the large-scale spatial characteristics of regional interaction revealed by resting state functional connectivity. In the present study, we present a novel analysis for areal boundary mapping that requires only the signal timecourses within a region of interest, without reference to the information from outside the region. The areal boundaries were generated by the novel analysis and were compared with those generated by the previously-established standard analysis. The boundaries were robust and reproducible across the two analyses, in two regions of interest tested. These results suggest that the information for areal boundaries is readily available inside the region of interest.

  1. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Tokyo Medical and Dental Univ. (Japan). Graduate School

    2001-02-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [{sup 15}O]water and [{sup 18}F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [{sup 11}C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  2. Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall's tau.

    Science.gov (United States)

    Matthäus, L; Trillenberg, P; Fadini, T; Finke, M; Schweikard, A

    2008-11-10

    Transcranial magnetic stimulation provides a mean to stimulate the brain non-invasively and painlessly. The effect of the stimulation hereby depends on the stimulation coil used and on its placement. This paper presents a mapping algorithm based on the assumption of a monotonous functional relationship between the applied electric field strength at the representation point of a muscle and the evoked motor potential. We combine data from coil characteristics, coil placement, and stimulation outcome to calculate a likelihood map for the representation of stimulated muscles in the brain. Hereby, correlation ratio (CR) and Kendall's rank coefficient tau are used to find areas in the brain where there is most likely a functional or monotonous relationship between electric field strength applied to this area and the muscle response. First results show a good accordance of our method with mapping from functional magnetic resonance imaging. In our case, classical evaluation of CR with binning is impossible, because sample data sets are too small and data are continuous. We therefore introduce a refined CR formula based on a Parzen windowing of the X-data to solve the problem. In contrast to usual windowing approaches, which require numeric integration, it can be evaluated directly in O(n2) time. Hence, its advantage lies in fast evaluation while maintaining robust applicability to small sample sets. We suggest that the presented formula can generally be used in CR-related problems where sample size is small and data range is continuous.

  3. Denoising and Frequency Analysis of Noninvasive Magnetoencephalography Sensor Signals for Functional Brain Mapping

    CERN Document Server

    Ukil, A

    2015-01-01

    Magnetoencephalography (MEG) is an important noninvasive, nonhazardous technology for functional brain mapping, measuring the magnetic fields due to the intracellular neuronal current flow in the brain. However, most often, the inherent level of noise in the MEG sensor data collection process is large enough to obscure the signal(s) of interest. In this paper, a denoising technique based on the wavelet transform and the multiresolution signal decomposition technique along with thresholding is presented, substantiated by application results. Thereafter, different frequency analysis are performed on the denoised MEG signals to identify the major frequencies of the brain oscillations present in the denoised signals. Time-frequency plots (spectrograms) of the denoised signals are also provided.

  4. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  5. Neural Imaginaries and Clinical Epistemology: Rhetorically Mapping the Adolescent Brain in the Clinical Encounter

    Science.gov (United States)

    Buchbinder, Mara

    2014-01-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008–2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents’ agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. PMID:24780561

  6. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter.

    Science.gov (United States)

    Buchbinder, Mara

    2015-10-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008-2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents' agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology.

  7. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    Science.gov (United States)

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  8. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  9. Brain mapping in a patient with congenital blindness – a case for multimodal approaches

    Directory of Open Access Journals (Sweden)

    Jarod L Roland

    2013-07-01

    Full Text Available Recent advances in basic neuroscience research across a wide range of methodologies have contributed significantly to our understanding of human cortical electrophysiology and functional brain imaging. Translation of this research into clinical neurosurgery has opened doors for advanced mapping of functionality that previously was prohibitively difficult, if not impossible. Here we present the case of a unique individual with congenital blindness and medically refractory epilepsy who underwent neurosurgical treatment of her seizures. Pre-operative evaluation presented the challenge of accurately and robustly mapping the cerebral cortex for an individual with a high probability of significant cortical re-organization. Additionally, a blind individual has unique priorities in one’s ability to read Braille by touch and sense the environment primarily by sound than the non-vision impaired person. For these reasons we employed additional measures to map sensory, motor, speech, language, and auditory perception by employing a number of cortical electrophysiologic mapping and functional magnetic resonance imaging methods. Our data show promising results in the application of these adjunctive methods in the pre-operative mapping of otherwise difficult to localize, and highly variable, functional cortical areas.

  10. Whole-brain quantitative mapping of metabolites using short echo 3D-proton- MRSI

    Science.gov (United States)

    Lecocq, Angèle; Le Fur, Yann; Maudsley, Andrew A; Le Troter, Arnaud; Sheriff, Sulaiman; Sabati, Mohamad; Donnadieu, Maxime; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Guye, Maxime; Ranjeva, Jean-Philippe

    2014-01-01

    Purpose To improve the extent over which whole brain quantitative 3D-MRSI maps can be obtained and be used to explore brain metabolism in a population of healthy volunteers. Materials and Methods Two short TE (20 ms) acquisitions of 3D Echo Planar Spectroscopic Imaging at two orientations, one in the anterior commissure – posterior commissure (AC-PC) plane and the second tilted in the AC-PC +15° plane were obtained at 3T in a group of ten healthy volunteers. B1+, B1−, and B0 correction procedures and normalization of metabolite signals with quantitative water proton density measurements were performed. A combination of the two spatially normalized 3D-MRSI, using a weighted mean based on the pixel wise standard deviation metabolic maps of each orientation obtained from the whole group, provided metabolite maps for each subject allowing regional metabolic profiles of all parcels of the automated anatomical labeling (AAL) atlas to be obtained. Results The combined metabolite maps derived from the two acquisitions reduced the regional inter-subject variance. The numbers of AAL regions showing NAA SD/Mean ratios lower than 30% increased from 17 in the AC-PC orientation and 41 in the AC-PC+15° orientation, to a value of 76 regions out of 116 for the combined NAA maps. Quantitatively, regional differences in absolute metabolite concentrations (mM) over the whole brain were depicted such as in the GM of frontal lobes (cNAA=10.03+1.71, cCho=1.78±0.55, cCr=7.29±1.69; cmIns=5.30±2.67) and in cerebellum (cNAA=5.28±1.77, cCho=1.60±0.41, cCr=6.95±2.15; cmIns=3.60±0.74). Conclusion A double-angulation acquisition enables improved metabolic characterization over a wide volume of the brain. PMID:25431032

  11. Anisotropy mapping in rat brains using Intermolecular Multiple Quantum Coherence Effects

    CERN Document Server

    Han, Yi

    2014-01-01

    This document reports an unconventional and rapidly developing approach to magnetic resonance imaging (MRI) using intermolecular multiple-quantum coherences (iMQCs). Rat brain images are acquired using iMQCs. We detect iMQCs between spins that are 10 {\\mu}m to 500 {\\mu}m apart. The interaction between spins is dependent on different directions. We can choose the directions on physical Z, Y and X axis by choosing correlation gradients along those directions. As an important application, iMQCs can be used for anisotropy mapping. In the rat brains, we investigate tissue microstructure. We simulated images expected from rat brains without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Because of the underlying low signal to noise ratio (SNR) in iMQCs, this anisotropy mapping method still has comparatively large potentials to grow. The ultimate goal of my project is to develop creative a...

  12. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Kerstin Spielmann

    2016-01-01

    Full Text Available Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

  13. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    Science.gov (United States)

    Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  14. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Stephan E. E-mail: stephan@bwh.harvard.edu; Mamata, Hatsuho; Mulkern, Robert V

    2003-03-01

    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm{sup 2}, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare ({chi}{sup 2}) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The {chi}{sup 2} of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, {chi}{sup 2} was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, {chi}{sup 2} values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, {chi}{sup 2} was not profoundly different from the {chi}{sup 2} value of white matter. Maps of the {chi}{sup 2} values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, {chi}{sup 2} enhancement was present within the

  15. Brain abnormalities in bipolar disorder detected by quantitative T1ρ mapping.

    Science.gov (United States)

    Johnson, C P; Follmer, R L; Oguz, I; Warren, L A; Christensen, G E; Fiedorowicz, J G; Magnotta, V A; Wemmie, J A

    2015-02-01

    Abnormal metabolism has been reported in bipolar disorder, however, these studies have been limited to specific regions of the brain. To investigate whole-brain changes potentially associated with these processes, we applied a magnetic resonance imaging technique novel to psychiatric research, quantitative mapping of T1 relaxation in the rotating frame (T1ρ). This method is sensitive to proton chemical exchange, which is affected by pH, metabolite concentrations and cellular density with high spatial resolution relative to alternative techniques such as magnetic resonance spectroscopy and positron emission tomography. Study participants included 15 patients with bipolar I disorder in the euthymic state and 25 normal controls balanced for age and gender. T1ρ maps were generated and compared between the bipolar and control groups using voxel-wise and regional analyses. T1ρ values were found to be elevated in the cerebral white matter and cerebellum in the bipolar group. However, volumes of these areas were normal as measured by high-resolution T1- and T2-weighted magnetic resonance imaging. Interestingly, the cerebellar T1ρ abnormalities were normalized in participants receiving lithium treatment. These findings are consistent with metabolic or microstructural abnormalities in bipolar disorder and draw attention to roles of the cerebral white matter and cerebellum. This study highlights the potential utility of high-resolution T1ρ mapping in psychiatric research.

  16. Statistical parametric mapping in brain single photon computed emission tomography after carbon monoxide intoxication.

    Science.gov (United States)

    Watanabe, N; Nohara, S; Matsuda, H; Sumiya, H; Noguchi, K; Shimizu, M; Tsuji, S; Kinuya, S; Shuke, N; Yokoyama, K; Seto, H

    2002-04-01

    The purpose of this retrospective study was to assess regional cerebral blood flow in patients after carbon monoxide intoxication by using brain single photon emission computed tomography and statistical parametric mapping. Eight patients with delayed neuropsychiatric sequelae and ten patients with no neuropsychiatric symptoms after carbon monoxide intoxication were studied with brain single photon emission tomography imaging with 99mTc-hexamethyl-propyleneamine oxime. Forty-four control subjects were also studied. We used the adjusted regional cerebral blood flow images in relative flow distribution (normalization of global cerebral blood flow for each subject to 50 ml x 100 g(-1) x min(-1) with proportional scaling) to compare these groups with statistical parametric mapping. Using this technique, significantly decreased regional cerebral blood flow was noted extensively in the bilateral frontal lobes as well as the bilateral insula and a part of the right temporal lobe in the patients with delayed neuropsychiatric sequelae as compared with normal volunteers (Pparametric mapping is a useful technique for highlighting differences in regional cerebral blood flow in patients following carbon monoxide intoxication as compared with normal volunteers. The selectively reduced blood flow noted in this investigation supports the contention that the decrease following carbon monoxide intoxication may be prolonged and further worsen in the frontal lobe. In addition, the present study may help to clarify the characteristics of the pathophysiological alteration underlying delayed neuropsychiatric sequelae.

  17. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.

    Science.gov (United States)

    Poldrack, Russell A; Yarkoni, Tal

    2016-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.

  18. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  19. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    Science.gov (United States)

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  20. INHERITED NEURODEVELOPMENTAL BRAIN DISEASES: APPLICATIONS OF HOMOZYGOSITY MAPPING TO IDENTIFY NEW GENETIC CAUSES OF DISEASE

    Directory of Open Access Journals (Sweden)

    Joseph G. Gleeson

    2008-06-01

    Full Text Available ObjectiveThe last two decades have seen major advancements in our understanding of some of the most common neurodevelopmental disorders in the field of child neurology. However, in the majority of individual patients, it is still not possible to arrive at a molecular diagnosis, due in part to lack of knowledge ofmolecular causes of these tremendously complex conditions. Common genetic disorders of brain development include septo-optic dysplasia, schizencephaly, holoprosencephaly, lissencephaly and hindbrain malformations. For each of these disorders, a critical step in brain development is disrupted. Specific genetic diagnosis is now possible in some patients with most of these conditions. For the remaining patients, it is possible to apply gene-mapping strategies using newly developed high-density genomic arrays to clone novel genes. This is especially important in countries like Iran where large family size and marriage between relatives makes these strategies tremendously powerful.

  1. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  2. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica – A Pilot Study

    Science.gov (United States)

    Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R.; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2*) and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman’s rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region) with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1). Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding. PMID:27171423

  3. Brain dynamics during natural viewing conditions--a new guide for mapping connectivity in vivo.

    Science.gov (United States)

    Bartels, Andreas; Zeki, Semir

    2005-01-15

    We describe here a new way of obtaining maps of connectivity in the human brain based on interregional correlations of blood oxygen level-dependent (BOLD) signal during natural viewing conditions. We propose that anatomical connections are reflected in BOLD signal correlations during natural brain dynamics. This may provide a powerful approach to chart connectivity, more so than that based on the 'resting state' of the human brain, and it may complement diffusion tensor imaging. Our approach relies on natural brain dynamics and is therefore experimentally unbiased and independent of hypothesis-driven, specialized stimuli. It has the advantage that natural viewing leads to considerably stronger cortical activity than rest, thus facilitating detection of weaker connections. To validate our technique, we used functional magnetic resonance imaging (fMRI) to record BOLD signal while volunteers freely viewed a movie that was interrupted by resting periods. We used independent component analysis (ICA) to segregate cortical areas before characterizing the dynamics of their BOLD signal during free viewing and rest. Natural viewing and rest each revealed highly specific correlation maps, which reflected known anatomical connections. Examples are homologous regions in visual and auditory cortices in the two hemispheres and the language network consisting of Wernicke's area, Broca's area, and a premotor region. Correlations between regions known to be directly connected were always substantially higher than between nonconnected regions. Furthermore, compared to rest, natural viewing specifically increased correlations between anatomically connected regions while it decreased correlations between nonconnected regions. Our findings therefore demonstrate that natural viewing conditions lead to particularly specific interregional correlations and thus provide a powerful environment to reveal anatomical connectivity in vivo.

  4. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    Science.gov (United States)

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.

  5. Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: a brain stimulation mapping study.

    Science.gov (United States)

    Fernández Coello, Alejandro; Duvaux, Sophie; De Benedictis, Alessandro; Matsuda, Ryosuke; Duffau, Hugues

    2013-01-01

    Neural foundations underlying visual agnosia are poorly understood. The authors present the case of a patient who underwent awake surgery for a right basal temporooccipital low-grade glioma in which direct electrostimulation was used both at the cortical and subcortical level. Brain mapping over the inferior longitudinal fascicle generated contralateral visual hemiagnosia. These original findings are in agreement with recent tractography data that have confirmed the existence of an occipitotemporal pathway connecting occipital visual input to higher-level processing in temporal lobe structures. This is the first report of a true transient visual hemiagnosia elicited through electrostimulation, supporting the crucial role of inferior longitudinal fascicle in visual recognition.

  6. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameter/s value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  7. Mapping between Language-object and Brain%语言-事物与大脑之间的映射

    Institute of Scientific and Technical Information of China (English)

    闫以聪

    2016-01-01

    Applying the ideas of topology,assuming that language space L set the mapping between ob-ject space A and the brain space B:L:A→B and its inverse mapping L:B→A.Then separately research map-ping L and inverse mapping L to conduce space constructed by brain nerve information unit.%应用拓扑学思想,假设由事物或事件单位构成的空间A与大脑神经信息单位构成的空间B之间,通过语言空间L建立了映射L:A→B和它的逆映射L-1:B→A。将映射空间L和它的逆L-1单独取出进行研究,借以推导大脑神经信息单位构成的空间。

  8. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  9. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    Science.gov (United States)

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness.

  10. eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity.

    Science.gov (United States)

    He, Bin; Dai, Yakang; Astolfi, Laura; Babiloni, Fabio; Yuan, Han; Yang, Lin

    2011-02-15

    We have developed a MATLAB-based toolbox, eConnectome (electrophysiological connectome), for mapping and imaging functional connectivity at both the scalp and cortical levels from the electroencephalogram (EEG), as well as from the electrocorticogram (ECoG). Graphical user interfaces were designed for interactive and intuitive use of the toolbox. Major functions of eConnectome include EEG/ECoG preprocessing, scalp spatial mapping, cortical source estimation, connectivity analysis, and visualization. Granger causality measures such as directed transfer function and adaptive directed transfer function were implemented to estimate the directional interactions of brain functional networks, over the scalp and cortical sensor spaces. Cortical current density inverse imaging was implemented using a generic realistic geometry brain-head model from scalp EEGs. Granger causality could be further estimated over the cortical source domain from the inversely reconstructed cortical source signals as derived from the scalp EEG. Users may implement other connectivity estimators in the framework of eConnectome for various applications. The toolbox package is open-source and freely available at http://econnectome.umn.edu under the GNU general public license for noncommercial and academic uses.

  11. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    Directory of Open Access Journals (Sweden)

    Chiara Cerami

    2015-01-01

    Full Text Available [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI, supporting the presence or the exclusion of Alzheimer's Disease (AD pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1 normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2 the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3 brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD subtypes in 7 and dementia with Lewy bodies (DLB in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up; and 4 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition.

  12. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.

  13. Mapping cocaine binding sites in human and baboon brain in vivo.

    Science.gov (United States)

    Fowler, J S; Volkow, N D; Wolf, A P; Dewey, S L; Schlyer, D J; Macgregor, R R; Hitzemann, R; Logan, J; Bendriem, B; Gatley, S J

    1989-01-01

    The first direct measurements of cocaine binding in the brain of normal human volunteers and baboons have been made by using positron emission tomography (PET) and tracer doses of [N-11C-methyl]-(-)-cocaine ([11C]cocaine). Cocaine's binding and release from brain are rapid with the highest regional uptake of carbon-11 occurring in the corpus striatum at 4-10 minutes after intravenous injection of labeled cocaine. This was followed by a clearance to half the peak value at about 25 minutes with the overall time course paralleling the previously documented time course of the euphoria experienced after intravenous cocaine administration. Blockade of the dopamine reuptake sites with nomifensine reduced the striatal but not the cerebellar uptake of [11C]cocaine in baboons indicating that cocaine binding is associated with the dopamine reuptake site in the corpus striatum. A comparison of labeled metabolites of cocaine in human and baboon plasma showed that while cocaine is rapidly metabolized in both species, the profile of labeled metabolites is different, with baboon plasma containing significant amounts of labeled carbon dioxide, and human plasma containing no significant labeled carbon dioxide. These studies demonstrate the feasibility of using [11C]cocaine and PET to map binding sites for cocaine in human brain, to monitor its kinetics, and to characterize its binding mechanism by using appropriate pharmacological challenges.

  14. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  15. Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries.

    Science.gov (United States)

    Knutson, Kristine M; Monte, Olga Dal; Raymont, Vanessa; Wassermann, Eric M; Krueger, Frank; Grafman, Jordan

    2014-03-01

    Apathy, common in neurological disorders, is defined as disinterest and loss of motivation, with a reduction in self-initiated activity. Research in diseased populations has shown that apathy is associated with variations in the volume of brain regions such as the anterior cingulate and the frontal lobes. The goal of this study was to determine the neural signatures of apathy in people with penetrating traumatic brain injuries (pTBIs), as to our knowledge, these have not been studied in this sample. We studied 176 male Vietnam War veterans with pTBIs using voxel-based lesion-symptom mapping (VLSM) and apathy scores from the UCLA Neuropsychiatric Inventory (NPI), a structured inventory of symptoms completed by a caregiver. Our results revealed that increased apathy symptoms were associated with brain damage in limbic and cortical areas of the left hemisphere including the anterior cingulate, inferior, middle, and superior frontal regions, insula, and supplementary motor area. Our results are consistent with the literature, and extend them to people with focal pTBI. Apathy is a significant symptom since it can reduce participation of the patient in family and other social interactions, and diminish affective decision-making.

  16. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiye [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li, Lin [Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853 (China); Sun, Jie [Department of Endocrinology, PLA General Hospital, Beijing 100853 (China); Ma, Lin, E-mail: cjr.malin@vip.163.com [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2012-08-15

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  17. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  18. Correlation mapping method of OCT for visualization blood vessels in brain

    Science.gov (United States)

    Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

    2013-11-01

    The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.

  19. Metaphoric identity mapping: facilitating goal setting and engagement in rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Ylvisaker, Mark; McPherson, Kathryn; Kayes, Nicola; Pellett, Ellen

    2008-01-01

    Difficulty re-establishing an organised and compelling sense of personal identity has increasingly been identified as a critical theme in outcome studies of individuals with severe traumatic brain injury (TBI) and a serious obstacle to active engagement in rehabilitation. There exists little empirical support for approaches to identity reconstruction that address common impairments associated with TBI. Similarly, there is as yet little empirical support for theoretically sound approaches to promoting engagement in goal setting for this population. This article has two purposes. First, theory and procedures associated with metaphoric identity mapping are discussed in relation to goal setting in TBI rehabilitation. Second, the results of a qualitative pilot study are presented. The study explored metaphoric identity mapping as a facilitator of personally meaningful goal setting with five individuals with significant disability many years after their injury. Drawing on principles of grounded theory, the investigators extracted data from semi-structured interviews with clients and clinicians, from focus groups with the clinicians, and from observation of client-clinician interaction. Analysis of the data yielded five general themes concerning the use of this approach: All clients and clinicians found identity mapping to be an acceptable process and also useful for deriving meaningful rehabilitation goals. Both clients and clinicians saw client-centred goals as important. Cognitive impairments posed obstacles to this goal-setting intervention and mandated creative compensations. And finally, identity-related goal setting appeared to require a "mind shift" for some clinicians and demanded clinical skills not uniformly distributed among rehabilitation professionals.

  20. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  1. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    Science.gov (United States)

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-02-02

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns.

  2. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  3. High-resolution three-dimensional quantitative map of the macromolecular proton fraction distribution in the normal rat brain

    Directory of Open Access Journals (Sweden)

    Anna V. Naumova

    2017-02-01

    Full Text Available The presented dataset provides a normative high-resolution three-dimensional (3D macromolecular proton fraction (MPF map of the healthy rat brain in vivo and source images used for its reconstruction. The images were acquired using the protocol described elsewhere (Naumova, et al. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage (2016 doi: 10.1016/j.neuroimage.2016.09.036. The map was reconstructed from three source images with different contrast weightings (proton density, T1, and magnetization transfer using the single-point algorithm with a synthetic reference image. Source images were acquired from a living animal on an 11.7 T small animal MRI scanner with isotropic spatial resolution of 170 µm3 and total acquisition time about 1.5 h. The 3D dataset can be used for multiple purposes including interactive viewing of rat brain anatomy, measurements of reference MPF values in various brain structures, and development of image processing techniques for the rodent brain segmentation. It also can serve as a gold standard image for implementation and optimization of rodent brain MRI protocols.

  4. Quantitative EEG Brain Mapping In Psychotropic Drug Development, Drug Treatment Selection, and Monitoring.

    Science.gov (United States)

    Itil, Turan M.; Itil, Kurt Z.

    1995-05-01

    Quantification of standard electroencephalogram (EEG) by digital computers [computer-analyzed EEG (CEEG)] has transformed the subjective analog EEG into an objective scientific method. Until a few years ago, CEEG was only used to assist in the development of psychotropic drugs by means of the quantitative pharmaco EEG. Thanks to the computer revolution and the accompanying reductions in cost of quantification, CEEG can now also be applied in psychiatric practice. CEEG can assist the physician in confirming clinical diagnoses, selecting psychotropic drugs for treatment, and drug treatment monitoring. Advancements in communications technology allow physicians and researchers to reduce the costs of acquiring a high-technology CEEG brain mapping system by utilizing the more economical telephonic services.

  5. Mapping small-world properties through development in the human brain: disruption in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Dardo Tomasi

    Full Text Available Evidence from imaging studies suggests that the human brain has a small-world network topology that might be disrupted in certain brain disorders. However, current methodology is based on global graph theory measures, such as clustering, C, characteristic path length, L, and small-worldness, S, that lack spatial specificity and are insufficient to identify regional brain abnormalities. Here we propose novel ultra-fast methodology for mapping local properties of brain network topology such as local C, L and S (lC, lL and lS in the human brain at 3-mm isotropic resolution from 'resting-state' magnetic resonance imaging data. Test-retest datasets from 40 healthy children/adolescents were used to demonstrate the overall good reliability of the measures across sessions and computational parameters (intraclass correlation > 0.5 for lC and lL and their low variability across subjects (< 29%. Whereas regions with high local functional connectivity density (lFCD; local degree in posterior parietal and occipital cortices demonstrated high lC and short lL, subcortical regions (globus pallidus, thalamus, hippocampus and amygdala, cerebellum (lobes and vermis, cingulum and temporal cortex also had high, lS, demonstrating stronger small-world topology than other hubs. Children/adolescents had stronger lFCD, higher lC and longer lL in most cortical regions and thalamus than 74 healthy adults, consistent with pruning of functional connectivity during maturation. In contrast, lFCD, lC and lL were weaker in thalamus and midbrain, and lL was shorter in frontal cortical regions and cerebellum for 69 schizophrenia patients than for 74 healthy controls, suggesting exaggerated pruning of connectivity in schizophrenia. Follow up correlation analyses for seeds in thalamus and midbrain uncovered lower positive connectivity of these regions in thalamus, putamen, cerebellum and frontal cortex (cingulum, orbitofrontal, inferior frontal and lower negative connectivity in

  6. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena [Medical University of Lodz, Department of Radiology, Lodz (Poland); Tybor, Krzysztof [Medical University of Lodz, Department of Neurosurgery, Lodz (Poland)

    2005-06-01

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  7. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  8. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Colantonio Angela

    2011-11-01

    Full Text Available Abstract Background The aim of this study is to show how geographical information systems (GIS can be used to track and compare hospitalization rates for traumatic brain injury (TBI over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation.

  9. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  10. Functional mapping of language networks in the normal brain using a word-association task

    Directory of Open Access Journals (Sweden)

    Ghosh Shantanu

    2010-01-01

    Full Text Available Background: Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. Aim: The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI in normal human subjects. Materials and Methods: Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2FNx01-weighted gradient-echo echo-planar imaging (GE-EPI sequence (TR 4523 ms, TE 64 ms, flip angle 90º with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2 with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Results: Single subject analysis of the functional data (FWE-corrected, P≤0.001 revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG, superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG, anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001 revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Conclusions: Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these

  11. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.;

    2005-01-01

    delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method......The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... subjects' MR-images, where VOI sets have been defined manually. High-resolution structural MR-images and 5-HT(2A) receptor binding PET-images (in terms of (18)F-altanserin binding) from 10 healthy volunteers and 10 patients with mild cognitive impairment were included for the analysis. A template including...

  12. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An

    2013-01-01

    Background Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness.However,there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI.This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI.Methods We consecutively enrolled 17 patients with VS after HIBI,who experienced cardiopulmonary resuscitation.Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from t7 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis.Additionally,we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis.Results Compared with normal controls,the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus,bilateral posterior cingulate gyrus,bilateral middle frontal gyri,bilateral superior parietal gyri,bilateral middle occipital gyri,bilateral precentral gyri (PFEw correctecd <0.0001),and increased brain metabolism in bilateral insula,bilateral cerebella,and the brainstem (PFEw correctecd <0.0001).In covariance analysis,the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected <0.005).Conclusions Our study demonstrated that the precuneus,the posterior cingulate area and the frontoparietal cortex,which is a component of neural correlate for consciousness,may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI.In post-resuscitated HIBI,measurement of brain

  13. Mapping the Stability of Human Brain Asymmetry across Five Sex-Chromosome Aneuploidies

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L.; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N.

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  14. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry.

  15. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  16. Neuropsin Expression Correlates with Dendritic Marker MAP2c Level in Different Brain Regions of Aging Mice.

    Science.gov (United States)

    Konar, Arpita; Thakur, M K

    2015-01-01

    Neuropsin (NP) is a serine protease, implicated in synaptic plasticity and memory acquisition through cleavage of synaptic adhesion molecule, L1CAM. However, NP has not been explored during brain aging that entails drastic deterioration of plasticity and memory with selective regional vulnerability. Therefore, we have analysed the expression of NP and correlated with its function via analysis of endogenous cleavage of L1CAM and level of dendritic marker MAP2c in different regions of the aging mouse brain. While NP expression gradually decreased in the cerebral cortex during aging, it showed a sharp rise in both olfactory bulb and hippocampus in adult and thereafter declined in old age. NP expression was moderate in young medulla, but undetectable in midbrain and cerebellum. It was positively correlated with L1CAM cleavage and MAP2c level in different brain regions during aging. Taken together, our study shows age-dependent regional variation in NP expression and its positive correlation with MAP2c level, suggesting the involvement of NP in MAP2c mediated alterations in dendritic morphology during aging.

  17. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  18. CLINICAL STUDY OF ISCHEMIC PENUMBRA REGION IN BRAIN ELECTRICAL ACTIVITY MAPPING

    Institute of Scientific and Technical Information of China (English)

    Liu Qingrui; Liu Mingshun; Gu Lanjie; Mei Fengjun

    2000-01-01

    Department of Neurology, Fourth Affiliated Hospital. Hebei Medical University, Shijiazhuang ABSTRACT OBJETIVE To study features and clinical usage of ischemic penumbra region(IPR) in brain electrical activity mapping(BEAM).BACKGROUND To explore the functional improvement index of IPR untraumaticly. METH0DS 69 patients with acute cerebral infarction were divided into two groups according to different therapeutic time window--early treatment group( 32 cases, treatment in 12 hours)and contral group (37 cases, treatment in 12-72 hours).They were analysed in BEAM pre-and post-treatment Results: BEAM showed that the power of infarcted core was decreased and IPR became smaller in slow waves significantly after treatment in early treatment group and this change was in good agreement with improvement of clinical functions and SPECT DISCUSSION The key to treat acute cerebral infarction was to improve functions of IPR as 8oos as possible, BEAM could show the location and size of IPR. CONCLUSION BEAM was one of important index in evaluating the function of IPR.

  19. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    Science.gov (United States)

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.

  20. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    Science.gov (United States)

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal.

  1. Preoperative functional MRI localization of language areas in Chinese patients with brain tumors Validation with intraoperative electrocortical mapping

    Institute of Scientific and Technical Information of China (English)

    Hechun Xia; Wei Huang; Liang Wu; Hui Ma; Xiaodong Wang; Xuexin Chen; Shengyu Sun; Xiaoxiong Jia

    2012-01-01

    Ten Chinese patients with brain tumors involving language regions were selected. Preoperative functional MRI was performed to locate Broca's or Wernicke's area, and the cortex that was essential for language function was determined by electrocortical mapping. A site-by-site comparison between functional MRI and electrocortical mapping was performed with the aid of a neuronavigation device. Results showed that the sensitivity and specificity of preoperative functional MRI were 80.0% and 85.0% in Broca's area and 66.6% and 85.2% in Wernicke's area, respectively. These experimental findings indicate that functional MRI is an accurate, reliable technique with which to identify the location of Wernicke's area or Broca's area in patients with brain tumors.

  2. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization

    Directory of Open Access Journals (Sweden)

    Torsten eRohlfing

    2012-12-01

    Full Text Available The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains created from high-resolution T1-weighted magnetic resonance (MR images of 19 rhesus macaque (Macaca mulatta animals. Combined with the comprehensive cortical and subcortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely-available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/.

  3. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.

  4. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain.

    Directory of Open Access Journals (Sweden)

    Hamid R Mohseni

    Full Text Available Deep brain stimulation (DBS has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC. We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON and compared with pain experienced with no stimulation (DBS OFF. We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.

  5. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Science.gov (United States)

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  6. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Directory of Open Access Journals (Sweden)

    Gesa Feenders

    Full Text Available Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor

  7. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain.

    Directory of Open Access Journals (Sweden)

    Binbin Nie

    Full Text Available PURPOSE: PET (positron emission tomography imaging researches of functional metabolism using fluorodeoxyglucose (18F-FDG of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis. MATERIAL AND METHODS: This study establishes a statistical parametric mapping (SPM toolbox (plug-ins named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration. RESULTS: The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA. CONCLUSION: We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG

  8. Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke.

    Science.gov (United States)

    Kalénine, Solène; Buxbaum, Laurel J; Coslett, Harry Branch

    2010-11-01

    A number of conflicting claims have been advanced regarding the role of the left inferior frontal gyrus, inferior parietal lobe and posterior middle temporal gyrus in action recognition, driven in part by an ongoing debate about the capacities of putative mirror systems that match observed and planned actions. We report data from 43 left hemisphere stroke patients in two action recognition tasks in which they heard and saw an action word ('hammering') and selected from two videoclips the one corresponding to the word. In the spatial recognition task, foils contained errors of body posture or movement amplitude/timing. In the semantic recognition task, foils were semantically related (sawing). Participants also performed a comprehension control task requiring matching of the same verbs to objects (hammer). Using regression analyses controlling for both the comprehension control task and lesion volume, we demonstrated that performance in the semantic gesture recognition task was predicted by per cent damage to the posterior temporal lobe, whereas the spatial gesture recognition task was predicted by per cent damage to the inferior parietal lobule. A whole-brain voxel-based lesion symptom-mapping analysis suggested that the semantic and spatial gesture recognition tasks were associated with lesioned voxels in the posterior middle temporal gyrus and inferior parietal lobule, respectively. The posterior middle temporal gyrus appears to serve as a central node in the association of actions and meanings. The inferior parietal lobule, held to be a homologue of the monkey parietal mirror neuron system, is critical for encoding object-related postures and movements, a relatively circumscribed aspect of gesture recognition. The inferior frontal gyrus, on the other hand, was not predictive of performance in any task, suggesting that previous claims regarding its role in action recognition may require refinement.

  9. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liya [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States); Dept. of Radiology, Baoan Hospital, Shenzhen (China); Ali, Shazia; Fa, Tianning; Mao, Hui [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States)], e-mail: hmao@emory.edu; Dandan, Chen [Dept. of Physics, Emory Univ., Atlanta, (United States); School of Radiation Medicine and Protection, Soochow Univ., Suzhou (China); Olson, Jeffrey [Dept. of Neurosurgery, Emory Univ., School of Medicine, Atlanta (United States)

    2012-09-15

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  10. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Ganzetti, Marco; Mantini, Dante [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); University of Oxford, Department of Experimental Psychology, Oxford (United Kingdom); Wenderoth, Nicole [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); KU Leuven, Laboratory of Movement Control and Neuroplasticity, Faculty of Kinesiology and Rehabilitation Sciences, Leuven (Belgium)

    2015-09-15

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  11. The subtle body: an interoceptive map of central nervous system function and meditative mind-brain-body integration.

    Science.gov (United States)

    Loizzo, Joseph J

    2016-06-01

    Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice.

  12. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.

    2008-01-01

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity...... in response to muscle pain in 19 patients with chronic tension-type headache (CTTH) and 19 healthy, age- and sex-matched controls. Intramuscular electrical stimuli (single and train of five pulses delivered at 2 Hz) were applied to the trapezius muscle and somatosensory evoked potentials were recorded...... versus tonic muscle pain: P = 0.001; baseline versus post-tonic muscle pain: P = 0.002) and fifth (baseline versus tonic muscle pain: P = 0.04; baseline versus post-tonic muscle pain: P = 0.04) stimulus in the train. In contrast, there were no differences between the conditions in patients. No consistent...

  13. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E., E-mail: xmida@hanmail.ne [Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Sohn, C.-H.; Chang, K.-H. [Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chang, H.-W. [Departement of Radiology, Keimyung University Dongsan Medical Center, Daegu (Korea, Republic of); Lee, D.H. [Department of Radiology, Seoul Medical Center, Seoul (Korea, Republic of)

    2011-05-15

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  14. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.;

    2014-01-01

    lacking. In this study a comparison between scanner-acquired field maps of the head, and corresponding field probe measurements is presented both during in- and expiration. In addition, the field probe measurements have been used to perform real-time updating of the linear shim- settings. Methods. Setup...... slice of one of the volunteers. Field probe fits, scanner B0 maps, and corrected B0 maps are shown for the case of fitting up to first and second order. The tables show p-values from statistical tests over entire volumes. Discussion: Using a significance level of 0.05, the p-values in table 1 show...

  15. Towards the "baby connectome": mapping the structural connectivity of the newborn brain.

    Directory of Open Access Journals (Sweden)

    Olga Tymofiyeva

    Full Text Available Defining the structural and functional connectivity of the human brain (the human "connectome" is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be derived in a clinical cohort of six-month old infants sustaining perinatal hypoxic ischemic encephalopathy (HIE. Two different anatomically unconstrained parcellation schemes were proposed and the resulting network metrics were correlated with neurological outcome at 6 months. Elimination and correction of unreliable data, automated parcellation of the cortical surface, and assembling the large-scale baby connectome allowed an unbiased study of the network properties of the newborn brain using graph theoretic analysis. In the application to infants with HIE, a trend to declining brain network integration and segregation was observed with increasing neuromotor deficit scores.

  16. Mapping brain response to social stress in rodents with c-fos expression: a review.

    Science.gov (United States)

    Martinez, M; Calvo-Torrent, A; Herbert, J

    2002-02-01

    Social defeat is an important event in the life of many animals, and forms part of the process of social control. Adapting to social defeat is thus an intrinsic part of social "homeostasis", and mal-adaptation may have pathological sequelae. Experimental models of social defeat (e.g. inter-male aggression) have existed for many years. However, very few studies have investigated the changes in brain activity in male animals exposed to the social stress of being defeated by another conspecific male, and in all these studies the expression of the immediate-early gene c-fos has been used as the marker of neuronal activity. In general, the results obtained inform that many areas of the brain, especially those involved in the general stress response, increase their activity when animals are exposed to an acute defeat. However, when animals are defeated repeatedly over many consecutive days, the level of activation of the brain shows different patterns of adaptation depending on the brain areas (varying from complete habituation to persistent activation). Discrepancies between studies may be due to differences in the experimental procedure. On the other hand, further research has to be conducted in order to understand what these changes in the brain activity mean in relation to the other stress responses to social defeat. Furthermore, knowing that the corresponding protein products of many immediate-early genes are transcription factors that can promote or inhibit the expression of target genes, research following this approach is also necessary.

  17. Automated Segmentation of Cerebellum Using Brain Mask and Partial Volume Estimation Map

    Directory of Open Access Journals (Sweden)

    Dong-Kyun Lee

    2015-01-01

    Full Text Available While segmentation of the cerebellum is an indispensable step in many studies, its contrast is not clear because of the adjacent cerebrospinal fluid, meninges, and cerebra peduncle. Thus, various cerebellar segmentation methods, such as a deformable model or a template-based algorithm might exhibit incorrect segmentation of the venous sinuses and the cerebellar peduncle. In this study, we propose a fully automated procedure combining cerebellar tissue classification, a template-based approach, and morphological operations sequentially. The cerebellar region was defined approximately by removing the cerebral region from the brain mask. Then, the noncerebellar region was trimmed using a morphological operator and the brain-stem atlas was aligned to the individual brain to define the brain-stem area. The proposed method was validated with the well-known FreeSurfer and ITK-SNAP packages using the dice similarity index and recall and precision scores. As a result, the proposed method was significantly better than the other methods for the dice similarity index (0.93, FreeSurfer: 0.92, ITK-SNAP: 0.87 and precision (0.95, FreeSurfer: 0.90, ITK-SNAP: 0.93. Therefore, it could be said that the proposed method yielded a robust and accurate segmentation result. Moreover, additional postprocessing with the brain-stem atlas could improve its result.

  18. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior

    Directory of Open Access Journals (Sweden)

    Joris eBressan

    2015-02-01

    Full Text Available A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondyla obscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems.

  19. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review.

    Science.gov (United States)

    Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M; Ferrucci, Luigi; Studenski, Stephanie A

    2017-03-01

    While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed.

  20. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    Science.gov (United States)

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain.

  1. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion.

    Science.gov (United States)

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Baron, Jean-Claude; Urban, Alan

    2017-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.

  2. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  3. The Morphogenic Mapping of the Brain and the Design of the Nervous System

    Directory of Open Access Journals (Sweden)

    Peter Sheesley

    2014-01-01

    Full Text Available This paper reports the discovery of a geometrical algorithm that provides a coherent step by step mechanical account of the structure of the nervous system, including the vertebrate brain, the spinal cord, the vertebral column, and the spinal nerves. The morphology of these organs and the observed steps of neural development are well described, consequent of centuries of study. But morphogenesis, the origin and cause of these forms, has not been studied since the last half of the nineteenth century. Neurology does not teach how the brain gained its shape, nor have any causative theories of brain formation been published in recent times. This paper proposes a hypothetical construction based on the discovery of a simple algorithm which generates topologically the form of the brain, the spinal cord, and the vertebral column by the deformation of a gridded segmented sphere by the inversion of its surface. The hypothetical model is in close analogy with nature: the blastula is a segmented gridded sphere which results from the subdivision of the egg. The first step of embryogenesis is gastrulation, where blastula is pressed to enter its own interior, pulling the surface inside out, forming the embryo.

  4. Mapping of kisspeptin fibres in the brain of the pro-oestrus rat

    DEFF Research Database (Denmark)

    Desroziers, E; Mikkelsen, Jens Damsgaard; Simonneaux, V;

    2010-01-01

    rat brain by comparing precisely the immunoreactive pattern obtained with two antibodies: one specifically directed against kisspeptin-52 (Kp-52), the longest isoform, and the other directed against kisspeptin-10 (Kp-10) whose sequence is common to all putative mature isoforms. With both antibodies......, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular...... throughout the external layer including around the deeper part of the infundibular recess. Most regions of immunoreactive cells and fibres matched perfectly for the two antibodies. However, fibres in the dorso-lateral septum, anterior fornix, accumbens nucleus and the lateral bed nucleus of the stria...

  5. Dynamic brain mapping of behavior change: tracking response initiation and inhibition to changes in reinforcement rate.

    Science.gov (United States)

    Schlund, Michael W; Magee, Sandy; Hudgins, Caleb D

    2012-10-01

    Adaptive behavior change is supported by executive control processes distributed throughout a prefrontal-striatal-parietal network. Yet, the temporal dynamics of regions in the network have not been characterized. Using functional magnetic resonance imaging (fMRI), we tracked changes brain activation while subjects initiated and inhibited responding in accordance with changes in reinforcement rate. During imaging, subjects completed a free-operant task that involved repeated transitions between fixed-ratio reinforcement and extinction (RF:EXT), where reinforcement rate decreased and responding was inhibited, and between extinction and fixed-ratio reinforcement (EXT:RF), where reinforcement rate increased and responding was initiated. Our whole-brain temporal assessment revealed that transitions which required initiating and inhibiting responding prompted positive phasic responses in a prefrontal-parietal network, the insula and thalamus. However, response initiation prompted by an increase in reinforcement rate during the EXT:RF transition elicited positive phasic responses in reward-sensitive striatal regions. Furthermore, response inhibition prompted by a decrease in reinforcement rate during the RF:EXT transition elicited negative phasic responses in ventral frontal regions sensitive to value and contingency. Our findings highlight the temporal dynamics of a brain network that supports behavioral changes (initiation and inhibition) resulting from changes in local reinforcement rates.

  6. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    Science.gov (United States)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  7. Computer-analyzed EEG (CEEG) and dynamic brain mapping in AIDS and HIV related syndrome: a pilot study.

    Science.gov (United States)

    Itil, T M; Ferracuti, S; Freedman, A M; Sherer, C; Mehta, P; Itil, K Z

    1990-07-01

    In a group of HIV positive young male patients without any significant neuropsychiatric signs, computer-analyzed EEG (CEEG) and Dynamic Brain Mapping evaluations were conducted. These patients, who only had micro-neuropsychiatric symptoms, demonstrated CEEG profiles that more closely resemble those of patients diagnosed as suffering from mild dementia than age-related normals from our CEEG data base. The CEEGs of patients diagnosed as having Acquired Immune Deficiency Syndrome (AIDS), compared to patients with HIV positive, showed greater similarity in CEEG patterns to severely demented patients than to normal control groups. The findings of this pilot study suggest that CEEG may be useful for early determination of the Central Nervous System's (CNS) involvement with the AIDS virus and monitoring the progress of the illness.

  8. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.;

    2005-01-01

    delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...... applies well in elderly subjects, even in the presence of pronounced cerebral atrophy...... subjects' MR-images, where VOI sets have been defined manually. High-resolution structural MR-images and 5-HT(2A) receptor binding PET-images (in terms of (18)F-altanserin binding) from 10 healthy volunteers and 10 patients with mild cognitive impairment were included for the analysis. A template including...

  9. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    OpenAIRE

    Woo Chul Jeong; Hun Wi; Saurav Z. K. Sajib; Tong In Oh; Hyung Joong Kim; Oh In Kwon; Eung Je Woo

    2015-01-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understan...

  10. Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available Microtubule-associated protein 2 (MAP2 belongs to the family of heat stable MAPs, which takes part in neuronal morphogenesis, maintenance of cellular architecture and internal organization, cell division and cellular processes. To obtain insight into the possible alteration and the role of MAP2 in transmissible spongiform encephalopathies (TSEs, the MAP2 levels in the brain tissues of agent 263K-infected hamsters and human prion diseases were evaluated. Western blots and IHC revealed that at the terminal stages of the diseases, MAP2 levels in the brain tissues of scrapie infected hamsters, a patient with genetic Creutzfeldt-Jakob disease (G114V gCJD and a patient with fatal familial insomnia (FFI were almost undetectable. The decline of MAP2 was closely related with prolonged incubation time. Exposure of SK-N-SH neuroblastoma cell line to cytotoxic PrP106-126 peptide significantly down-regulated the cellular MAP2 level and remarkably disrupted the microtubule structure, but did not alter the level of tubulin. Moreover, the levels of calpain, which mediated the degradation of a broad of cytoskeletal proteins, were significantly increased in both PrP106-126 treated SK-N-SH cells and brain tissues of 263K prion-infected hamsters. Our data indicate that the decline of MAP2 is a common phenomenon in TSEs, which seems to occur at an early stage of incubation period. Markedly increased calpain level might contribute to the reduction of MAP2.

  11. The characteristic and changes of the event-related potentials (ERP and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Directory of Open Access Journals (Sweden)

    Haidi Yang

    Full Text Available OBJECTIVES: To compare the event-related potentials (ERPs and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS treatment. METHODS AND PARTICIPANTS: The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. RESULTS: Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating soundsin control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN and late discriminative negativity (LDNcomponent at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. CONCLUSIONS: The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  12. The Characteristic and Changes of the Event-Related Potentials (ERP) and Brain Topographic Maps before and after Treatment with rTMS in Subjective Tinnitus Patients

    Science.gov (United States)

    Wang, Changming; Zheng, Yiqing; Zhang, Xueyuan

    2013-01-01

    Objectives To compare the event-related potentials (ERPs) and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment. Methods and Participants The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. Results Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating sounds)in control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN) and late discriminative negativity (LDN)component at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. Conclusions The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect. PMID:23951019

  13. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    Science.gov (United States)

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-06-10

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI.

  14. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland)

    2014-07-29

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA-Salomon in brain TOF-PET/MR imaging.

  15. Acute functional reactivation of the language network during awake intraoperative brain mapping.

    Science.gov (United States)

    Spena, Giannantonio; Costi, Emanuele; Panciani, Pier Paolo; Roca, Elena; Migliorati, Karol; Fontanella, Marco Maria

    2015-01-01

    Acute brain plasticity during resection of central lesions has been recently described. In the cases reported, perilesional latent networks, useful to preserve the neurological functions, were detected in asymptomatic patients. In this paper, we presented a case of acute functional reactivation (AFR) of the language network in a symptomatic patient. Tumor resection allowed to acutely restore the neurological deficit. Intraoperative direct cortical stimulation (DCS) and functional neuroimaging showed new epicentres of activation of the language network after tumor excision. DCS in awake surgery is mandatory to reveal AFR needful to improve the extent of resection preserving the quality of life.

  16. Mapping of kisspeptin fibres in the brain of the pro-oestrus rat

    DEFF Research Database (Denmark)

    Desroziers, E; Mikkelsen, J; Simonneaux, V;

    2010-01-01

    Abstract Kisspeptins are a family of small peptides that play a key role in the neuroendocrine regulation of the reproductive function through neural pathways which have not yet been completely identified. This study aimed to investigate the distribution of kisspeptin neurone fibres in the female......, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular...

  17. Connectivity Concordance Mapping: A New Tool for Model-Free Analysis of fMRI Data of the Human Brain

    Science.gov (United States)

    Lohmann, Gabriele; Ovadia-Caro, Smadar; Jungehülsing, Gerhard Jan; Margulies, Daniel S.; Villringer, Arno; Turner, Robert

    2011-01-01

    Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. Here, we propose a new analysis method called Connectivity Concordance Mapping (CCM). The main idea is to assign a label to each voxel based on the reproducibility of its whole-brain pattern of connectivity. Specifically, we compute the correlations of time courses of each voxel with every other voxel for each measurement. Voxels whose correlation pattern is consistent across measurements receive high values. The result of a CCM analysis is thus a voxel-wise map of concordance values. Regions of high inter-subject concordance can be assumed to be functionally consistent, and may thus be of specific interest for further analysis. Here we present two fMRI studies to demonstrate the possible applications of the algorithm. The first is a eyes-open/eyes-closed paradigm designed to highlight the potential of the method in a relatively simple domain. The second study is a longitudinal repeated measurement of a patient following stroke. Longitudinal clinical studies such as this may represent the most interesting domain of applications for this algorithm. PMID:22470320

  18. Toward noninvasive optical human brain mapping: improvements of the spectral, temporal, and spatial resolution of near-infrared spectroscopy

    Science.gov (United States)

    Heekeren, Hauke R.; Wenzel, Rudiger; Obrig, Hellmuth; Ruben, Jan; Ndayisaba, J.-P.; Luo, Qingming; Dale, A.; Nioka, Shoko; Kohl-Bareis, Matthias; Dirnagl, Ulrich; Villringer, Arno; Chance, Britton

    1997-08-01

    Near-infrared spectroscopy (NIRS) can detect changes in cerebral hemoglobin oxygenation in response to motor, visual or cognitive stimulation. This study explored potential improvements for functional human brain mapping with NIRS: (1) So far, only primary cortical areas, like motor cortex or primary visual areas were studied. We tested the feasibility of identifying an extrastriate visual motion area (MT) with single site NIRS. (2) The temporal resolution of commercial systems is on the order of seconds and their spectral resolution is poor. We tested the feasibility of the detection of cerebral hemoglobin oxygenation changes during visual stimulation at high temporal (100 ms) and spectral resolution (5 nm) using a whole spectrum approach (CCD-NIRS). (3) The spatial resolution of commercial systems is poor. In this study we used a 16 channel functional NIRS-imaging device to test the feasibility of mapping changes in cortical blood volume during visual stimulation (over primary and secondary areas). We show that (1) even conventional single site NIRS allows to identify secondary visual areas, (2) a CCD-NIRS system affords a high temporal (100 ms) and spectral (5 nm) resolution for the detection of changes in cerebral hemoglobin oxygenation during visual stimulation, (3) functional NIRS- imaging can localize focal blood volume changes over both primary and secondary cortical areas.

  19. A brain region-specific predictive gene map for autism derived by profiling a reference gene set.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    Full Text Available Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84, we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO enrichment analysis which encompassed three main areas: 1 neurogenesis/projection, 2 cell adhesion, and 3 ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe, executive function (prefrontal cortex, and hormone secretion (pituitary. Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research.

  20. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A;

    2016-01-01

    ) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). CONCLUSION: A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus...

  1. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jin [Dept. of Radiology, Dongsan Hospital, Keimyung University, Daegu (Korea, Republic of); Lee, Joo Young [GE Healthcare, Seoul (Korea, Republic of); Chang, Hyuk Won [Dept. of Radiology, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  2. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language

  3. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  4. Computational Classification Approach to Profile Neuron Subtypes from Brain Activity Mapping Data.

    Science.gov (United States)

    Li, Meng; Zhao, Fang; Lee, Jason; Wang, Dong; Kuang, Hui; Tsien, Joe Z

    2015-07-27

    The analysis of cell type-specific activity patterns during behaviors is important for better understanding of how neural circuits generate cognition, but has not been well explored from in vivo neurophysiological datasets. Here, we describe a computational approach to uncover distinct cell subpopulations from in vivo neural spike datasets. This method, termed "inter-spike-interval classification-analysis" (ISICA), is comprised of four major steps: spike pattern feature-extraction, pre-clustering analysis, clustering classification, and unbiased classification-dimensionality selection. By using two key features of spike dynamic - namely, gamma distribution shape factors and a coefficient of variation of inter-spike interval - we show that this ISICA method provides invariant classification for dopaminergic neurons or CA1 pyramidal cell subtypes regardless of the brain states from which spike data were collected. Moreover, we show that these ISICA-classified neuron subtypes underlie distinct physiological functions. We demonstrate that the uncovered dopaminergic neuron subtypes encoded distinct aspects of fearful experiences such as valence or value, whereas distinct hippocampal CA1 pyramidal cells responded differentially to ketamine-induced anesthesia. This ISICA method should be useful to better data mining of large-scale in vivo neural datasets, leading to novel insights into circuit dynamics associated with cognitions.

  5. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception.

    Science.gov (United States)

    Lahnakoski, Juha M; Glerean, Enrico; Salmi, Juha; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta; Nummenmaa, Lauri

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  6. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception

    Directory of Open Access Journals (Sweden)

    Juha Marko Lahnakoski

    2012-08-01

    Full Text Available Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-tesla functional magnetic imaging (fMRI, a set of 137 short (~16 s each, total 27 min audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action and non-human sounds lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: 1 a fronto-temporal network responding to multiple social categories, 2 a fronto-parietal network preferentially activated to bodies, motion and pain, 3 a temporo-amygdalar network responding to faces, social interaction and speech, and 4 a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the posterior STS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  7. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barapatre, Nirav, E-mail: barapatre@physik.uni-leipzig.d [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Morawski, Markus [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnalle 59, 04109 Leipzig (Germany); Butz, Tilman; Reinert, Tilo [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  8. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Science.gov (United States)

    Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo

    2010-06-01

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  9. Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons

    Directory of Open Access Journals (Sweden)

    Peter Kochunov

    2010-05-01

    Full Text Available The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17-25 of 26 weeks total gestation. Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of ten primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length axis of cortical sulci was unrelated to the growth along the short (depth axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r=-0.60;p<.10, while the same trend for long axis was positive and not significant (p=0.3;p=0.40. These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.

  10. Quantitative analysis of axonal fiber activation evoked by deep brain stimulation via activation density heat maps

    Directory of Open Access Journals (Sweden)

    Christian J. Hartmann

    2015-02-01

    Full Text Available Background: Cortical modulation is likely to be involved in the various therapeutic effects of deep brain stimulation (DBS. However, it is currently difficult to predict the changes of cortical modulation during clinical adjustment of DBS. Therefore, we present a novel quantitative approach to estimate anatomical regions of DBS-evoked cortical modulation. Methods: Four different models of the subthalamic nucleus (STN DBS were created to represent variable electrode placements (model I: dorsal border of the posterolateral STN; model II: central posterolateral STN; model III: central anteromedial STN; model IV: dorsal border of the anteromedial STN. Axonal fibers of passage near each electrode location were reconstructed using probabilistic tractography and modeled using multi-compartment cable models. Stimulation-evoked activation of local axon fibers and corresponding cortical projections were modeled and quantified. Results: Stimulation at the border of the STN (models I and IV led to a higher degree of fiber activation and associated cortical modulation than stimulation deeply inside the STN (models II and III. A posterolateral target (models I and II was highly connected to cortical areas representing motor function. Additionally, model I was also associated with strong activation of fibers projecting to the cerebellum. Finally, models III and IV showed a dorsoventral difference of preferentially targeted prefrontal areas (models III: middle frontal gyrus; model IV: inferior frontal gyrus.Discussion: The method described herein allows characterization of cortical modulation across different electrode placements and stimulation parameters. Furthermore, knowledge of anatomical distribution of stimulation-evoked activation targeting cortical regions may help predict efficacy and potential side effects, and therefore can be used to improve the therapeutic effectiveness of individual adjustments in DBS patients.

  11. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario [University of Genoa and IRCCS AOU San Martino-IST, Nuclear Medicine Unit, Department of Health Science (DISSAL), Genoa (Italy); Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); Girtler, Nicola [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); University of Genoa and IRCCS AOU San Martino-IST, Clinical Psychology, Department of Neuroscience (DINOGMI), Genoa (Italy); Mandich, Paola [University of Genoa and IRCCS AOU San Martino-IST, Medical Genetics, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2016-07-15

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  12. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    Science.gov (United States)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  13. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Danckaert, Anne; Reese, Torsten; Gozzi, Alessandro; Paxinos, George; Watson, Charles; Merlo-Pich, Emilio V; Bifone, Angelo

    2006-08-15

    We describe a stereotaxic rat brain MRI template set with a co-registered digital anatomical atlas and illustrate its application to the analysis of a pharmacological MRI (phMRI) study of apomorphine. The template set includes anatomical images and tissue class probability maps for brain parenchyma and cerebrospinal fluid (CSF). These facilitate the use of standard fMRI software for spatial normalisation and tissue segmentation of rat brain data. A volumetric reconstruction of the Paxinos and Watson rat brain atlas is also co-localised with the template, enabling the atlas structure and stereotaxic coordinates corresponding to a feature within a statistical map to be interactively reported, facilitating the localisation of functional effects. Moreover, voxels falling within selected brain structures can be combined to define anatomically based 3D volumes of interest (VOIs), free of operator bias. As many atlas structures are small relative to the typical resolution of phMRI studies, a mechanism for defining composite structures as agglomerations of individual atlas structures is also described. This provides a simple and robust means of interrogating structures that are otherwise difficult to delineate and an objective framework for comparing and classifying compounds based on an anatomical profile of their activity. These developments allow a closer alignment of pre-clinical and clinical analysis techniques.

  14. The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment.

    Science.gov (United States)

    Vecchiato, G; De Vico Fallani, F; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F

    2010-08-30

    This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical tests, has gained interest. In the present experiment, we investigated the EEG signals from a mannequin acting as an experimental subject. Data have been collected while performing a neuromarketing experiment and analyzed with state of the art computational tools adopted in specialized literature. Results showed that electric data from the mannequin's head presents statistical significant differences in power spectra during the visualization of a commercial advertising when compared to the power spectra gathered during a documentary, when no adjustments were made on the alpha level of the multiple univariate tests performed. The use of the Bonferroni or Bonferroni-Holm adjustments returned correctly no differences between the signals gathered from the mannequin in the two experimental conditions. An partial sample of recently published literature on different neuroscience journals suggested that at least the 30% of the papers do not use statistical protection for the type I errors. While the occurrence of type I errors could be easily managed with appropriate statistical techniques, the use of such techniques is still not so largely adopted in the literature.

  15. Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging.

    Science.gov (United States)

    Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H

    2009-09-15

    We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.

  16. Evaluation of Different N-Glycopeptide Enrichment Methods for N-Glycosylation Sites Mapping in Mouse Brain.

    Science.gov (United States)

    Zhang, Chengqian; Ye, Zilu; Xue, Peng; Shu, Qingbo; Zhou, Yue; Ji, Yanlong; Fu, Ying; Wang, Jifeng; Yang, Fuquan

    2016-09-01

    N-Glycosylation of proteins plays a critical role in many biological pathways. Because highly heterogeneous N-glycopeptides are present in biological sources, the enrichment procedure is a crucial step for mass spectrometry analysis. Five enrichment methods, including IP-ZIC-HILIC, hydrazide chemistry, lectin affinity, ZIC-HILIC-FA, and TiO2 affinity were evaluated and compared in the study of mapping N-glycosylation sites in mouse brain. On the basis of our results, the identified N-glycosylation sites were 1891, 1241, 891, 869, and 710 and the FDR values were 3.29, 5.62, 9.54, 9.54, and 20.02%, respectively. Therefore, IP-ZIC-HILIC enrichment method displayed the highest sensitivity and specificity. In this work, we identified a total of 3446 unique glycosylation sites conforming to the N-glycosylation consensus motif (N-X-T/S/C; X ≠ P) with (18)O labeling in 1597 N-glycoproteins. N-glycosylation site information was used to confirm or correct the transmembrane topology of the 57 novel transmembrane N-glycoproteins.

  17. Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors

    Directory of Open Access Journals (Sweden)

    Christoph Palm

    2010-04-01

    Full Text Available Polarised Light Imaging (PLI utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-micrometer thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.

  18. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Matrov, Denis; Panksepp, Jaak

    2011-10-01

    The search for novel antidepressants may be facilitated by pre-clinical animal models that relay on specific neural circuit and related neurochemical endpoint measures, which are anchored in concrete neuro-anatomical and functional neural-network analyzes. One of the most important initial considerations must be which regions of the brain are candidates for the maladaptive response to depressogenic challenges. Consideration of persistent differences or changes in the activity of cerebral networks can be achieved by mapping oxidative metabolism in ethologically or pathogenetically relevant animal models. Cytochrome oxidase histochemistry is a technique suitable to detect regional long-term brain activity changes relative to control conditions and has been used in a variety of animal models. This work is summarized and indicates that major changes occur mainly in subcortical areas, highlighting specific brain regions where some alterations in regional oxidative metabolism may represent adaptive changes to depressogenic adverse life events, while others may reflect failures of adaptation. Many of these changes in oxidative metabolism may depend upon the integrity of serotonergic neurotransmission, and occur in several brain regions shown by other techniques to be involved in endogenous affective circuits that control emotional behaviors as well as related higher brain regions that integrate learning and cognitive information processing. These brain regions appear as primary targets for further identification of endophenotypes specific to affective disorders.

  19. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields.

    Science.gov (United States)

    Naumova, Anna V; Akulov, Andrey E; Khodanovich, Marina Yu; Yarnykh, Vasily L

    2017-02-15

    A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue

  20. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    Science.gov (United States)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  1. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients.

    Directory of Open Access Journals (Sweden)

    Cosimo eUrgesi

    2014-05-01

    Full Text Available Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding.

  2. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  3. Balanced Steady State Free Precession for Arterial Spin Labeling MRI: Initial Experience for Blood Flow Mapping in Human Brain, Retina, and Kidney

    Science.gov (United States)

    Park, Sung-Hong; Wang, Danny J.J.; Duong, Timothy Q.

    2013-01-01

    We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. PMID:23664680

  4. Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping.

    Science.gov (United States)

    Chen, Lin; Cai, Congbo; Yang, Tianhe; Lin, Jianzhong; Cai, Shuhui; Zhang, Jiaxing; Chen, Zhong

    2017-02-15

    Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. Iron concentration was quantified with quantitative susceptibility mapping (QSM), and the results were compared with transverse relaxation rate (R(*)2) measurements. The variations of magnetic susceptibility indicate that the iron concentration in gray matter regions, especially in basal ganglia, including caudate nucleus, putamen, globus pallidus and substantia nigra, increases significantly after HA exposure. This increase appears consistent with the conclusion from R(*)2 value variations. However, unlike QSM, the R(*)2 value fails to demonstrate the statistical difference of iron content in red nucleus. The re-investigation results show that most variations are recovered after sea-level re-adaptation for one year. Additionally, hemisphere- and gender-related differences in iron concentration changes were analyzed among cerebral regions. The results show greater possibilities in the right hemisphere and females. Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.

  5. Baby Brain Map

    Science.gov (United States)

    ... Out More! New! Critical Competencies for Educators - Buy eBook Magic of Everyday Moments - Now with STEM View ... Out More! New! Critical Competencies for Educators - Buy eBook Magic of Everyday Moments - Now with STEM Support ...

  6. Brodmann's Area Template Based Region of Interest Setting and Probabilistic Pathway Map Generation in Diffusion Tensor Tractography: Application to Arcuate Fasciculus Fiber Tract in the Human Brain

    Directory of Open Access Journals (Sweden)

    Dong-Hoon eLee

    2016-01-01

    Full Text Available The purpose of this study is to acquire accurate diffusion tensor tractography (DTT results for arcuate fasciculus (AF fiber tract using Brodmann's area (BA template for region of interest (ROI setting. Thirteen healthy subjects were participated in this study. Fractional anisotropy (FA map of each subject was calculated using diffusion tensor data, and T1w template was co-registered to FA map. The BA template was also co-registered using the transformation matrix. The ROIs were drawn in the co-registered BA template, and AF fiber tract was extracted. To generate the probabilistic pathway map, a binary mask image was generated based on the fiber tract image and co-registered to T1w template image. We also measured relative location of the AF fiber tract. The location of the probability pathway map of each subject’s AF fiber tract was well defined in the brain. By using this probabilistic map, the mediolateral position ratio of AF was measured 18%, and the anteroposterior position ratio of AF was measured 35%, respectively. This study demonstrated that the AF fiber tract can be extracted using BA template for ROI setting and probabilistic pathway of fiber tract. Our results and analytical approaches can helpful for accurate fiber tracking and application of perspective clinical researches.

  7. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    Science.gov (United States)

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

  8. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning

    DEFF Research Database (Denmark)

    Andersen, F; Watanabe, Hideaki; Bjarkam, Carsten;

    2005-01-01

    developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland...

  9. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping.

    Science.gov (United States)

    Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.

  10. Different uptake of 99mTc-ECD adn 99mTc-HMPAO in the same brains: analysis by statistical parametric mapping.

    Science.gov (United States)

    Hyun, Y; Lee, J S; Rha, J H; Lee, I K; Ha, C K; Lee, D S

    2001-02-01

    The purpose of this study was to investigate the differences between technetium-99m ethyl cysteinate dimer (99mTc-ECD) and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) uptake in the same brains by means of statistical parametric mapping (SPM) analysis. We examined 20 patients (9 male, 11 female, mean age 62+/-12 years) using 99mTc-ECD and 99mTc-HMPAO single-photon emission tomography (SPET) and magnetic resonance imaging (MRI) of the brain less than 7 days after onset of stroke. MRI showed no cortical infarctions. Infarctions in the pons (6 patients) and medulla (1), ischaemic periventricular white matter lesions (13) and lacunar infarction (7) were found on MRI. Split-dose and sequential SPET techniques were used for 99mTc-ECD and 99mTc-HMPAO brain SPET, without repositioning of the patient. All of the SPET images were spatially transformed to standard space, smoothed and globally normalized. The differences between the 99mTc-ECD and 99mTc-HMPAO SPET images were statistically analysed using statistical parametric mapping (SPM) 96 software. The difference between two groups was considered significant at a threshold of uncorrected P values less than 0.01. Visual analysis showed no hypoperfused areas on either 99mTc-ECD or 99mTc-HMPAO SPET images. SPM analysis revealed significantly different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains. On the 99mTc-ECD SPET images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the left superior temporal lobe and in the superior region of the cerebellum. On the 99mTc-HMPAO SPET images, relatively higher uptake was observed in the medial temporal lobes, thalami, periventricular white matter and brain stem. These differences in uptake of the two tracers in the same brains on SPM analysis suggest that interpretation of cerebral perfusion is possible using SPET with 99mTc-ECD and 99mTc-HMPAO.

  11. Different uptake of {sup 99m}Tc-ECD and {sup 99m}Tc-HMPAO in the same brains: analysis by statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, I.Y. [Dept. of Nuclear Medicine, Inha University College of Medicine, Incheon (Korea); Lee, J.S.; Lee, D.S. [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea); Rha, J.H.; Lee, I.K.; Ha, C.K. [Dept. of Neurology, Inha University College of Medicine, Incheon (Korea)

    2001-02-01

    The purpose of this study was to investigate the differences between technetium-99m ethyl cysteinate dimer ({sup 99m}Tc-ECD) and technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) uptake in the same brains by means of statistical parametric mapping (SPM) analysis. We examined 20 patients (9 male, 11 female, mean age 62{+-}12 years) using {sup 99m}Tc-ECD and {sup 99m}Tc-HMPAO single-photon emission tomography (SPET) and magnetic resonance imaging (MRI) of the brain less than 7 days after onset of stroke. MRI showed no cortical infarctions. Infarctions in the pons (6 patients) and medulla (1), ischaemic periventricular white matter lesions (13) and lacunar infarction (7) were found on MRI. Split-dose and sequential SPET techniques were used for {sup 99m}Tc-ECD and {sup 99m}Tc-HMPAO brain SPET, without repositioning of the patient. All of the SPET images were spatially transformed to standard space, smoothed and globally normalized. The differences between the {sup 99m}Tc-ECD and {sup 99m}Tc-HMPAO SPET images were statistically analysed using statistical parametric mapping (SPM) 96 software. The difference between two groups was considered significant at a threshold of uncorrected P values less than 0.01. Visual analysis showed no hypoperfused areas on either {sup 99m}Tc-ECD or {sup 99m}Tc-HMPAO SPET images. SPM analysis revealed significantly different uptake of {sup 99m}Tc-ECD and {sup 99m}Tc-HMPAO in the same brains. On the {sup 99m}Tc-ECD SPET images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the left superior temporal lobe and in the superior region of the cerebellum. On the {sup 99m}Tc-HMPAO SPET images, relatively higher uptake was observed in the medial temporal lobes, thalami, periventricular white matter and brain stem. These differences in uptake of the two tracers in the same brains on SPM analysis suggest that interpretation of cerebral perfusion is possible using SPET with {sup 99m}Tc-ECD and

  12. Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of 'ghost potential fields' when using an average reference in brain mapping.

    Science.gov (United States)

    Desmedt, J E; Chalklin, V; Tomberg, C

    1990-01-01

    In brain topographic mapping, the putative location and orientation in the head space of neural generators are currently inferred from the features of negative and positive scalp potential fields. This procedure requires the use of a fairly neutral reference. The frequently advocated average reference creates problems because its effect is not merely to change a (steady) zero reference level, but to dynamically zero-center all scalp potentials at each latency. Ghost potential fields are thus created at the latencies for which the integral of scalp recorded potentials differs from zero. These distortions of brain mapping have been analyzed with a true 3-shell head model in conjunction with the emulation of SEP components. In the head model, surface potential fields generated by dipoles or dipole sheets of various depths and orientations were computed either over the north hemisphere, so as to emulate scalp recorded SEP components, or over the entire equivalent head sphere. The spurious effects of the average reference are shown to occur because it is computed from a limited number of (scalp) electrodes which fail to survey the bottom half of the head.

  13. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  14. Behavioral evidence of heterospecific bonding between the lamb and the human caregiver and mapping of associated brain network.

    Science.gov (United States)

    Guesdon, Vanessa; Nowak, Raymond; Meurisse, Maryse; Boivin, Xavier; Cornilleau, Fabien; Chaillou, Elodie; Lévy, Frédéric

    2016-09-01

    While behavioral mechanisms of bonding between young mammals and humans have been explored, brain structures involved in the establishment of such processes are still unknown. The aim of the study was to identify brain regions activated by the presence of the caregiver. Since human positive interaction plays an important role in the bonding process, activation of specific brain structures by stroking was also examined. Twenty-four female lambs reared in groups of three were fed and stroked daily by a female caregiver between birth and 5-7 weeks of age. At 4 weeks, an isolation-reunion-separation test and a choice test revealed that lambs developed a strong bond with their caregiver. At 5-7 weeks of age, lambs were socially isolated for 90min. They either remained isolated or met their caregiver who stroked them, or not, at regular intervals over a 90-min period. Neuronal activation was investigated at the end of the period for maximum c-Fos expression. Reunion with the caregiver appeased similarly the lambs whether stroking was provided or not. Stroking did not activate a specific brain network compared to no stroking. In both cases, brain regions associated with olfactory, visual and tactile cue processing were activated in the presence of the caregiver, suggesting a multisensory process involved. In addition, activation of the oxytocinergic system in the hypothalamic paraventricular nucleus induced by the presence of the caregiver suggests similar neuroendocrine mechanisms involved in inter-conspecific and animal-human bonding.

  15. 海洛因依赖者的脑电地形图%MAPS OF BRAIN ELECTRICAL ACTIVITY OF HEROIN ADDICTS

    Institute of Scientific and Technical Information of China (English)

    杨宝元; 张国印; 徐本树; 铁恩贵

    2001-01-01

    目的:了解海洛因依赖者存在戒断症状时的脑电地形图的特征。方法:用脑电图机记录32例有戒断症状的海洛因依赖者及34例正常人的脑电地形图并用计算机进行定量分析。结果:与对照组比较,海洛因依赖者(1)慢波频段(δ、θ)功率值增高;(2)α1、α2功率值减低;(3)快波频段(β1、β2)的枕区(O1、O2)功率值增高。结论:从脑电生理角度观察海洛因对大脑功能的损害是有意义的。%Objective: To study the character of the brain electricalactivity maps(BEAM) of heroin addicts with withdrawal syndromes. Method: The brain electrical activity maps ( BEAM ) of 32 heroin addicts with withdrawal syndromes and 34 normal controls were recorded with electroencephalograph and quantitatively analysed with computer. Result: In the BEAM of heroin addicts with withdrawal syndromes, the power values of slow wave(δ,θ) increased; α1 , α2 decreased; rapid wave frequency sect (β1, β2) in occipital area (O1,O2)increased. Conclusion: Observation of brain electrical physiology has some value in the assessment of the damage of cerebral function caused by heroin.

  16. Tamoxifen in the mouse brain: Implications for fate-mapping studies using the tamoxifen-inducible Cre-loxP system

    Directory of Open Access Journals (Sweden)

    Martin Valny

    2016-10-01

    Full Text Available The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, dosage, and disruption of the blood-brain barrier. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age

  17. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  18. The Study of Fast T1 Mapping of Human Brain%大脑快速T1图谱成像研究

    Institute of Scientific and Technical Information of China (English)

    江克; 钟耀祖; 吴垠; 朱燕杰

    2016-01-01

    大脑快速 T1图谱成像是一种量化磁共振成像技术,可以为帕金森、癫痫、肝脑病等脑部疾病的诊断提供重要参考依据。现有的大脑快速 T1图谱成像技术可以将成像速度提高到几秒/层,然而主磁场、发射场的不均性(尤其在高场下)以及大脑内部结构的磁化率差异,降低了成像精确性,限制了其在临床上的推广应用。针对上述缺点,文章提出一种基于 TurboFLASH技术的大脑快速 T1图谱成像方法,并先后在计算机仿真实验、仿体以及人体试验中进行验证。实验结果表明,文章提出的方法测得的大脑组织 T1值与金标准及文献中报导的值非常接近(误差<3%),同时扫描速度提高到3秒/层,空间分辨率为1.1 mm×1.1 mm×4 mm,2分钟内即可完成全脑采集。%Fast brain T1 mapping is a quantitative technique of magnetic resonance imaging, and can provide important reference for the diagnosis of several brain diseases, such as Parkinson, epilepsy and hepatic encephalopathy. Fast T1 mapping techniques proposed previously had sped up acquisition to several seconds per slice. However, most of these techniques suffered seriously from the ifeld inhomogeneity of main ifeld, transmit ifeld and susceptibility artifacts, which decreased the imaging accuracy and limited the clinic applications. To overcome the above mentioned shortcomings, we proposed a fast brain T1 mapping technique based on TurboFLASH and evaluated it on computer simulation, phantom experiment, and human brain T1 mapping. Results showed that T1 values from the proposed method were very close to the gold standard and literature (differences being less than 3%). Besides, the proposed technique can increase the acquisition speed to 3s per slice (with a slice resolution of 1.1 mm×1.1 mm) and 2 min for the whole brain (with a 4 mm slice distance).

  19. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes

    DEFF Research Database (Denmark)

    Lassen, N A; Ingvar, D H

    1990-01-01

    Mapping of cortical and subcortical grey matter active during voluntary movements by means of measurements of local increases of CBF or CMR-Glucose is reviewed. Most of the studies concern observations in man during hand movements using the intracarotid Xenon-133 injection technique, an approach...

  20. Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex.

    Science.gov (United States)

    Prakash, Neal; Uhlemann, Falk; Sheth, Sameer A; Bookheimer, Susan; Martin, Neil; Toga, Arthur W

    2009-08-01

    Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques.

  1. Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System.

    Science.gov (United States)

    Valny, Martin; Honsa, Pavel; Kirdajova, Denisa; Kamenik, Zdenek; Anderova, Miroslava

    2016-01-01

    The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, and dosage. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age-matched FVB/NJ male mice displayed more effective degradation

  2. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping.

    Science.gov (United States)

    Qin, Yuanyuan; Zhu, Wenzhen; Zhan, Chuanjia; Zhao, Lingyun; Wang, Jianzhi; Tian, Qing; Wang, Wei

    2011-08-01

    Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease (AD). The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements. Fifteen patients with AD, 15 age- and sex-matched healthy controls, and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2' (R2'=R2*-R2). We statistically analyzed the R2' and iron concentrations of bilateral hippocampus (HP), parietal cortex (PC), frontal white matter (FWM), putamen (PU), caudate nucleus (CN), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) of the cerebellum for the correlation with the severity of dementia. Two-tailed t-test, Student-Newman-Keuls test (ANOVA) and linear correlation test were used for statistical analysis. In 30 healthy volunteers, the R2' values of bilateral SN, RN, PU, CN, globus pallidus (GP), TH, and FWM were measured. The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration. The iron concentration of regions of interest (ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed. Regional R2' was positively correlated with regional brain iron concentration in normal adults (r=0.977, PIron concentrations in bilateral HP, PC, PU, CN, and DN of patients with AD were significantly higher than those of the controls (Piron concentrations, especially in parietal cortex and hippocampus at the early stage of AD, were positively correlated with the severity of patients' cognitive impairment (Piron concentrations were, the more severe the cognitive impairment was. Regional R2' and iron concentration in parietal cortex and

  3. Brain dysfunction in psychiatric patients during music perception measured by EEG mapping: relation to motor dysfunction and influence of neuroleptic drugs.

    Science.gov (United States)

    Günther, W; Steinberg, R; Streck, P; Banquet, J P; Bscheid, I; Raith, L; Riedel, R; Klages, U; Stiltz, I

    1991-05-01

    We report here our findings on music perception obtained as a companion study to the investigation with 16-channel EEG mapping in psychiatric patients during motor activation, published recently elsewhere. We decided to add on a study of this functional circuit, since there is evidence that it is disturbed in various psychiatric patient groups (another "functio laesa"). Involved in the study were 23 male and 25 female schizophrenics, 11 male and 18 female non-endogenously depressed patients (not presently under medication, i.e. drug-naive or wash-out period from 1 week to 17 years), 26 male and 37 female endogenously depressed patients (medicated with tri- or tetracyclic antidepressants and/or benzodiazepines; no lithium), and 22 male and 17 female control subjects (i.e. n = 179). We compared resting conditions after a special relaxation procedure with three music perception tasks: (1) a standardised rumba rhythm generated by a keyboard and delivered binaurally by earphones, (2) the same as an arpeggio in D major, and (3) the same as an arpeggio with a tonic-subdominant-dominant cadence. Major results were obtained in the delta and alpha frequency bands, yielding signs of "diffuse hyperactivation", most prominent in schizophrenic males, and not observed to a similar extent in any other patient group or in normal controls. Interestingly, there were major sex differences, yielding a more diffuse EEG activation pattern in normal females than in males and thus possibly obscuring signs of brain function diffusion in female patients. Viewing our broader evidence of similar brain dysfunction when examining motor functional circuits, especially in schizophrenics, these findings provide further evidence of a brain disorganization with lack of laterality/diffusion which may be found in subgroups of these patients and not in other psychiatric disorders. In schizophrenic patients, these EEG signs of "diffuse hyperactivation" on simple motor and/or music stimulation were

  4. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    OpenAIRE

    Hiroaki Tsukano; Masao Horie; Ryuichi Hishida; Kuniyuki Takahashi; Hirohide Takebayashi; Katsuei Shibuki

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory ...

  5. Mapping the brain's orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks

    Directory of Open Access Journals (Sweden)

    Keil Andreas

    2004-10-01

    Full Text Available Abstract Background How does the brain convert sounds and phonemes into comprehensible speech? In the present magnetoencephalographic study we examined the hypothesis that the coherence of electromagnetic oscillatory activity within and across brain areas indicates neurophysiological processes linked to speech comprehension. Results Amplitude-modulated (sinusoidal 41.5 Hz auditory verbal and nonverbal stimuli served to drive steady-state oscillations in neural networks involved in speech comprehension. Stimuli were presented to 12 subjects in the following conditions (a an incomprehensible string of words, (b the same string of words after being introduced as a comprehensible sentence by proper articulation, and (c nonverbal stimulations that included a 600-Hz tone, a scale, and a melody. Coherence, defined as correlated activation of magnetic steady state fields across brain areas and measured as simultaneous activation of current dipoles in source space (Minimum-Norm-Estimates, increased within left- temporal-posterior areas when the sound string was perceived as a comprehensible sentence. Intra-hemispheric coherence was larger within the left than the right hemisphere for the sentence (condition (b relative to all other conditions, and tended to be larger within the right than the left hemisphere for nonverbal stimuli (condition (c, tone and melody relative to the other conditions, leading to a more pronounced hemispheric asymmetry for nonverbal than verbal material. Conclusions We conclude that coherent neuronal network activity may index encoding of verbal information on the sentence level and can be used as a tool to investigate auditory speech comprehension.

  6. Retention of features on a mapped Drosophila brain surface using a Bézier-tube-based surface model averaging technique.

    Science.gov (United States)

    Chen, Guan-Yu; Wu, Cheng-Chi; Shao, Hao-Chiang; Chang, Hsiu-Ming; Chiang, Ann-Shyn; Chen, Yung-Chang

    2012-12-01

    Model averaging is a widely used technique in biomedical applications. Two established model averaging methods, iterative shape averaging (ISA) method and virtual insect brain (VIB) method, have been applied to several organisms to generate average representations of their brain surfaces. However, without sufficient samples, some features of the average Drosophila brain surface obtained using the above methods may disappear or become distorted. To overcome this problem, we propose a Bézier-tube-based surface model averaging strategy. The proposed method first compensates for disparities in position, orientation, and dimension of input surfaces, and then evaluates the average surface by performing shape-based interpolation. Structural features with larger individual disparities are simplified with half-ellipse-shaped Bézier tubes, and are unified according to these tubes to avoid distortion during the averaging process. Experimental results show that the average model yielded by our method could preserve fine features and avoid structural distortions even if only a limit amount of input samples are used. Finally, we qualitatively compare our results with those obtained by ISA and VIB methods by measuring the surface-to-surface distances between input surfaces and the averaged ones. The comparisons show that the proposed method could generate a more representative average surface than both ISA and VIB methods.

  7. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H215O-, and FDG-PET

    Directory of Open Access Journals (Sweden)

    James R. Moeller

    2006-01-01

    Full Text Available In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI, the general linear model (GLM is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1 verify activation of neural machinery we already understand and (2 discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.

  8. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji [Kyoto Prefectural Univ. of Medicine, Kyoto (Japan)] [and others

    1997-03-31

    Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISH ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.

  9. Autoradiographic Mapping of 5-HT1B/1D Binding Sites in the Rhesus Monkey Brain Using [carbonyl-11C]zolmitriptan

    Directory of Open Access Journals (Sweden)

    Örjan Lindhe

    2011-01-01

    Full Text Available Zolmitriptan is a serotonin 5-HT1B/1D receptor agonist that is an effective and well-tolerated drug for migraine treatment. In a human positron emission tomography study, [11C]zolmitriptan crossed the blood-brain barrier but no clear pattern of regional uptake was discernable. The objective of this study was to map the binding of [11C]zolmitriptan in Rhesus monkey brain using whole hemisphere in vitro autoradiography with [11C]zolmitriptan as a radioligand. In saturation studies, [11C]zolmitriptan showed specific (90% binding to a population of high-affinity binding sites (Kd 0.95–5.06 nM. There was regional distribution of binding sites with the highest density in the ventral pallidum, followed by the external globus pallidus, substantia nigra, visual cortex, and nucleus accumbens. In competitive binding studies with 5-HT1 receptor antagonists, [11C]zolmitriptan binding was blocked by selective 5-HT1B and 5-HT1D ligands in all target areas. There was no appreciable change in binding with the addition of a 5-HT1A receptor antagonist.

  10. Autoradiographic Mapping of 5-HT(1B/1D) Binding Sites in the Rhesus Monkey Brain Using [carbonyl-C]zolmitriptan.

    Science.gov (United States)

    Lindhe, Orjan; Almqvist, Per; Kågedal, Matts; Gustafsson, Sven-Åke; Bergström, Mats; Nilsson, Dag; Antoni, Gunnar

    2011-01-01

    Zolmitriptan is a serotonin 5-HT(1B/1D) receptor agonist that is an effective and well-tolerated drug for migraine treatment. In a human positron emission tomography study, [(11)C]zolmitriptan crossed the blood-brain barrier but no clear pattern of regional uptake was discernable. The objective of this study was to map the binding of [(11)C]zolmitriptan in Rhesus monkey brain using whole hemisphere in vitro autoradiography with [(11)C]zolmitriptan as a radioligand. In saturation studies, [(11)C]zolmitriptan showed specific (90%) binding to a population of high-affinity binding sites (Kd 0.95-5.06 nM). There was regional distribution of binding sites with the highest density in the ventral pallidum, followed by the external globus pallidus, substantia nigra, visual cortex, and nucleus accumbens. In competitive binding studies with 5-HT(1) receptor antagonists, [(11)C]zolmitriptan binding was blocked by selective 5-HT(1B) and 5-HT(1D) ligands in all target areas. There was no appreciable change in binding with the addition of a 5-HT(1A) receptor antagonist.

  11. Statistical parametric maps of {sup 18}F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Marti-Climent, Josep M. [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Collantes, Maria; Molinet, Francisco [Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain); Delgado, Mercedes; Garcia-Garcia, Luis; Pozo, Miguel A. [Universidad Complutense de Madrid, Brain Mapping Unit, Madrid (Spain); Juri, Carlos [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Pontificia Universidad Catolica de Chile, Department of Neurology, Santiago (Chile); Fernandez-Valle, Maria E. [Universidad Complutense de Madrid, MRI Research Center, Madrid (Spain); Gago, Belen [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Obeso, Jose A. [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Penuelas, Ivan [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain)

    2011-12-15

    Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to {sup 18}F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during {sup 18}F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in {sup 18}F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although

  12. Nonlinear functional connectivity network recovery in the human brain with mutual connectivity analysis (MCA): convergent cross-mapping and non-metric clustering

    Science.gov (United States)

    Wismüller, Axel; Abidin, Anas Z.; D'Souza, Adora M.; Wang, Xixi; Hobbs, Susan K.; Leistritz, Lutz; Nagarajan, Mahesh B.

    2015-03-01

    We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

  13. Construction and evaluation of F-18 FDG PET probabilistic MAP for voxel based analysis of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Im, K. C.; Kim, J. S.; Na, Y. S.; Moon, D. H.; Ryu, J. S. [Asan Medical Center, Seoul (Korea, Republic of)

    2007-07-01

    The purpose of this study was to develop F-18 FDG PET and MRI template for normal rat brain. Also, feasibility of SPM in detailed regional analysis of molecular changes in the rat brain was explored for F-18 FDG PET imaging of a model of traumatic brain injury (TBI). Ten normal rats were scanned with PET and MRI. The PET images were acquired with 3D mode using microPET focus 120 scanner after injection of 37 MBq F-18 FDG. T2-weighted MR images were acquired using 4.7T MRI system. A MRI-based spatial normalization was used. The PET images were coregistered to T2-weighted MR images. Maximum mutual information (MMI) registrations and affine spatial normalizations were performed using SPM2. The spatial normalization of the MRI to the standard MRI was applied to the integral images. The normalized PET images were averaged voxel wise to create PET template. Eight TBI model rats were subjected to a moderate lateral fluid percussion injury. At 2 days, 1 week, 3 weeks and 5 weeks post FPI, PET images of 8 TBI rats were acquired 4 times. TBI PET images were realigned, spatially normalized to a created PET-template and smoothed (8 mm FWHM). To assess the extent and severity of significant hypo metabolic lesions in TBI compared to normal controls were obtained by a two-sided t-test of SPM (uncorrected p < 0.001, 50 voxels). Visually acceptable PET and MRI templates were created. Registration errors were negligible when MMI procedure was used to register a translated or rotated image volume. Thirty-two PET studies of 8 TBI model subjects were obtained. SPM analysis showed injured distribution of decrease F-18 FDG uptake in TBI rats compared with normal rats. In SPM analysis, the extent and severity of significant hypo metabolic lesions were decreased according to a significant effect of time. At 5 weeks injured animals showed F-18 FDG uptake recovery using SPM analysis. These results indicate that voxel-based method will be useful for future longitudinal studies of rat brain.

  14. Mapping α2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole L.;

    2015-01-01

    brain clearances, volumes of distribution, and receptor availability by means of PET with 11C-yohimbine in healthy male adults. Methods: We recorded the distribution of 11C-yohimbine with 90-min dynamic PET and sampled arterial blood to measure intact 11C-yohimbine in plasma. For analysis, we coregistered PET...... images to individual MR images and automatically identified 27 volumes of interest. We used 1-tissue-compartment graphical analysis with 6 linearized solutions of the fundamental binding equation, with the metabolite-corrected arterial plasma curves as input function, to estimate the kinetic parameters...

  15. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry.

    Science.gov (United States)

    Bernarding, J; Braun, J; Hohmann, J; Mansmann, U; Hoehn-Berlage, M; Stapf, C; Wolf, K J; Tolxdorff, T

    2000-01-01

    Decreased, renormalized, or increased values of the calculated apparent diffusion coefficient (ADC) are observed in stroke models. A quantitative description of corresponding tissue states using ADC values may be extended to include true relaxation times. A histogram-based segmentation is well suited for characterizing tissues according to specific parameter combinations irrespective of the heterogeneity found for human healthy and ischemic brain tissues. In a new approach, navigated diffusion-weighted images and ADC maps were incorporated into voxel-based parameter sets of relaxation times (T1, T2), and T1- or T2-weighted images, followed by a supervised histogram-based analysis. Healthy tissues were segmented by incorporating T1 relaxation into the data set, ischemic regions by combining T2- or diffusion-weighted images with ADC maps. Mean values of healthy and pathologic tissues were determined, spatial distributions of the parameter vectors were visualized using color-encoded overlays. One to six days after stroke, ischemic regions exhibited reduced relative mean ADC values.

  16. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Lee, Y [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Ruschin, M [Odette Cancer Centre, Toronto, ON (Canada); Karam, I [Sunnybrook Odette Cancer Center, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution. Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of

  17. Brain imaging genetics in ADHD and beyond - mapping pathways from gene to disorder at different levels of complexity.

    Science.gov (United States)

    Klein, Marieke; Onnink, Marten; van Donkelaar, Marjolein; Wolfers, Thomas; Harich, Benjamin; Shi, Yan; Dammers, Janneke; Arias-Va Squez, Alejandro; Hoogman, Martine; Franke, Barbara

    2017-01-31

    Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.

  18. Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain.

    Science.gov (United States)

    Michel, Kelly; Zhao, Tianna; Karl, Molly; Lewis, Katherine; Fyffe-Maricich, Sharyl L

    2015-05-20

    Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS.

  19. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, Department of Internal Medicine, Genoa (Italy); Piccardo, Arnoldo; Villavecchia, Giampiero [Galliera Hospital, Nuclear Medicine Unit, Department of Radiology, Genoa (Italy); Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio [University of Genoa, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); Piccini, Alessandra [Cell Biology Unit, National Cancer Research Institute, Genoa (Italy); Caroli, Anna [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy); Mario Negri Institute, Medical Imaging Unit, Biomedical Engineering Department, Bergamo (Italy); Frisoni, Giovanni [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy)

    2010-01-15

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  20. Mobile brain/body imaging (MoBI): High-density electrical mapping of inhibitory processes during walking.

    Science.gov (United States)

    De Sanctis, Pierfilippo; Butler, John S; Green, Jason M; Snyder, Adam C; Foxe, John J

    2012-01-01

    The present study investigated the feasibility of acquiring high-density event-related brain potential (ERP) recordings during treadmill walking in human subjects. The work builds upon recent studies testing the applicability of real-world tasks while obtaining electroencephalographic (EEG) recordings. Participants performed a response inhibition GO/NOGO task - designed to evoke a P3 component for correct response inhibitions and an error-related negativity (ERN) for incorrect commission errors - while speed of walking was experimentally manipulated. Robust P3 and ERN components were obtained under all experimental conditions - while participants were sitting, walking at moderate speed (2.4 km/hour), or walking rapidly (5 km/hour). Signal-to-noise ratios were remarkably similar across conditions, pointing to the feasibility of high-fidelity ERP recordings under relatively vigorous activity regimens. There is considerable research and clinical motivation to obtain high quality neurophysiological measures under more naturalistic environmental settings such as these. Strong links between cognitive load and gait abnormalities are seen in a number of clinical populations and these MoBI technologies provide highly promising methods for gaining insights into the underlying pathophysiology.

  1. Mapping of Cbln1-like immunoreactivity in adult and developing mouse brain and its localization to the endolysosomal compartment of neurons.

    Science.gov (United States)

    Wei, Peng; Smeyne, Richard J; Bao, Dashi; Parris, Jennifer; Morgan, James I

    2007-11-01

    Cbln1 is a secreted glycoprotein essential for synapse structure and function in cerebellum that is also expressed in extracerebellar structures where its function is unknown. Furthermore, Cbln1 assembles into homomeric complexes and heteromeric complexes with three family members (Cbln2-Cbln4), thereby influencing each other's degradation and secretion. Therefore, to understand its function, it is essential to establish the location of Cbln1 relative to other family members. The localization of Cbln1 in brain was determined using immunohistochemistry and cbln1-lacZ transgenic mice. Cbln1-like immunoreactivity (CLI) was always punctate and localized to the cytoplasm of neurons. The punctate CLI colocalized with cathepsin D, a lysosomal marker, but not with markers of endoplasmic reticulum or Golgi, indicating that Cbln1 is present in neuronal endosomes/lysosomes. This may represent the cellular mechanism underlying the regulated degradation of Cbln1 observed in vivo. Outside the cerebellum, CLI mapped to multiple brain regions that were frequently synaptically interconnected, warranting their analysis in cbln1-null mice. Furthermore, whereas CLI increased dramatically in the cerebellum of cbln3-null mice it was unchanged in extracerebellar neurons. This opens the possibility that other family members that are coexpressed in these areas control Cbln1 levels, potentially by modulating processing in the endolysosomal pathway. During development of cbln1-lacZ mice, beta-galactosidase staining was first observed in proliferating granule cell precursors prior to synaptogenesis and thereafter in maturing and adult granule cells. As cbln3 is only expressed in post-mitotic, post-migratory granule cells, Cbln1 homomeric complexes in precursors and Cbln1-Cbln3 heteromeric complexes in mature granule cells may have distinct functions and turnover.

  2. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective.

    Science.gov (United States)

    De Benedictis, Alessandro; Duffau, Hugues; Paradiso, Beatrice; Grandi, Enrico; Balbi, Sergio; Granieri, Enrico; Colarusso, Enzo; Chioffi, Franco; Marras, Carlo Efisio; Sarubbo, Silvio

    2014-08-01

    The temporo-parieto-occipital (TPO) junction is a complex brain territory heavily involved in several high-level neurological functions, such as language, visuo-spatial recognition, writing, reading, symbol processing, calculation, self-processing, working memory, musical memory, and face and object recognition. Recent studies indicate that this area is covered by a thick network of white matter (WM) connections, which provide efficient and multimodal integration of information between both local and distant cortical nodes. It is important for neurosurgeons to have good knowledge of the three-dimensional subcortical organisation of this highly connected region to minimise post-operative permanent deficits. The aim of this dissection study was to highlight the subcortical functional anatomy from a topographical surgical perspective. Eight human hemispheres (four left, four right) obtained from four human cadavers were dissected according to Klingler's technique. Proceeding latero-medially, the authors describe the anatomical courses of and the relationships between the main pathways crossing the TPO. The results obtained from dissection were first integrated with diffusion tensor imaging reconstructions and subsequently with functional data obtained from three surgical cases, all resection of infiltrating glial tumours using direct electrical mapping in awake patients. The subcortical limits for performing safe lesionectomies within the TPO region are as follows: within the parietal region, the anterior horizontal part of the superior longitudinal fasciculus and, more deeply, the arcuate fasciculus; dorsally, the vertical projective thalamo-cortical fibres. For lesions located within the temporal and occipital lobes, the resection should be tailored according to the orientation of the horizontal associative pathways (the inferior fronto-occipital fascicle, inferior longitudinal fascicle and optic radiation). The relationships between the WM tracts and the ventricle

  3. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study.

    Science.gov (United States)

    Khan, Osaama H; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-05-01

    The subcortical connectivity underlying verbal perseveration (VP) remains poorly understood. We have previously reported that intraoperative electrical stimulation of the caudate nucleus during awake surgery resulted in VP. Here, our purpose is to study the white matter pathway underlying VP using subcortical stimulation mapping in a series of patients who underwent glioma resection. Eleven patients with a left hemispheric low grade glioma were operated on while awake. Intraoperative direct electrical stimulation was used both at cortical and subcortical levels while the patients carried out motor and naming tasks during the resection. All patients experienced VP during electrical stimulation performed at the level of different subcortical locations, which corresponded in the 11 cases to different parts of the left inferior fronto-occipital fascicle. Perseveration persisted into the postoperative days, but resolved completely by three months.Our original findings provide further insight into the neuroanatomical basis of VP, by supporting the role of left inferior fronto-occipital fascicle. Such data may have both fundamental and clinical implications.

  4. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    Science.gov (United States)

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces.

  5. Inter- and intrahemispheric dissociations in ideomotor apraxia: a large-scale lesion-symptom mapping study in subacute brain-damaged patients.

    Science.gov (United States)

    Manuel, Aurelie L; Radman, Narges; Mesot, Delphine; Chouiter, Leila; Clarke, Stephanie; Annoni, Jean-Marie; Spierer, Lucas

    2013-12-01

    Pantomimes of object use require accurate representations of movements and a selection of the most task-relevant gestures. Prominent models of praxis, corroborated by functional neuroimaging studies, predict a critical role for left parietal cortices in pantomime and advance that these areas store representations of tool use. In contrast, lesion data points to the involvement of left inferior frontal areas, suggesting that defective selection of movement features is the cause of pantomime errors. We conducted a large-scale voxel-based lesion-symptom mapping analyses with configural/spatial (CS) and body-part-as-object (BPO) pantomime errors of 150 left and right brain-damaged patients. Our results confirm the left hemisphere dominance in pantomime. Both types of error were associated with damage to left inferior frontal regions in tumor and stroke patients. While CS pantomime errors were associated with left temporoparietal lesions in both stroke and tumor patients, these errors appeared less associated with parietal areas in stroke than in tumor patients and less associated with temporal in tumor than stroke patients. BPO errors were associated with left inferior frontal lesions in both tumor and stroke patients. Collectively, our results reveal a left intrahemispheric dissociation for various aspects of pantomime, but with an unspecific role for inferior frontal regions.

  6. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  7. Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial Feasibility

    Science.gov (United States)

    Paulson, Eric S.; Prah, Douglas E.; Schmainda, Kathleen M.

    2017-01-01

    Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma. PMID:28090589

  8. From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7T.

    Science.gov (United States)

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; Liu, Jiaen; He, Bin

    2013-06-01

    Elevated specific absorption rate (SAR) associated with increased main magnetic field strength remains a major safety concern in ultra-high-field (UHF) magnetic resonance imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radio-frequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission.

  9. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming.

    Science.gov (United States)

    Duffau, Hugues; Moritz-Gasser, Sylvie; Mandonnet, Emmanuel

    2014-04-01

    From recent findings provided by brain stimulation mapping during picture naming, we re-examine the neural basis of language. We studied structural-functional relationships by correlating the types of language disturbances generated by stimulation in awake patients, mimicking a transient virtual lesion both at cortical and subcortical levels (white matter and deep grey nuclei), with the anatomical location of the stimulation probe. We propose a hodotopical (delocalized) and dynamic model of language processing, which challenges the traditional modular and serial view. According to this model, following the visual input, the language network is organized in parallel, segregated (even if interconnected) large-scale cortico-subcortical sub-networks underlying semantic, phonological and syntactic processing. Our model offers several advantages (i) it explains double dissociations during stimulation (comprehension versus naming disorders, semantic versus phonemic paraphasias, syntactic versus naming disturbances, plurimodal judgment versus naming disorders); (ii) it takes into account the cortical and subcortical anatomic constraints; (iii) it explains the possible recovery of aphasia following a lesion within the "classical" language areas; (iv) it establishes links with a model executive functions.

  10. 耳鸣患者PET显像的相关脑区探讨%Mapping tinnitus-related brain of a PET study

    Institute of Scientific and Technical Information of China (English)

    李瑞玉; 林美福; 林碧玉; 王恩成; 陈洪; 陈文新; 郑昊

    2014-01-01

    目的:探讨耳鸣患者脑PET18 F-FDG代谢的相关脑区。方法通过对41例耳鸣患者及40例健康对照组进行PET-CT检查,行踪剂为18 F-FDG,结果用统计参数图(SPM)软件进行统计分析,确定与耳鸣相关脑区的解剖部位(BA)。结果耳鸣患者相关脑区主要位于左侧颞下回(BA20)、左侧颞中回(BA21)、左侧颞上回(BA22)、左侧腹侧后扣带皮层(BA24)、左侧颞极区(BA38)及右侧后外侧前额叶皮层(BA9)、右侧额极区(BA10)、右侧眶额回(BA11)、右侧颞下回(BA20)、右侧背侧前扣带皮层(BA32)、右侧海马旁皮层(BA36)、右侧梭状回(BA37)。结论耳鸣患者在中枢神经系统可能存在特定的投射区,主要位于边缘系统及额叶联合区,与主次级听觉皮层有一定关系。PET 为耳鸣提供了客观证据,有望成为耳鸣的客观检测方法。%Objective To investigate central correlates of tinnitus perception in brain imaging.Methods Brain position emission tomography (PET)tests were performed on the tinnitus patients and controls.The effects of laterality were evaluated with statistical parametric mapping (SPM)in whole brain analyses.Results The study showed that the most consistently acti-vated regions in tinnitus subjects,compared with controls,were left inferior temporal cortex (BA20),left middle temporal gyrus (BA21),left superior temporal (BA22),left Ventral Anterior cingulate cortex (BA24),left Temporopolar area (BA38),right dorsal anterior cingulated cortex (BA9),right Anterior prefrontal cortex (BA10),right Orbitofrontal area (BA11),right inferior temporal cortex (BA20),right Dorsal anterior cingulate cortex (BA32),right parahippocampal Cortex (BA36)and right Fusiform gyrus (BA37).Conclusion This study proves that PET is a useful modality for tinnitus research and solidifies human tinnitus research itself by confirming previously described brain areas involved in the generation and mainte-nance of tinnitus.

  11. Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study.

    Science.gov (United States)

    Korgaonkar, Mayuresh S; Cooper, Nicholas J; Williams, Leanne M; Grieve, Stuart M

    2012-06-20

    Diffusion tensor imaging (DTI) can be used to study the organization of brain white matter noninvasively. The aim of this study was to present a proof of concept for integrating DTI with high-resolution anatomical (T1) images to map and assess inter-regional connectivity across the entire cortex in a cohort of healthy participants and compared with patients with major depressive disorder. We used MRI data of 23 patients and 23 matched controls, assessed as part of baseline testing in the International Study to Predict Optimized Treatment in Depression (iSPOT-D). Freesurfer was used to analyze the T1 images to automatically label 35 gyral-based areas for each hemisphere. DTI tractography was performed to parcellate intercortical tracts using each of these areas in seed-target combinations. We quantified fractional anisotropy, number-of-fiber connections, and fiber path length for each DTI connection, with the goal of identifying the best measure or combination of measures to characterize major depression. The best classification accuracy for the individual measures was achieved using the number-of-fibers data, whereas the combination model provided a slight improvement. The most discriminant features between the two groups were for white matter associated with the limbic, frontal, and thalamic projection fibers and as part of cortical connections between the left inferior temporal and the postcentral cortex; the left parstriangularis and the left superior frontal; the left cuneus and the corpus callosum; the left lingual and the right lateral occipital, the right superior parietal and the right superior temporal cortices; and the right inferior parietal and the right insula and postcentral cortices.

  12. Negative cerebral blood volume fMRI response coupled with Ca²⁺-dependent brain activity in a dopaminergic road map of nociception.

    Science.gov (United States)

    Hsu, Yi-Hua; Chang, Chen; Chen, Chiao-Chi V

    2014-04-15

    Decreased cerebral blood volume/flow (CBV/CBF) contributes to negative blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signals. But it is still strongly debated whether these negative BOLD or CBV/CBF signals are indicative of decreased or increased neuronal activity. The fidelity of Ca(2+) signals in reflecting neuronal excitation is well documented. However, the roles of Ca(2+) signals and Ca(2+)-dependent activity in negative fMRI signals have never been explored; an understanding of this is essential to unraveling the underlying mechanisms and correctly interpreting the hemodynamic response of interest. The present study utilized a nociception-induced negative CBV fMRI response as a model. Ca(2+) signals were investigated in vivo using Mn(2+)-enhanced MRI (MEMRI), and the downstream Ca(2+)-dependent signaling was investigated using phosphorylated cAMP response-element-binding (pCREB) immunohistology. The results showed that nociceptive stimulation led to (1) striatal CBV decreases, (2) Ca(2+) increases via the nigrostriatal pathway, and (3) substantial expression of pCREB in substantia nigra dopaminergic neurons and striatal neurons. Interestingly, the striatal negative fMRI response was abolished by blocking substantia nigra activity but was not affected by blocking the striatal activity. This suggests the importance of input activity other than output in triggering the negative CBV signals. These findings indicate that the striatal negative CBV fMRI signals are associated with Ca(2+) increases and Ca(2+)-dependent signaling along the nigrostriatal pathway. The obtained data reveal a new brain road map in response to nociceptive stimulation of hemodynamic changes in association with Ca(2+) signals within the dopaminergic system.

  13. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  14. Regional cerebral blood flow in children with autism spectrum disorders: a quantitative 99mTc-ECD brain SPECT study with statistical parametric mapping evaluation

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-han; JING Jin; XIU Li-juan; CHENG Mu-hua; WANG Xin; BAO Peng; WANG Qing-xiong

    2011-01-01

    Background Autism spectrum disorders (ASD), which include autism, asperger syndrome (AS) and pervasive developmental disorder-not otherwise specified (PDD-NOS), are devastating neurodevelopmental disorders of childhood resulting in deficits in social interaction, repetitive patterns of behaviors, and restricted interests and activities. Single photon emission computed tomography (SPECT) is a common technique used to measure regional cerebral blood flow (rCBF). Several studies have measured rCBF in children with ASD using SPECT, however, findings are discordant. In addition, the majority of subjects used in these studies were autistic. In this study, we aimed to investigate changes in rCBF in children with ASD using SPECT.Methods A Technetium-99m-ethyl cysteinate dimmer (99mTc-ECD) brain SPECT study was performed on an ASD group consisting of 23 children (3 girls and 20 boys; mean age (7.2±3.0) years) who were diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-Ⅳ) criteria and an age-matched control group with 8children (1 girl and 7 boys, mean age (5.5±2.4) years). Image data were evaluated with Statistical Parametric Mapping,5th version (SPM5). A Student's t test for unpaired data was used to compare rCBF and asymmetry in the autism and corresponding control group. The covariance analysis, taking age as covariance, was performed between the ASD and control group.Results There was a significant reduction in rCBF in the bilateral frontal lobe (frontal poles, arcula frontal gyrus) and the bilateral basal ganglia in the autism group, and a reduction in the bilateral frontal, temporal, parietal, legumina nucleus and cerebellum in the AS group compared to the control. In addition, asymmetry of hemispheric hypoperfusion in the ASD group was observed. Inner-group comparison analysis revealed that rCBF decreased significantly in the bilateral frontal lobe (42.7%), basal nucleus (24.9%) and temporal lobe (22.8%) in the autism

  15. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R

    2007-01-01

    quantitative proteomic analysis of three functionally distinct compartments of mouse brain: cortex, hippocampus, and cerebellum. In total, 976 unique peptides corresponding to 555 unique proteins were quantified. Up to 20-fold differences in the levels of some proteins between brain areas were measured...

  16. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T.

    Science.gov (United States)

    Atkinson, Ian C; Thulborn, Keith R

    2010-06-01

    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging.

  17. Mapeamento da área motora durante a cirurgia de tumor intracraniano: fatores que podem modificar a intensidade da estimulação Intraoperative mapping of motor areas during brain tumor surgery: electrical stimulation patterns

    Directory of Open Access Journals (Sweden)

    Paulo Thadeu Brainer-Lima

    2005-03-01

    Full Text Available O mapeamento com estimulação direta do córtex cerebral foi utilizado quando o tumor estava próximo ou infiltrava o lobo central. OBJETIVO: Avaliar interferências na técnica de estimulação eletrica direta do córtex e substância branca, sob anestesia geral, durante cirurgia para tumor cerebral relacionado ao lobo central. MÉTODO: Foram estudados 42 pacientes operados de junho de 2000 a junho de 2003. Os fatores que modificaram a intensidade da estimulação necessaria para localizar a área motora durante a cirurgia foram estudados. RESULTADOS: A intensidade necessária do estimulo foi maior entre os pacientes com déficit motor antes da cirurgia (p=0,425, edema na ressonância magnetica (p=0,468 e anestesia com proporfol contínuo (p=0,001. CONCLUSÃO: O mapeamento funcional do lobo central durante a cirurgia foi prejudicado pelo deficit motor acentuado, edema cerebral e anestesia com propofol contínuo.Brain mapping with direct electrical stimulation is usefull when the tumor is located near or has infiltrated the central lobe. OBJETIVE: To analize the surgical findings with direct electrical stimulation of the cortex and white matter under general anesthesia during surgery for brain tumors related to the central lobe. METHOD: We studied 42 patients operated on from June 2000 to June 2003. We analyzed surgical findings and details of brain mapping. RESULTS: The mean value of the intensity of the stimulus was greater among those who presented motor deficit prior to surgery (p = 0.0425 and edema on MRI (p= 0.0468 or during anesthesia with continuous propofol (p=0.001. CONCLUSION: The functional mapping of the central lobe may be influenced by severe motor deficit, edema on MRI and propofol's anesthesia.

  18. Comparison of detection results of hypoxic-ischemic encephalopathy at different degrees in infant patients between brain electrical activity mapping, transcranial Doppler sonography and computer tomography examinations

    Institute of Scientific and Technical Information of China (English)

    Dongruo He; Xiaoying Xu; Yinghui Zhang; Guochao Han

    2006-01-01

    BACKGROUND; It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE).OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations.DESTGN: Contrast observation.SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College.PARTICTPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment.METHODS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations.MATN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM, TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. ① Comparison of the detected results in infant patients with mild HIE at different

  19. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George K.; Taylor, Ronald C.

    2016-07-01

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  20. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  1. Silicon Brains

    Science.gov (United States)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation design an intelligent technical response.

  2. An experimental study on expression of MAP-2 protein and mRNA after traumatic brain injury in rats%MAP-2在大鼠脑损伤后表达变化的时间规律性研究

    Institute of Scientific and Technical Information of China (English)

    吴旭; 杨丽; 王保捷; 张国华; 甄博; 孙宏杰; 王明; 何柏林

    2011-01-01

    Objective To investigate the relationship between the expression of MAP-2 and the time course of traumatic brain injury (TBI). Methods The TBI Model was produced by the impact force of 355. 09kPa. Immunocytochemical staining, doublelabeled staining, in situ hybridization and computer image analysis were employed. Results The MAP-2 mRNA and protein positive staining can be observed both in control and sham group. The MAP-2 mRNA positive staining remarkably increased from 30 minutes and reached the maximal level at 2 days after injury and kept at a high level for 7 days. The MAP-2 protein positive signals were observed in dendritic structure and cytosome. The positive dendritic structure staining decreased from 3h and reached the minimal level at 24h after injury. From 2 days after injury,the dendritic structure staining became to recover . There was no significant difference at 15 days after injury as compared with control group. Conclusion The expressions of MAP-2 mRNA and protein had a possible relationship with the extended periods of time after TBI. It might be used to determine time course of TBI in forensic medicine.%目的 探讨MAP-2在大鼠脑损伤后表达变化的时间规律性.方法 以355.09kPa冲击应力致大鼠局灶性脑损伤后,在不同时间应用原位杂交、免疫组化、免疫组化双染色技术检测MAP-2 mRNA和蛋白表达情况.结果 MAP-2 mRNA在对照组及假手术组均有表达,伤后30 min表达增强,伤后2d,达到峰值,并维持高水平表达至伤后7d.MAP-2蛋白在对照组及假手术组均有表达,伤后3h开始呈下降趋势,伤后1d,达到最低值,伤后2d起,表达逐渐恢复,伤后15d,恢复至对照组水平.结论 脑损伤后MAP-2 mRNA及蛋白表达具有时间规律,可用于法医学推断脑损伤形成时间.

  3. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations

    DEFF Research Database (Denmark)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-01-01

    the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined...... with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling...

  4. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  5. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  6. Mapping Numerical Processing, Reading, and Executive Functions in the Developing Brain: An fMRI Meta-Analysis of 52 Studies Including 842 Children

    Science.gov (United States)

    Houde, Olivier; Rossi, Sandrine; Lubin, Amelie; Joliot, Marc

    2010-01-01

    Tracing the connections from brain functions to children's cognitive development and education is a major goal of modern neuroscience. We performed the first meta-analysis of functional magnetic resonance imaging (fMRI) data obtained over the past decade (1999-2008) on more than 800 children and adolescents in three core systems of cognitive…

  7. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Cindy Casteels

    Full Text Available UNLABELLED: Automated voxel-based or pre-defined volume-of-interest (VOI analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18F]FDG and dopamine transporter ([(18F]FECT small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM was explored for [(18F]FDG and [(18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA mice. METHODS: Twenty-three adult C57BL6 mice were scanned with [(18F]FDG and [(18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18F]FDG data were quantified using (1 an image-derived-input function obtained from the liver (cMRglc, using (2 standardized uptake values (SUVglc corrected for blood glucose levels and by (3 normalizing counts to the whole-brain uptake. Parametric [(18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. RESULTS: Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71. Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an

  8. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  9. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping

    OpenAIRE

    Rafael Ceschin; Ashok Panigrahy; Vanathi Gopalakrishnan

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called func...

  10. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  11. Quantitative study the DTI T2-weighted trace parameter map in right-handed young human brain%右利手年轻人脑结构DTI的T2-weighted trace图定量研究

    Institute of Scientific and Technical Information of China (English)

    李翠宁; 刘怀军; 耿左军; 池琛; 崔彩霞; 宋鹏; 刘瑞春

    2012-01-01

    Objective To quantitatively study the manifestation of DTI T, -weighted trace parameter map in healthy righted-handed young human brain, analysis the relationship of T,-weighted trace( T,-WT ) to FA and MD. Methods 30 health)' right-handed young volunteers ( sixteen men, fourteen women; mean age 28.2 years ) underwent diffusion tensor imaging and conventional MRI with a GE 3.0T magnetic resonance system. Three DTI parameters maps T,-WT, FA and MD were determined. Observe the manifestations of T,-WT maps at thirteen brain structures and measured the value of them. The gender, lateral differences were analyzed. The relationship between T2 -WT and FA, T2-WT and MD were assessed. Results In health)' right-handed young human brain,the value of T2-WT had a left-right asymmetries in pons, cerebral peduncle, anterior internal capsual, centrum seimioval and lenticular nucleus, left > right, P = 0. 000 ~ 0. 024. There were no sex-difference in all thirteen brain structures, P = 0. 081 ~ 0.967. T2-WT had a positive con-elation with MD ( P =0. 000 ) and had no corrrelation with FA. Conclusion In right-handed young human brain , the values of T2 -WT are left-superior in pons, cerebral peduncle, anterior internal capsual, centrum seimioval and lenticular nucleus. T,-WT has a positive correlation with MD ( P = 0. 000 ) but no corrrelation with FA.%目的 定量研究右利手年轻人人脑结构扩散张量成像(DTI)的T2-weighted trace(T2-WT)参数值的特点,分析其与分数各向异性(FA)、平均扩散系数(MD)的关系.方法 健康右利手年轻志愿者30例,男16名,女14名,平均年龄28.2岁,采集脑常规MRI及DTI图像,获取DTI的T2-WT、FA及MD三种后处理参数图:测量人脑13个部位的三种参数值,研究T2-WT参数图左右侧之间的差异,各部位参数值的性别差异,分析其与FA、MD的关系.结果 T2-WT值在桥脑、大脑脚、内囊前肢、半卵圆中心和豆状核双侧不对称,左侧>右侧,P=0.000~0.024,差异有

  12. Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study.

    Science.gov (United States)

    Woodworth, Davis; Mayer, Emeran; Leu, Kevin; Ashe-McNalley, Cody; Naliboff, Bruce D; Labus, Jennifer S; Tillisch, Kirsten; Kutch, Jason J; Farmer, Melissa A; Apkarian, A Vania; Johnson, Kevin A; Mackey, Sean C; Ness, Timothy J; Landis, J Richard; Deutsch, Georg; Harris, Richard E; Clauw, Daniel J; Mullins, Chris; Ellingson, Benjamin M

    2015-01-01

    Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS) represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS), that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs), as well as patients with irritable bowel syndrome (IBS), a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI) in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45), IBS (N = 39), and HCs (N = 56) as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA), lower generalized anisotropy (GA), lower track density, and higher mean diffusivity (MD) in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive microstructural

  13. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations.

    Science.gov (United States)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-04-30

    Among bilaterian invertebrates, cephalopod molluscs (e.g., squids, cuttlefish and octopuses) have a central nervous system (CNS) that rivals in complexity that of the phylogenetically distant vertebrates (e.g., mouse and human). However, this prime example of convergent evolution has rarely been the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling experiments are less time-consuming and allow a high throughput of samples. Besides other advantages summarized here, phalloidin reliably labels the entire neuropil of the CNS of all squids, cuttlefish and octopuses investigated. This facilitates high-resolution in toto reconstructions of the CNS and contributes to a better understanding of the organization of neural networks. Amenable for multi-labeling experiments employing antibodies against neurotransmitters, proteins and enzymes, phalloidin constitutes an excellent neuropil marker for the complex cephalopod CNS.

  14. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    Science.gov (United States)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  15. Mapping of neurotrophins and their receptors in the adult mouse brain and their role in the pathogenesis of a transgenic murine model of bovine spongiform encephalopathy.

    Science.gov (United States)

    Marco-Salazar, P; Márquez, M; Fondevila, D; Rabanal, R M; Torres, J M; Pumarola, M; Vidal, E

    2014-05-01

    Neurotrophins are a family of growth factors that act on neuronal cells. The neurotrophins include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3, -4 and -5. The action of neurotrophins depends on two transmembrane-receptor signalling systems: (1) the tropomyosin-related kinase (Trk) family of tyrosine kinase receptors (Trk A, Trk B and Trk C) and (2) the p75 neurotrophin receptor (p75(NTR)). The interaction between neurotrophic factors and their receptors may be involved in the mechanisms that regulate the differential susceptibility of neuronal populations in neurodegenerative diseases. The aim of the present study was to evaluate the role of neurotrophins in the pathogenesis of bovine spongiform encephalopathy (BSE) using a transgenic mouse overexpressing bovine prnp (BoTg 110). Histochemistry for Lycopersicum esculentum agglutinin, haematoxylin and eosin staining and immunohistochemistry for the abnormal isoform of the prion protein (PrP(d)), glial fibrillary acidic protein (GFAP), NGF, BDNF, NT-3 and the receptors Trk A, Trk B, Trk C and p75(NTR) was performed. The lesions and the immunolabelling patterns were assessed semiquantitatively in different areas of the brain. No significant differences in the immunolabelling of neurotrophins and their receptors were observed between BSE-inoculated and control animals, except for p75(NTR), which showed increased expression correlating with the distribution of lesions, PrP(d) deposition and gliosis in the BSE-inoculated mice.

  16. The ERP brain topographic map study on mental rotation in schizophrenicPatients%精神分裂症患者心理旋转的ERP脑地形图研究

    Institute of Scientific and Technical Information of China (English)

    陈玖; 杨来启; 吴兴曲; 马文涛; 张彦; 邓自和; 刘光雄; 贾婷

    2012-01-01

    目的 探讨精神分裂症患者心理旋转的事件相关电位脑地形图的变化.方法 对33例精神分裂症患者(精神分裂症组)和30例正常健康人(对照组)进行心理旋转任务的ERP测定.对其脑地形图分布的变化进行对照观察.结果 (1)精神分裂症组较对照组错误率显著性增高,反应时显著性减少(P<0.05);(2)精神分裂症组较对照组正镜像波幅显著性降低(P<0.05);精神分裂症组只有右顶-枕叶区域被激活,兴奋性降低,面积变小,而镜像更低、更小;在0 ~200 ms精神分裂症组顶叶出现一个兴奋性更高、面积更大的负成分;两组正镜像顶-枕叶右边兴奋性都高于左边.结论 (1)精神分裂症患者心理旋转能力受损,镜像严重受损,且心理旋转的正镜像加工机制可能不同,提示正镜像加工能力可以相互转化.(2)心理旋转存在一个反应准备负电位和右脑优势半球,精神分裂症患者反应准备时需要消耗更多心理资源.揭示心理旋转能力受损的脑地形图可作为诊断精神分裂症的辅助指标.%Objective To explore the change of the event related potential (ERP) brain topographic map on schizophrenics' mental rotation. Methods 33 schizophrenics and 30 healthy controls were tested in the brain ERP system when making mental rotation tasks. The change of distribution of brain topographic map were compared. Results (1) Compared with control group, the error rate was significantly higher and the response time was significantly shorter in schizophrenics (P<0. 05). (2) Compared with control group, the volatility of schizophrenics was significantly lower (P <0. 05). The activated region located only in the right parietal-occipital lobe, in which the excitability was lower, the area was smaller and the mirror is even worse. At 0 ~ 200 ms, the parietal lobe in schizophrenics showed a negative potential with higher excitability and larger area. The normal mirror excitability in

  17. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values

    DEFF Research Database (Denmark)

    Møller, Mette; Rodell, Anders; Gjedde, Albert

    2009-01-01

    analysis. METHODS: A total of 19 healthy volunteers (age range, 23-73 y) underwent PET to test the Hypotime application of the chemical microsphere properties of (11)C-WAY to identify regions of binding and nonbinding on the exclusive basis of the rate of washout of (11)C-WAY. RESULTS: The results...... of the Hypotime method were compared with the simplified but multilinearized reference tissue method (MLSRTM). The distribution of receptor BP(ND) obtained with Hypotime was consistent with previous autoradiography of postmortem brain tissue, with the highest values of BP(ND) recorded in the medial temporal lobe...... and decline of receptor availability with age. The values in the basal ganglia and cerebellum were negligible. The MLSRTM, in contrast, yielded lower BP(ND) in all regions and only weakly revealed the decline with age. CONCLUSION: The simple and computationally efficient Hypotime method gave reliable values...

  18. [Longer waiting time and higher mortality in older people with traumatic brain injuries. Mapping of emergency prehospital management and hospital management in Västerbotten].

    Science.gov (United States)

    Holzmann, Martin; Bylund, Per O; Degerfält, Lisa; Carlsson, Axel C; Wändell, Per; Ruge, Toralph

    2015-10-06

    The main purpose was to study the prehospital and early intrahospital treatment of patients with traumatic brain injury (TBI) in the county of Västerbotten 2011-2012. In total, 162 patients were included. The main finding was that a large proportion of TBI patients were older men who fell in the same or from a different level. Older patients had higher mortality and had to wait longer for diagnostic imaging compared to younger patients. Furthermore, most patients were initially relatively unaffected by the injury and around 1/5 of the patients were transported to hospital by private transport. Finally, we observed that most patients were admitted to hospital and computer tomography scan of the head was performed within 4 hours.

  19. The significance of pharmacodynamic measurements in the assessment of bioavailability and bioequivalence of psychotropic drugs using CEEG and dynamic brain mapping.

    Science.gov (United States)

    Itil, T M; Itil, K Z

    1986-09-01

    There are a variety of problems in evaluating the bioavailability of psychotropic drugs. Psychotropics have many metabolites; there are discrepancies between peripheral plasma levels and therapeutic effects, and psychotropics must penetrate the blood-brain barrier to have an effect on their target organ. Therefore, "classical" pharmacokinetic evaluation may not be sufficient to determine the bioavailability and bioequivalence of these drugs. Additional and more precise information may be obtained by adding pharmacodynamic procedures to these evaluations. Quantitative pharmaco-EEG (QPEEG), which uses the computer-analyzed electroencephalogram (CEEG), may be the method of choice for determining the pharmacodynamic profiles of psychotropic drugs at the central nervous system (CNS) level. The difficulties in evaluating the bioavailability of psychotropics, as well as the results of several studies that confirm the significance of CEEG as a pharmacodynamic measure, are discussed.

  20. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    Science.gov (United States)

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.

  1. Mapping tinnitus-related brain activation:a preliminary study by metabolic and perfusion PET/CT%耳鸣相关脑区改变PET/CT脑代谢及灌注显像的初步研究

    Institute of Scientific and Technical Information of China (English)

    林美福; 李瑞玉; 陈文新; 陈洪; 戴红峰; 林碧玉; 郑昊; 周硕; 陈彩龙

    2015-01-01

    Objective This study aims to investigate regional cerebral glucose metabolism and regional cerebral blood flow(rCBF) of tinnitus patients and to map specific foci sites of tinnitus perception in brain imaging. Methods 18F-FDG and 13N-NH3·H2O PET/CT brain imaging were performed on 43 tinnitus patients and 40 controls. Results were evaluated with visual analysis and ROI analysis by whole brain analyses. Results PET data demonstrated the asymmetric activation of the central system of tinnitus patients compared with controls. Twenty-four patients revealed increased metabolism of the unilateral hemisphere, including 32 brain areas prior to the left superior temporal gyrus, left middle temporal gyrus, left supramarginal gyrus, right superior temporal gyrus, and right middle temporal gyrus. In addition, 75% of the 32 areas revealed increased rCBF. Ten patients showed increased metabolism in bilateral hemispheres, including 20 brain areas(10 on each side);90%of which revealed increased rCBF. Five patients showed reduced metabolism and rCBF of the unilateral hemisphere, including the right superior temporal gyrus and right middle temporal gyrus. Cortical activation was independent from tinnitus laterality. Conclusions Tinnitus perception may involve more brain areas than the auditory cortex, prior to increased glucose metabolism activity and rCBF. Cortical activation was independent from tinnitus laterality. Cerebral glucose metabolism was consistent with rCBF.%目的:研究耳鸣相关脑区的代谢及血流灌注变化,确定主观性耳鸣与神经中枢的对应关系。方法应用18F-FDG/13N-NH3·H2O PET/CT脑显像,采用ROI技术对43例耳鸣患者及40名健康对照者的显像结果进行分析。结果18F-FDG PET/CT显像单侧葡萄糖代谢增高者共24例、32个脑区;左侧特定的脑区位于颞上回、颞中回、缘上回等;右侧特定的脑区位于颞上回、颞中回等。其中有24个(75%)区域伴血流灌注增高。18F

  2. GABAA receptor subtypes in the mouse brain: Regional mapping and diazepam receptor occupancy by in vivo [(18)F]flumazenil PET.

    Science.gov (United States)

    Müller Herde, Adrienne; Benke, Dietmar; Ralvenius, William T; Mu, Linjing; Schibli, Roger; Zeilhofer, Hanns Ulrich; Krämer, Stefanie D

    2017-02-10

    Classical benzodiazepines, which are widely used as sedatives, anxiolytics and anticonvulsants, exert their therapeutic effects through interactions with heteropentameric GABAA receptors composed of two α, two β and one γ2 subunit. Their high affinity binding site is located at the interface between the γ2 and the adjacent α subunit. The α-subunit gene family consists of six members and receptors can be homomeric or mixed with respect to the α-subunits. Previous work has suggested that benzodiazepine binding site ligands with selectivity for individual GABAA receptor subtypes, as defined by the benzodiazepine-binding α subunit, may have fewer side effects and may even be effective in diseases, such as schizophrenia, autism or chronic pain, that do not respond well to classical benzodiazepines. The distributions of the individual α subunits across the CNS have been extensively characterized. However, as GABAA receptors may contain two different α subunits, the distribution of the subunits does not necessarily reflect the distribution of receptor subtypes with respect to benzodiazepine pharmacology. In the present study, we have used in vivo [(18)F]flumazenil PET and in vitro [(3)H]flumazenil autoradiography in combination with GABAA receptor point-mutated mice to characterize the distribution of the two most prevalent GABAA receptor subtypes (α1 and α2) throughout the mouse brain. The results were in agreement with published in vitro data. High levels of α2-containing receptors were found in brain regions of the neuronal network of anxiety. The α1/α2 subunit combinations were predictable from the individual subunit levels. In additional experiments, we explored in vivo [(18)F]flumazenil PET to determine the degree of receptor occupancy at GABAA receptor subtypes following oral administration of diazepam. The dose to occupy 50% of sensitive receptors, independent of the receptor subtype(s), was 1-2mg/kg, in agreement with published data from ex vivo

  3. The domesticated brain: genetics of brain mass and brain structure in an avian species

    Science.gov (United States)

    Henriksen, R.; Johnsson, M.; Andersson, L.; Jensen, P.; Wright, D.

    2016-01-01

    As brain size usually increases with body size it has been assumed that the two are tightly constrained and evolutionary studies have therefore often been based on relative brain size (i.e. brain size proportional to body size) rather than absolute brain size. The process of domestication offers an excellent opportunity to disentangle the linkage between body and brain mass due to the extreme selection for increased body mass that has occurred. By breeding an intercross between domestic chicken and their wild progenitor, we address this relationship by simultaneously mapping the genes that control inter-population variation in brain mass and body mass. Loci controlling variation in brain mass and body mass have separate genetic architectures and are therefore not directly constrained. Genetic mapping of brain regions indicates that domestication has led to a larger body mass and to a lesser extent a larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. Domestication has traditionally been linked to brain mass regression, based on measurements of relative brain mass, which confounds the large body mass augmentation due to domestication. Our results refute this concept in the chicken. PMID:27687864

  4. Genetic Mapping

    Science.gov (United States)

    ... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers create ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human Genome ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  6. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  7. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  8. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  9. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using {sup 1}H MR spectroscopy and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Irwan, Roy; Potze, Jan Hendrik; Oudkerk, Matthijs [University Medical Center Groningen, Department of Radiology, Hanzeplein 1, Groningen (Netherlands); Mostert, Jop P.; Keyser, Jacques de [University Medical Center Groningen, Department of Neurology, Groningen (Netherlands)

    2005-08-01

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion constant (ADC). After chemical shift imaging (point-resolved spectroscopy, repetition time/echo time 1,500 ms/135 ms) of a supraventricular volume of interest of 8 x 8 x 2 cm{sup 3} (64 voxels) MRS peak areas were matched to the results of DTI for the corresponding volume elements. Mean FA and NAA values were reduced in the ppMS patients (P<0.01, both) and the ADC increased (P<0.02). The spatial distribution of NAA showed strong correlation to ADC in both ppMS patients and controls (r =-0.74 and r= -0.70; P<0.00001, both), and weaker correlations to FA (r=0.49 and r=0.41; P<0.00001, all). FA and ADC also correlated significantly with Cho in patients and controls (P<0.00001, all). The relationship of Cho and NAA to the ADC and the FA and thus to the content of neuronal structures suggests that these metabolite signals essentially originate from axons (NAA) and the myelin sheath (Cho). This is of interest in view of previous reports in which Cho increases were associated with demyelination and the subsequent breakdown of neurons. (orig.)

  10. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using 1H MR spectroscopy and diffusion tensor imaging.

    Science.gov (United States)

    Sijens, Paul E; Irwan, Roy; Potze, Jan Hendrik; Mostert, Jop P; De Keyser, Jacques; Oudkerk, Matthijs

    2005-08-01

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion constant (ADC). After chemical shift imaging (point-resolved spectroscopy, repetition time/echo time 1,500 ms/135 ms) of a supraventricular volume of interest of 8x8x2 cm3 (64 voxels) MRS peak areas were matched to the results of DTI for the corresponding volume elements. Mean FA and NAA values were reduced in the ppMS patients (P<0.01, both) and the ADC increased (P<0.02). The spatial distribution of NAA showed strong correlation to ADC in both ppMS patients and controls (r =-0.74 and r= -0.70; P<0.00001, both), and weaker correlations to FA (r=0.49 and r=0.41; P<0.00001, all). FA and ADC also correlated significantly with Cho in patients and controls (P<0.00001, all). The relationship of Cho and NAA to the ADC and the FA and thus to the content of neuronal structures suggests that these metabolite signals essentially originate from axons (NAA) and the myelin sheath (Cho). This is of interest in view of previous reports in which Cho increases were associated with demyelination and the subsequent breakdown of neurons.

  11. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  12. Brain activation in complex partial seizures during switching from a the goal-directed task to a resting state: comparison of fMRI maps to the default mode network.

    Science.gov (United States)

    Karmonik, Christof; Dulay, Mario; Verma, Amit; Yen, Christopher; Grossman, Robert G

    2010-01-01

    The default mode network (DMN) has been previously identified as a set of brain regions activated during internally directed cognition. The objective of this study was to investigate patterns of brain activation during switching between a goal-directed task and a rest period obtained from clinical functional magnetic resonance imaging (fMRI) paradigms in complex partial seizures (CPS) and age-matched controls. As part of pre-surgical evaluation with fMRI, a visually presented block-design language task was performed by eight subjects (4 CPS, 4 age-matched controls). Single subject fMRI maps were calculated and transferred into Talairach space for an atlas-based analysis. For the rest state, total volumes of activation, brain regions with largest volume of activation and regions commonly activated in the CPS and the control group were identified. A voxel-by-voxel comparison was conducted to reveal inter-group statistically significant differences. Average volume of activation in the CPS group was significantly higher (32,080 mm(3)) than in the control group (7,915 mm(3), p-value 〈 0.03). In both groups, most of the common activation volume (81% in the CPS group and 98 % in the control group) was located in cognitive regions of the frontal lobe and temporal lobes as well as anterior cingulate cortex, precuneus and cuneus. The remaining 19% in the CPS group included regions in the precentral gyrus, the superior and medial occipital gyrus, the parahippocampal gyrus, the inferior parietal lobule and the angular gyrus. The voxel-by-voxel comparison showed larger areas of activation mostly in the frontal and temporal lobes in the CPS group (as well as in the cuneus and precuneus), while regions with larger activation in the control group were found mostly in the parietal lobe. Our findings implicate that switching from goal-directed behavior to the default mode in CPS patients is impaired. Information contained in clinical fMRI block-design image data can be used to

  13. Brain components

    Science.gov (United States)

    ... can make complex movements without thinking. The brain stem connects the brain with the spinal cord and is composed of ... structures: the midbrain, pons, and medulla oblongata. The brain stem provides us with automatic functions that are necessary ...

  14. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  15. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  18. 抑郁症患者心理旋转的事件相关电位脑地形图研究%The ERP brain topographic map study on mental rotation of depressions

    Institute of Scientific and Technical Information of China (English)

    陈玖; 杨来启; 刘光雄; 吴兴曲; 张彦; 马文涛; 邓自和

    2012-01-01

    Objective To explore the change of the event related potential brain topographic map on depression' mental rotation,and to perfect the brain function relation map for depression in space ability.Methods 32 depression and 29 normal healthy people were tested to make mental rotation tasks in the brain ERP system.The distribution of the changing brain topographic map were observed.Results ( 1 ) Compared with the control group ( error rate ( 29±9 ) %,response time ( 604.74 ± 54.39 ) ms,the error rate was significantly higher and response time was significantly longer in depression (error rate( 33 ± 15 )%,response time(755.22 ± 70.18 )ms,P<0.05).(2) Compared with the control group (N100:PZ( -3.78 ± 1.05)μV,CZ( -5.67 ±2.21)μV,P3( -2.34 ±0.59) μV,P4( -2.92 ±0.80) μV ;P500:PZ(7.35 ±2.61 ) μV,CZ(7.65 ± 2.42) μV,P3 (6.53 ±2.11 ) μV,P4 ( 7.29 ± 2.57 ) μV ),the total volatility was significantly lower in depression ( N 100:PZ ( - 0.31 ±0.09)μV,CZ( -2.27 ±0.57)μV,P3( -0.30 ±0.07) μV,P4( -0.33 ±0.08) μV;P500:PZ(6.04 ±2.16)μV,CZ ( 5.92 ± 2.01 ) μV,P3 ( 6.02 ± 2.11 ) μV,P4 (6.01 ± 2.34 ) μV,P < 0.05 ) and the excitability difference of the left and right parietal-occipital lobe was disappeared (P>0.05) ; Compared with the control group,in N100 the normal and mirror excitability was significantly lower,and in P500 the normal excitability was significantly lower,but mirror was significantly higher in depression (P < 0.05 ).Compared with the left and right brain,the normal excitability in the right parietal-occipital lobe was significant higher (P < 0.05 ),but the mirror excitement difference was disappeared in depression (P> 0.05 ),and the normal and mirror excitement in the right parietal-occipital lobe was both significantly higher in normal healthy people (P < 0.05 ).Conclusion Depressed patients; mental rotation ability is impaired.And the negative potential for looking forward to reaction is lower and exist the right

  19. 联合BOLD和DECS技术脑功能区定位辅助语言相关区脑肿瘤手术的应用%Functional brain mapping with BOLD and DECS in surgical treatment of brain tumors in language areas

    Institute of Scientific and Technical Information of China (English)

    马辉; 黄伟; 孙胜玉; 夏鹤春; 孙晓川

    2012-01-01

    目的 利用BOLD和DECS技术进行语言功能区定位,实现语言功能区保护下肿瘤的最大程度切除.方法 对15例语言相关功能区脑肿瘤患者,利用血氧依赖功能磁共振(BOLD-fMRI)技术和(或)术中唤醒麻醉下皮层直接电刺激(DECS)定位技术进行脑语言功能区定位;对所获定位资料进行个体化评估,术中辅助保护语言功能区,在神经导航指引下切除肿瘤.结果 15例患者成功获取了术前BOLD语言区图像,评估后其中6例患者实现了术前BOLD和术中DECS技术联合定位语言功能区.全组病例在保护语言区条件下病变全切除10例,次全切除3例,大部分切除2例.术后语言功能明显改善6例,无变化5例,短暂性感觉性失语2例,语言功能障碍明显加重2例.结论 术前BOLD-fMRI结合术中唤醒麻醉下皮层电刺激的方法可客观定位脑语言功能区,导航辅助保护语言功能区条件下切除肿瘤,在保护语言功能的同时最大化切除肿瘤组织,提高患者术后生活质量.%Objective To study the application of cortical mapping methods of blood oxygen level-dependent-magnetic resonance imaging ( BOLD-MRI) for preoperative localization of language areas and intrao-perative direct electrical cortical stimulation ( DECS) of language areas in awake anesthesia in assisting to remove brain tumors in language areas. Methods Cortical mapping data of language areas was collected from 15 patients with brain tumors in language areas by BOLD-MRI and/or intraoperative DECS in awake anesthesia, and the data combined with neuronavigation assisted-microscopy were applied for the removal of brain tumors in language areas. Results The images of language areas were successfully obtained from the 15 patients by preoperative BOLD-MRI, and after evaluation the language areas were localized by both preoperative BOLD and intraoperative DECS in 6 patients. There were total resection in 10 patients, subtotal resection in 3 patients and

  20. Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l₁-norm as approximation of Pearson's temporal correlation: proof-of-concept and example vector hardware implementation.

    Science.gov (United States)

    Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge

    2014-09-01

    An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. L1-norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses.

  1. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  2. More Years Playing Football, Greater Risk of Brain Disease

    Science.gov (United States)

    ... and Human Services. More Health News on: Concussion Sports Injuries Traumatic Brain Injury Recent Health News Related MedlinePlus Health Topics Concussion Sports Injuries Traumatic Brain Injury About MedlinePlus Site Map FAQs Customer Support ...

  3. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  4. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  5. Application of cortical mapping in the surgical treatment of brain tumors in language areas%皮层功能制图在语言功能区脑肿瘤手术治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    马辉; 黄伟; 孙胜玉; 夏鹤春; 孙晓川

    2012-01-01

    目的 利用皮层功能制图进行语言功能区定位,实现语言功能区保护下肿瘤的最大程度切除.方法 对16例语言功能区脑肿瘤患者,利用血氧依赖功能磁共振(BOLD-fMRI)技术和(或)术中唤醒麻醉下皮层直接电刺激( ECS)定位技术进行脑功能制图;对所获皮层功能制图资料进行个体化评估,术中辅助保护语言功能区,在神经导航指引下切除肿瘤.结果 本组肿瘤病变全切除10例,次全切除3例,大部分切除3例.术后语言功能明显改善6例,无变化6例,短暂性感觉性失语2例,语言功能明显障碍2例.结论 BOLD-f MRI结合术中唤醒麻醉下ECS皮层功能制图定位语言功能区,可在保护语言功能的同时最大程度地切除肿瘤组织,提高患者术后生活质量.%Objective To study ihe methods of cortical mapping, preoperative localization of language areas with Bold-fMRI and(or) inlraoperative electrical cortical stimulation of language areas with awaken surgery, assist to remove brain tumors in functional areas of language. Methods Cortical mapping data from such as oxygen dependent functional magnetic resonance imaging (BOLD-fMRI) technology, using the block design and reciting task to activate broca area and paragraph comprehension task to activate wemicke area, calculated cerebral laterality index (LI) to determine the dominant hemisphere; using of the electrical cortical stimulation (ECS) to localizale language areas under awake anesthesia in patients with surgery. The data combined with neuronavigation assist microscopic remove braim tomors in the language areas. Results Functional cortical mapping was used for localizate broca or wemicke area of 16 cases, image acquisition satisfied in 16 cases. Intraoperative awake and electrical stimulation of language areas in 4 cases. Lesion total resection in 10 cases, subtotal resection in 3 cases, partial resection in 3 cases. Language function improved significantly after surgery in 6

  6. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    transferrin were, however, restricted to areas situated in close proximity to the ventricular and pial surfaces. In particular, transferrin injected into the ventricles was never observed in regions distant from the CSF. It was concluded that choroid plexus-derived transferrin is not likely to play a significant role for binding and transporting iron in the brain interstitium. Transferrin secretion from oligodendrocytes probably plays the key role in this process. In the third part of the thesis, the uptake of iron by neurons devoid of projections beyond the blood-brain barrier and glia is addressed. Given the fact that the demonstration of plasma proteins in brain sections can be hampered by several methodological factors, a mapping of the cellular distribution of transferrin in the brain was performed employing extensive use of tissue-processing and staining protocols. In order to aid in the understanding of cellular iron uptake in the intact brain, attempts were made to identify iron, transferrin, and transferrin receptors at the light microscopic level. Consistent with the widespread distribution of transferrin receptors in neurons, the ligand transferrin was also found in neurons throughout the CNS. When examined at high resolution, transferrin was found to be distributed to the cytoplasm of neurons, exhibiting a dotted appearance, which is probably consistent with a distribution in the endosomallysosomal system. In contrast to the consistent presence of transferrin receptors on neurons, it was not possible to detect transferrin receptors on glial cells. Related to these observations, the presence of non-transferrin-bound iron in the brain suggests that glial cells may take it up by a mechanism that does not involve the transferrin receptor. The widespread distribution of ferritin in glial cells clearly indicates that the glial cells acquire iron. Dietary iron-overload did not change the distribution of transferrin receptors or ferritin in the brain. By contrast, iron

  7. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  8. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  9. Mapping Deeply

    OpenAIRE

    Denis Wood

    2015-01-01

    This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, wate...

  10. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  15. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... their final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  20. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  1. The Brain.

    Science.gov (United States)

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  2. Please Mind the Gap: How To Podcast Your Brain

    Directory of Open Access Journals (Sweden)

    Karen Spaceinvaders

    2011-06-01

    Full Text Available Audio. Please click to listen to the mp3 files of deep brain recordings of individual brain cells, the smallest unit of the brain, in a whole, intact living brain. Each brain region’s cells possess an electrical signature. During recordings electrical signals are transformed into sound to facilitate auditory identification of cells during a process called “mapping.”

  3. Collection Mapping.

    Science.gov (United States)

    Harbour, Denise

    2002-01-01

    Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…

  4. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  5. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  6. Covariance mapping techniques

    Science.gov (United States)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  7. 定量研究人脑结构DTI T2-weighted trace图与年龄的关系%Quantitative study of DTI T2-weighted trace parameter map in healthy human brain and its relation to aging

    Institute of Scientific and Technical Information of China (English)

    李翠宁; 刘怀军; 耿左军; 贾林燚; 池琛; 崔彩霞; 宋鹏; 刘瑞春

    2012-01-01

    Objective To quantitatively analysis the DTI T2-weighted trace (T2-WT) parameter map in different age of healthy human brain and its relation to age. Methods Data were acquired in fifty-eight healthy right-handed volunteers (22-76 years) . 28 subjects in middle-old age group ( > 40years) and 30 subjects in young group (≤40years) . All subjects underwent diffusion tensor imaging ( DTI) and conventional MRI with a GE 3.0T magnetic resonance system. Three DTI parameters T2-WT, fractional anisotropy ( FA ) and mean diffusivity ( MD ) were acquired from the MR work station. ROIs were determined at FA and MD maps. The ten structures T2-WT values were measured in the two groups. Quantitative analyzed the the T2-WT maps and its relation to age. Results In the young group, the value of T2-WT had a left-right asymmetries in pons, cerebral peduncle, anterior internal capsual, centrum seimioval and lenticular nucleus, left > right, P = 0.000 ~ 0. 024. Whereas in the middle-old age group, T2-WT values were lower than the young group except the lateral cerebral ventricle, and had a left superior only in centrum semioval ( P= 0.042 ). Significant negative correlation with age were found in pons, cerebral peduncle, three parts of the internal capsule and lenticular nucleus (P =0. 000 ~0. 038) . Conclusion T2-WT parameter map is more symmetry in middle-old age group. In pons, cerebral peduncle, three parts of internal capsule and lenticular nucleus,T2-WT values have significant negative correlations with age.%目的 定量研究不同年龄健康人脑结构扩散张量成像(DTI)的T2-WT参数图的特点及其与年龄的关系.方法 健康右利手志愿者58人,年龄22~76岁,按年龄分为青年(≤40岁)组30人,中老年(>40岁)组28人,采集人脑常规MRI及DTI图像,经后处理得到DTI的三种参数图:T2-WT、分数各向异性(FA)及平均扩散系数(MD)图,使用FA图及MD图设置兴趣区,测量人脑10个部位的参数值,定量分析不同年龄组T2

  8. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  9. Mapping VADEMECUM

    OpenAIRE

    1992-01-01

    The work plan for the implementation of the Convention on Long-Range Transboundary Air Pollution under the UN Economic Commission for Europe (UN ECE) includes the production of maps of critical loads, critical levels, and exceedances as a basis for developing potential abatement strategies for sulphur and nitrogen. This Vademecum is designed to provide guidance to those responsible for calculating and mapping critical loads, critical levels, and exceedances on a national or regional scale. Th...

  10. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  11. Mapping Deeply

    Directory of Open Access Journals (Sweden)

    Denis Wood

    2015-08-01

    Full Text Available This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, water, electricity into the stuff of individual lives (sidewalk graffiti, wind chimes, barking dogs, and vice versa. Maps in the central transformer section of the atlas were to have charted this process in action, as in one showing the route of an individual newspaper into the neighborhood, then through the neighborhood to a home, and finally, as trash, out of the neighborhood in a garbage truck; though few of these had been completed when the project concluded in 1986. Resurrected in 1998 in an episode on Ira Glass’ This American Life, the atlas was finally published, as Everything Sings: Maps for a Narrative Atlas, in 2010 (and an expanded edition in 2013.

  12. Brain Autopsy

    Science.gov (United States)

    ... why a family should consider arranging for a brain autopsy upon the death of their loved one. To get a definitive ... study of tissue removed from the body after death. Examination of the whole brain is important in understanding FTD because the patterns ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues both help to direct ... comparing such children to those with normal brain development may help scientists to pinpoint when and where mental disorders begin and perhaps how to slow or stop ...

  15. Brain peroxisomes.

    Science.gov (United States)

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  16. Cognitive maps

    DEFF Research Database (Denmark)

    Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann

    2014-01-01

    . Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...... and innovation field are related and under which dimensions they differ. The paper draws preliminary conclusions on the implications of the different world- views on the innovation process. With the growing importance of the design approach in innovation e.g. design thinking, a clear conception...

  17. MRI-DTI Tractography to Quantify Brain Connectivity in Traumatic Brain Injury

    Science.gov (United States)

    2009-04-01

    to Traumatic Brain Injury and Alzheimer Disease ”, 5-th International Annual Symposium of the Brain Mapping and Intraoperative Surgical Planning... Alzheimer Disease , Proc Intl Soc Mag Reson Med 15: 343, 2007. 9. Singh M and Jeong J-W, “ICA based multi-fiber tractography” Proceedings, 17-th

  18. Mole Mapping.

    Science.gov (United States)

    Crippen, Kent J.; Curtright, Robert D.; Brooks, David W.

    2000-01-01

    The abstract nature of the mole and its applications to problem solving make learning the concept difficult for students, and teaching the concept challenging for teachers. Presents activities that use concept maps and graphing calculators as tools for solving mole problems. (ASK)

  19. Projective mapping

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus

    2012-01-01

    Projective Mapping (Risvik et.al., 1994) and its Napping (Pagès, 2003) variations have become increasingly popular in the sensory field for rapid collection of spontaneous product perceptions. It has been applied in variations which sometimes are caused by the purpose of the analysis and sometime...

  20. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    looks at computer-assisted cartography as part of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia...

  1. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  2. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  3. Mapping the cerebral subject in contemporary culture

    OpenAIRE

    Ortega,Francisco Javier Guerrero; Vidal, Fernando

    2007-01-01

    The research reported here aims at mapping the “cerebral subject” in contemporary society. The term “cerebral subject” refers to an anthropological figure that embodies the belief that human beings are essentially reducible to their brains. Our focus is on the discourses, images and practices that might globally be designated as “neuroculture.” From public policy to the arts, from the neurosciences to theology, humans are often treated as reducible to their brains. The new discipline of neuro...

  4. Brain Basics

    Medline Plus

    Full Text Available ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ... Higher Death Rate Among Youth with Psychosis Delayed Walking Link ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... Some people who develop a mental illness may recover completely; others may have repeated episodes of illness ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... that contains codes to make proteins and other important body chemicals. DNA also includes information to control ... cells required for normal function and plays an important role during early brain development. It may also ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ... can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as mood, ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting to NIMH National Institutes of ... electrical signals. The brain begins as a small group of cells in the outer layer of a ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  12. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. The analysis shows a multifaceted landscape of innovation around an existing regime, built around existing ways of working...... and developed over generations. The regime is challenged from various niches and the socio-technical landscape through trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation...... potential. The paper further discusses how existing policymaking operates in a number of tensions one being between government and governance. Based on the concepts from SNM the paper introduces an innovation map in order to support the development of meta-governance policymaking. By mapping some...

  13. Mapping filmmaking

    DEFF Research Database (Denmark)

    Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik

    2010-01-01

    This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus ...... is on their learning practices and how they create ‘learning paths’ in relation to resources in diverse learning contexts, whether formal, non-formal and informal contexts.......This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus...

  14. Brain death.

    Science.gov (United States)

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families.

  15. Brain computer

    Directory of Open Access Journals (Sweden)

    Sarah N. Abdulkader

    2015-07-01

    Full Text Available Brain computer interface technology represents a highly growing field of research with application systems. Its contributions in medical fields range from prevention to neuronal rehabilitation for serious injuries. Mind reading and remote communication have their unique fingerprint in numerous fields such as educational, self-regulation, production, marketing, security as well as games and entertainment. It creates a mutual understanding between users and the surrounding systems. This paper shows the application areas that could benefit from brain waves in facilitating or achieving their goals. We also discuss major usability and technical challenges that face brain signals utilization in various components of BCI system. Different solutions that aim to limit and decrease their effects have also been reviewed.

  16. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  17. An Integrated Map of Soybean Physical Map and Genetic Map

    Institute of Scientific and Technical Information of China (English)

    QI Zhaoming; LI Hui; WU Qiong; SUN Yanan; LIU Chunyan; HU Guohua; CHEN Qingshan

    2009-01-01

    Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical map and genetic map. In this study, soybean genome sequence data, released by JGI (US Department of Energy's Joint Genome Institute), had been downloaded. With the software Blast 2.2.16, a total of 161 super sequences were mapped on the soybean public genetic map to construct an integrated map. The length of these super sequences accounted for 73.08% of all the genome sequence. This integrated map could be used for gene cloning, gene mining, and comparative genome of legume.

  18. Mapping of

    Directory of Open Access Journals (Sweden)

    Sayed M. Arafat

    2014-06-01

    Full Text Available Land cover map of North Sinai was produced based on the FAO-Land Cover Classification System (LCCS of 2004. The standard FAO classification scheme provides a standardized system of classification that can be used to analyze spatial and temporal land cover variability in the study area. This approach also has the advantage of facilitating the integration of Sinai land cover mapping products to be included with the regional and global land cover datasets. The total study area is covering a total area of 20,310.4 km2 (203,104 hectare. The landscape classification was based on SPOT4 data acquired in 2011 using combined multispectral bands of 20 m spatial resolution. Geographic Information System (GIS was used to manipulate the attributed layers of classification in order to reach the maximum possible accuracy. GIS was also used to include all necessary information. The identified vegetative land cover classes of the study area are irrigated herbaceous crops, irrigated tree crops and rain fed tree crops. The non-vegetated land covers in the study area include bare rock, bare soils (stony, very stony and salt crusts, loose and shifting sands and sand dunes. The water bodies were classified as artificial perennial water bodies (fish ponds and irrigated canals and natural perennial water bodies as lakes (standing. The artificial surfaces include linear and non-linear features.

  19. Effects of Xianlong Capsule on Balance Ability and Brain Electrical Activity Mapping in Vascular dementia%仙龙胶囊对血管性痴呆患者平衡能力和脑电地形图的影响

    Institute of Scientific and Technical Information of China (English)

    赵琰; 周文泉; 涂人顺; 贾敏

    2001-01-01

    目的:初步探讨仙龙胶囊治疗老年血管性痴呆的作用机理。方 法:随机分组,单盲给 药。治疗组 24 例给予仙龙胶囊,对照组 22 例给予喜得镇。分别测定两组药物对患者平衡 能力和脑电地形图的影响。结果:仙龙胶囊可改善血管性痴呆患者的平衡能力,降低脑电地 形的异常率,总疗效率优于喜得镇。结论:仙龙胶囊治疗血管性痴呆的作用机制可能与其明显改善中枢神经细胞功能状态的作用 有关。%Objective: To investigate the effects of Xianlong cap sule (XLC) for senile vascular dementia (VD). Methods: Forty six cases of VD wer e randomly allocated to two groups. XLC group (24 cases) were treated with XLC a nd the control group (22 cases) treated with hydergin. Balance ability and brain electrical activity mapping were observed. Results: XLC improved the balance ab ility and reduced the occurrence of abnormal brain electrical activity mapping i n VD patients. Conclusion: The mechanism of XLC for VD is probably related to th e improvement of the function of central nerve cell.

  20. Robot brains

    NARCIS (Netherlands)

    Babuska, R.

    2011-01-01

    The brain hosts complex networks of neurons that are responsible for behavior in humans and animals that we generally call intelligent. I is not easy to give an exact definition of intelligence – for the purpose of this talk it will suffice to say that we refer to intelligence as a collection of cap

  1. Positron emission tomography (PET) study of the alterations in brain pharmacokinetics of methamphetamine in methamphetamine sensitized animals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hitoshi [Tohoku Univ., Sendai (Japan). Hospital

    2001-08-01

    I investigated the differences in brain pharmacokinetics of [{sup 11}C]methamphetamine ([{sup 11}C]MAP) in normal and MAP sensitized animals using positron emission tomography (PET). [{sup 11}C]MAP was synthesized by an automated on-line [{sup 11}C]methylation system. I newly produced MAP sensitized dog and monkey by repeated MAP treatment. The maximal level of accumulation of [{sup 11}C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. This result suggests the changes in the pharmacokinetic profile of MAP in the brain affect the development or expression of MAP-induced behavioral sensitization. However, the overaccumulation of [{sup 11}C]MAP in the sensitized monkey brain was not observed due to the influence of anesthesia. (author)

  2. 30 Former NFL Players Pledge Their Brains for Research

    Science.gov (United States)

    ... prevent and treat CTE, and [it] has provided insights that have launched multiple studies at the Boston ... Traumatic Brain Injury About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  3. Quantitative Architectural Analysis: A New Approach to Cortical Mapping

    Science.gov (United States)

    Schleicher, Axel; Morosan, Patricia; Amunts, Katrin; Zilles, Karl

    2009-01-01

    Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological…

  4. Mapping Resilience

    DEFF Research Database (Denmark)

    Carruth, Susan

    2015-01-01

    Resilience theory is a growing discipline with great relevance for the discipline of planning, particularly in fields like energy planning that face great uncertainty and rapidly transforming contexts. Building on the work of the Stockholm Resilience Centre, this paper begins by outlining...... the relationship between resilience and energy planning, suggesting that planning in, and with, time is a core necessity in this domain. It then reviews four examples of graphically mapping with time, highlighting some of the key challenges, before tentatively proposing a graphical language to be employed...... by planners when aiming to construct resilient energy plans. It concludes that a graphical language has the potential to be a significant tool, flexibly facilitating cross-disciplinary communication and decision-making, while emphasising that its role is to support imaginative, resilient planning rather than...

  5. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  6. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  7. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  8. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  9. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  10. Brain and Addiction

    Science.gov (United States)

    ... Search Term(s): Teens / Drug Facts / Brain and Addiction Brain and Addiction Print Your Brain Your brain is who you are. It’s what ... solve problems, and make decisions. How Does Your Brain Communicate? The brain is a complex communications network ...

  11. Alterations in Cortical Thickness and White Matter Integrity in Mild-to-Moderate Communicating Hydrocephalic School-Aged Children Measured by Whole-Brain Cortical Thickness Mapping and DTI

    Science.gov (United States)

    Ye, Xinjian; Bai, Guanghui; Fu, Yuchuan; Mao, Chuanwan; Wu, Aiqin

    2017-01-01

    Follow-up observation is required for mild-to-moderate hydrocephalic patients because of the potential damage to brain. However, effects of mild-to-moderate hydrocephalus on gray and white matter remain unclear in vivo. Using structural MRI and diffusion tensor imaging (DTI), current study compared the cortical thickness and white matter integrity between children with mild-to-moderate communicating hydrocephalus and healthy controls. The relationships between cortical changes and intelligence quota were also examined in patients. We found that cortical thickness in the left middle temporal and left rostral middle frontal gyrus was significantly lower in the hydrocephalus group compared with that of controls. Fractional anisotropy in the right corpus callosum body was significantly lower in the hydrocephalus group compared with that of controls. In addition, there was no association of cortical thinning or white matter fractional anisotropy with intelligence quota in either group. Thus, our findings provide clues to that mild-to-moderate hydrocephalus could lead to structural brain deficits especially in the middle temporal and middle frontal gyrus prior to the behavior changes.

  12. 妊娠中期胎脑发育的7.0T MRI研究%Mapping fetal brain development in the second trimester with 7.0T magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    张忠和; 林祥涛; 滕皋军; 赵斌; 方芳; 刘庆伟; 臧凤超; 刘树伟

    2013-01-01

    Objective To obtain the three dimensional visualization model with normal measurements of fetal brain in the second trimester and analyze the developmental changes with gestational age (GA),sexual dimorphisms and cerebral asymmetries.Methods The brains of 69 fetal specimens of 12-22 weeks GA were scanned by 7.0T magnetic resonance imaging (MRI).The developing structures were analyzed and a three dimensional visualization model was rebuilt with Amira 4.1 software.Results Most sulci,except for postcentral and intraparietal sulcus,were present until 22 weeks GA.And none developed secondary branches.Laminar organization,described as early as 12 weeks GA,was delineated as layers with different signal intensities and became typical after 16 weeks GA.Basal nuclei was distinctly visible.Brains had different growth rates linearly increasing with GA.But neither sexual dimorphisms nor cerebral asymmetries was detected.Conclusions The initial developmental stage of fetal brain occurs at 12-22 weeks GA.The developing structures may be distinctly visualized on 7.0T post-mortem MRI.And the three dimensional visualization model aids greatly in the precise cognition of immature brain.%目的 获得妊娠中期胎脑的三维可视化模型及正常测量值,分析其与孕龄的变化趋势及性别与半球间差异.方法 69例12 ~ 22周胎儿,进行7.0T MR扫描.分析胎脑的发育状况,并应用Amira4.1软件进行分割并三维重建.结果 22周时,除中央后沟与顶内沟外,其他脑沟均可分辨,但均未发出次级分支.12周时即可分辨出层状结构,16周后发育典型,呈现为信号不同的堆积条带.16周后基底核团与其间界线显示清晰.小脑原裂与齿状核此时也可辨认,20周时,小脑已具备典型成人外观.三维重建图像上,基底核、侧脑室与皮质表面脑沟显示清楚.胎脑测量值与孕龄呈现直线增长,速度不一.未发现结果存在性别与半球间差异.结论 12 ~ 22周时,胎脑

  13. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  14. Animating Brains

    Science.gov (United States)

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  15. Human Mind Maps

    Science.gov (United States)

    Glass, Tom

    2016-01-01

    When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…

  16. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor

  17. A 4D CT digital phantom of an individual human brain for perfusion analysis

    NARCIS (Netherlands)

    Manniesing, R.; Brune, C.; Ginneken, B. van; Prokop, M.

    2016-01-01

    Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment

  18. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  19. ShakeMap

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ShakeMap is a product of the USGS Earthquake Hazards Program in conjunction with the regional seismic networks. ShakeMaps provide near-real-time maps of ground...

  20. Mapping: A Course.

    Science.gov (United States)

    Whitmore, Paul M.

    1988-01-01

    Reviews the history of cartography. Describes the contributions of Strabo and Ptolemy in early maps. Identifies the work of Gerhard Mercator as the most important advancement in mapping. Discusses present mapping standards from history. (CW)

  1. Mapping with the Masses: Google Map Maker

    Science.gov (United States)

    Pfund, J.

    2008-12-01

    After some 15,000 years of map making, which saw the innovations of cardinal directions, map projections for a spherical earth, and GIS analysis, many parts of the world still appear as the "Dark Continent" on modern maps. Google Map Maker intends to shine a light on these areas by tapping into the power of the GeoWeb. Google Map Maker is a website which allows you to collaborate with others on one unified map to add, edit, locate, describe, and moderate map features, such as roads, cities, businesses, parks, schools and more, for certain regions of the world using Google Maps imagery. In this session, we will show some examples of how people are mapping with this powerful tool as well as what they are doing with the data. With Google Map Maker, you can become a citizen cartographer and join the global network of users helping to improve the quality of maps and local information in your region of interest. You are invited to map the world with us!

  2. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...... underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential...

  3. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    The blood flow to a given brain region increases as the level of neural activity is augmented. Hence mapping of variations in regional cerebral blood flow affords a means of imaging the activity of various brain regions during various types of brain work. The paper summarizes the patterns...

  4. Interoperable atlases of the human brain.

    Science.gov (United States)

    Amunts, K; Hawrylycz, M J; Van Essen, D C; Van Horn, J D; Harel, N; Poline, J-B; De Martino, F; Bjaalie, J G; Dehaene-Lambertz, G; Dehaene, S; Valdes-Sosa, P; Thirion, B; Zilles, K; Hill, S L; Abrams, M B; Tass, P A; Vanduffel, W; Evans, A C; Eickhoff, S B

    2014-10-01

    The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored.

  5. Positron emission tomography (PET) study of the alterations in brain distribution of [{sup 11}C]dethamphetamine in methamphetamine sensitized dog

    Energy Technology Data Exchange (ETDEWEB)

    Mizugaki, Michinao; Nakamura, Hitoshi; Hishinuma, Takanori; Tomioka, Yoshihisa; Ishiwata, Shunji; Suzuki, Hideaki; Ido, Tatsuo; Iwata, Ren; Funaki, Yoshihito; Itoh, Masatoshi; Fujiwara, Takehiko; Yanai, Kazuhiko; Sato, Mitsumoto; Numachi, Yohtaro; Yoshida, Sumiko

    1995-08-01

    [{sup 11}C]Methamphetamine ([{sup 11}C]MAP) was synthesized by an automated on-line [{sup 11}C]methylation system for positron emission tomography (PET) study. We newly produced a MAP sensitized dog by repeated MAP treatment and studied the brain distribution of [{sup 11}C]MAP in the normal and the MAP sensitized dog. The maximal level of accumulation of [{sup 11}C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. No difference was found in the metabolism of MAP between the two conditions. The significant increase of [{sup 11}C]MAP in the MAP sensitized brain indicates that subchronic MAP administration causes some functional change in uptake site of MAP.

  6. Brain Tumor Surgery

    Science.gov (United States)

    ... Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. The part of the brain where the tumor is/was located. The areas ...

  7. Brain injury - discharge

    Science.gov (United States)

    ... and caregivers. Biausa.org. www.biausa.org/brain-injury-family-caregivers.htm#Manage the Home . Accessed December 8, 2016. ... Caregiver Alliance; National Center on Caregiving. Traumatic brain injury. ... www.caregiver.org/traumatic-brain-injury . Accessed ...

  8. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  9. Mapping the Heart

    Science.gov (United States)

    Hulse, Grace

    2012-01-01

    In this article, the author describes how her fourth graders made ceramic heart maps. The impetus for this project came from reading "My Map Book" by Sara Fanelli. This book is a collection of quirky, hand-drawn and collaged maps that diagram a child's world. There are maps of her stomach, her day, her family, and her heart, among others. The…

  10. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  11. USGS Map Indices Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Map Indices service from The National Map (TNM) consists of 1x1 Degree, 30x60 Minute (100K), 15 Minute (63K), 7.5 Minute (24K), and 3.75 Minute grid...

  12. Google Maps: You Are Here

    Science.gov (United States)

    Jacobsen, Mikael

    2008-01-01

    Librarians use online mapping services such as Google Maps, MapQuest, Yahoo Maps, and others to check traffic conditions, find local businesses, and provide directions. However, few libraries are using one of Google Maps most outstanding applications, My Maps, for the creation of enhanced and interactive multimedia maps. My Maps is a simple and…

  13. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  14. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  15. Web Mapping Using Logo on Map

    Directory of Open Access Journals (Sweden)

    Ximing Hou

    2012-12-01

    Full Text Available The newly proposed Logo on Map (LoM system consists of three modules: picture extraction module (PEM, logo matching module (LMM and web mapping module (WMM. Since the first two modules were covered in our previous paper, the third module WMM is described here to present a complete LoM system. Current research is focused on geo-location distribution of brands on Google Maps. Pictures taken by ordinary people are extracted using Picture Extraction Module (PEM. The pictures containing relevant logos are obtained via Logo Matching Module (LMM. Brand distributions are overlaid on Google Maps. In this paper, GPS and brands are briefly described, and the implementation of Web Mapping Module (WMM based on Google Maps API is detailed. Then several experiments are carried out on the selected top brands. Finally the LMM-pictures are mapped on the Google Maps and the geographical distributions of the brands are visualised. Brand uniqueness is discussed and conclusion is drawn that with unique brand names web mapping can visually reflect the real economic activities of a company in the world.

  16. Type 1 cannabinoid receptor mapping with [{sup 18}F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy [KU Leuven and University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); Martinez, Emili; Camon, Lluisa; Vera, Nuria de; Planas, Anna M. [IDIBAPS, Institute for Biomedical Research (IIBB-CSIC), Barcelona (Spain); Bormans, Guy [KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium); Baekelandt, Veerle [KU Leuven, Laboratory for Neurobiology and Gene Therapy, Leuven (Belgium); Laere, Koen van [KU Leuven and University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium)

    2010-12-15

    Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [{sup 18}F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB{sub 1}) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D{sub 2} receptor availability and amphetamine-induced turning behaviour. Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [{sup 18}F]MK-9470, [{sup 18}F]FDG and [{sup 11}C]raclopride. Relative glucose metabolism and parametric CB{sub 1} receptor and D{sub 2} binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). In the QA model, [{sup 18}F]MK-9470 uptake, glucose metabolism and D{sub 2} receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p < 2.10{sup -5}), while an increase for these markers was observed on the contralateral side (>5%, all p < 7.10{sup -4}). [{sup 18}F]MK-9470 binding was also increased in the cerebellum (p = 2.10{sup -5}), where it was inversely correlated to the number of ipsiversive turnings (p = 7.10{sup -6}), suggesting that CB{sub 1} receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p = 1.10{sup -6}). These data point to in vivo changes in endocannabinoid transmission, specifically for CB{sub 1} receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D{sub 2} and CB{sub 1} neurotransmission in the contralateral hemisphere. (orig.)

  17. 导航辅助皮层功能拓扑定位在累及功能区致痫灶手术中的初步应用%Preliminary topological trial in integrating brain mapping with 3D neuro - navigation for surgery involving eloquent cortex( case report and literature review)

    Institute of Scientific and Technical Information of China (English)

    赵晨杰; 徐纪文; 王桂松; 周洪语; 田鑫; 徐虎; 徐忠贤; 江基尧

    2011-01-01

    Objective With the help of image fusion,a 3D model of cortex covered with cortical electrodes was established.With that model,the electrophysiological information from the electrodes could be bound with gyri and sulci as point to point for analysis.A preliminary topological trial in clinical brain mapping was demonstrated,in order to improve the accuracy of localization and the outcome of surgery involving the eloquent cortex.Method One case of drug -resistant epilepsy was screened by long term video - EEG,localizing the epileptogenic zones around central areas without iateralization.There was no more valuable information could be supplied by imageology.Three subdural electrodes(4 ×8 grid; 4 ×6 grid; 1 ×6 strip) were then implanted for covering bilateral central cortex for 4 days.The long term video - ECoG and electrocortical stimulation had been applied in this period for more information about the foci and cortical function.Based on the 3D model that established by merging MRI and CT,the relationship between the foci and eloquent cortex could be shown as schemes for analysis and surgical plan.With the iastruction of neuronavigation and the schemes,the foci which was out of the funtional area would be removed and that involving would be thermocoagulated.Results Four clinical seizures were captured with three cortical electrodes and the cortical function of 52 areas were detected.Depending on the colleeted information,the operation was performed without postoperative complication.There was neither seizure nor permanent neurological deficit was shown after the surgery.Conclusions The technique of image fusion realized the visual combination of cortical electrodes and 3D brain model as a brain - computer interface.It demonstrates a preliminary topological trial for millimeter -scale human brain mapping in order to provide more accurate localization for surgery involving eloquent cortex,and would make the clinical topology of brain mapping to be true.%目的 应

  18. The vasculome of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Shuzhen Guo

    affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.

  19. Structural connectivity asymmetry in the neonatal brain.

    Science.gov (United States)

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy.

  20. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  1. Mapping in the cloud

    CERN Document Server

    Peterson, Michael P

    2014-01-01

    This engaging text provides a solid introduction to mapmaking in the era of cloud computing. It takes students through both the concepts and technology of modern cartography, geographic information systems (GIS), and Web-based mapping. Conceptual chapters delve into the meaning of maps and how they are developed, covering such topics as map layers, GIS tools, mobile mapping, and map animation. Methods chapters take a learn-by-doing approach to help students master application programming interfaces and build other technical skills for creating maps and making them available on the Internet. Th

  2. Mapping with Drupal

    CERN Document Server

    Palazzolo, Alan

    2011-01-01

    Build beautiful interactive maps on your Drupal website, and tell engaging visual stories with your data. This concise guide shows you how to create custom geographical maps from top to bottom, using Drupal 7 tools and out-of-the-box modules. You'll learn how mapping works in Drupal, with examples on how to use intuitive interfaces to map local events, businesses, groups, and other custom data. Although building maps with Drupal can be tricky, this book helps you navigate the system's complexities for creating sophisticated maps that match your site design. Get the knowledge and tools you ne

  3. Coded MapReduce

    OpenAIRE

    Li, Songze; Maddah-Ali, Mohammad Ali; Avestimehr, A. Salman

    2015-01-01

    MapReduce is a commonly used framework for executing data-intensive jobs on distributed server clusters. We introduce a variant implementation of MapReduce, namely "Coded MapReduce", to substantially reduce the inter-server communication load for the shuffling phase of MapReduce, and thus accelerating its execution. The proposed Coded MapReduce exploits the repetitive mapping of data blocks at different servers to create coding opportunities in the shuffling phase to exchange (key,value) pair...

  4. Some Semi - Equivelar Maps

    CERN Document Server

    Upadhyay, Ashish K; Maity, Dipendu

    2011-01-01

    Semi-Equivelar maps are generalizations of Archimedean Solids (as are equivelar maps of the Platonic solids) to the surfaces other than $2-$Sphere. We classify some semi equivelar maps on surface of Euler characteristic -1 and show that none of these are vertex transitive. We establish existence of 12-covered triangulations for this surface. We further construct double cover of these maps to show existence of semi-equivelar maps on the surface of double torus. We also construct several semi-equivelar maps on the surfaces of Euler characteristics -8 and -10 and on non-orientable surface of Euler characteristics -2.

  5. Parabolic-like maps

    CERN Document Server

    Lomonaco, Luciana Luna Anna

    2011-01-01

    In this paper we introduce the notion of parabolic-like mapping, which is an object similar to a polynomial-like mapping, but with a parabolic external class, i.e. an external map with a parabolic fixed point. We prove a straightening theorem for parabolic-like maps, which states that any parabolic-like map of degree 2 is hybrid conjugate to a member of the family Per_1(1), and this member is unique (up to holomorphic conjugacy) if the filled Julia set of the parabolic-like map is connected.

  6. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  7. Brain AVM (Arteriovenous Malformation)

    Science.gov (United States)

    ... a brain scan for another health issue or after the blood vessels rupture and cause bleeding in the brain (hemorrhage). Once diagnosed, a brain AVM can often be treated successfully to prevent complications, such as brain damage or stroke. Find out why Mayo Clinic is the best ...

  8. Brain and Nervous System

    Science.gov (United States)

    ... the left side; when you're listening to music, you're using the right side. It's believed that some people are more "right-brained" or "left-brained" while others are more "whole-brained," meaning they use both halves of their brain to the same degree. The outer layer of ...

  9. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  10. Inhibition and Brain Work

    OpenAIRE

    Buzsáki, György; Kaila, Kai; Raichle, Marcus

    2007-01-01

    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  11. Overlapping Structures in Sensory-Motor Mappings

    Science.gov (United States)

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  12. Using concept maps in perioperative education.

    Science.gov (United States)

    Noonan, Pam

    2011-11-01

    Critical thinking and clinical decision making are essential components of the knowledge and skills acquired in the perioperative education process. Although traditional didactic teaching methods remain predominant teaching strategies in perioperative nursing education, programs should include a variety of methods and tools to enhance learning of a considerable amount of complex material. Concept mapping is an active teaching strategy that can be used in nursing education to facilitate the development of critical thinking and decision-making skills. A concept map is a tool consisting of a main idea, subconcepts, and cross-links that organizes knowledge by showing relationships between concepts. Different types of maps can be used to present different types of learning material, depending on the focus of the lesson. Complex knowledge (eg, perioperative technology) can be better learned and retained when the brain works to organize information in a hierarchical framework and the information is built up with interacting concepts.

  13. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  14. MapBook

    Data.gov (United States)

    National Aeronautics and Space Administration — Beginning with the systematic mapping of the lunar surface more than three decades ago, this database contains over 1600 maps of the planets and satellites of the...

  15. NGS Survey Control Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Survey Control Map provides a map of the US which allows you to find and display geodetic survey control points stored in the database of the National...

  16. Letter of Map Revision

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  17. NAIP Status Maps Gallery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — NAIP Status Maps Gallery. These maps illustrate what aerial imagery collection is planned, whats been collected, when it is available and how it is available. These...

  18. Mapping Medicare Disparities Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Minority Health has designed an interactive map, the Mapping Medicare Disparities Tool, to identify areas of disparities between subgroups of...

  19. Improving wetland mapping techniques

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mapping wetland extent, structure and invasives using radar imagery. Acquiring optical, thermal, LIDAR, and RADAR images and analysis for improved wetland mapping,...

  20. Recovery Action Mapping Tool

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Recovery Action Mapping Tool is a web map that allows users to visually interact with and query actions that were developed to recover species listed under the...

  1. Invariants for Parallel Mapping

    Institute of Scientific and Technical Information of China (English)

    YIN Yajun; WU Jiye; FAN Qinshan; HUANG Kezhi

    2009-01-01

    This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., mapping from a reference curved surface to a parallel surface with identical normal direction). The second gradient operator, the second class of integral theorems, the Gauss-curvature-based integral theorems, and the core property of parallel mapping are used to derive a series of parallel mapping invadants or geometri-cally conserved quantities. These include not only local mapping invadants but also global mapping invari-ants found to exist both in a curved surface and along curves on the curved surface. The parallel mapping invadants are used to identify important transformations between the reference surface and parallel surfaces. These mapping invadants and transformations have potential applications in geometry, physics, biome-chanics, and mechanics in which various dynamic processes occur along or between parallel surfaces.

  2. Mapping Mutations on Phylogenies

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2005-01-01

    This chapter provides a short review of recent methodologies developed for mapping mutations on phylogenies. Mapping of mutations, or character changes in general, using the maximum parsimony principle has been one of the most powerful tools in phylogenetics, and it has been used in a variety...... of different applications, for example, in the detection of correlated evolution and to identify selection acting on DNA sequences. However, many uses of parsimony mappings have been criticized because they focus on only one of many possible mappings and/or because they do not incorporate statistical...... uncertainty in the mapping. Recently developed probabilistic methods can incorporate statistical uncertainty in the character mappings. In these methods, focus is on a probability distribution of mutational mappings instead of a single estimate of the mutational mapping....

  3. Lying with Maps

    OpenAIRE

    Monmonier, Mark

    2005-01-01

    Darrell Huff’s How to Lie with Statistics was the inspiration for How to Lie with Maps, in which the author showed that geometric distortion and graphic generalization of data are unavoidable elements of cartographic representation. New examples of how ill-conceived or deliberately contrived statistical maps can greatly distort geographic reality demonstrate that lying with maps is a special case of lying with statistics. Issues addressed include the effects of map scale on geometry and featu...

  4. Curriculum Mapping. Focus On

    Science.gov (United States)

    Molineaux, Rebecca

    2008-01-01

    This "Focus On" discusses curriculum mapping, a process that allows educators to align the curriculum both within and across grades and to ensure that the curriculum is in line with school, local, and state standards. It outlines the steps of the curriculum mapping process from planning the mapping initiative to creating and editing curriculum…

  5. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  6. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  7. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  8. Mapping a Changing World.

    Science.gov (United States)

    Stoltman, Joseph P.

    1992-01-01

    Addresses the importance of maps for instruction in both history and geography. Suggests that maps have gotten recent attention because of the rapid political changes occurring in Europe and the quincentenary of Columbus' voyage. Discusses different map projections and the importance of media and satellite display of real pictures of the world.…

  9. On the Complexity of Brain Disorders: A symptom-based approach

    Directory of Open Access Journals (Sweden)

    Ahmed A. Moustafa

    2016-02-01

    Full Text Available Mounting evidence shows that brain disorders involve multiple and different neural dysfunctions, including regional brain damage, change to cell structure, chemical imbalance, and/or connectivity loss among different brain regions. Understanding the complexity of brain disorders can help us map these neural dysfunctions to different symptom clusters as well as understand subcategories of different brain disorders. Here, we discuss data on the mapping of symptom clusters to different neural dysfunctions using examples from brain disorders such as major depressive disorder, Parkinson’s disease, schizophrenia, PTSD and Alzheimer’s disease. In addition, we discuss data on the similarities of symptoms in different disorders. Importantly, computational modeling work may be able to shed light on plausible links between various symptoms and neural damage in brain disorders.

  10. Cosmopolitan linkage disequilibrium maps

    Directory of Open Access Journals (Sweden)

    Gibson Jane

    2005-03-01

    Full Text Available Abstract Linkage maps have been invaluable for the positional cloning of many genes involved in severe human diseases. Standard genetic linkage maps have been constructed for this purpose from the Centre d'Etude du Polymorphisme Humain and other panels, and have been widely used. Now that attention has shifted towards identifying genes predisposing to common disorders using linkage disequilibrium (LD and maps of single nucleotide polymorphisms (SNPs, it is of interest to consider a standard LD map which is somewhat analogous to the corresponding map for linkage. We have constructed and evaluated a cosmopolitan LD map by combining samples from a small number of populations using published data from a 10-megabase region on chromosome 20. In support of a pilot study, which examined a number of small genomic regions with a lower density of markers, we have found that a cosmopolitan map, which serves all populations when appropriately scaled, recovers 91 to 95 per cent of the information within population-specific maps. Recombination hot spots appear to have a dominant role in shaping patterns of LD. The success of the cosmopolitan map might be attributed to the co-localisation of hot spots in all populations. Although there must be finer scale differences between populations due to other processes (mutation, drift, selection, the results suggest that a whole-genome standard LD map would indeed be a useful resource for disease gene mapping.

  11. Epidemiology of Brain Tumors.

    Science.gov (United States)

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  12. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard

    2011-01-01

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification models. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We show...

  13. Optical tomography of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C. [University College London, Department of Medical Physics and Bioengineering, London (United Kingdom); Austin, Topun [University College London, Department of Paediatrics and Child Health, London (United Kingdom)

    2007-11-15

    A new method of assessing neurological function and pathology in the newborn infant is being developed based on the transmission of near-infrared light across the brain. Absorption by blood over a range of wavelengths reveals a strong dependency on oxygenation status, and measurements of transmitted light enable the spatial variation in the concentrations of the oxygenated and de-oxygenated forms of hemoglobin to be derived. Optical tomography has so far provided static three-dimensional maps of blood volume and oxygenation as well as dynamic images revealing the brain's response to sensory stimulation and global hemodynamic changes. The imaging modality is being developed as a safe and non-invasive tool that can be utilized at the cotside in intensive care. Optical tomography of the healthy infant brain is also providing a means of studying neurophysiological processes during early development and the potential consequences of prematurity. (orig.)

  14. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  15. Strengthening connections: functional connectivity and brain plasticity.

    Science.gov (United States)

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  16. On palaeogeographic map

    Directory of Open Access Journals (Sweden)

    Zeng-Zhao Feng

    2016-01-01

    Full Text Available The palaeogeographic map is a graphic representation of physical geographical characteristics in geological history periods and human history periods. It is the most important result of palaeogeographic study. The author, as the Editor-in-Chief of Journal of Palaeogeography, Chinese Edition and English Edition, aimed at the problems of the articles submitted to and published in the Journal of Palaeogeography in recent years and the relevant papers and books of others, and integrated with his practice of palaeogeographic study and mapping, wrote this paper. The content mainly includes the data of palaeogeographic mapping, the problems of palaeogeographic mapping method, the “Single factor analysis and multifactor comprehensive mapping method —— Methodology of quantitative lithofacies palaeogeography”, i.e., the “4 steps mapping method”, the nomenclature of each palaeogeographic unit in palaeogeographic map, the explanation of each palaeogeographic unit in palaeogeographic map, the explanation of significance of palaeogeographic map and palaeogeographic article, the evaluative standards of palaeogeographic map and palaeogeographic article, and the self-evaluation. Criticisms and corrections are welcome.

  17. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  18. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... Videos mild Traumatic Brain Injury 94447 reads Please Log in You must be logged in to access ... Brain Injury (DCoE) to promote the processes of building resilience, facilitating recovery and supporting reintegration of returning ...

  19. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  20. Aneurysm in the brain

    Science.gov (United States)

    ... aneurysms Medical problems such as polycystic kidney disease , coarctation of the aorta , and endocarditis High blood pressure, ... Read More Aneurysm Brain aneurysm repair Brain surgery Coarctation of the aorta Endovascular embolization Epilepsy - overview Incidence ...

  1. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  2. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  3. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  4. Brain cancer spreads.

    Science.gov (United States)

    Perryman, Lara; Erler, Janine T

    2014-07-30

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).

  5. Brain Death Determination.

    Science.gov (United States)

    Spinello, Irene M

    2015-09-01

    In the United States, each year 1% to 2% of deaths are brain deaths. Considerable variation in the practice of determining brain death still remains, despite the publication of practice parameters in 1995 and an evidence-based guideline update in 2010. This review is intended to give bedside clinicians an overview of definition, the causes and pitfalls of misdiagnosing brain death, and a focus on the specifics of the brain death determination process.

  6. Brain cancer spreads

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).......The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue)....

  7. Brain-Actuated Interaction

    OpenAIRE

    Millán, José del R.; Renkens, F.; Mouriño, J.; Gerstner, W.

    2004-01-01

    Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results have been obtained with either invasive approaches (requiring surgical implantation of electrodes) or synchronous protocols (where brain signals are time-locked to external cues). In this paper we describe a portable noninvasive brain-computer...

  8. MRI Brain Activation During Instruction of Dyslexic Children

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available Ten children with dyslexia and 11 normal readers performed tasks of phoneme mapping (assigning sounds to letters and morpheme mapping (relating suffixed words to their roots during fMRI scanning, before and after 28 hours of comprehensive reading instruction, in a study of the effects of reading instruction on brain activation in children with dyslexia at University of Washington, Seattle, WA.

  9. Primary lymphoma of the brain

    Science.gov (United States)

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  10. The connected brain

    NARCIS (Netherlands)

    van den Heuvel, M.P.

    2009-01-01

    The connected brain Martijn van den Heuvel, 2009 Our brain is a network. It is a network of different brain regions that are all functionally and structurally linked to each other. In the past decades, neuroimaging studies have provided a lot of information about the specific functions of each separ

  11. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  12. Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2012-05-01

    Full Text Available Wellingson S Paiva1, Erich T Fonoff1, Marco A Marcolin2, Hector N Cabrera1, Manoel J Teixeira11Division of Functional Neurosurgery, Hospital das Clinicas, 2TMS Laboratory of the Psychiatry Institute, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, BrazilAbstract: Transcranial magnetic stimulation (TMS is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus.Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure.Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES was 4.16 ± 1.02 mm (range: 2.56–5.27 mm.Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.Keywords: transcranial magnetic stimulation, cortical mapping, brain tumor, motor cortex

  13. 3D brain mapping using a deformable neuroanatomy

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. (Washington Univ., St. Louis, MO (United States))

    1994-03-01

    This paper presents two different mathematical methods that can be used separately or in conjunction to accommodate shape variabilities between normal human neuroanatomies. Both methods use a digitized textbook to represent the complex structure of a typical normal neuroanatomy. Probabilistic transformations on the textbook coordinate system are defined to accommodate shape differences between the textbook and images of other normal neuroanatomies. The transformations are constrained to be consistent with the physical properties of deformable elastic solids in the first method and those of viscous fluids in the second. Results presented in this paper demonstrate how a single deformable textbook can be used to accommodate normal shape variability. (Author).

  14. IBMISPS (International Brain Mapping & Intraoperative Surgical Planning Symposium)

    Science.gov (United States)

    2005-12-01

    the Treatment of Trigeminal Neuralgia Antonio A. F. De Salles, M.D., Ph.D. Professor of Neurosurgery Head of Stereotactic Radiosurgery at UCLA...Introduction: CyberKnife radiosurgery has increasingly been recognized as an effective treatment for intractable trigeminal neuralgia . At Newport Diagnostic...Center we performed the first Cyberknife treatment of trigeminal neuralgia in the world in 1999 and have since treated patients on a regular basis

  15. Three-Dimensional Computer Graphics Brain-Mapping Project.

    Science.gov (United States)

    1987-03-15

    carboxymethylcellulose (CMC). A mound of CMC was built up around the specimen to complete the embed- ding. In order to reduce the reflectance off the frozen CMC...University of Texas Health Center, Dallas, Texas). Details of the produc- tion and characterization of this antiserum have been recently described...cell density. This reduces the prospect for characterizing the cell types on the basis of their dendritic morphology within the IPL. The nAChR staining

  16. Mapping brain structure and personality in late adulthood

    NARCIS (Netherlands)

    Kaasinen, [No Value; Maguire, RP; Kurki, T; Bruck, A; Rinne, JO

    2005-01-01

    Cerebral gray matter (GM) volume decreases in normal aging with a parallel increase in intracranial cerebrospinal fluid (CSF) volume. There is considerable interindividual variation in these changes, and the consequences of age-related GM shrinkage and CSF expansion are unclear. The present study ex

  17. Map Projection Transitions

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2013-06-01

    Full Text Available Map Projection Transitions is a very successful web application about map projections. The web page (http://www.jasondavies.com/maps/transition pre­sents a world map with graticule and country borders in the oblique Aitoff projection, with the South Pole. The map is not static, but animated. The South Pole moves toward the bottom and Earth rotates around its poles. The animation lasts five seconds, after which the projection changes and movement continues for five seconds, after which the projection changes again. Names of projections appear in a separate window. There are a total of 56 projections. The South Pole eventually becomes invisible and the North Pole appears at the top. Various parts of Earth appear in the center of the map by rotating around the poles.

  18. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose secon......-torus symmetry in terms of tri-symplectic geometry of four-manifolds. (C) 2012 Elsevier Inc. All rights reserved....

  19. Classification of Lipschitz mappings

    CERN Document Server

    Piasecki, Lukasz

    2013-01-01

    The Lipschitz Condition Nonlinear spectral radius Uniformly lipschitzian mappings Basic Facts on Banach Spaces Convexity The operator norm Dual spaces, reexivity, the weak, and weak* topologiesMean Lipschitz Condition Nonexpansive and mean nonexpansive mappings in Banach spaces General case On the Lipschitz Constants for Iterates of Mean Lipschitzian Mappings A bound for Lipschitz constants of iterates A bound for the constant k∞(T)Moving averages in Bana

  20. Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping

    NARCIS (Netherlands)

    Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.

    2011-01-01

    This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response a

  1. Obesity Prevalence Maps

    Science.gov (United States)

    ... Breastfeeding Micronutrient Malnutrition State and Local Programs Adult Obesity Prevalence Maps Recommend on Facebook Tweet Share Compartir Obesity Prevalence in 2015 Varies Across States and Territories ...

  2. Similarity transformations of MAPs

    Directory of Open Access Journals (Sweden)

    Andersen Allan T.

    1999-01-01

    Full Text Available We introduce the notion of similar Markovian Arrival Processes (MAPs and show that the event stationary point processes related to two similar MAPs are stochastically equivalent. This holds true for the time stationary point processes too. We show that several well known stochastical equivalences as e.g. that between the H 2 renewal process and the Interrupted Poisson Process (IPP can be expressed by the similarity transformations of MAPs. In the appendix the valid region of similarity transformations for two-state MAPs is characterized.

  3. Brain emotional learning based Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Abdolreza Asadi Ghanbari

    2012-09-01

    Full Text Available A brain computer interface (BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain-computer interfaces (BCIs bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC, which is based on emotional learning process. The main purpose of this research is to use a structural model based on the limbic system of mammalian brain, for decision making and control engineering applications. We have adopted a network model developed by Moren and Balkenius, as a computational model that mimics amygdala, orbitofrontal cortex, thalamus, sensory input cortex and generally, those parts of the brain thought responsible for processing emotions. The developed method was compared with other methods used for EEG signals classification (support vector machine (SVM and two different neural network types (MLP, PNN. The result analysis demonstrated an efficiency of the proposed approach.

  4. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known......-independent, reliable approach to delineating regions that can be identified only by functional imaging, here exemplified by the raphe nuclei. This approach can be used in future studies to create functional VOI maps based on neuroreceptor fingerprints retrieved through in vivo brain imaging Udgivelsesdato: 2009/6...

  5. The Blue Collar Brain

    Directory of Open Access Journals (Sweden)

    Guy eVan Orden

    2012-06-01

    Full Text Available Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue collar role compared to the white collar control exercised by the body. The argument that supports a blue collar role for the brain is also consistent with recent discoveries clarifying the white collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

  6. Neuroradiology of the Brain.

    Science.gov (United States)

    Yeager, Susan

    2016-03-01

    A variety of imaging modalities are currently used to evaluate the brain. Prior to the 1970s, neurologic imaging involved radiographs, invasive procedures for spinal and carotid artery air and contrast injection, and painful patient manipulation. The brain was considered inaccessible to imaging and referred to as "the dark continent." Since then, advances in neuroradiology have moved the brain from being a dark continent to evaluation techniques that illuminate brain contents and pathology. These advances enable quick acquisition of images for prompt diagnosis and treatment. This article reviews anatomy, diagnostic principles, and clinical application of brain imaging beyond plain radiographs.

  7. Instant BrainShark

    CERN Document Server

    Li, Daniel

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. ""Instant BrainShark"" is a step-by-step guide to creating online presentations using BrainShark. The book covers digital marketing best practices alongside tips for sales conversions. The book is written in an easy-to-read style for anybody to easily pick up and get started with BrainShark.Instant BrainShark is for anyone who wants to use BrainShark to create presentations online and share them around the community. The book is also useful for developers who are looking to explore

  8. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  9. Whither brain death?

    Science.gov (United States)

    Bernat, James L

    2014-01-01

    The publicity surrounding the recent McMath and Muñoz cases has rekindled public interest in brain death: the familiar term for human death determination by showing the irreversible cessation of clinical brain functions. The concept of brain death was developed decades ago to permit withdrawal of therapy in hopeless cases and to permit organ donation. It has become widely established medical practice, and laws permit it in all U.S. jurisdictions. Brain death has a biophilosophical justification as a standard for determining human death but remains poorly understood by the public and by health professionals. The current controversies over brain death are largely restricted to the academy, but some practitioners express ambivalence over whether brain death is equivalent to human death. Brain death remains an accepted and sound concept, but more work is necessary to establish its biophilosophical justification and to educate health professionals and the public.

  10. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  11. THE PERSONALITY AND THE BRAIN: AN INEVITABLE ENCOUNTER

    Directory of Open Access Journals (Sweden)

    Eduardo J. Pedrero Pérez

    2015-01-01

    Full Text Available Personality is a construct that, until recent years, had not attracted much interest among neurologists and neuropsychologists. However, during the past decade, studies have proliferated that seek brain, structural and functional correlates of personality traits proposed by different theories, especially the Big Five model of personality. These studies have accumulated evidence about the fact that the five traits are related to specific brain locations, allowing us, at the present time, to be able to draw a brain map associated with each trait. More recent studies relate these features with the brain default mode network, where the compendium of implicit rules of management which we call personality resides. This will gradually take shape throughout one’s lifetime through mechanisms of "experience-dependent plasticity". These proposals represent the threshold of a paradigm shift that may lead the study of "mental disorders" to the territory of alterations in brain connectivity, which is an immediate challenge for neuroscience.

  12. Occupancy Grid Map Merging Using Feature Maps

    Science.gov (United States)

    2010-11-01

    Gonzalez, “Toward a unified bayesian approach to hybrid metric-topological SLAM,” IEEE Transactions on Robotics , 24(2), April 2008, 259-270. [14] G...Risetti, C. Stachniss, and W. Burgard, “Improved Techniques for grid mapping with Rao-Blackwellized Particle Filter,” IEEE Transactions on Robotics , 23

  13. On circle map coupled map lattice

    CERN Document Server

    Ahmed, E

    2002-01-01

    Circle map in one and two dimensions is studied. Both its stability, synchronization using bounded control and persistence is discussed. This work is expected to be applicable in ecology where spatial effects are known to be important. Also it will be relevant to systems where delay effects are not negligible.

  14. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  15. The future of the brain essays by the world's leading neuroscientists

    CERN Document Server

    Freeman, Jeremy

    2015-01-01

    An unprecedented look at the quest to unravel the mysteries of the human brain, The Future of the Brain takes readers to the absolute frontiers of science. Original essays by leading researchers such as Christof Koch, George Church, Olaf Sporns, and May-Britt and Edvard Moser describe the spectacular technological advances that will enable us to map the more than eighty-five billion neurons in the brain, as well as the challenges that lie ahead in understanding the anticipated deluge of data and the prospects for building working simulations of the human brain. A must-read for anyone trying to understand ambitious new research programs such as the Obama administration's BRAIN Initiative and the European Union’s Human Brain Project, The Future of the Brain sheds light on the breathtaking implications of brain science for medicine, psychiatry, and even human consciousness itself.

  16. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  17. BenMAP Downloads

    Science.gov (United States)

    Download the current and legacy versions of the BenMAP program. Download configuration and aggregation/pooling/valuation files to estimate benefits. BenMAP-CE is free and open source software, and the source code is available upon request.

  18. Statistical air quality mapping

    NARCIS (Netherlands)

    Kassteele, van de J.

    2006-01-01

    This thesis handles statistical mapping of air quality data. Policy makers require more and more detailed air quality information to take measures to improve air quality. Besides, researchers need detailed air quality information to assess health effects. Accurate and spatially highly resolved maps

  19. Quaternionic versus complex maps

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita del Salento and INFN, Sezione di Lecce, I-73100 Lecce (Italy); Solombrino, L [Dipartimento di Fisica dell' Universita del Salento and INFN, Sezione di Lecce, I-73100 Lecce (Italy)

    2007-11-15

    We discuss the relation between completely positive quaternionic maps and the corresponding complex maps obtained via projection operation. In order to illustrate this formalism, we reobtain the (complex) qubit subdynamics of maximally entangled Bell states, as complex projection of unitary dynamics between quaternionic pure states.

  20. Pore size distribution mapping

    OpenAIRE

    Strange, John H.; J. Beau W. WEBBER; Schmidt, S.D.

    1996-01-01

    Pore size distribution mapping has been demonstrated using NMR cryoporometry\\ud in the presence of a magnetic field gradient, This novel method is extendable to 2D and 3D mapping. It offers a unique nondestructive method of obtaining full pore-size distributions in the range 3 to 100 nm at any point within a bulk sample. \\ud

  1. MUTYH Associated Polyposis (MAP)

    DEFF Research Database (Denmark)

    Poulsen, Marie Louise Mølgaard; Bisgaard, M L

    2008-01-01

    MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial...

  2. Simplifying Massive Contour Maps

    DEFF Research Database (Denmark)

    Arge, Lars; Deleuran, Lasse Kosetski; Mølhave, Thomas;

    2012-01-01

    We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours.......We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours....

  3. Map-A-Planet

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Map-A-Planet website allows users to create and download custom image maps of planets and satellites from a variety of missions in an easy to use web interface

  4. Android Mapping Application

    Directory of Open Access Journals (Sweden)

    Abdalwhab Bakheet

    2014-04-01

    Full Text Available Location-aware and mapping applications have gone f rom a desirable feature to an essential part of any smart phone. Whether a user is checking into a social network, looking for a pharmacy in the middle of the night, or located in somewhere and needs help, the key is always the same: location. In this project, an Android mapping application is developed. The application is able to display the map of the whole world while online or, display a pre-downloaded map while offline, track the user’s location, display a compass to determine north, send the user’s location to others in case of emergency using SMS, receive and interpret received location from the message, display it on the map, and notify the user by the reception of the location. The application was developed using agile methodol ogy. It, met its objectives and successfully passed 91% of the final system test, recording that some limitations were discovered, the application needs further testing and can be implem ented for particular company or university using their own maps or editing the maps in OSM (op en street maps.

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  6. The Modern Geomorphological Map

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Switzer, A.; Kennedy, D.M.

    2013-01-01

    Classical geomorphological maps are representations of the spatial distribution of landforms, materials and of the processes responsible for their formation, in a single paper map. They contain a wealth of information that is generally documented with the aid of symbol and color legends. Uniformity

  7. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    Science.gov (United States)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  8. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  9. Intersubject information mapping: revealing canonical representations of complex natural stimuli

    Directory of Open Access Journals (Sweden)

    Nikolaus Kriegeskorte

    2015-03-01

    Full Text Available Real-world time-continuous stimuli such as video promise greater naturalism for studies of brain function. However, modeling the stimulus variation is challenging and introduces a bias in favor of particular descriptive dimensions. Alternatively, we can look for brain regions whose signal is correlated between subjects, essentially using one subject to model another. Intersubject correlation mapping (ICM allows us to find brain regions driven in a canonical manner across subjects by a complex natural stimulus. However, it requires a direct voxel-to-voxel match between the spatiotemporal activity patterns and is thus only sensitive to common activations sufficiently extended to match up in Talairach space (or in an alternative, e.g. cortical-surface-based, common brain space. Here we introduce the more general approach of intersubject information mapping (IIM. For each brain region, IIM determines how much information is shared between the subjects' local spatiotemporal activity patterns. We estimate the intersubject mutual information using canonical correlation analysis applied to voxels within a spherical searchlight centered on each voxel in turn. The intersubject information estimate is invariant to linear transforms including spatial rearrangement of the voxels within the searchlight. This invariance to local encoding will be crucial in exploring fine-grained brain representations, which cannot be matched up in a common space and, more fundamentally, might be unique to each individual – like fingerprints. IIM yields a continuous brain map, which reflects intersubject information in fine-grained patterns. Performed on data from functional magnetic resonance imaging (fMRI of subjects viewing the same television show, IIM and ICM both highlighted sensory representations, including primary visual and auditory cortices. However, IIM revealed additional regions in higher association cortices, namely temporal pole and orbitofrontal cortex. These

  10. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  11. Bodily maps of emotions.

    Science.gov (United States)

    Nummenmaa, Lauri; Glerean, Enrico; Hari, Riitta; Hietanen, Jari K

    2014-01-14

    Emotions are often felt in the body, and somatosensory feedback has been proposed to trigger conscious emotional experiences. Here we reveal maps of bodily sensations associated with different emotions using a unique topographical self-report method. In five experiments, participants (n = 701) were shown two silhouettes of bodies alongside emotional words, stories, movies, or facial expressions. They were asked to color the bodily regions whose activity they felt increasing or decreasing while viewing each stimulus. Different emotions were consistently associated with statistically separable bodily sensation maps across experiments. These maps were concordant across West European and East Asian samples. Statistical classifiers distinguished emotion-specific activation maps accurately, confirming independence of topographies across emotions. We propose that emotions are represented in the somatosensory system as culturally universal categorical somatotopic maps. Perception of these emotion-triggered bodily changes may play a key role in generating consciously felt emotions.

  12. Iconicity as structure mapping.

    Science.gov (United States)

    Emmorey, Karen

    2014-09-19

    Linguistic and psycholinguistic evidence is presented to support the use of structure-mapping theory as a framework for understanding effects of iconicity on sign language grammar and processing. The existence of structured mappings between phonological form and semantic mental representations has been shown to explain the nature of metaphor and pronominal anaphora in sign languages. With respect to processing, it is argued that psycholinguistic effects of iconicity may only be observed when the task specifically taps into such structured mappings. In addition, language acquisition effects may only be observed when the relevant cognitive abilities are in place (e.g. the ability to make structural comparisons) and when the relevant conceptual knowledge has been acquired (i.e. information key to processing the iconic mapping). Finally, it is suggested that iconicity is better understood as a structured mapping between two mental representations than as a link between linguistic form and human experience.

  13. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    Science.gov (United States)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  14. Brain size, sex, and the aging brain.

    Science.gov (United States)

    Jäncke, Lutz; Mérillat, Susan; Liem, Franziskus; Hänggi, Jürgen

    2015-01-01

    This study was conducted to examine the statistical influence of brain size on cortical, subcortical, and cerebellar compartmental volumes. This brain size influence was especially studied to delineate interactions with Sex and Age. Here, we studied 856 healthy subjects of which 533 are classified as young and 323 as old. Using an automated segmentation procedure cortical (gray and white matter [GM and WM] including the corpus callosum), cerebellar (GM and WM), and subcortical (thalamus, putamen, pallidum, caudatus, hippocampus, amygdala, and accumbens) volumes were measured and subjected to statistical analyses. These analyses revealed that brain size and age exert substantial statistical influences on nearly all compartmental volumes. Analyzing the raw compartmental volumes replicated the frequently reported Sex differences in compartmental volumes with men showing larger volumes. However, when statistically controlling for brain size Sex differences and Sex × Age interactions practically disappear. Thus, brain size is more important than Sex in explaining interindividual differences in compartmental volumes. The influence of brain size is discussed in the context of an allometric scaling of the compartmental volumes.

  15. Mapping informative clusters in a hierarchical [corrected] framework of FMRI multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Rui Xu

    Full Text Available Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies.

  16. Dynamic Data Visualization with Weave and Brain Choropleths.

    Directory of Open Access Journals (Sweden)

    Dianne Patterson

    Full Text Available This article introduces the neuroimaging community to the dynamic visualization workbench, Weave (https://www.oicweave.org/, and a set of enhancements to allow the visualization of brain maps. The enhancements comprise a set of brain choropleths and the ability to display these as stacked slices, accessible with a slider. For the first time, this allows the neuroimaging community to take advantage of the advanced tools already available for exploring geographic data. Our brain choropleths are modeled after widely used geographic maps but this mashup of brain choropleths with extant visualization software fills an important neuroinformatic niche. To date, most neuroinformatic tools have provided online databases and atlases of the brain, but not good ways to display the related data (e.g., behavioral, genetic, medical, etc. The extension of the choropleth to brain maps allows us to leverage general-purpose visualization tools for concurrent exploration of brain images and related data. Related data can be represented as a variety of tables, charts and graphs that are dynamically linked to each other and to the brain choropleths. We demonstrate that the simplified region-based analyses that underlay choropleths can provide insights into neuroimaging data comparable to those achieved by using more conventional methods. In addition, the interactive interface facilitates additional insights by allowing the user to filter, compare, and drill down into the visual representations of the data. This enhanced data visualization capability is useful during the initial phases of data analysis and the resulting visualizations provide a compelling way to publish data as an online supplement to journal articles.

  17. Mental Mapping: A Classroom Strategy

    Science.gov (United States)

    Solomon, Les

    1978-01-01

    Examines potential uses of mental maps in the classroom by reviewing research efforts, providing an example of the differences between mental maps of two student groups, and suggesting how to use mental maps in the geography curriculum. Mental mapping (or cognitive mapping) refers to individuals' processes of collecting, storing, and retrieving…

  18. nowCOAST's Map Service for Political Map Overlays

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST map service provides map overlays depicting the boundaries of U.S. states, territories, counties and townships/county subdivisions,...

  19. nowCOAST's Map Service for Transportation Map Overlays

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST map service provides maps depicting the locations of major world airport runways, major U.S. seaports, and latitude/longitude grid...

  20. Direct cortical mapping via solving partial differential equations on implicit surfaces.

    Science.gov (United States)

    Shi, Yonggang; Thompson, Paul M; Dinov, Ivo; Osher, Stanley; Toga, Arthur W

    2007-06-01

    In this paper, we propose a novel approach for cortical mapping that computes a direct map between two cortical surfaces while satisfying constraints on sulcal landmark curves. By computing the map directly, we can avoid conventional intermediate parameterizations and help simplify the cortical mapping process. The direct map in our method is formulated as the minimizer of a flexible variational energy under landmark constraints. The energy can include both a harmonic term to ensure smoothness of the map and general data terms for the matching of geometric features. Starting from a properly designed initial map, we compute the map iteratively by solving a partial differential equation (PDE) defined on the source cortical surface. For numerical implementation, a set of adaptive numerical schemes are developed to extend the technique of solving PDEs on implicit surfaces such that landmark constraints are enforced. In our experiments, we show the flexibility of the direct mapping approach by computing smooth maps following landmark constraints from two different energies. We also quantitatively compare the metric preserving property of the direct mapping method with a parametric mapping method on a group of 30 subjects. Finally, we demonstrate the direct mapping method in the brain mapping applications of atlas construction and variability analysis.