WorldWideScience

Sample records for brain mapping

  1. Brain maps and parallel computers.

    Science.gov (United States)

    Nelson, M E; Bower, J M

    1990-10-01

    It is well known that neural responses in many brain regions are organized in characteristic spatial patterns referred to as brain maps. It is likely that these patterns in some way reflect aspects of the neural computations being performed, but to date there are no general guiding principles for relating the structure of a brain map to the properties of the associated computation. In the field of parallel computing, maps similar to brain maps arise when computations are distributed across the multiple processors of a parallel computer. In this case, the relationship between maps and computations is well understood and general principles for optimally mapping computations onto parallel computers have been developed. In this paper we discuss how these principles may help illuminate the relationship between maps and computations in the nervous system.

  2. Optogenetic mapping of brain circuitry

    Science.gov (United States)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  3. BrainMap `95 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ``Human Brain Mapping and Modeling.`` The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center`s web site. A book will be published by John Wiley and Sons prior to the end of 1998.

  4. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  5. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function......, or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative...... to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and instead generally prefer...

  6. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  7. Body Maps in the Infant Brain

    Science.gov (United States)

    Marshall, Peter J.; Meltzoff, Andrew N.

    2015-01-01

    Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760

  8. Body maps in the infant brain.

    Science.gov (United States)

    Marshall, Peter J; Meltzoff, Andrew N

    2015-09-01

    Researchers have examined representations of the body in the adult brain but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants' registration of similarities between self and other - an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Imaging retinotopic maps in the human brain

    Science.gov (United States)

    Wandell, Brian A.; Winawer, Jonathan

    2010-01-01

    A quarter-century ago visual neuroscientists had little information about the number and organization of retinotopic maps in human visual cortex. The advent of functional magnetic resonance imaging (MRI), a non-invasive, spatially-resolved technique for measuring brain activity, provided a wealth of data about human retinotopic maps. Just as there are differences amongst nonhuman primate maps, the human maps have their own unique properties. Many human maps can be measured reliably in individual subjects during experimental sessions lasting less than an hour. The efficiency of the measurements and the relatively large amplitude of functional MRI signals in visual cortex make it possible to develop quantitative models of functional responses within specific maps in individual subjects. During this last quarter century, there has also been significant progress in measuring properties of the human brain at a range of length and time scales, including white matter pathways, macroscopic properties of gray and white matter, and cellular and molecular tissue properties. We hope the next twenty-five years will see a great deal of work that aims to integrate these data by modeling the network of visual signals. We don’t know what such theories will look like, but the characterization of human retinotopic maps from the last twenty-five years is likely to be an important part of future ideas about visual computations. PMID:20692278

  10. Brain mapping with single photon emission CT.

    Science.gov (United States)

    Matthew, E; Hill, T C

    1998-02-01

    To investigate the feasibility of performing brain mapping studies by using cortical activation paradigms and single photon emission computed tomography (SPECT) and to evaluate methods of analysis. Twenty healthy volunteers underwent technetium-99m bicisate SPECT under baseline conditions and during either full-field or right hemifield visual stimulation with a black and white reversing checkerboard pattern. Changes in regional cerebral perfusion were measured by using regions of interest (ROIs) and statistical parametric mapping. ROI analysis identified statistically significant increases in perfusion in the occipital cortex with full-field visual stimulation (mean +/- standard error of the mean percentage change from baseline: left, 8.0 +/- 1.5; right, 6.6 +/- 2.4). With right hemifield visual stimulation, perfusion was significantly increased only in the left occipital cortex (left, 5.2 +/- 1.5; right, -0.2 +/- 1.9). Statistical parametric mapping showed areas of activation (more than 100 voxel clusters showed significant change from baseline at a threshold value of P or = 2.58) in the left primary visual cortex (right hemifield visual stimulation) and in both right and left primary visual areas (full-field visual stimulation). Brain mapping studies were preformed with Tc-99m bicisate SPECT, and activation-induced changes were visualized and measured. These methods can be applied to develop improved methods of diagnosis and assessment of treatment outcome in patients with neuropsychiatric disorders.

  11. Mind maps in service of the mental brain activity

    OpenAIRE

    JOSIPOVIĆ JELIĆ, ŽELJKA; Demarin, Vida; Šoljan, Ivana

    2014-01-01

    Tony Buzan is the creator of the mind maps who based his mnemonic techniques of brain mapping on the terms of awareness and wide brain functionality as well as on the ability of memorizing, reading and creativity. He conceived the idea that regular practice improves brain functions but he also introduced radiant thinking and mental literacy. One of the last enormous neuroscience ventures is to clarify the brain complexity and mind and to get a complete insight into the mental brain acti...

  12. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  13. Global order and local disorder in brain maps.

    Science.gov (United States)

    Rothschild, Gideon; Mizrahi, Adi

    2015-07-08

    Maps serve as a ubiquitous organizing principle in the mammalian brain. In several sensory systems, such as audition, vision, and somatosensation, topographic maps are evident throughout multiple levels of brain pathways. Topographic maps, like retinotopy and tonotopy, persist from the receptor surface up to the cortex. Other maps, such as those of orientation preference in the visual cortex, are first created in the cortex itself. Despite the prevalence of topographic maps, it is still not clear what function they subserve. Although maps are topographically smooth at the macroscale, they are often locally heterogeneous. Here, we review studies describing the anatomy and physiology of topographic maps across various spatial scales, from the smooth macroscale to the heterogeneous local microarchitecture, with emphasis on maps of the visual and auditory systems. We discuss the potential advantages of local heterogeneity in brain maps, how they reflect complex cortical connectivity, and how they may impact sensory coding and local computations.

  14. Mapping Language Networks Using the Structural and Dynamic Brain Connectomes.

    Science.gov (United States)

    Del Gaizo, John; Fridriksson, Julius; Yourganov, Grigori; Hillis, Argye E; Hickok, Gregory; Misic, Bratislav; Rorden, Chris; Bonilha, Leonardo

    2017-01-01

    Lesion-symptom mapping is often employed to define brain structures that are crucial for human behavior. Even though poststroke deficits result from gray matter damage as well as secondary white matter loss, the impact of structural disconnection is overlooked by conventional lesion-symptom mapping because it does not measure loss of connectivity beyond the stroke lesion. This study describes how traditional lesion mapping can be combined with structural connectome lesion symptom mapping (CLSM) and connectome dynamics lesion symptom mapping (CDLSM) to relate residual white matter networks to behavior. Using data from a large cohort of stroke survivors with aphasia, we observed improved prediction of aphasia severity when traditional lesion symptom mapping was combined with CLSM and CDLSM. Moreover, only CLSM and CDLSM disclosed the importance of temporal-parietal junction connections in aphasia severity. In summary, connectome measures can uniquely reveal brain networks that are necessary for function, improving the traditional lesion symptom mapping approach.

  15. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  16. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  17. Mapping the Alzheimer's brain with connectomics

    Directory of Open Access Journals (Sweden)

    Teng eXie

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia. As an incurable, progressive and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques (e.g., structural MRI, diffusion MRI, functional MRI and EEG/MEG and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring.

  18. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  19. Mapping Language Problems in the Brain

    Science.gov (United States)

    ... to repeat lists of one-syllable words. The scientists found 2 major divisions in the way the language system is organized, resulting in 4 factors: the meaning vs. the form of words, and speech recognition vs. production. The team examined brain scans to compare people’s ...

  20. IBMISPS (International Brain Mapping & Intraoperative Surgical Planning Symposium)

    Science.gov (United States)

    2005-12-01

    maladie de Parkinson sévère: Étude de la localisation des contacts effectifs. Neurochirurgie (in press). Lemaire et al. (2001). Deep brain...extensive intraoperative evaluation. Advances in paradigm design and data analysis in neuropsychological imaging can provide more detailed maps of this...orchestration of frontal activation road maps gained with modern neuropsychological imaging tools. Title: Bioluminescent Imaging in the GFAP-luc Transgenic

  1. Altruistic behavior: mapping responses in the brain

    Science.gov (United States)

    Filkowski, Megan M; Cochran, R Nick; Haas, Brian W

    2016-01-01

    Altruism is an important social construct related to human relationships and the way many interpersonal and economic decisions are made. Recent progress in social neuroscience research shows that altruism is associated with a specific pattern of brain activity. The tendency to engage in altruistic behaviors is associated with greater activity within limbic regions such as the nucleus accumbens and anterior cingulate cortex in addition to cortical regions such as the medial prefrontal cortex and temporoparietal junction. Here, we review existing theoretical models of altruism as well as recent empirical neuroimaging research demonstrating how altruism is processed within the brain. This review not only highlights the progress in neuroscience research on altruism but also shows that there exist several open questions that remain unexplored. PMID:28580317

  2. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian

    2014-01-01

    PURPOSE: The R2* relaxation rate constant has been suggested as a sensitive measure for iron accumulation. The aim of this multi-center study was to assess the inter-scanner and inter-subject variability of R2* mapping and to investigate the relationship between brain volume and R2* in specific...

  3. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  4. Electroencephalogram signals processing for topographic brain mapping and epilepsies classification.

    Science.gov (United States)

    Arab, Mohammad Reza; Suratgar, Amir Abolfazl; Ashtiani, Alireza Rezaei

    2010-09-01

    In this study, topographic brain mapping and wavelet transform-neural network method are used for the classification of grand mal (clonic stage) and petit mal (absence) epilepsies into healthy, ictal and interictal (EEGs). Preprocessing is included to remove artifacts occurred by blinking, wandering baseline (electrodes movement) and eyeball movement using the Discrete Wavelet Transformation (DWT). De-noising EEG signals from the AC power supply frequency with a suitable notch filter is another job of preprocessing. In experimental data, the preprocessing enhanced speed and accuracy of the processing stage (wavelet transform and neural network). The EEGs signals are categorized to normal and petit mal and clonic epilepsy by an expert neurologist. The categorization is confirmed by Fast Fourier Transform (FFT) analysis and brain mapping. The dataset includes waves such as sharp, spike and spike-slow wave. Through the Counties Wavelet Transform (CWT) of EEG records, transient features are accurately captured and separated and used as classifier input. We introduce a two-stage classifier based on the Learning Vector Quantization (LVQ) neural network location in both time and frequency contexts. The brain mapping used for finding the epilepsy locates in the brain. The simulation results are very promising and the accuracy of the proposed classifier in experimental clinical data is ∼80%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Brain surface maps from 3-D medical images

    Science.gov (United States)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  6. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  7. Temporal Map Formation in the Barn Owl's Brain

    Science.gov (United States)

    Leibold, Christian; Kempter, Richard; van Hemmen, J. Leo

    2001-12-01

    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise.

  8. Human brain somatic representation: a functional magnetic resonance mapping

    Science.gov (United States)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  9. Evaluation of MRI sequences for quantitative T1 brain mapping

    Science.gov (United States)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  10. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    Science.gov (United States)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  11. Mapping human brain lesions and their functional consequences.

    Science.gov (United States)

    Karnath, Hans-Otto; Sperber, Christoph; Rorden, Christopher

    2018-01-15

    Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mapping brain activity with flexible graphene micro-transistors

    CERN Document Server

    Blaschke, Benno M; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V; Garrido, Jose A

    2016-01-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future gene...

  13. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  14. A Map for Social Navigation in the Human Brain.

    Science.gov (United States)

    Tavares, Rita Morais; Mendelsohn, Avi; Grossman, Yael; Williams, Christian Hamilton; Shapiro, Matthew; Trope, Yaacov; Schiller, Daniela

    2015-07-01

    Deciphering the neural mechanisms of social behavior has propelled the growth of social neuroscience. The exact computations of the social brain, however, remain elusive. Here we investigated how the human brain tracks ongoing changes in social relationships using functional neuroimaging. Participants were lead characters in a role-playing game in which they were to find a new home and a job through interactions with virtual cartoon characters. We found that a two-dimensional geometric model of social relationships, a "social space" framed by power and affiliation, predicted hippocampal activity. Moreover, participants who reported better social skills showed stronger covariance between hippocampal activity and "movement" through "social space." The results suggest that the hippocampus is crucial for social cognition, and imply that beyond framing physical locations, the hippocampus computes a more general, inclusive, abstract, and multidimensional cognitive map consistent with its role in episodic memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mission (im)possible - mapping the brain becomes a reality.

    Science.gov (United States)

    Eberle, Anna Lena; Selchow, Olaf; Thaler, Marlene; Zeidler, Dirk; Kirmse, Robert

    2015-02-01

    Charting and understanding the full wiring diagram of complex neuronal structures such as the central nervous system or the brain (Connectomics) is one of the big remaining challenges in life sciences. Although at first it appears nearly impossible to map out a full diagram of, e.g., a mouse brain with sufficient resolution to identify each and every connection between neurons, recent technological advances move such an ambitious undertaking into the realms of possibility without spending decades at a microscope. However there are still many challenges to address in order to pave the way for fast and systematic neurobiological understanding of whole networks. These challenges range from a more robust and reproducible sample preparation to automated image data acquisition, more efficient data storage strategies and powerful data analysis tools. Here we will review novel imaging techniques developed for the challenge of mapping out the full connectome of a nervous system, brain or eye to name just a few examples. The imaging techniques reviewed cover light sheet illumination methods, single and multi-beam scanning electron microscopy, and we will briefly mention the possible combination of both light and electron microscopy. In particular we will review 'clearing' and in vivo methods that can be performed with light sheet fluroescence microscopes such as the ZEISS Lightsheet Z.1. We will then focus on scanning electron microscopy with single and multi-beam instruments including methods such as serial blockface imaging and array tomography methods. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Mapping brain activity at scale with cluster computing.

    Science.gov (United States)

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  17. Mapping brain development during childhood, adolescence and young adulthood

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  18. Taking tests in the magnet: Brain mapping standardized tests.

    Science.gov (United States)

    Rubin, David C; Li, Dawei; Hall, Shana A; Kragel, Philip A; Berntsen, Dorthe

    2017-11-01

    Standardized psychometric tests are sophisticated, well-developed, and consequential instruments; test outcomes are taken as facts about people that impact their lives in important ways. As part of an initial demonstration that human brain mapping techniques can add converging neural-level evidence to understanding standardized tests, our participants completed items from standardized tests during an fMRI scan. We compared tests for diagnosing posttraumatic stress disorder (PTSD) and the correlated measures of Neuroticism, Attachment, and Centrality of Event to a general-knowledge baseline test. Twenty-three trauma-exposed participants answered 20 items for each of our five tests in each of the three runs for a total of 60 items per test. The tests engaged different neural processes; which test a participant was taking was accurately predicted from other participants' brain activity. The novelty of the application precluded specific anatomical predictions; however, the interpretation of activated regions using meta-analyses produced encouraging results. For instance, items on the Attachment test engaged regions shown to be more active for tasks involving judgments of others than judgments of the self. The results are an initial demonstration of a theoretically and practically important test-taking neuroimaging paradigm and suggest specific neural processes in answering PTSD-related tests. Hum Brain Mapp 38:5706-5725, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Model of brain activation predicts the neural collective influence map of the brain.

    Science.gov (United States)

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Stanley, H Eugene; Makse, Hernán A

    2017-04-11

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory.

  20. Language representation in the human brain: evidence from cortical mapping.

    Science.gov (United States)

    Bhatnagar, S C; Mandybur, G T; Buckingham, H W; Andy, O J

    2000-09-01

    The manner in which the human brain processes grammatical-syntactic and lexical-semantic functions has been extensively debated in neurolinguistics. The discreteness and selectivity of the representation of syntactic-morphological properties in the dominant frontal cortex and the representation of the lexical-semantics in the temporo-parietal cortex have been questioned. Three right-handed adult male neurosurgical patients undergoing left craniotomy for intractable seizures were evaluated using various grammatical and semantic tasks during cortical mapping. The sampling of language tasks consisted of trials with stimulation (experimental) and without stimulation (control) from sites in the dominant fronto-temporo-parietal cortex The sampling of language implicated a larger cortical area devoted to language (syntactic-morphological and lexical-semantic) tasks. Further, a large part of the fronto-parieto-temporal cortex was involved with syntactic-morphological functions. However, only the parieto-temporal sites were implicated with the ordering of lexicon in sentence construction. These observations suggest that the representation of language in the human brain may be columnar or multilayered. Copyright 2000 Academic Press.

  1. Preoperative functional mapping for rolandic brain tumor surgery.

    Science.gov (United States)

    Rizzo, Vincenzo; Terranova, Carmen; Conti, Alfredo; Germanò, Antonino; Alafaci, Concetta; Raffa, Giovanni; Girlanda, Paolo; Tomasello, Francesco; Quartarone, Angelo

    2014-11-07

    The resection of tumors within or close to eloquent motor areas is usually guided by the compromise between the maximal allowed resection and preservation of neurological functions. Navigated transcranial magnetic stimulation (nTMS) is an emerging technology that can be used for preoperative mapping of the motor cortex. We performed pre-surgical mapping by using nTMS in 17 patients with lesions in or close to the precentral gyrus. The study was conducted on consecutive patients scheduled for surgical treatment. nTMS allowed to exactly localize the motor cortex in 88.2% of cases. In 70.6% it provided the surgeon with new unexpected information about functional anatomy of the motor area, influencing the pre-operative planning. Moreover, in 29.4% these functional information had a clear impact on surgery, making necessary a change of surgical strategy to avoid damage to the motor cortex. Our results prove that nTMS has a large benefit in the treatment of rolandic brain tumors. It adds important information about spatial relationship between functional motor cortex and the tumor and reduces surgical-related post-operative motor deficits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-02-22

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  4. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L; Egsgaard, L L; Jensen, R

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  5. Using Data-Driven Model-Brain Mappings to Constrain Formal Models of Cognition

    OpenAIRE

    Borst, Jelmer P; Menno Nijboer; Taatgen, Niels A.; Hedderik van Rijn; John R Anderson

    2015-01-01

    In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-bas...

  6. Brain protection of nicergoline against hypoxia: EEG brain mapping and psychometry.

    Science.gov (United States)

    Saletu, B; Grünberger, J; Linzmayer, L; Anderer, P

    1990-01-01

    In a double-blind, placebo-controlled trial human brain function and mental performance as well as the antihypoxidotic properties of nicergoline were studied utilizing blood gas analysis, EEG brain mapping and psychometry. Hypoxic hypoxidosis was experimentally induced by a fixed gas combination of 9.8% oxygen (O2) and 90.2% nitrogen (N2) equivalent to 6,000 m altitude, which was inhaled for 23 min under normobaric conditions by 16 healthy volunteers. They received randomized after an adaptation session placebo, 10 mg, 30 mg and 60 mg nicergoline (NIC). Evaluation of blood gases, brain mapping and psychometry was carried out at 0, 2, 4, 6, 8 hrs oral drug administration. Blood gas analysis demonstrated a drop in PO2 from 95 to 35 and 34 mm Hg in the 14 and 23 min of inhalation, respectively. PCO2 decreased too (38 to 34 and 34 mm Hg), while pH increased (7.39 to 7.44 and 7.44). Base excess increased (-0.6 to 0.6 and 0.4) while standard bicarbonate decreased (24.4 to 24.1 and 23.8 mmol/l). Thus, blood gases remained stable between the 14 and 23 min of hypoxia during which time the neurophysiological and behavioral evaluations were carried out. EEG brain mapping exhibited an increase in delta/theta activity mostly over the parietal, temporal and central regions (left more than right), while alpha activity decreased (mostly over the parietal, central, frontal, fronto-temporal and temporo-occipital regions). 30 and 60 mg NIC attenuated this deterioration of vigilance. At the behavioral level, hypoxic hypoxidosis induced a deterioration of the noo- and thymospsyche which was mitigated by NIC. Based on 13 psychometric variables, the hypoxia-induced performance decrement was on the overall (2nd-8th hr) 43% after placebo as compared with pretreatment normoxic values, while only 29, 24 and 31% after 10, 30 and 60 mg nicergoline, respectively. The difference between placebo and the optimal dosage of nicergoline 30 mg reached the level of statistical significance (p less than

  7. The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    Directory of Open Access Journals (Sweden)

    Bzdok Danilo

    2011-09-01

    Full Text Available Abstract Background Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature. Findings In this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment. Conclusions The BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.

  8. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  9. Multivariate segmentation of fMRI for human brain mapping

    Science.gov (United States)

    Lei, Tianhu; Udupa, Jayaram K.

    2000-04-01

    fMRI has provided a new option to study cognitive phenomena. Recent developments in medical image processing and analysis allow researchers to study more elaborate cognitive tasks from a wide perspective. These techniques include Statistical Parametric Mapping, Subspace Modeling and Maximum Likelihood Estimation, and Spatio-temporal Analysis using Random Fields. Their common weakness is the assumption of the statistical independence among the image pixels. We have developed a multivariate segmentation method to functional MRI analysis for human brain function study based on the second-order statistics of images. It consists of four steps: (1) detecting the number of the distinctive image regions, (2) generating the scores and determining their rank, (3) forming score plots and clustering in the feature space, (4) projecting clusters from the feature space to the image space to generate object images. We have validated this method on the simulated and fMRI images. The theoretical and experimental results obtained by using this method were in good agreement. The relations between this method and other multivariate image analysis methods are discussed.

  10. Mapping plasticity: sex/gender and the changing brain

    NARCIS (Netherlands)

    Kleinherenbrink, A.

    2014-01-01

    There is a consensus in the neuroscientific literature that brains are either male or female, and that ‘brain sex’ is a fixed, immutable trait. Feminist critics have challenged this idea, raising questions, for example, about brain plasticity (the role of sociocultural factors in the emergence and

  11. Mental paper folding performance following penetrating traumatic brain injury in combat veterans: a lesion mapping study

    National Research Council Canada - National Science Library

    Glass, Leila; Krueger, Frank; Solomon, Jeffrey; Raymont, Vanessa; Grafman, Jordan

    2013-01-01

    .... We combined the administration of the Armed Forces Qualification Test boxes subtest measuring mental paper folding ability, with a voxel-based lesion symptom mapping approach to identify brain...

  12. Discovering relations between mind, brain, and mental disorders using topic mapping

    National Research Council Canada - National Science Library

    Poldrack, Russell A; Mumford, Jeanette A; Schonberg, Tom; Kalar, Donald; Barman, Bishal; Yarkoni, Tal

    2012-01-01

    .... Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems...

  13. [QEEG and brain mapping. Historial develoment, clinical practices and epistemological issues].

    Science.gov (United States)

    Matusevich, Daniel; Ruiz, Martín; Vairo, María Carolina

    2002-01-01

    Although it has been more than two decades since brain mapping was introduced in medicine, its scientific value and clinical practice have not been proved. This paper makes an overview about the historical development of brain mapping, its usefulness in psychiatry and lays epistemological issues concerning the role of technology in medical settings. Both historical and technological development of qEEG gives us the opportunity to think about complexity between ethics, science, technology and medicine.

  14. Differences in Information Mapping Strategies in Left and Right Brain Learners.

    Science.gov (United States)

    Hauck, LaVerne S., Jr.

    The Information Mapping technique was used to present a learning packet, and its usefulness in helping right-brain cerebrally dominant students to achieve the same level of subject mastery as their left-brain counterparts was examined. Reading level, grade point average, and gender were also analyzed. Torrance's "Your Style of Learning and…

  15. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    Science.gov (United States)

    Popescu, Bogdan F. Gh; George, Martin J.; Bergmann, Uwe; Garachtchenko, Alex V.; Kelly, Michael E.; McCrea, Richard P. E.; Lüning, Katharina; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Harder, Sheri M.; Chapman, L. Dean; Pickering, Ingrid J.; Nichol, Helen

    2009-02-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  16. Differential recruitment of brain networks following route and cartographic map learning of spatial environments.

    Science.gov (United States)

    Zhang, Hui; Copara, Milagros; Ekstrom, Arne D

    2012-01-01

    An extensive neuroimaging literature has helped characterize the brain regions involved in navigating a spatial environment. Far less is known, however, about the brain networks involved when learning a spatial layout from a cartographic map. To compare the two means of acquiring a spatial representation, participants learned spatial environments either by directly navigating them or learning them from an aerial-view map. While undergoing functional magnetic resonance imaging (fMRI), participants then performed two different tasks to assess knowledge of the spatial environment: a scene and orientation dependent perceptual (SOP) pointing task and a judgment of relative direction (JRD) of landmarks pointing task. We found three brain regions showing significant effects of route vs. map learning during the two tasks. Parahippocampal and retrosplenial cortex showed greater activation following route compared to map learning during the JRD but not SOP task while inferior frontal gyrus showed greater activation following map compared to route learning during the SOP but not JRD task. We interpret our results to suggest that parahippocampal and retrosplenial cortex were involved in translating scene and orientation dependent coordinate information acquired during route learning to a landmark-referenced representation while inferior frontal gyrus played a role in converting primarily landmark-referenced coordinates acquired during map learning to a scene and orientation dependent coordinate system. Together, our results provide novel insight into the different brain networks underlying spatial representations formed during navigation vs. cartographic map learning and provide additional constraints on theoretical models of the neural basis of human spatial representation.

  17. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  18. Classification of Alzheimer's disease using regional saliency maps from brain MR volumes

    Science.gov (United States)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-02-01

    Accurate diagnosis of Alzheimer's disease (AD) from structural Magnetic Resonance (MR) images is difficult due to the complex alteration of patterns in brain anatomy that could indicate the presence or absence of the pathology. Currently, an effective approach that allows to interpret the disease in terms of global and local changes is not available in the clinical practice. In this paper, we propose an approach for classification of brain MR images, based on finding pathology-related patterns through the identification of regional structural changes. The approach combines a probabilistic Latent Semantic Analysis (pLSA) technique, which allows to identify image regions through latent topics inferred from the brain MR slices, with a bottom-up Graph-Based Visual Saliency (GBVS) model, which calculates maps of relevant information per region. Regional saliency maps are finally combined into a single map on each slice, obtaining a master saliency map of each brain volume. The proposed approach includes a one-to-one comparison of the saliency maps which feeds a Support Vector Machine (SVM) classifier, to group test subjects into normal or probable AD subjects. A set of 156 brain MR images from healthy (76) and pathological (80) subjects, splitted into a training set (10 non-demented and 10 demented subjects) and one testing set (136 subjects), was used to evaluate the performance of the proposed approach. Preliminary results show that the proposed method reaches a maximum classification accuracy of 87.21%.

  19. Map-following skills in left and right brain-damaged patients with and without hemineglect.

    Science.gov (United States)

    Palermo, Liana; Ranieri, Giulia; Boccia, Maddalena; Piccardi, Laura; Nemmi, Federico; Guariglia, Cecilia

    2012-01-01

    Map-following tasks require a "semantic interpretation" of the map, which could be affected by left brain damage, and "superimposition of the map upon the space," which could be compromised by right lesions and particularly by the presence of hemineglect. Participants followed a pathway depicted on a map of a real environment. The pathway included four left and four right turns. A legend explained the meaning of each symbol that appeared on the map. Our results showed no deficits in left brain-damaged patients, but poor performance in right brain-damaged patients affected by hemineglect. This deficit can be ascribed to their impaired egocentric frame of reference, but we cannot exclude a prevalent role of the right hemisphere in their use of the allocentric information on the map despite the presence of hemineglect. Indeed, three right brain-damaged patients without hemineglect showed a specific deficit in performing the task. We discuss the results in light of the possible impairment of the parietomedial temporal pathway, which supports spatial navigation and could be responsible for the patients' deficit.

  20. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    Science.gov (United States)

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry. PMID:25566012

  1. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2005-07-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience.

  2. Predicting functional neuroanatomical maps from fusing brain networks with genetic information.

    Science.gov (United States)

    Ganglberger, Florian; Kaczanowska, Joanna; Penninger, Josef M; Hess, Andreas; Bühler, Katja; Haubensak, Wulf

    2017-09-04

    Functional neuroanatomical maps provide a mesoscale reference framework for studies from molecular to systems neuroscience and psychiatry. The underlying structure-function relationships are typically derived from functional manipulations or imaging approaches. Although highly informative, these are experimentally costly. The increasing amount of publicly available brain and genetic data offers a rich source that could be mined to address this problem computationally. Here, we developed an algorithm that fuses gene expression and connectivity data with functional genetic meta data and exploits cumulative effects to derive neuroanatomical maps related to multi-genic functions. We validated the approach by using public available mouse and human data. The generated neuroanatomical maps recapture known functional anatomical annotations from literature and functional MRI data. When applied to multi-genic meta data from mouse quantitative trait loci (QTL) studies and human neuropsychiatric databases, this method predicted known functional maps underlying behavioral or psychiatric traits. Taken together, genetically weighted connectivity analysis (GWCA) allows for high throughput functional exploration of brain anatomy in silico. It maps functional genetic associations onto brain circuitry for refining functional neuroanatomy, or identifying trait-associated brain circuitry, from genetic data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    Science.gov (United States)

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  4. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  6. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  7. Differential Recruitment of Brain Networks following Route and Cartographic Map Learning of Spatial Environments

    Science.gov (United States)

    Zhang, Hui; Copara, Milagros; Ekstrom, Arne D.

    2012-01-01

    An extensive neuroimaging literature has helped characterize the brain regions involved in navigating a spatial environment. Far less is known, however, about the brain networks involved when learning a spatial layout from a cartographic map. To compare the two means of acquiring a spatial representation, participants learned spatial environments either by directly navigating them or learning them from an aerial-view map. While undergoing functional magnetic resonance imaging (fMRI), participants then performed two different tasks to assess knowledge of the spatial environment: a scene and orientation dependent perceptual (SOP) pointing task and a judgment of relative direction (JRD) of landmarks pointing task. We found three brain regions showing significant effects of route vs. map learning during the two tasks. Parahippocampal and retrosplenial cortex showed greater activation following route compared to map learning during the JRD but not SOP task while inferior frontal gyrus showed greater activation following map compared to route learning during the SOP but not JRD task. We interpret our results to suggest that parahippocampal and retrosplenial cortex were involved in translating scene and orientation dependent coordinate information acquired during route learning to a landmark-referenced representation while inferior frontal gyrus played a role in converting primarily landmark-referenced coordinates acquired during map learning to a scene and orientation dependent coordinate system. Together, our results provide novel insight into the different brain networks underlying spatial representations formed during navigation vs. cartographic map learning and provide additional constraints on theoretical models of the neural basis of human spatial representation. PMID:23028661

  8. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  9. A quantitative brain map of experimental cerebral malaria pathology.

    Science.gov (United States)

    Strangward, Patrick; Haley, Michael J; Shaw, Tovah N; Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J Brian; Cruickshank, Sheena M; Craig, Alister G; Milner, Danny A; Allan, Stuart M; Couper, Kevin N

    2017-03-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  10. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  11. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    Science.gov (United States)

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  12. Spatiotemporal brain mapping during preparation, perception, and action.

    Science.gov (United States)

    Di Russo, Francesco; Lucci, Giuliana; Sulpizio, Valentina; Berchicci, Marika; Spinelli, Donatella; Pitzalis, Sabrina; Galati, Gaspare

    2016-02-01

    Deciding whether to act or not to act is a fundamental cognitive function. To avoid incorrect responses, both reactive and proactive modes of control have been postulated. Little is known, however, regarding the brain implementation of proactive mechanisms, which are deployed prior to an actual need to inhibit a response. Via a combination of electrophysiological and neuroimaging measures (recorded in 21 and 16 participants, respectively), we describe the brain localization and timing of neural activity that underlies the anticipatory proactive mechanism. From these results, we conclude that proactive control originates in the inferior Frontal gyrus, is established well before stimulus perception, and is released concomitantly with stimulus appearance. Stimulus perception triggers early activity in the anterior insula and intraparietal cortex contralateral to the responding hand; these areas likely mediate the transition from perception to action. The neural activities leading to the decision to act or not to act are described in the framework of a three-stage model that includes perception, action, and anticipatory functions taking place well before stimulus onset. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  14. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    Science.gov (United States)

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  16. Discovering relations between mind, brain, and mental disorders using topic mapping.

    Directory of Open Access Journals (Sweden)

    Russell A Poldrack

    Full Text Available Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain systems in mental function. We further show that the same methods can be used to identify the relations between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel relations between mental disorders and mental functions via their common involvement of particular brain networks. This approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the structure of these disorders and the relations between them.

  17. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  18. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI.

    Directory of Open Access Journals (Sweden)

    Jesus Pujol

    Full Text Available BACKGROUND: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-seven women (mean age: 47.8 years were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm(2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm(2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds consistently exceeded the stimulus application (9 seconds in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia to 4 kg/cm(2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm(2, control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.

  19. Three-dimensional reconstruction and neural map of the serotonergic brain of Asplanchna brightwellii (Rotifera, Monogononta).

    Science.gov (United States)

    Hochberg, Rick

    2009-04-01

    The basic organization of the rotifer brain has been known for nearly a century; yet, fine details on its structure and organization remain limited despite the importance of rotifers in studies of evolution and population biology. To gain insight into the structure of the rotifer brain, and provide a foundation for future neurophysiologic and neurophylogenetic research, the brain of Asplanchna brightwellii was studied with immunohistochemistry, confocal laser scanning microscopy, and computer modeling. A three-dimensional map of serotonergic connections reveals a complex network of approximately 28 mostly unipolar, cerebral perikarya and associated neurites. Cells and their projections display symmetry in quantity, size, connections, and pathways between cerebral hemispheres within and among individuals. Most immunopositive cells are distributed close to the brain midline. Three pairs of neurites form decussations at the brain midline and may innervate sensory receptors in the corona. A single neuronal pathway appears to connect both the lateral horns and dorsolateral apical receptors, suggesting that convergence of synaptic connections may be common in the afferent sensory systems of rotifers. Results show that the neural map of A. brightwellii is much more intricate than that of other monogonont rotifers; nevertheless, the consistency in neural circuits provides opportunities to identify homologous neurons, distinguish functional regions based on neurotransmitter phenotype, and explore new avenues of neurophylogeny in Rotifera.

  20. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  1. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis

    OpenAIRE

    Roux, F.; Boulanouar, K; Ibarrola, D; Tremoulet, M.; Chollet, F; BERRY, I.

    2000-01-01

    OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours.
METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately ...

  2. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Tokyo Medical and Dental Univ. (Japan). Graduate School

    2001-02-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [{sup 15}O]water and [{sup 18}F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [{sup 11}C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  3. Modeling of activation data in the BrainMapTM database: Detection of outliers

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2002-01-01

    We describe a system for meta-analytical modeling of activation foci from functional neuroimaging studies. Our main vehicle is a set of density models in Talairach space capturing the distribution of activation foci in sets of experiments labeled by lobar anatomy. One important use of such densit...... of atlases for outlier detection. Hum. Brain Mapping 15:146-156, 2002. © 2002 Wiley-Liss, Inc....

  4. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation.

    Science.gov (United States)

    Stettler, Olivier; Moya, Kenneth L

    2014-11-01

    The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Neural Imaginaries and Clinical Epistemology: Rhetorically Mapping the Adolescent Brain in the Clinical Encounter

    Science.gov (United States)

    Buchbinder, Mara

    2014-01-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008–2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents’ agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. PMID:24780561

  6. Reflectometric mapping of microregional blood flow and blood volume in the brain cortex.

    Science.gov (United States)

    Eke, A

    1982-01-01

    A reflectometric indicator-dilution method has been developed for mapping the parenchymal minute volume flow and blood content over tiny superficial areas of the brain cortex at 625 or 2500 locations, respectively. About 0.4 ml dextran-saline solution was used as nondiffusible indicator and injected into the feline cerebral circulation for each measurement. The subsequent cerebrocortical transit of the hemodiluted bolus was detected as a temporary change in the tissue optical density [OD(t)] and interpreted as indicator dilution, C(t). This gave the data necessary to calculate the microregional blood volume (mrCBV), mean transit time of the bolus (mrMTT), and the microregional blood flow (mrCBF = mrCBV/mrMTT). A two-dimensional record of the OD(t) function was made on Kodak SO 115 film by 16-mm cinematography, as a reflectometric tool, over an exposed area of the brain cortex during the bolus perfusion. Later, the microregional OD(t) functions were retrieved for analysis in a square array from the developed film by computer-controlled, frame-by-frame scanning densitometry. Maps of mrCBF, mrCBV, and mrMTT were presented as square arrays of gray-scaled pixels. The maximal spatial and temporal resolution of the method was 0.015 mm2 (mrCBF), 0.004 mm2 (mrCBV), 6 maps/min (mrCBF), and 600 maps/min (mrCBV).

  7. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer's disease.

    Science.gov (United States)

    Bozzali, Marco; Parker, Geoffrey J M; Serra, Laura; Embleton, Karl; Gili, Tommaso; Perri, Roberta; Caltagirone, Carlo; Cercignani, Mara

    2011-02-01

    Previous studies suggest that the clinical manifestations of Alzheimer's disease (AD) are not only associated with regional gray matter damage but also with abnormal functional integration of different brain regions by disconnection mechanisms. A measure of anatomical connectivity (anatomical connectivity mapping or ACM) can be obtained by initiating diffusion tractography streamlines from all parenchymal voxels and then counting the number of streamlines passing through each voxel of the brain. In order to assess the potential of this parameter for the study of disconnection in AD, we computed it in a group of patients with AD (N=9), in 16 patients with amnestic mild cognitive impairment (a-MCI, which is considered the prodromal stage of AD) and in 12 healthy volunteers. All subjects had an MRI scan at 3T, and diffusion MRI data were analyzed to obtain fractional anisotropy (FA) and ACM. Two types of ACM maps, absolute count (ac-ACM) and normalized by brain size count (nc-ACM), were obtained. No between group differences in FA surviving correction for multiple comparison were found, while areas of both decreased (in the supramarginal gyrus) and increased (in the putamen) ACM were found in patients with AD. Similar results were obtained with ac-ACM and nc-ACM. ACM of the supramarginal gyrus was strongly associated with measures of short-term memory in healthy subjects. This study shows that ACM provides information that is complementary to that offered by FA and appears to be more sensitive than FA to brain changes in patients with AD. The increased ACM in the putamen was unexpected. Given the nature of ACM, an increase of this parameter may reflect a change in any of the areas connected to it. One intriguing possibility is that this increase of ACM in AD patients might reflect processes of brain plasticity driven by cholinesterase inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  9. Brain mapping in a patient with congenital blindness – a case for multimodal approaches

    Directory of Open Access Journals (Sweden)

    Jarod L Roland

    2013-07-01

    Full Text Available Recent advances in basic neuroscience research across a wide range of methodologies have contributed significantly to our understanding of human cortical electrophysiology and functional brain imaging. Translation of this research into clinical neurosurgery has opened doors for advanced mapping of functionality that previously was prohibitively difficult, if not impossible. Here we present the case of a unique individual with congenital blindness and medically refractory epilepsy who underwent neurosurgical treatment of her seizures. Pre-operative evaluation presented the challenge of accurately and robustly mapping the cerebral cortex for an individual with a high probability of significant cortical re-organization. Additionally, a blind individual has unique priorities in one’s ability to read Braille by touch and sense the environment primarily by sound than the non-vision impaired person. For these reasons we employed additional measures to map sensory, motor, speech, language, and auditory perception by employing a number of cortical electrophysiologic mapping and functional magnetic resonance imaging methods. Our data show promising results in the application of these adjunctive methods in the pre-operative mapping of otherwise difficult to localize, and highly variable, functional cortical areas.

  10. Voxel-based discriminant map classification on brain ventricles for Alzheimer's disease

    Science.gov (United States)

    Wang, Jingnan; de Haan, Gerard; Unay, Devrim; Soldea, Octavian; Ekin, Ahmet

    2009-02-01

    One major hallmark of the Alzheimer's disease (AD) is the loss of neurons in the brain. In many cases, medical experts use magnetic resonance imaging (MRI) to qualitatively measure the neuronal loss by the shrinkage or enlargement of the structures-of-interest. Brain ventricle is one of the popular choices. It is easily detectable in clinical MR images due to the high contrast of the cerebro-spinal fluid (CSF) with the rest of the parenchyma. Moreover, atrophy in any periventricular structure will directly lead to ventricle enlargement. For quantitative analysis, volume is the common choice. However, volume is a gross measure and it cannot capture the entire complexity of the anatomical shape. Since most existing shape descriptors are complex and difficult-to-reproduce, more straightforward and robust ways to extract ventricle shape features are preferred in the diagnosis. In this paper, a novel ventricle shape based classification method for Alzheimer's disease has been proposed. Training process is carried out to generate two probability maps for two training classes: healthy controls (HC) and AD patients. By subtracting the HC probability map from the AD probability map, we get a 3D ventricle discriminant map. Then a matching coefficient has been calculated between each training subject and the discriminant map. An adjustable cut-off point of the matching coefficients has been drawn for the two classes. Generally, the higher the cut-off point that has been drawn, the higher specificity can be achieved. However, it will result in relatively lower sensitivity and vice versa. The benchmarked results against volume based classification show that the area under the ROC curves for our proposed method is as high as 0.86 compared with only 0.71 for volume based classification method.

  11. Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer.

    Science.gov (United States)

    Riva, Marco; Casarotti, Alessandra; Comi, Alessandro; Pessina, Federico; Bello, Lorenzo

    2016-09-01

    Music is one of the most sophisticated and fascinating functions of the brain. Yet, how music is instantiated within the brain is not fully characterized. Singing is a peculiar aspect of music, in which both musical and linguistic skills are required to provide a merged vocal output. Identifying the neural correlates of this process is relevant for both clinical and research purposes. An adult white man with a presumed left temporal glioma was studied. He is a professional opera singer. A tailored music evaluation, the Montreal Battery of Evaluation of Amusia, was performed preoperatively and postoperatively, with long-term follow-up. Intraoperative stimulation mapping (ISM) with awake surgery with a specific music evaluation battery was used to identify and preserve the cortical and subcortical structures subserving music, along with standard motor-sensory and language mapping. A total resection of a grade I glioma was achieved. The Montreal Battery of Evaluation of Amusia reported an improvement in musical scores after the surgery. ISM consistently elicited several types of errors in the superior temporal gyrus and, to a lesser extent, in the inferior frontal operculum. Most errors occurred during score reading; fewer errors were elicited during the assessment of rhythm. No spontaneous errors were recorded. These areas did not overlap with eloquent sites for counting or naming. ISM and a tailored music battery enabled better characterization of a specific network within the brain subserving score reading independently from speech with long-term clinical impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A self-organizing maps classifier structure for brain computer interfaces

    Directory of Open Access Journals (Sweden)

    Leandro Bueno

    Full Text Available AbstractIntroductionBrain Computer Interfaces provide an alternative communication path to severe paralyzed people and uses electrical signals related to brain activity in order to identify the user’s intention. In this paper a classifier based on a Self-Organizing Map is introduced.MethodsElectroencephalography signal is used on this work as a source for the user’s intention. This signal represents the brain activity and is processed in order to extract the frequency features presented to the classifier, which uses a Self-Organizing Map and a series of probability masks in order to identify the correct class.ResultsThe proposed structure was evaluated using a dataset of Electroencephalography with three mental tasks. The system was able to identify the different states of the users intention with an accuracy of 71.21% for a three-class problem using only 25 neurons for one of the users.ConclusionThe classifier proposed in this paper has an accuracy that is around the value of similar works in the literature, using the same data, but using a small time window for the classification, meaning the system can have a better time response for the user.

  13. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors.

    Science.gov (United States)

    Spielmann, Kerstin; Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

  14. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Science.gov (United States)

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  15. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    Science.gov (United States)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  16. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  17. Mapping the sequence of brain events in response to disgusting food.

    Science.gov (United States)

    Pujol, Jesus; Blanco-Hinojo, Laura; Coronas, Ramón; Esteba-Castillo, Susanna; Rigla, Mercedes; Martínez-Vilavella, Gerard; Deus, Joan; Novell, Ramón; Caixàs, Assumpta

    2018-01-01

    Warning signals indicating that a food is potentially dangerous may evoke a response that is not limited to the feeling of disgust. We investigated the sequence of brain events in response to visual representations of disgusting food using a dynamic image analysis. Functional MRI was acquired in 30 healthy subjects while they were watching a movie showing disgusting food scenes interspersed with the scenes of appetizing food. Imaging analysis included the identification of the global brain response and the generation of frame-by-frame activation maps at the temporal resolution of 2 s. Robust activations were identified in brain structures conventionally associated with the experience of disgust, but our analysis also captured a variety of other brain elements showing distinct temporal evolutions. The earliest events included transient changes in the orbitofrontal cortex and visual areas, followed by a more durable engagement of the periaqueductal gray, a pivotal element in the mediation of responses to threat. A subsequent core phase was characterized by the activation of subcortical and cortical structures directly concerned not only with the emotional dimension of disgust (e.g., amygdala-hippocampus, insula), but also with the regulation of food intake (e.g., hypothalamus). In a later phase, neural excitement extended to broad cortical areas, the thalamus and cerebellum, and finally to the default mode network that signaled the progressive termination of the evoked response. The response to disgusting food representations is not limited to the emotional domain of disgust, and may sequentially involve a variety of broadly distributed brain networks. Hum Brain Mapp 39:369-380, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  19. Cognitive memory and mapping in a brain-like system for robotic navigation.

    Science.gov (United States)

    Tang, Huajin; Huang, Weiwei; Narayanamoorthy, Aditya; Yan, Rui

    2017-03-01

    Electrophysiological studies in animals may provide a great insight into developing brain-like models of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a particular focus on the spatial coding properties of the EC and how it functions as an interface between the hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired system to enable a mobile robot to perform task-based navigation in a maze environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.

    Science.gov (United States)

    Poldrack, Russell A; Yarkoni, Tal

    2016-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.

  1. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  2. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  3. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  4. Endogenous brain-machine interface based on the correlation of EEG maps.

    Science.gov (United States)

    Ubeda, Andrés; Iáñez, Eduardo; Azorín, José M; Perez-Vidal, Carlos

    2013-11-01

    In this paper, a non-invasive endogenous brain-machine interface (BMI) based on the correlation of EEG maps has been developed to work in real-time applications. The classifier is able to detect two mental tasks related to motor imagery with good success rates and stability. The BMI has been tested with four able-bodied volunteers. First, the users performed a training with visual feedback to adjust the classifier. Afterwards, the users carried out several trajectories in a visual interface controlling the cursor position with the BMI. In these tests, score and accuracy were measured. The results showed that the participants were able to follow the targets during the performed trajectory, proving that the EEG mapping correlation classifier is ready to work in more complex real-time applications aimed at helping people with a severe disability in their daily life. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    Science.gov (United States)

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations.

  6. Epilepsy surgery: recent advances in brain mapping, neuroimaging and surgical procedures.

    Science.gov (United States)

    Dorfer, C; Widjaja, E; Ochi, A; Carter Snead Iii, O; Rutka, J T

    2015-06-01

    The general principle of epilepsy surgery is to achieve seizure freedom without causing any neurological deficit that would outweigh the clinical benefit. To achieve this, the epileptogenic zone, which is the part of the brain responsible for seizure generation, as well as the anatomic location of the eloquent cortex must be precisely identified in order to spare those functions during excision of the epileptogenic tissue. Major technical advances over the last decade have continuously contributed to increase our ability to map the brain and identify these critical areas. These technologies and innovations that can be routinely used today include non-invasive studies such as magnetoencephalography (MEG), functional MRI (fMRI), simultaneous EEG-fMRI, and nuclear medicine based methods like PET and SPECT as well as invasive studies through chronically implanted electrodes. Electrodes can be either placed subdurally via burr holes and craniotomies or within the brain parenchima via frame-based and frameless stereotactic methods. Apart from a continuous change in these insertion techniques, the most valuable advances here include recordings on high frequency bandwidth (100-600 Hz EEG) that are capable to delineate high-frequency oscillations (HFOs). These HFOs have been recognized as a biomarker for epileptogenic tissue. All of these technical advances have made epilepsy surgery a truly multidisciplinary field and surgeons have to be able to understand and interpret all of the gathered data. Moreover, this development has influenced surgical approaches and techniques and epilepsy surgery today includes a wide variety of procedures. These can be subdivided into resective, disconnective and neuromodulation procedures and vary from a small, targeted lesionectomy to disconnection/resection of one entire hemisphere. This review will give an overview of the available surgical techniques today and will focus on how the technical advances enable us to map the brain and

  7. The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology.

    Science.gov (United States)

    Pannek, Kerstin; Mathias, Jane L; Bigler, Erin D; Brown, Greg; Taylor, Jamie D; Rose, Stephen E

    2011-03-01

    Magnetic resonance diffusion tractography provides a powerful tool for the assessment of white matter architecture in vivo. Quantitative tractography metrics, such as streamline length, have successfully been used in the study of brain pathology. To date, these studies have relied on a priori knowledge of which tracts are affected by injury or pathology and manual delineation of regions of interest (ROIs) for use as waypoints in tractography. This limits the analyses to specific tracts under investigation and relies on the accurate and consistent placement of ROIs. We present a fully automated technique for the voxel-wise analysis of streamline length within the entire brain, the Average Pathlength Map (APM). We highlight the precision and reproducibility of voxel-wise average streamline length over time, and assess normal variability of pathlength values in a cohort of 43 healthy participants. Additionally, we demonstrate the utility of this approach by performing voxel-wise comparison between pathlength values obtained from a patient with a severe traumatic brain injury (TBI, Glasgow Coma Scale Score=7) and those from control participants. Our analysis shows that voxel-wise average pathlength values are comparable to fractional anisotropy (FA) in terms of reproducibility and variability. For the TBI patient, we observed a significant reduction in streamline pathlength in the genu of the corpus callosum and its projections into the frontal lobe. This study demonstrates that the average pathlength map can be used for voxel-based analysis of a quantitative tractography metric within the whole brain, removing both the dependence on a priori knowledge of affected pathways and time-consuming manual delineation of ROIs. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Rapid acquisition strategy for functional T1ρ mapping of the brain.

    Science.gov (United States)

    Johnson, Casey P; Heo, Hye-Young; Thedens, Daniel R; Wemmie, John A; Magnotta, Vincent A

    2014-11-01

    Functional T1ρ mapping has been proposed as a method to assess pH and metabolism dynamics in the brain with high spatial and temporal resolution. The purpose of this work is to describe and evaluate a variant of the spin-locked echo-planar imaging sequence for functional T1ρ mapping at 3T. The proposed sequence rapidly acquires a time series of T1ρ maps with 4.0second temporal resolution and 10 slices of volumetric coverage. Simulation, phantom, and in vivo experiments are used to evaluate many aspects of the sequence and its implementation including fidelity of measured T1ρ dynamics, potential confounds to the T1ρ response, imaging parameter tradeoffs, time series analysis approaches, and differences compared to blood oxygen level dependent functional magnetic resonance imaging. It is shown that the high temporal resolution and volumetric coverage of the sequence are obtained with some expense including underestimation of the T1ρ response, sensitivity to T1 dynamics, and reduced signal-to-noise ratio. In vivo studies using a flashing checkerboard functional magnetic resonance imaging paradigm suggest differences between T1ρ and blood oxygen level dependent activation patterns. Possible sources of the functional T1ρ response and potential sequence improvements are discussed. The capability of T1ρ to map whole-brain pH and metabolism dynamics with high temporal and spatial resolution is potentially unique and warrants further investigation and development. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury.

    Science.gov (United States)

    Ekolle Ndode-Ekane, Xavier; Kharatishvili, Irina; Pitkänen, Asla

    2017-01-15

    We aimed to generate two-dimensional (2D) unfolded cortical maps from magnetic resonance (MR) images to delineate the location of traumatic brain injury (TBI)-induced cortical damage in functionally diverse cytoarchitectonic areas of the cerebral cortex, and to predict the severity of functional impairment after TBI based on the lesion location and extent. Lateral fluid-percussion injury was induced in adult rats and T2 maps were acquired with magnetic resonance imaging (MRI) at 3 days post-TBI. Somatomotor deficits were assessed based on the composite neuroscore and beam balance test, and spatial learning was assessed in the Morris water maze. Animals were perfused for histology at 13 days post-injury. A 2D template was generated by unfolding the cerebral cortex from 26 sections of the rat brain atlas, covering the lesion extent. Next, 2D unfolded maps were generated from T2 maps and thionin-stained histological sections from the same animals. Unfolding of the T2 maps revealed the lesion core in the auditory, somatosensory, and visual cortices. The unfolded histological lesion at 13 days post-injury was 12% greater than the MRI lesion at 3 days post-TBI, as the lesion area increased laterally and caudally; the larger the MRI lesion area, the larger the histological lesion area. Further, the larger the MRI lesion area in the barrel field of the primary somatosensory cortex (S1BF), upper lip of the primary somatosensory cortex (S1ULp), secondary somatosensory division (S2), and ectorhinal (Ect) and perirhinal (PRh) cortices, the more impaired the performance in the beam balance and Morris water maze tests. Subsequent receiver operating characteristic analysis indicated that severity of the MRI lesion in S1ULp and S2 was a sensitive and specific predictor of poor performance in the beam balance test. Moreover, MRI lesions in the S1ULp, S2, S1BF, and Ect and PRh cortices predicted poor performance in the Morris water maze test. Our findings indicate that 2D

  10. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  11. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  12. Mapping the Structural Determinants Required for AAVrh.10 Transport across the Blood-Brain Barrier.

    Science.gov (United States)

    Albright, Blake H; Storey, Claire M; Murlidharan, Giridhar; Castellanos Rivera, Ruth M; Berry, Garrett E; Madigan, Victoria J; Asokan, Aravind

    2017-10-26

    Effective gene delivery to the CNS by intravenously administered adeno-associated virus (AAV) vectors requires crossing the blood-brain barrier (BBB). To achieve therapeutic CNS transgene expression, high systemic vector doses are often required, which poses challenges such as scale-up costs and dose-dependent hepatotoxicity. To improve the specificity and efficiency of CNS gene transfer, a better understanding of the structural features that enable AAV transit across the BBB is needed. We generated a combinatorial domain swap library using AAV1, a serotype that does not traverse the vasculature, and AAVrh.10, which crosses the BBB in mice. We then screened individual variants by phylogenetic and structural analyses and subsequently conducted systemic characterization in mice. Using this approach, we identified key clusters of residues on the AAVrh.10 capsid that enabled transport across the brain vasculature and widespread neuronal transduction in mice. Through rational design, we mapped a minimal footprint from AAVrh.10, which, when grafted onto AAV1, confers the aforementioned CNS phenotype while diminishing vascular and hepatic transduction through an unknown mechanism. Functional mapping of this capsid surface footprint provides a roadmap for engineering synthetic AAV capsids for efficient CNS gene transfer with an improved safety profile. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Science.gov (United States)

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  14. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy ;functional; reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  15. Aging alterations in whole-brain networks during adulthood mapped with the minimum spanning tree indices: The interplay of density, connectivity cost and life-time trajectory

    NARCIS (Netherlands)

    Otte, W.M.; van Diessen, E.; Paul, S.; Ramaswamy, R.; Rallabandi, V.P.S.; Stam, C.J.; Roy, P.K.

    2015-01-01

    The organizational network changes in the human brain across the lifespan have been mapped using functional and structural connectivity data. Brain network changes provide valuable insights into the processes underlying senescence. Nonetheless, the altered network density in the elderly severely

  16. Aging alterations in whole-brain networks during adulthood mapped with the minimum spanning tree indices : The interplay of density, connectivity cost and life-time trajectory

    NARCIS (Netherlands)

    Otte, Wim; van Diessen, Eric; Paul, Subhadip; Ramaswamy, Rajiv; Subramanyam Rallabandi, V. P.; Stam, Cornelis J.; Roy, Prasun K.

    2015-01-01

    The organizational network changes in the human brain across the lifespan have been mapped using functional and structural connectivity data. Brain network changes provide valuable insights into the processes underlying senescence. Nonetheless, the altered network density in the elderly severely

  17. Pharmacodynamics of venlafaxine evaluated by EEG brain mapping, psychometry and psychophysiology.

    Science.gov (United States)

    Saletu, B; Grünberger, J; Anderer, P; Linzmayer, L; Semlitsch, H V; Magni, G

    1992-06-01

    1. In a double-blind, placebo-controlled study the effects of venlafaxine--a novel nontricyclic compound inhibiting neuronal uptake of serotonin, noradrenaline and to a lesser extent dopamine--were investigated utilizing EEG brain mapping, psychometric and psychophysiological measures. 2. Sixteen healthy volunteers (eight males, eight females) aged 21-36 years received randomized and at weekly intervals single oral doses of placebo, 12.5 mg, 25 mg and 50 mg venlafaxine. EEG recordings, psychometric and psychophysiological tests, and evaluation of pulse, blood pressure and side-effects were carried out at 0, 2, 4, 6, and 8 h. 3. EEG brain mapping demonstrated that venlafaxine exerted a significant action on human brain function as compared with placebo at all three doses, characterized mostly by attenuation of absolute power, increase of relative delta/theta and beta, and decrease of alpha power, as well as by an acceleration of the total centroid fronto-temporally and by its slowing centrally and parietally. These findings are similar to antidepressants such as imipramine. Topographically, drug-induced alterations were most pronounced over both fronto-temporal and the right temporal to temporo-occipital regions. 4. Psychometric and psychophysiological investigations demonstrated significant dose-dependent psychotropic properties of the drug. Multivariate statistics exhibited an improvement of both the noopsyche (e.g. attention, concentration, attention variability, memory, fine motor activity, reaction time performance) and thymopsyche (e.g. drive, wakefulness)) but also significant psychophysiological activation (e.g. in c.f.f., pupillary and skin conductance measures). 5. Time-efficiency calculations showed significant central effects from the 2nd hour onwards, with increasing differences between placebo and treatment up to the 8th hour. Nausea was the most frequent complaint and appeared dose dependent.

  18. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    Directory of Open Access Journals (Sweden)

    Chiara Cerami

    2015-01-01

    Full Text Available [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI, supporting the presence or the exclusion of Alzheimer's Disease (AD pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1 normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2 the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3 brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD subtypes in 7 and dementia with Lewy bodies (DLB in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up; and 4 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition.

  19. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs, 33 early MCI (EMCI, 32 late MCI (LMCI, and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ scores and global Clinical Dementia Rating (CDR scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE

  20. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiye [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li, Lin [Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853 (China); Sun, Jie [Department of Endocrinology, PLA General Hospital, Beijing 100853 (China); Ma, Lin, E-mail: cjr.malin@vip.163.com [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2012-08-15

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  1. Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries.

    Science.gov (United States)

    Knutson, Kristine M; Monte, Olga Dal; Raymont, Vanessa; Wassermann, Eric M; Krueger, Frank; Grafman, Jordan

    2014-03-01

    Apathy, common in neurological disorders, is defined as disinterest and loss of motivation, with a reduction in self-initiated activity. Research in diseased populations has shown that apathy is associated with variations in the volume of brain regions such as the anterior cingulate and the frontal lobes. The goal of this study was to determine the neural signatures of apathy in people with penetrating traumatic brain injuries (pTBIs), as to our knowledge, these have not been studied in this sample. We studied 176 male Vietnam War veterans with pTBIs using voxel-based lesion-symptom mapping (VLSM) and apathy scores from the UCLA Neuropsychiatric Inventory (NPI), a structured inventory of symptoms completed by a caregiver. Our results revealed that increased apathy symptoms were associated with brain damage in limbic and cortical areas of the left hemisphere including the anterior cingulate, inferior, middle, and superior frontal regions, insula, and supplementary motor area. Our results are consistent with the literature, and extend them to people with focal pTBI. Apathy is a significant symptom since it can reduce participation of the patient in family and other social interactions, and diminish affective decision-making. Copyright © 2013 Wiley Periodicals, Inc.

  2. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  3. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.

    Science.gov (United States)

    Boi, Fabio; Semprini, Marianna; Vato, Alessandro

    2016-08-01

    Motor brain-machine interfaces (BMIs) transform neural activities recorded directly from the brain into motor commands to control the movements of an external object by establishing an interface between the central nervous system (CNS) and the device. Bidirectional BMIs are closed-loop systems that add a sensory channel to provide the brain with an artificial feedback signal produced by the interaction between the device and the external world. Taking inspiration from the functioning of the spinal cord in mammalians, in our previous works we designed and developed a bidirectional BMI that uses the neural signals recorded form rats' motor cortex to control the movement of an external object. We implemented a decoding interface based on the approximation of a predefined force field with a central attractor point. Now we consider a non-linear transformation that allows to design a decoder approximating force fields with arbitrary attractors. We describe here the non-linear mapping algorithm and preliminary results of its use with behaving rats.

  4. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  5. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    Science.gov (United States)

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  6. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  7. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain.

    Science.gov (United States)

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-11-10

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.

  8. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  9. CT Perfusion in Acute Stroke: "Black Holes" on Time-to-Peak Image Maps Indicate Unsalvageable Brain.

    Science.gov (United States)

    Meagher, Ruairi; Shankar, Jai Jai Shiva

    2016-11-01

    CT perfusion is becoming important in acute stroke imaging to determine optimal patient-management strategies. The purpose of this study was to examine the predictive value of time-to-peak image maps and, specifically, a phenomenon coined a "black hole" for assessing infarcted brain tissue at the time of scan. Acute stroke patients were screened for the presence of black holes and their follow-up imaging (noncontrast CT or MR) was reviewed to assess for infarcted brain tissue. Of the 23 patients with signs of acute ischemia on CT perfusion, all had black holes. The black holes corresponded with areas of infarcted brain on follow-up imaging (specificity 100%). Black holes demonstrated significantly lower cerebral blood volumes (P Black holes on time-to-peak image maps represent areas of unsalvageable brain. Copyright © 2016 by the American Society of Neuroimaging.

  10. Brain Regions Influencing Implicit Violent Attitudes: A Lesion-Mapping Study.

    Science.gov (United States)

    Cristofori, Irene; Zhong, Wanting; Mandoske, Valerie; Chau, Aileen; Krueger, Frank; Strenziok, Maren; Grafman, Jordan

    2016-03-02

    Increased aggression is common after traumatic brain injuries and may persist after cognitive recovery. Maladaptive aggression and violence are associated with dysfunction in the prefrontal and temporal cortex, but such dysfunctional behaviors are typically measured by explicit scales and history. However, it is well known that answers on explicit scales on sensitive topics--such as aggressive thoughts and behaviors--may not reveal true tendencies. Here, we investigated the neural basis of implicit attitudes toward aggression in humans using a modified version of the Implicit Association Task (IAT) with a unique sample of 112 Vietnam War veterans who suffered penetrating brain injury and 33 healthy controls who also served in combat in Vietnam but had no history of brain injury. We hypothesized that dorsolateral prefrontal cortex (dlPFC) lesions, due to the crucial role of the dlPFC in response inhibition, could influence performance on the IAT. In addition, we investigated the causal contribution of specific brain areas to implicit attitudes toward violence. We found a more positive implicit attitude toward aggression among individuals with lesions to the dlPFC and inferior posterior temporal cortex (ipTC). Furthermore, executive functions were critically involved in regulating implicit attitudes toward violence and aggression. Our findings complement existing evidence on the neural basis of explicit aggression centered on the ventromedial prefrontal cortex. These findings highlight that dlPFC and ipTC play a causal role in modulating implicit attitudes about violence and are crucially involved in the pathogenesis of aggressive behavior. Maladaptive aggression and violence can lead to interpersonal conflict and criminal behavior. Surprisingly little is known about implicit attitudes toward violence and aggression. Here, we used a range of techniques, including voxel-based lesion-symptom mapping, to examine the causal role of brain structures underpinning implicit

  11. Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild Cognitive Impairment Using Quantitative Susceptibility Mapping: A Potential Biomarker

    OpenAIRE

    Sun, Yawen; Ge, Xin; Han, Xu; Cao, Wenwei; Wang, Yao; Ding, Weina; Cao, Mengqiu; Zhang, Yong; Xu, Qun; Zhou, Yan; Xu, Jianrong

    2017-01-01

    The presence and pattern of iron accumulation in subcortical vascular mild cognitive impairment (svMCI) and their effects on cognition have rarely been investigated. We aimed to examine brain iron deposition in svMCI subjects using quantitative susceptibility mapping (QSM). Moreover, we aimed to investigate the correlation between brain iron deposition and the severity of cognitive impairment as indicated by z-scores. We recruited 20 subcortical ischemic vascular disease (SIVD) patients who f...

  12. Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    Science.gov (United States)

    Kateb, Babak (Inventor); Nikzad, Shouleh (Inventor)

    2017-01-01

    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.

  13. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging.

    Science.gov (United States)

    Rooney, William D; Li, Xin; Sammi, Manoj K; Bourdette, Dennis N; Neuwelt, Edward A; Springer, Charles S

    2015-06-01

    Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na

  14. New proteins configure a brain drug resistance map in tuberous sclerosis.

    Science.gov (United States)

    Lazarowski, Alberto J; Lubieniecki, Fabiana J; Camarero, Sandra A; Pomata, Hugo H; Bartuluchi, Marcelo A; Sevlever, Gustavo; Taratuto, Ana Lía

    2006-01-01

    Epileptogenic cortical tubers, characterized by dysplastic neurons and balloon cells, is a frequent feature of tuberous sclerosis. In severe tuberous sclerosis-affected individuals, seizures are refractory to medication. Multidrug resistance proteins (multidrug resistance protein-1 [MDR-1] and multidrug resistance-associated protein-1 [MRP-1]) have been found to be highly expressed in epileptogenic cortical tubers. However, two new proteins related to refractoriness in cancer (breast cancer resistance protein and major vault protein) have not been investigated in tuberous sclerosis and refractory epilepsy. On the same brain specimens previously describing the MDR-1 and MRP-1 expression, we investigated retrospectively breast cancer resistance protein and major vault protein by specific monoclonal antibodies and routine immunohistochemistry methods. Breast cancer resistance protein was present in vascular endothelial cells from all the vessels examined in 3 of 3 cases. Major vault protein was detected in only one case, and selectively expressed in several but not all ballooned cells. In epileptogenic cortical tubers, the additional expression of breast cancer resistance protein on vessels and major vault protein in some ballooned cells to the previously demonstrated expression of MDR-1 and MRP-1 (in vessels, astroglia, microglia, neurons, and ballooned cells) configures a brain protein pharmacoresistance map from patients with tuberous sclerosis and refractory epilepsy.

  15. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  16. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Colantonio Angela

    2011-11-01

    Full Text Available Abstract Background The aim of this study is to show how geographical information systems (GIS can be used to track and compare hospitalization rates for traumatic brain injury (TBI over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation.

  17. Exploring the brain's structural connectome: A quantitative stroke lesion-dysfunction mapping study.

    Science.gov (United States)

    Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman; Relkin, Norman; Villanueva, Mark; Raj, Ashish; Toglia, Joan; O'Dell, Michael; Iadecola, Costantino

    2015-06-01

    The aim of this work was to quantitatively model cross-sectional relationships between structural connectome disruptions caused by cerebral infarction and measures of clinical performance. Imaging biomarkers of 41 ischemic stroke patients (72.0 ± 12.0 years, 20 female) were related to their baseline performance in 18 cognitive, physical and daily life activity assessments. Individual estimates of structural connectivity disruption in gray matter regions were computed using the Change in Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated using routinely collected clinical magnetic resonance imagings. Partial Least Squares Regression (PLSR) was used to predict various acute impairment and activity measures from ChaCo scores and patient demographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons correction were implemented to minimize over-fitting and Type I errors. Multiple linear regression models based on lesion volume and lateralization information were constructed for comparison. All models based on connectivity disruption had lower Akaike Information Criterion and almost all had better goodness-of-fit values (R(2) : 0.26-0.92) than models based on lesion characteristics (R(2) : 0.06-0.50). Confidence intervals of PLSR coefficients identified brain regions important in predicting each clinical assessment. Appropriate mapping of eloquent functions, that is, language and motor, and replication of results across pathologies provided validation of this method. Models of complex functions provided new insights into brain-behavior relationships. In addition to the potential applications in prognostication and rehabilitation development, this quantitative approach provides insight into the structural networks underlying complex functions like activities of daily living and cognition. Quantitative analysis of big data will be invaluable in understanding complex brain-behavior relationships. © 2015

  18. Efficacy of the transtemporal approach with awake brain mapping to reach the dominant posteromedial temporal lesions.

    Science.gov (United States)

    Iijima, Kentaro; Motomura, Kazuya; Chalise, Lushun; Hirano, Masaki; Natsume, Atsushi; Wakabayashi, Toshihiko

    2017-01-01

    Surgeries for lesions in the dominant hippocampal and parahippocampal gyrus involving the posteromedial temporal regions are challenging to perform because they are located close to Wernicke's area; white matter fibers related with language; the optic radiations; and critical neurovascular structures. We performed a transtemporal approach with awake functional mapping for lesions affecting the dominant posteromedial temporal regions. The aim of this study was to assess the feasibility, safety, and efficacy of awake craniotomy for these lesions. We retrospectively reviewed four consecutive patients with tumors or cavernous angiomas located in the left hippocampal and parahippocampal gyrus, which further extended to the posteromedial temporal regions, who underwent awake surgery between December 2014 and January 2016. Four patients with lesions associated with the left hippocampal and parahippocampal gyrus, including the posteromedial temporal area, who underwent awake surgery were registered in the study. In all four patients, cortical and subcortical eloquent areas were identified via direct electrical stimulation. This allowed determination of the optimal surgical route to the angioma or tumor, even in the language-dominant hippocampal and parahippocampal gyrus. In particular, this approach enabled access to the upper part of posteromedial temporal lesions, while protecting the subcortical language-related fibers, such as the superior longitudinal fasciculus. This study revealed that awake brain mapping can enable the safe resection of dominant posteromedial temporal lesions, while protecting cortical and subcortical eloquent areas. Furthermore, our experience with four patients demonstrates the feasibility, safety, and efficacy of awake surgery for these lesions.

  19. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  20. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  1. Fourteen genetically variant proteins of mouse brain: discovery of two new variants and chromosomal mapping of four loci.

    Science.gov (United States)

    Goldman, D; Pikus, H J

    1986-04-01

    With the description here of variant proteins A13 (pI 5.9, MW 62 kd) and A14 (pI 5.3, MW 26 kd), 14 polypeptides of mouse brain visualized by two-dimensional electrophoresis (2DE) exhibit genetic variation in isoelectric point. Using 22 B X D recombinant inbred strains, we map four of these loci and show that a fifth is independent of known loci. A pI 5.6, 81-kd protein of mouse brain mitochondria designated A1 is demonstrated to be an independent locus closely linked to LY-2 and LVP-1 on mouse chromosome 6. A pI 5.6, 28-kd genetically variant brain polypeptide designated A12 maps to chromosome 1 and shows identity with the known mouse locus LTW-4. The locus for A8 is not closely linked to any previously mapped locus. However, the locus for the newly described variant A13 shows 3 of 18 recombinants with the DNA polymorphism RN7S-2 and 2 of 18 recombinants with HC (hemolytic complement) and is thus probably located proximally to HC near the centromere of chromosome 2. Genetic and biochemical evidence is presented for the identification of A14 as ALP-1 (apolipoprotein 1), mapping to chromosome 9. In addition to these 13 genetically variant polypeptides, the positions of 12 other polypeptides which have been identified on 2DE gels of mouse brain are given.

  2. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy.

    Science.gov (United States)

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph

    2014-11-01

    Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... subjects' MR-images, where VOI sets have been defined manually. High-resolution structural MR-images and 5-HT(2A) receptor binding PET-images (in terms of (18)F-altanserin binding) from 10 healthy volunteers and 10 patients with mild cognitive impairment were included for the analysis. A template including...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  4. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J. [Div. of Nuclear Medicine, Yonsei University Medical College, Seoul (Korea); Lee, B.I.; Kim, O.J. [Dept. of Neurology, Yonsei University Medical College, Seoul (Korea)

    2000-11-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14{+-}5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  5. Use of efficacy probability maps for the post-operative programming of deep brain stimulation in essential tremor.

    Science.gov (United States)

    Phibbs, Fenna T; Pallavaram, Srivatsan; Tolleson, Christopher; D'Haese, Pierre-François; Dawant, Benoit M

    2014-12-01

    Post-operative programming of deep brain stimulation for movement disorders can be both time consuming and difficult, which can delay the optimal symptom control for the patient. Probabilistic maps of stimulation response could improve programming efficiency and optimization. The clinically selected contacts of patients who had undergone ventral intermediate nucleus deep brain stimulation for the treatment of essential tremor at our institution were compared against contacts selected based on a probability map of symptom reduction built by populating data from a number of patients using non-rigid image registration. A subgroup of patients whose clinical contacts did not match the map-based selections prospectively underwent a tremor rating scale evaluation to compare the symptom relief achieved by the two options. Both the patient and video reviewer were blinded to the selection. 54% of the map-based and clinical contacts were an exact match retrospectively and were within one contact 83% of the time. In 5 of the 8 mismatched leads that were evaluated prospectively in a double blind fashion, the map-based contact showed equivalent or better tremor improvement than the clinically active contact. This study suggests that probability maps of stimulation responses can assist in selecting the clinically optimal contact and increase the efficiency of programming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Reiman, E.M. [Univ. of Arizona, Tucson, AZ (United States)]|[Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center; Lawson, M.; Yun, L.S.; Bandy, D. [Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  7. Fast T1 mapping of the brain at high field using Look-Locker and fast imaging.

    Science.gov (United States)

    Jiang, Ke; Zhu, Yanjie; Jia, Sen; Wu, Yin; Liu, Xin; Chung, Yiu-Cho

    2017-02-01

    This study aims to develop and evaluate a new method for fast high resolution T1 mapping of the brain based on the Look-Locker technique. Single-shot turboflash sequence with high temporal acceleration is used to sample the recovery of inverted magnetization. Multi-slice interleaved acquisition within one inversion slab is used to reduce the number of inversion pulses and hence SAR. Accuracy of the proposed method was studied using simulation and validated in phantoms. It was then evaluated in healthy volunteers and stroke patients. In-vivo results were compared to values obtained by inversion recovery fast spin echo (IR-FSE) and literatures. With the new method, T1 values in phantom experiments agreed with reference values with median error T1 map was acquired in 3.35s and the T1 maps of the whole brain were acquired in 2min with two-slice interleaving, with a spatial resolution of 1.1×1.1×4mm(3). The T1 values obtained were comparable to those measured with IR-FSE and those reported in literatures. These results demonstrated the feasibility of the proposed method for fast T1 mapping of the brain in both healthy volunteers and stroke patients at 3T. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T1 -weighted acquisition.

    Science.gov (United States)

    Michel, Eric; Hernandez, Daniel; Lee, Soo Yeol

    2017-03-01

    To develop an electrical properties tomography (EPT) technique that can provide in vivo electrical conductivity and permittivity images of biological tissue without performing complex-valued radiofrequency field measurements. Electrical conductivity and permittivity images are modeled as a monotonic function of tissues' water content (W) under the principle of Maxwell's mixture theory. Water content maps are estimated from two spin-echo images having different repetition times (TRs). For the modeling functions, physically measured parameters (electrical properties, water content, and T1 ) of brain cerebrospinal fluid (CSF), gray matter, and white matter are used as landmark literature references. The formulations are validated by a developed electrolyte-protein phantom and by human brain studies at 3 Tesla (T). The electrical properties (EPs) of the phantom estimated by the proposed method match well with the values measured on the bench. The conductivity and permittivity maps from all experiments show uncompromised spatial resolution without boundary artifacts and higher contrast when compared with water content maps. Human brain and phantom EP images suggest that water content is a dominating factor in determining the electrical properties of tissues. Despite possible literature inaccuracies, the proposed method offers EP maps that can provide complementary information to current approaches, to facilitate EPT scans in clinical applications. Magn Reson Med 77:1094-1103, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Flat-detector computed tomography PBV map in the evaluation of presurgical embolization for hypervascular brain tumors.

    Science.gov (United States)

    Wen, Li-Li; Zhang, Xin; Zhang, Qing-Rong; Wu, Qi; Chen, Shu-Juan; Deng, Jin-Long; Huang, Kaiyi; Wang, Han-Dong

    2017-11-01

    Preoperative embolization of hypervascular brain tumors is frequently used to minimize intraoperative bleeding. To explore the efficacy of embolization using flat-detector CT (FDCT) parenchymal blood volume (PBV) maps before and after the intervention. Twenty-five patients with hypervascular brain tumors prospectively received pre- and postprocedural FDCT PBV scans using a biplane system under a protocol approved by the institutional research ethics committee. Semiquantitative analysis, based on region of interest measurements of the pre- and post-embolization PBV maps, operating time, and blood loss, was performed to assess the feasibility of PBV maps in detecting the perfusion deficit and to evaluate the efficacy of embolization. Preoperative embolization was successful in 18 patients. The relative PBV decreased significantly from 3.98±1.41 before embolization to 2.10±2.00 after embolization. Seventeen patients underwent surgical removal of tumors 24 hours after embolization. The post-embolic tumor perfusion index correlated significantly with blood loss (ρ=0.55) and operating time (ρ=0.60). FDCT PBV mapping is a useful method for evaluating the perfusion of hypervascular brain tumors and the efficacy of embolization. It can be used as a supplement to CT perfusion, MRI, and DSA in the evaluation of tumor embolization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps.

    Science.gov (United States)

    Iaria, Giuseppe; Chen, Jen-Kai; Guariglia, Cecilia; Ptito, Alain; Petrides, Michael

    2007-02-01

    The ability to orientate within familiar environments relies on the formation and use of a mental representation of the environment, namely a cognitive map. Neuropsychological and neuroimaging studies suggest that the retrosplenial and hippocampal brain regions are involved in topographical orientation. We combined functional magnetic resonance imaging with a virtual-reality paradigm to investigate the functional interaction of the hippocampus and retrosplenial cortex during the formation and utilization of cognitive maps by human subjects. We found that the anterior hippocampus is involved during the formation of the cognitive map, while the posterior hippocampus is involved when using it. In conjunction with the hippocampus, the retrosplenial cortex was active during both the formation and the use of the cognitive map. In accordance with earlier studies in non-human animals, these findings suggest that, while navigating within the environment, the retrosplenial cortex complements the hippocampal contribution to topographical orientation by updating the individual's location as the frame of reference changes.

  11. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Jeon, Jeong Dong [College of Medicine, Inje Univ., Pusan (Korea, Republic of)

    1999-07-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  12. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Science.gov (United States)

    Wang, Yu; Du, Haixiao; Xia, Mingrui; Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  13. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  14. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.

    Science.gov (United States)

    Bilgic, Berkin; Pfefferbaum, Adolf; Rohlfing, Torsten; Sullivan, Edith V; Adalsteinsson, Elfar

    2012-02-01

    Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ℓ1-regularized QSM versus FDRI and ℓ2-regularized QSM

  15. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.

    Science.gov (United States)

    Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K

    2017-01-01

    Mapping of the longitudinal relaxation time (T1) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T2-dependent variation of the adiabatic inversion efficiency were investigated by single slice T1 mapping with inversion recovery EPI measurements, quantitative T2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gender differences in working memory networks: a BrainMap meta-analysis.

    Science.gov (United States)

    Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L

    2014-10-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain

    Directory of Open Access Journals (Sweden)

    Krzysztof Jacek Gorgolewski

    2015-04-01

    Full Text Available Here we present NeuroVault — a web based repository that allows researchers to store, share, visualize, and decode statistical maps of the human brain. NeuroVault is easy to use and employs modern web technologies to provide informative visualization of data without the need to install additional software. In addition, it leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps. The data are exposed through a public REST API enabling other services and tools to take advantage of it. NeuroVault is a new resource for researchers interested in conducting meta- and coactivation analyses.

  18. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  19. STUDI AWAL: PENGARUH GAME KEKERASAN TERHADAP AKTIVITAS OTAK ANAK MELALUI PEMETAAN SINYAL OTAK (BRAIN MAPPING MENGGUNAKAN WIRELESS EEG

    Directory of Open Access Journals (Sweden)

    Nita Handayani

    2017-06-01

    Full Text Available Brain mapping adalah pemetaan aktivitas kelistrikan otak untuk mempelajari fungsional otak manusia. Pada studi ini, brain mapping digunakan untuk mempelajari pengaruh game kekerasan terhadap aktivitas fungsional otak anak dengan menggunakan wireless EEG (electroencephalography berupa Emotiv Epoc 14-channel. Subjek penelitian ini adalah anak-anak pecandu game kekerasan (10 anak dengan rentang usia antara 12-15 tahun. Aktivitas otak pada saat bermain game akan dibandingkan dengan kondisi rileks. Waktu perekaman EEG selama 42 menit untuk setiap subjek. Dari hasil analisis spektral daya menggunakan periodogram Welch menunjukkan bahwa pada saat bermain game, frekuensi gelombang delta dan theta meningkat terutama pada area frontal (F7, F3, FC5, FC6, F4, F8, dan AF4. Spektral daya gelombang alpha mengalami penurunan sedangkan gelombang beta mengalami peningkatan pada saat bermain game. Hal ini mengindikasikan bahwa anak mengalami beban mental dan berada pada kondisi stres pada saat bermain game kekerasan.

  20. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization

    Directory of Open Access Journals (Sweden)

    Torsten eRohlfing

    2012-12-01

    Full Text Available The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains created from high-resolution T1-weighted magnetic resonance (MR images of 19 rhesus macaque (Macaca mulatta animals. Combined with the comprehensive cortical and subcortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely-available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/.

  1. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime [Shimane University Faculty of Medicine, Department of Radiology, Izumo-shi, Shimane (Japan); Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi [Shimane University Hospital, Department of Radiology, Izumo-shi, Shimane (Japan); Takeshita, Haruo [Shimane University Faculty of Medicine, Department of Legal Medicine, Izumo-shi, Shimane (Japan); Kawakami, Kazunori [Fujifilm RI Pharma, Co., Ltd., Tokyo (Japan)

    2017-06-15

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)

  2. Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile.

    Science.gov (United States)

    Morris, Joshua; Cardona, Albert; De Miguel-Bonet, Maria Del Mar; Hartenstein, Volker

    2007-08-01

    We have analyzed brain structure in Macrostomum lignano, a representative of the basal platyhelminth taxon Macrostomida. Using confocal microscopy and digital 3D modeling software on specimens labeled with general markers for neurons (tyrTub), muscles (phalloidin), and nuclei (Sytox), an atlas and digital model of the juvenile Macrostomum brain was generated. The brain forms a ganglion with a central neuropile surrounded by a cortex of neuronal cell bodies. The neuropile contains a stereotypical array of compact axon bundles, as well as branched terminal axons and dendrites. Muscle fibers penetrate the flatworm brain horizontally and vertically at invariant positions. Beside the invariant pattern of neurite bundles, these "cerebral muscles" represent a convenient system of landmarks that help define discrete compartments in the juvenile brain. Commissural axon bundles define a dorsal and ventro-medial neuropile compartment, respectively. Longitudinal axons that enter the neuropile through an invariant set of anterior and posterior nerve roots define a ventro-basal and a central medial compartment in the neuropile. Flanking these "fibrous" compartments are neuropile domains that lack thick axon bundles and are composed of short collaterals and terminal arborizations of neurites. Two populations of neurons, visualized by antibodies against FMRFamide and serotonin, respectively, were mapped relative to compartment boundaries. This study will aid in the documentation and interpretation of patterns of gene expression, as well as functional studies, in the developing Macrostomum brain.

  3. Optical mapping of the dominant frequency of brain signal oscillations in motor systems

    National Research Council Canada - National Science Library

    Feng-Mei Lu; Yi-Feng Wang; Juan Zhang; Hua-Fu Chen; Zhen Yuan

    2017-01-01

    Recent neuroimaging studies revealed that the dominant frequency of neural oscillations is brain-region-specific and can vary with frequency-specific reorganization of brain networks during cognition...

  4. Comparative neuroimaging in children with cerebral palsy using fMRI and a novel EEG-based brain mapping during a motor task--a preliminary investigation.

    Science.gov (United States)

    Lee, Jae Jin; Lee, Dong Ryul; Shin, Yoon Kyum; Lee, Nam Gi; Han, Bong S; You, Sung Joshua Hyun

    2013-01-01

    The purpose of this study was to compare topographical maps using a novel EEG-based brain mapping system with fMRI in normal and children with cerebral palsy (CP) during a grasping motor task. A normal child (mean ± SD = 13 ± 0 yrs) and four children with CP (mean ± SD = 10.25 ± 2.86 yrs) were recruited from a local community school and medical center. A novel EEG-based brain mapping system with 30 scalp sites (an extension of the 10-20 system) and a 3T MR scanner were used to observe cortical activation patterns during a grasping motor task. Descriptive analysis. In the EEG brain mapping data, the sensorimotor cortex (SMC) and inferior parietal cortex (IPC) were activated in all of the children. The children with CP showed additional activation areas in the premotor cortex (PMC), superior parietal cortex (SPC), and prefrontal cortex (PFC). In the fMRI brain mapping data, SMC activation was observed in all of the children, and the children with CP showed additional activation areas in the PMC and primary somatosensory cortex (PSC). The EEG-based topographical maps were equivalent to the maps obtained from fMRI during the grasping motor task. The results indicate that our novel EEG-based brain mapping system is useful for probing cortical activation patterns in normal children and children with CP.

  5. Surgical leg rotation: cortical neuroplasticity assessed through brain mapping using transcranial magnetic stimulation

    Science.gov (United States)

    Benedetti, Maria Grazia; Rota, Viviana; Manfrini, Marco; Perucca, Laura; Caronni, Antonio

    2014-01-01

    Rotationplasty (Borggreve-Van Nes operation) is a rare limb salvage procedure, most often applied to children presenting with sarcoma of the distal femur. In type A1 operation, the distal thigh is removed and the proximal tibia is axially rotated by 180°, remodeled, grafted onto the femoral stump, and then prosthetized. The neurovascular bundle is spared. The rotated ankle then works as a knee. The foot plantar and dorsal flexors act as knee extensors and flexors, respectively. Functional results may be excellent. Cortical neuroplasticity was studied in three men (30–31 years) who were operated on the left lower limb at ages between 7 and 11 years and were fully autonomous with a custom-made prosthesis, as well as in three age–sex matched controls. The scalp stimulation coordinates, matching the patients’ brain MRI spots, were digitized through a ‘neuronavigation’ optoelectronic system, in order to guide the transcranial magnetic stimulation coil, thus ensuring spatial precision during the procedure. Through transcranial magnetic stimulation driven by neuronavigation, the cortical representations of the contralateral soleus and vastus medialis muscles were studied in terms of amplitude of motor evoked potentials (MEPs) and centering and width of the cortical areas from which the potentials could be evoked. Map centering on either hemisphere did not differ substantially across muscles and participants. In the operated patients, MEP amplitudes, the area from which MEPs could be evoked, and their product (volume) were larger for the muscles of the unaffected side compared with both the rotated soleus muscle (average effect size 0.75) and the muscles of healthy controls (average effect size 0.89). In controls, right–left differences showed an effect size of 0.38. In no case did the comparisons reach statistical significance (P>0.25). Nevertheless, the results seem consistent with cortical plasticity reflecting strengthening of the unaffected leg and a

  6. Anatomo-clinical overlapping maps (AnaCOM): a new method to create anatomo-functional maps from neuropsychological tests and structural MRI scan of subjects with brain lesions

    Science.gov (United States)

    Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno

    2004-04-01

    We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.

  7. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Ganzetti, Marco; Mantini, Dante [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); University of Oxford, Department of Experimental Psychology, Oxford (United Kingdom); Wenderoth, Nicole [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); KU Leuven, Laboratory of Movement Control and Neuroplasticity, Faculty of Kinesiology and Rehabilitation Sciences, Leuven (Belgium)

    2015-09-15

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  8. Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG.

    Science.gov (United States)

    Youssofzadeh, Vahab; Williamson, Brady J; Kadis, Darren S

    2017-01-01

    A classic left frontal-temporal brain network is known to support language processes. However, the level of participation of constituent regions, and the contribution of extra-canonical areas, is not fully understood; this is particularly true in children, and in individuals who have experienced early neurological insult. In the present work, we propose whole-brain connectivity and graph-theoretical analysis of magnetoencephalography (MEG) source estimates to provide robust maps of the pediatric expressive language network. We examined neuromagnetic data from a group of typically-developing young children (n = 15, ages 4-6 years) and adolescents (n = 14, 16-18 years) completing an auditory verb generation task in MEG. All source analyses were carried out using a linearly-constrained minimum-variance (LCMV) beamformer. Conventional differential analyses revealed significant (p eigenvector centrality (EVC). Hub analysis revealed the importance of left perisylvian sites, i.e., Broca's and Wernicke's areas, across groups. The hemispheric distribution of frontal and temporal lobe EVC values was asymmetrical in most subjects; left dominant EVC was observed in 20% of young children, and 71% of adolescents. Interestingly, the adolescent group demonstrated increased critical sites in the right cerebellum, left inferior frontal gyrus (IFG) and left putamen. Here, we show that whole brain connectivity and network analysis can be used to map critical language sites in typical development; these methods may be useful for defining the margins of eloquent tissue in neurosurgical candidates.

  9. Improved T1 mapping by motion correction and template based B1 correction in 3T MRI brain studies

    Science.gov (United States)

    Castro, Marcelo A.; Yao, Jianhua; Lee, Christabel; Pang, Yuxi; Baker, Eva; Butman, John; Thomasson, David

    2009-02-01

    Accurate estimation of relaxation time T1 from MRI images is increasingly important for some clinical applications. Low noise, high resolution, fast and accurate T1 maps from MRI images of the brain can be performed using a dual flip angle method. However, accuracy is limited by the scanners ability to deliver the prescribed flip angle due to the B1 inhomogeneity, particularly at high field strengths (e.g. 3T). One of the most accurate methods to correct that inhomogeneity is to acquire a subject-specific B1 map. However, since B1 map acquisition takes up precious scanning time and most retrospective studies do not have B1 map, it would be desirable to perform that correction from a template. For this work a dual repetition time method was used for B1 map acquisition in five normal subjects. Inaccuracies due to misregistration of acquired T1-weighted images were corrected by rigid registration, and the effects of misalignment were compared to those of B1 inhomogeneity. T1-intensity histograms were produced and three-Gaussian curves were fitted for every fully-, partially- and non-corrected histogram in order to estimate and compare the white and gray matter peaks. In addition, in order to reduce the scanning time we designed a template based correction strategy. Images from different subjects were aligned using a twelve-parameter affine registration, and B1 maps were aligned according to that transformation. Recomputed T1 maps showed a significant improvement with respect to non-corrected ones. These results are very promising and have the potential for clinical application.

  10. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  11. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    NARCIS (Netherlands)

    De Vis, J B|info:eu-repo/dai/nl/39133378X; Zwanenburg, J J|info:eu-repo/dai/nl/290473683; van der Kleij, L A|info:eu-repo/dai/nl/413752291; Spijkerman, J M; Biessels, G J|info:eu-repo/dai/nl/165576367; Hendrikse, J|info:eu-repo/dai/nl/266590268; Petersen, E T

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were

  12. Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability.

    Science.gov (United States)

    Wang, Hao; Jin, Xiaoqing; Zhang, Ye; Wang, Jinhui

    2016-04-01

    Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual-level morphological brain networks and systematically examined their topological organization and long-term test-retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type. This study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback-Leibler divergence measure. Graph-based global and nodal network measures were then calculated, followed by the statistical comparison and intra-class correlation analysis. The morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph-based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small-worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long-term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree

  13. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI.

    Science.gov (United States)

    Oya, Hiroyuki; Howard, Matthew A; Magnotta, Vincent A; Kruger, Anton; Griffiths, Timothy D; Lemieux, Louis; Carmichael, David W; Petkov, Christopher I; Kawasaki, Hiroto; Kovach, Christopher K; Sutterer, Matthew J; Adolphs, Ralph

    2017-02-01

    Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3T in awake neurosurgical patients with implanted depth electrodes. We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development.

    Science.gov (United States)

    King, A J

    1993-09-01

    The experiments described in this review have demonstrated that the SC contains a two-dimensional map of auditory space, which is synthesized within the brain using a combination of monaural and binaural localization cues. There is also an adaptive fusion of auditory and visual space in this midbrain nucleus, providing for a common access to the motor pathways that control orientation behaviour. This necessitates a highly plastic relationship between the visual and auditory systems, both during postnatal development and in adult life. Because of the independent mobility of difference sense organs, gating mechanisms are incorporated into the auditory representation to provide up-to-date information about the spatial orientation of the eyes and ears. The SC therefore provides a valuable model system for studying a number of important issues in brain function, including the neural coding of sound location, the co-ordination of spatial information between different sensory systems, and the integration of sensory signals with motor outputs.

  15. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.

    2008-01-01

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity...... in response to muscle pain in 19 patients with chronic tension-type headache (CTTH) and 19 healthy, age- and sex-matched controls. Intramuscular electrical stimuli (single and train of five pulses delivered at 2 Hz) were applied to the trapezius muscle and somatosensory evoked potentials were recorded...... versus tonic muscle pain: P = 0.001; baseline versus post-tonic muscle pain: P = 0.002) and fifth (baseline versus tonic muscle pain: P = 0.04; baseline versus post-tonic muscle pain: P = 0.04) stimulus in the train. In contrast, there were no differences between the conditions in patients. No consistent...

  16. Application of Awake Craniotomy and Intraoperative Brain Mapping for Surgical Resection of Insular Gliomas of the Dominant Hemisphere.

    Science.gov (United States)

    Alimohamadi, Maysam; Shirani, Mohammad; Shariat Moharari, Reza; Pour-Rashidi, Ahmad; Ketabchi, Mehdi; Khajavi, Mohammadreza; Arami, Mohamadali; Amirjamshidi, Abbas

    2016-08-01

    Radical resection of dominant insular gliomas is difficult because of their close vicinity with internal capsule, basal ganglia, and speech centers. Brain mapping techniques can be used to maximize the extent of tumor removal and to minimize postoperative morbidities by precise localization of eloquent cortical and subcortical areas. Patients with newly diagnosed gliomas of dominant insula were enrolled. The exclusion criteria were severe cognitive disturbances, communication difficulty, age greater than 75 years, severe obesity, difficult airways for intubation and severe cardiopulmonary diseases. All were evaluated preoperatively with contrast-enhanced brain magnetic resonance imaging (MRI), functional brain MRI, and diffusion tensor tractography of language and motor systems. All underwent awake craniotomy with the same anesthesiology protocol. Intraoperative monitoring included continuous motor-evoked potential, electromyography, electrocorticography, direct electrical stimulation of cortex, and subcortical tracts. The patients were followed with serial neurologic examination and imaging. Ten patients were enrolled (4 men, 6 women) with a mean age of 43.6 years. Seven patients suffered from low-grade glioma, and 3 patients had high-grade glioma. The most common clinical presentation was seizure followed by speech disturbance, hemiparesis, and memory loss. Extent of tumor resection ranged from 73% to 100%. No mortality or new major postoperative neurologic deficit was encountered. Seizure control improved in three fourths of patients with medical refractory epilepsy. In one patient with speech disorder at presentation, the speech problem became worse after surgery. Brain mapping during awake craniotomy helps to maximize extent of tumor resection while preserving neurologic function in patients with dominant insular lobe glioma. Copyright © 2016. Published by Elsevier Inc.

  17. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philipp T. [Department of Nuclear Medicine, Aachen University of Technology, Aachen (Germany); Department of Nuclear Medicine, University of Leipzig, Leipzig (Germany); Institute of Medicine, Research Centre Juelich, 52425, Juelich (Germany); Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich [Department of Nuclear Medicine, Aachen University of Technology, Aachen (Germany); Spetzger, Uwe [Department of Neurosurgery, Aachen University of Technology, Aachen (Germany); Meyer, Georg F. [MacKay Institute of Communication and Neuroscience, Keele University (United Kingdom); Sabri, Osama [Department of Nuclear Medicine, Aachen University of Technology, Aachen (Germany); Department of Nuclear Medicine, University of Leipzig, Leipzig (Germany)

    2003-07-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with

  18. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    Science.gov (United States)

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  19. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  20. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E., E-mail: xmida@hanmail.ne [Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Sohn, C.-H.; Chang, K.-H. [Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chang, H.-W. [Departement of Radiology, Keimyung University Dongsan Medical Center, Daegu (Korea, Republic of); Lee, D.H. [Department of Radiology, Seoul Medical Center, Seoul (Korea, Republic of)

    2011-05-15

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  1. Quantitative Susceptibility Mapping using Structural Feature based Collaborative Reconstruction (SFCR) in the Human Brain

    Science.gov (United States)

    Cai, Congbo; Chen, Zhong; van Zijl, Peter C.M.

    2017-01-01

    The reconstruction of MR quantitative susceptibility mapping (QSM) from local phase measurements is an ill posed inverse problem and different regularization strategies incorporating a priori information extracted from magnitude and phase images have been proposed. However, the anatomy observed in magnitude and phase images does not always coincide spatially with that in susceptibility maps, which could give erroneous estimation in the reconstructed susceptibility map. In this paper, we develop a structural feature based collaborative reconstruction (SFCR) method for QSM including both magnitude and susceptibility based information. The SFCR algorithm is composed of two consecutive steps corresponding to complementary reconstruction models, each with a structural feature based l1 norm constraint and a voxel fidelity based l2 norm constraint, which allows both the structure edges and tiny features to be recovered, whereas the noise and artifacts could be reduced. In the M-step, the initial susceptibility map is reconstructed by employing a k-space based compressed sensing model incorporating magnitude prior. In the S-step, the susceptibility map is fitted in spatial domain using weighted constraints derived from the initial susceptibility map from the M-step. Simulations and in vivo human experiments at 7T MRI show that the SFCR method provides high quality susceptibility maps with improved RMSE and MSSIM. Finally, the susceptibility values of deep gray matter are analyzed in multiple head positions, with the supine position most approximate to the gold standard COSMOS result. PMID:27019480

  2. Mapping brain activation and information during category-specific visual working memory

    National Research Council Canada - National Science Library

    Linden, David E J; Oosterhof, Nikolaas N; Klein, Christoph; Downing, Paul E

    2012-01-01

    How is working memory for different visual categories supported in the brain? Do the same principles of cortical specialization that govern the initial processing and encoding of visual stimuli also apply to their short-term maintenance...

  3. Reorganization of Functional Brain Maps After Exercise Training: Importance of Cerebellar-Thalamic-Cortical Pathway

    OpenAIRE

    Holschneider, DP; Yang, J; Guo, Y.; Maarek, J-M I

    2007-01-01

    Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs.

  4. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT

    OpenAIRE

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-01-01

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting-state perfusion was investig...

  5. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  6. Language and motor mapping during resection of brain arteriovenous malformations: indications, feasibility, and utility.

    Science.gov (United States)

    Gabarrós, Andreu; Young, William L; McDermott, Michael W; Lawton, Michael T

    2011-03-01

    Microsurgical resection of arteriovenous malformations (AVMs) located in the language and motor cortex is associated with the risk of neurological deterioration, yet electrocortical stimulation mapping has not been widely used. To demonstrate the usefulness of intraoperative mapping with language/motor AVMs. During an 11-year period, mapping was used in 12 of 431 patients (2.8%) undergoing AVM resection (5 patients with language and 7 patients with motor AVMs). Language mapping was performed under awake anesthesia and motor mapping under general anesthesia. Identification of a functional cortex enabled its preservation in 11 patients (92%), guided dissection through overlying sulci down to the nidus in 3 patients (25%), and influenced the extent of resection in 4 patients (33%). Eight patients (67%) had complete resections. Four patients (33%) had incomplete resections, with circumferentially dissected and subtotally disconnected AVMs left in situ, attached to areas of eloquence and with preserved venous drainage. All were subsequently treated with radiosurgery. At follow-up, 6 patients recovered completely, 3 patients were neurologically improved, and 3 patients had new neurological deficits. Indications for intraoperative mapping include preoperative functional imaging that identifies the language/motor cortex adjacent to the AVM; larger AVMs with higher Spetzler-Martin grades; and patients presenting with unruptured AVMs without deficits. Mapping identified the functional cortex, promoted careful tissue handling, and preserved function. Mapping may guide dissection to AVMs beneath the cortical surface, and it may impact the decision to resect the AVM completely. More conservative, subtotal circumdissections followed by radiosurgery may be an alternative to observation or radiosurgery alone in patients with larger language/motor cortex AVMs.

  7. The effects of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain.

    Science.gov (United States)

    Adhikary, Sanjib D; Thiruvenkatarajan, Venkatesan; Babu, K Srinivasa; Tharyan, Prathap

    2011-11-09

    neurosurgery under general anaesthesia where cortical mapping was attempted to identify eloquent areas using either somatosensory evoked potentials (SSEPs), or direct cortical stimulation (DCS) triggered muscle motor evoked potentials (mMEPs), or both. We excluded patients from trials where the anaesthetic effects were evaluated during spinal cord surgery or where MEPs were recorded from modes other than direct cortical stimulation such as transcranial electrical stimulation (TcMEPs), MEPs derived from epidural electrodes (D waves) and magnetic stimulation and trials involving awake craniotomies or the asleep-awake-asleep technique during cortical mapping. Two review authors planned to independently apply the inclusion criteria and extract data. No RCTs were found for this study population. This review highlights the need for well-designed randomised controlled trials to assess the effect of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain.

  8. Towards the "baby connectome": mapping the structural connectivity of the newborn brain.

    Science.gov (United States)

    Tymofiyeva, Olga; Hess, Christopher P; Ziv, Etay; Tian, Nan; Bonifacio, Sonia L; McQuillen, Patrick S; Ferriero, Donna M; Barkovich, A James; Xu, Duan

    2012-01-01

    Defining the structural and functional connectivity of the human brain (the human "connectome") is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be derived in a clinical cohort of six-month old infants sustaining perinatal hypoxic ischemic encephalopathy (HIE). Two different anatomically unconstrained parcellation schemes were proposed and the resulting network metrics were correlated with neurological outcome at 6 months. Elimination and correction of unreliable data, automated parcellation of the cortical surface, and assembling the large-scale baby connectome allowed an unbiased study of the network properties of the newborn brain using graph theoretic analysis. In the application to infants with HIE, a trend to declining brain network integration and segregation was observed with increasing neuromotor deficit scores.

  9. Towards the "baby connectome": mapping the structural connectivity of the newborn brain.

    Directory of Open Access Journals (Sweden)

    Olga Tymofiyeva

    Full Text Available Defining the structural and functional connectivity of the human brain (the human "connectome" is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be derived in a clinical cohort of six-month old infants sustaining perinatal hypoxic ischemic encephalopathy (HIE. Two different anatomically unconstrained parcellation schemes were proposed and the resulting network metrics were correlated with neurological outcome at 6 months. Elimination and correction of unreliable data, automated parcellation of the cortical surface, and assembling the large-scale baby connectome allowed an unbiased study of the network properties of the newborn brain using graph theoretic analysis. In the application to infants with HIE, a trend to declining brain network integration and segregation was observed with increasing neuromotor deficit scores.

  10. Automated Segmentation of Cerebellum Using Brain Mask and Partial Volume Estimation Map

    Directory of Open Access Journals (Sweden)

    Dong-Kyun Lee

    2015-01-01

    Full Text Available While segmentation of the cerebellum is an indispensable step in many studies, its contrast is not clear because of the adjacent cerebrospinal fluid, meninges, and cerebra peduncle. Thus, various cerebellar segmentation methods, such as a deformable model or a template-based algorithm might exhibit incorrect segmentation of the venous sinuses and the cerebellar peduncle. In this study, we propose a fully automated procedure combining cerebellar tissue classification, a template-based approach, and morphological operations sequentially. The cerebellar region was defined approximately by removing the cerebral region from the brain mask. Then, the noncerebellar region was trimmed using a morphological operator and the brain-stem atlas was aligned to the individual brain to define the brain-stem area. The proposed method was validated with the well-known FreeSurfer and ITK-SNAP packages using the dice similarity index and recall and precision scores. As a result, the proposed method was significantly better than the other methods for the dice similarity index (0.93, FreeSurfer: 0.92, ITK-SNAP: 0.87 and precision (0.95, FreeSurfer: 0.90, ITK-SNAP: 0.93. Therefore, it could be said that the proposed method yielded a robust and accurate segmentation result. Moreover, additional postprocessing with the brain-stem atlas could improve its result.

  11. MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions.

    Science.gov (United States)

    Maccarrone, Giuseppina; Nischwitz, Sandra; Deininger, Sören-Oliver; Hornung, Joachim; König, Fatima Barbara; Stadelmann, Christine; Turck, Christoph W; Weber, Frank

    2017-03-15

    Multiple sclerosis is a disease of the central nervous system characterized by recurrent inflammatory demyelinating lesions in the early disease stage. Lesion formation and mechanisms leading to lesion remyelination are not fully understood. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry imaging (MALDI-IMS) is a technology which analyses proteins and peptides in tissue, preserves their spatial localization, and generates molecular maps within the tissue section. In a pilot study we employed MALDI imaging mass spectrometry to profile and identify peptides and proteins expressed in normal-appearing white matter, grey matter and multiple sclerosis brain lesions with different extents of remyelination. The unsupervised clustering analysis of the mass spectra generated images which reflected the tissue section morphology in luxol fast blue stain and in myelin basic protein immunohistochemistry. Lesions with low remyelination extent were defined by compounds with molecular weight smaller than 5300Da, while more completely remyelinated lesions showed compounds with molecular weights greater than 15,200Da. An in-depth analysis of the mass spectra enabled the detection of cortical lesions which were not seen by routine luxol fast blue histology. An ion mass, mainly distributed at the rim of multiple sclerosis lesions, was identified by liquid chromatography and tandem mass spectrometry as thymosin beta-4, a protein known to be involved in cell migration and in restorative processes. The ion mass of thymosin beta-4 was profiled by MALDI imaging mass spectrometry in brain slides of 12 multiple sclerosis patients and validated by immunohistochemical analysis. In summary, our results demonstrate the ability of the MALDI-IMS technology to map proteins within the brain parenchyma and multiple sclerosis lesions and to identify potential markers involved in multiple sclerosis pathogenesis and/or remyelination. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  13. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    Science.gov (United States)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  14. Mapping the epileptic brain with EEG dynamical connectivity: Established methods and novel approaches

    Science.gov (United States)

    Papadopoulou, Margarita; Vonck, Kristl; Boon, Paul; Marinazzo, Daniele

    2012-11-01

    Several algorithms rooted in statistical physics, mathematics and machine learning are used to analyze neuroimaging data from patients suffering from epilepsy, with the main goals of localizing the brain region where the seizure originates from and of detecting upcoming seizure activity in order to trigger therapeutic neurostimulation devices. Some of these methods explore the dynamical connections between brain regions, exploiting the high temporal resolution of the electroencephalographic signals recorded at the scalp or directly from the cortical surface or in deeper brain areas. In this paper we describe this specific class of algorithms and their clinical application, by reviewing the state of the art and reporting their application on EEG data from an epileptic patient.

  15. 2007 International Brain Mapping and Intraoperative Surgical Planning Society’s (IBMISPS) Annual World Congress

    Science.gov (United States)

    2008-02-01

    0.15 mercury 0.01 0.08 methane 3000 2150 methanol 5 7 2-propanol 50 6 sulfur dioxide 1 3 tetrahydrofuran 40 118 1,1,1-trichloroethane 11 60 toluene 15 56...imaging of a sheep brain Accelerated imaging Magnetoencephalography Conclusions Introduction Magnetic resonance imaging (MRI) Magnetoencephalography...channels for Y=12 mm 3D imaging of a sheep brain Imaging parameters Pre-polarization time: tp = 0.5 s Encoding time: tg = 33 ms Acquisition time: tacq

  16. Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping.

    Science.gov (United States)

    Sdika, Michaël; Pelletier, Daniel

    2009-04-01

    Morphometric studies of medical images often include a nonrigid registration step from a subject to a common reference. The presence of white matter multiple sclerosis lesions will distort and bias the output of the registration. In this article, we present a method to remove this bias by filling such lesions to make the brain look like a healthy brain before the registration. We finally propose a dedicated method to fill the lesions and present numerical results showing that our method outperforms current state of the art method. 2008 Wiley-Liss, Inc.

  17. Connectivity concordance mapping: a new tool for model-free analysis of fMRI data of the human brain

    Directory of Open Access Journals (Sweden)

    Gabriele eLohmann

    2012-03-01

    Full Text Available Functional magnetic resonance data acquired in a task-absent condition ("resting state'' require new data analysis techniques that do not depend on an activation model. Here, we propose a new analysis method called "Connectivity Concordance Mapping (CCM".The main idea is to assign a label to each voxel based on the reproducibility of its whole-brain pattern of connectivity. Specifically, we compute the correlations across measurements of each voxel's correlation-based functional connectivity map, resulting in a voxelwise map of concordance values. Regions of high interscan concordance can be assumed to be functionally consistent, and may thus be of specific interest for further analysis. Here we present two fMRI studies to test the algorithm. The first is a eyes open/eyes closed paradigm designed to highlight the potential of the method in a relatively simple state-dependent domain. The second study is a longitudinal repeated measurement of a patient following stroke. Longitudinal clinical studies such as this may represent the most interesting domain of applications for this algorithm, as it provides an exploratory means to identify changes in connectivity, such as those during post-stroke recovery.

  18. Optical mapping of the dominant frequency of brain signal oscillations in motor systems.

    Science.gov (United States)

    Lu, Feng-Mei; Wang, Yi-Feng; Zhang, Juan; Chen, Hua-Fu; Yuan, Zhen

    2017-11-07

    Recent neuroimaging studies revealed that the dominant frequency of neural oscillations is brain-region-specific and can vary with frequency-specific reorganization of brain networks during cognition. In this study, we examined the dominant frequency in low-frequency neural oscillations represented by oxygenated hemoglobin measurements after the hemodynamic response function (HRF) deconvolution. Twenty-nine healthy college subjects were recruited to perform a serial finger tapping task at the frequency of 0.2 Hz. Functional near-infrared spectroscopy (fNIRS) was applied to record the hemodynamic signals over the primary motor cortex, supplementary motor area (SMA), premotor cortex, and prefrontal area. We then explored the low frequency steady-state brain response (lfSSBR), which was evoked in the motor systems at the fundamental frequency (0.2 Hz) and its harmonics (0.4, 0.6, and 0.8 Hz). In particular, after HRF deconvolution, the lfSSBR at the frequency of 0.4 Hz in the SMA was identified as the dominant frequency. Interestingly, the domain frequency exhibited the correlation with behavior data such as reaction time, indicating that the physiological implication of lfSSBR is related to the brain anatomy, stimulus frequency and cognition. More importantly, the HRF deconvolution showed its capability for recovering signals probably reflecting neural-level events and revealing the physiological meaning of lfSSBR.

  19. Brain-Wide Maps of "Fos" Expression during Fear Learning and Recall

    Science.gov (United States)

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    "Fos" induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which "Fos" induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide…

  20. The Morphogenic Mapping of the Brain and the Design of the Nervous System

    Directory of Open Access Journals (Sweden)

    Peter Sheesley

    2014-01-01

    Full Text Available This paper reports the discovery of a geometrical algorithm that provides a coherent step by step mechanical account of the structure of the nervous system, including the vertebrate brain, the spinal cord, the vertebral column, and the spinal nerves. The morphology of these organs and the observed steps of neural development are well described, consequent of centuries of study. But morphogenesis, the origin and cause of these forms, has not been studied since the last half of the nineteenth century. Neurology does not teach how the brain gained its shape, nor have any causative theories of brain formation been published in recent times. This paper proposes a hypothetical construction based on the discovery of a simple algorithm which generates topologically the form of the brain, the spinal cord, and the vertebral column by the deformation of a gridded segmented sphere by the inversion of its surface. The hypothetical model is in close analogy with nature: the blastula is a segmented gridded sphere which results from the subdivision of the egg. The first step of embryogenesis is gastrulation, where blastula is pressed to enter its own interior, pulling the surface inside out, forming the embryo.

  1. Mapping of kisspeptin fibres in the brain of the pro-oestrus rat

    DEFF Research Database (Denmark)

    Desroziers, E; Mikkelsen, Jens Damsgaard; Simonneaux, V

    2010-01-01

    , immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular...

  2. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were...... performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (VCSF) and the T2 of CSF (T2,CSF) was calculated. The correlation between VCSF/T2,CSF and brain atrophy scores [global cortical atrophy (GCA...... of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). CONCLUSION: A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus...

  3. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS)

    NARCIS (Netherlands)

    Witkowski, M.; Garcia Cossio, E.; Chander, B.S.; Braun, C.; Birbaumer, N.; Robinson, S.E.; Soekadar, S.R.

    2015-01-01

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly

  4. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  5. Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain

    OpenAIRE

    Gabriele Lohmann; Margulies, Daniel S.; Annette Horstmann; Burkhard Pleger; Joeran Lepsien; Dirk Goldhahn; Haiko Schloegl; Michael Stumvoll; Arno Villringer; Robert Turner

    2010-01-01

    Functional magnetic resonance data acquired in a task-absent condition ("resting state") require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are t...

  6. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review.

    Science.gov (United States)

    Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M; Ferrucci, Luigi; Studenski, Stephanie A

    2017-03-01

    While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. Published by Elsevier Ltd.

  7. Using stochastic language models (SLM to map lexical, syntactic, and phonological information processing in the brain.

    Directory of Open Access Journals (Sweden)

    Alessandro Lopopolo

    Full Text Available Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  8. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    Science.gov (United States)

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  9. Brain-wide Mapping of Endogenous Serotonergic Transmission via Chemogenetic fMRI

    Directory of Open Access Journals (Sweden)

    Andrea Giorgi

    2017-10-01

    Full Text Available Serotonin-producing neurons profusely innervate brain regions via long-range projections. However, it remains unclear whether and how endogenous serotonergic transmission specifically influences regional or global functional activity. We combined designed receptors exclusively activated by designed drugs (DREADD-based chemogenetics and functional magnetic resonance imaging (fMRI, an approach we term “chemo-fMRI,” to causally probe the brain-wide substrates modulated by endogenous serotonergic activity. We describe the generation of a conditional knockin mouse line that, crossed with serotonin-specific Cre-recombinase mice, allowed us to remotely stimulate serotonergic neurons during fMRI scans. We show that endogenous stimulation of serotonin-producing neurons does not affect global brain activity but results in region-specific activation of a set of primary target regions encompassing corticohippocampal and ventrostriatal areas. By contrast, pharmacological boosting of serotonin levels produced widespread fMRI deactivation, plausibly reflecting the mixed contribution of central and perivascular constrictive effects. Our results identify the primary functional targets of endogenous serotonergic stimulation and establish causation between activation of serotonergic neurons and regional fMRI signals.

  10. Whole-brain 3D mapping of human neural transplant innervation.

    Science.gov (United States)

    Doerr, Jonas; Schwarz, Martin Karl; Wiedermann, Dirk; Leinhaas, Anke; Jakobs, Alina; Schloen, Florian; Schwarz, Inna; Diedenhofen, Michael; Braun, Nils Christian; Koch, Philipp; Peterson, Daniel A; Kubitscheck, Ulrich; Hoehn, Mathias; Brüstle, Oliver

    2017-01-19

    While transplantation represents a key tool for assessing in vivo functionality of neural stem cells and their suitability for neural repair, little is known about the integration of grafted neurons into the host brain circuitry. Rabies virus-based retrograde tracing has developed into a powerful approach for visualizing synaptically connected neurons. Here, we combine this technique with light sheet fluorescence microscopy (LSFM) to visualize transplanted cells and connected host neurons in whole-mouse brain preparations. Combined with co-registration of high-precision three-dimensional magnetic resonance imaging (3D MRI) reference data sets, this approach enables precise anatomical allocation of the host input neurons. Our data show that the same neural donor cell population grafted into different brain regions receives highly orthotopic input. These findings indicate that transplant connectivity is largely dictated by the circuitry of the target region and depict rabies-based transsynaptic tracing and LSFM as efficient tools for comprehensive assessment of host-donor cell innervation.

  11. Alteration of the threshold stimulus for intraoperative brain mapping via use of antiepileptic medications

    Directory of Open Access Journals (Sweden)

    John W. Amburgy, MD

    2015-03-01

    Full Text Available Intraoperative seizures during awake craniotomy with cortical and subcortical mapping are a common occurrence. Patients are routinely treated preoperatively with anti-convulsive medications to reduce seizure occurrence. Historically these drugs have not been believed to significantly affect awake craniotomy procedures. We report a patient undergoing intraoperative mapping with differential response and seizure occurrence based upon antiepileptic drug usage. A 43 year old female presented with history of seizures, right sided hemiparesis, electrical sensations, and difficulty with language function. She was determined to have a mass lesion involving the left frontal and temporal lobes and subsequently elected to undergo resection by awake craniotomy with intraoperative mapping. A first attempt at lesion resection was performed after a missed dose of anti-convulsant medication (levetiracetam and was subsequently aborted because of repeated seizure activity. The threshold for seizure generation (1.75 mA was observed to be significantly lower than expected. Therapy was begun with both levetiracetam and phenytoin prior to a second attempted resection one week later. Thresholds for cortical motor response in the second operation were significantly higher than expected (> 9.0 mA, and no intraoperative seizure activity was observed. To our knowledge this is the first quantitative example of antiepileptic drugs affecting the current required for intraoperative mapping. This case highlights the potential for higher current requirements in patients preoperatively treated with high doses of antiepileptic drugs, as well as the importance of confirming adequate dosage of antiepileptic drugs in patients at an increased risk of seizure generation.

  12. The characteristic and changes of the event-related potentials (ERP and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Directory of Open Access Journals (Sweden)

    Haidi Yang

    Full Text Available OBJECTIVES: To compare the event-related potentials (ERPs and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS treatment. METHODS AND PARTICIPANTS: The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. RESULTS: Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating soundsin control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN and late discriminative negativity (LDNcomponent at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. CONCLUSIONS: The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  13. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mapping the "Depression Switch" During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation.

    Science.gov (United States)

    Choi, Ki Sueng; Riva-Posse, Patricio; Gross, Robert E; Mayberg, Helen S

    2015-11-01

    The clinical utility of monitoring behavioral changes during intraoperative testing of subcallosal cingulate deep brain stimulation is unknown. To characterize the structural connectivity correlates of deep brain stimulation-evoked behavioral effects using probabilistic tractography in depression. Categorization of acute behavioral effects was conducted in 9 adults undergoing deep brain stimulation implantation surgery for chronic treatment-resistant depression in a randomized and blinded testing session at Emory University. Patients were studied from September 1, 2011, through June 30, 2013. Post hoc analyses of the structural tractography patterns mediating distinct categories of evoked behavioral effects were defined, including the best response overall. Data analyses were performed from May 1 through July 1, 2015. Categorization of stimulation-induced transient behavioral effects and delineation of the shared white matter tracts mediating response subtypes. Among the 9 patients, 72 active and 36 sham trials were recorded. The following stereotypical behavior patterns were identified: changes in interoceptive (noted changes in body state in 30 of 72 active and 4 of 36 sham trials) and in exteroceptive (shift in attention from patient to others in 9 of 72 active and 0 sham trials) awareness. The best response was a combination of exteroceptive and interoceptive changes at a single left contact for all 9 patients. Structural connectivity showed that the best response contacts had a pattern of connections to the bilateral ventromedial frontal cortex (via forceps minor and left uncinate fasciculus) and to the cingulate cortex (via left cingulum bundle), whereas behaviorally salient but nonbest contacts had only cingulate involvement. The involvement of the 3 white matter bundles during stimulation of the best contacts suggests a mechanism for the observed transient "depression switch." This analysis of transient behavior changes during intraoperative deep brain

  15. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?

    Science.gov (United States)

    Caeyenberghs, Karen; Verhelst, Helena; Clemente, Adam; Wilson, Peter H

    2016-12-03

    Traumatic brain injury (TBI) is associated with cognitive and motor deficits, and poses a significant personal, societal, and economic burden. One mechanism by which TBI is thought to affect cognition and behavior is through changes in functional connectivity. Graph theory is a powerful framework for quantifying topological features of neuroimaging-derived functional networks. The objective of this paper is to review studies examining functional connectivity in TBI with an emphasis on graph theoretical analysis that is proving to be valuable in uncovering network abnormalities in this condition. We review studies that have examined TBI-related alterations in different properties of the functional brain network, including global integration, segregation, centrality and resilience. We focus on functional data using task-related fMRI or resting-state fMRI in patients with TBI of different severity and recovery phase, and consider how graph metrics may inform rehabilitation and enhance efficacy. Moreover, we outline some methodological challenges associated with the examination of functional connectivity in patients with brain injury, including the sample size, parcellation scheme used, node definition and subgroup analyses. The findings suggest that TBI is associated with hyperconnectivity and a suboptimal global integration, characterized by increased connectivity degree and strength and reduced efficiency of functional networks. This altered functional connectivity, also evident in other clinical populations, is attributable to diffuse white matter pathology and reductions in gray and white matter volume. These functional alterations are implicated in post-concussional symptoms, posttraumatic stress and neurocognitive dysfunction after TBI. Finally, the effects of focal lesions have been found to depend critically on topological position and their role in the network. Graph theory is a unique and powerful tool for exploring functional connectivity in brain

  16. Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species.

    Science.gov (United States)

    Finlay, Barbara L; Hinz, Flora; Darlington, Richard B

    2011-07-27

    The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.

  17. Distributed cognitive maps reflecting real distances between places and views in the human brain.

    Science.gov (United States)

    Sulpizio, Valentina; Committeri, Giorgia; Galati, Gaspare

    2014-01-01

    KEEPING ORIENTED IN THE ENVIRONMENT IS A MULTIFACETED ABILITY THAT REQUIRES KNOWLEDGE OF AT LEAST THREE PIECES OF INFORMATION: one's own location ("place") and orientation ("heading") within the environment, and which location in the environment one is looking at ("view"). We used functional magnetic resonance imaging (fMRI) in humans to examine the neural signatures of these information. Participants were scanned while viewing snapshots which varied for place, view and heading within a virtual room. We observed adaptation effects, proportional to the physical distances between consecutive places and views, in scene-responsive (retrosplenial complex and parahippocampal gyrus), fronto-parietal and lateral occipital regions. Multivoxel pattern classification of signals in scene-responsive regions and in the hippocampus allowed supra-chance decoding of place, view and heading, and revealed the existence of map-like representations, where places and views closer in physical space entailed activity patterns more similar in neural representational space. The pattern of hippocampal activity reflected both view- and place-based distances, the pattern of parahippocampal activity preferentially discriminated between views, and the pattern of retrosplenial activity combined place and view information, while the fronto-parietal cortex only showed transient effects of changes in place, view, and heading. Our findings provide evidence for the presence of map-like spatial representations which reflect metric distances in terms of both one's own and landmark locations.

  18. Distributed cognitive maps reflecting real distances between places and views in the human brain

    Directory of Open Access Journals (Sweden)

    Valentina eSulpizio

    2014-09-01

    Full Text Available Keeping oriented in the environment is a multifaceted ability that requires knowledge of at least three pieces of information: one’s own location (place and orientation (heading within the environment, and which location in the environment one is looking at (view. We used functional magnetic resonance imaging (fMRI in humans to examine the neural signatures of these information. Participants were scanned while viewing snapshots which varied for place, view and heading within a virtual room. We observed adaptation effects, proportional to the physical distances between consecutive places and views, in scene-responsive (retrosplenial complex and parahippocampal gyrus, fronto-parietal and lateral occipital regions. Multivoxel pattern classification of signals in scene-responsive regions and in the hippocampus allowed supra-chance decoding of place, view and heading, and revealed the existence of map-like representations, where places and views closer in physical space entailed activity patterns more similar in neural representational space. The pattern of hippocampal activity reflected both view- and place-based distances, the pattern of parahippocampal activity preferentially discriminated between views, and the pattern of retrosplenial activity combined place and view information, while the fronto-parietal cortex only showed transient effects of changes in place, view, and heading. Our findings provide evidence for the presence of map-like spatial representations which reflect metric distances in terms of both one’s own and landmark locations.

  19. Single-subject statistical mapping of acute brain hypoxia in the rat following middle cerebral artery occlusion: a microPET study.

    Science.gov (United States)

    Takasawa, Masashi; Beech, John S; Fryer, Tim D; Jones, P Simon; Ahmed, Tahir; Smith, Rob; Aigbirhio, Franklin I; Baron, Jean-Claude

    2011-06-01

    No study so far has attempted to map the 3D topography of brain hypoxia in the individual rat in vivo following middle cerebral artery occlusion (MCAo). In a previous microPET study, we reported that (18)F-fluoromisonidazole ((18)F-MISO) trapping in the brain after MCAo was specific for the hypoxic viable tissue. Here, we used (18)F-MISO microPET to map the 3D topography of brain hypoxia in the acute stage of permanent distal MCAo in individual spontaneously hypertensive rats. Normal rats were also studied. (18)F-MISO was intravenously injected approximately 1 h after clip placement and PET data were acquired for 2 hours. Animals were sacrificed and the brains harvested 48 h later for infarct mapping using standard histopathology. As expected, continuous (18)F-MISO trapping was found over the affected relative to unaffected and control MCA cortex. Using single-subject voxel-based statistical mapping, tracer accumulation 90-120 min after injection was consistently significantly higher in the anterior MCA cortex (proximal relative to clip site) and gradually decreased towards posterior areas, a pattern consistent with the classic penumbra concept. The data also suggested that (i) a portion of the significant (18)F-MISO trapping area may sit outside the contours of the final infarct despite the permanent MCAo, suggesting that (18)F-MISO may be a marker not only of severe (penumbral) but also of milder (oligemic) hypoxia, and (ii) small portions of the final infarct may not exhibit early tracer trapping, suggesting that by the time the tracer was administered this tissue had already progressed to irreversible damage. This study shows the feasibility of single-subject mapping of brain hypoxia following MCAo in the rat, which has potential applications in pathophysiological investigations. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mapping the mechanical heterogeneity of the brain, and why this matters (Conference Presentation)

    Science.gov (United States)

    Guck, Jochen R.

    2017-02-01

    It is increasingly recognized that cells measure and respond to the mechanics of their environment. We are especially interested in this mechanosensing during CNS development and pathologies. Using quantitative scanning force microscopy we have shown that various neural tissues are very compliant (shear modulus root of foreign body reactions. Also oligodendrocytes are mechanosensitive as their survival, proliferation, migration, and differentiation capacity in vitro depend on substrate stiffness. This finding might be linked to the failure of remyelination in chronic demyelinating diseases such as multiple sclerosis. And finally, we have also shown retinal ganglion axon pathfinding in the early embryonic Xenopus brain development to be instructed by stiffness gradients. These results form the basis for further investigations into the mechanobiology of cell function in the CNS. Ultimately, this research could help treating previously incurable neuropathologies such as spinal cord injuries and neurodegenerative disorders.

  1. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jin [Dept. of Radiology, Dongsan Hospital, Keimyung University, Daegu (Korea, Republic of); Lee, Joo Young [GE Healthcare, Seoul (Korea, Republic of); Chang, Hyuk Won [Dept. of Radiology, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  2. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language

  3. Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution

    Directory of Open Access Journals (Sweden)

    M.G.P. Rosa

    2002-12-01

    Full Text Available In this paper, the topology of cortical visuotopic maps in adult primates is reviewed, with emphasis on recent studies. The observed visuotopic organisation can be summarised with reference to two basic rules. First, adjacent radial columns in the cortex represent partially overlapping regions of the visual field, irrespective of whether these columns are part of the same or different cortical areas. This primary rule is seldom, if ever, violated. Second, adjacent regions of the visual field tend to be represented in adjacent radial columns of a same area. This rule is not as rigid as the first, as many cortical areas form discontinuous, second-order representations of the visual field. A developmental model based on these physiological observations, and on comparative studies of cortical organisation, is then proposed, in order to explain how a combination of molecular specification steps and activity-driven processes can generate the variety of visuotopic organisations observed in adult cortex.

  4. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.

    2014-01-01

    the magnetic field by real-time updating of the shim fields, based on synchronous field measurements with external probes1,2. A thorough analysis of how accurate such field measurements at few (e.g. 16) positions outside the head can reflect the spatially varying dynamic fields inside the head is currently......Purpose. Breathing induced dynamic B0 field perturbations in the head can lead to artefacts in ultra-high field MR by causing line broadening in spectroscopy and signal dropout, ghosting, displacement artifacts and blurring in imaging. It has recently been proposed to continuously stabilize...... lacking. In this study a comparison between scanner-acquired field maps of the head, and corresponding field probe measurements is presented both during in- and expiration. In addition, the field probe measurements have been used to perform real-time updating of the linear shim- settings. Methods. Setup...

  5. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer H; Hanson, L.G.

    : The experiments were performed on a 7T MRI system (Philips Healthcare, Best, NL) using a 32-channel Nova Medical head coil. Fourteen fluorine T/R NMR field probes3 were firmly distributed around the transmit/receive head coil. A stand-alone spectrometer4 digitized the field probe signals, and calculated field...... strength values from signal phase by linear fitting. Ahead of imaging, the field probe positions were determined for each subject, by applying known gradients in all three dimensions while measuring with the field probes. Experiments: Measurements were performed in 4 male subjects instructed to hold...... order correction is significantly better than the first order correction. This is not the case for subject 2. The figure illustrates the stabilization. It is seen that the corrected B0 maps fluctuate less in intensity over time compared to the uncorrected ones, and the field correction in the back...

  6. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study.

    Science.gov (United States)

    Vidorreta, Jose Garbizu; Garcia, Roser; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-03-01

    Neural foundations of syntactic gender processing remain poorly understood. We used electrostimulation mapping in nine right-handed awake patients during surgery for a glioma within the left hemisphere, to study whether the cortico-subcortical structures involved in naming versus syntactic gender processing are common or distinct. In French, the article determines the grammatical gender. Thus, the patient was asked to perform a picture naming task and to give the appropriate article for each picture, with and without stimulation. Cortical stimulation elicited reproducible syntactic gender disturbances in six patients, in the inferior frontal gyrus (three cases), and in the posterior middle temporal gyrus (three cases). Interestingly, no naming disorders were generated during stimulation of the syntactic sites, while cortical areas inducing naming disturbances never elicited grammatical gender errors when stimulated. Moreover, at the subcortical level, stimulation of the white matter lateral to the caudate nucleus induced gender errors in three patients, with no naming disorders. Using cortico-subcortical electrical mapping in awake patients, we demonstrate for the first time (1) a double dissociation between syntactic gender and naming processing, supporting independent network model rather than serial theory, (2) the involvement of the left inferior frontal gyrus, especially the pars triangularis, and the posterior left middle temporal gyrus in grammatical gender processing, (3) the existence of white matter pathways, likely a sub-part of the left superior longitudinal fasciculus, underlying a large-scale distributed cortico-subcortical circuit which might selectively sub-serve syntactic gender processing, even if interconnected with parallel sub-networks involved in naming (semantic and phonological) processing. Copyright © 2010 Wiley-Liss, Inc.

  7. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

    Science.gov (United States)

    Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2017-10-01

    To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. Functional thresholds are frequently above AD thresholds in younger children. These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Directory of Open Access Journals (Sweden)

    Florence Colliez

    Full Text Available The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement magnetic resonance (MR technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1' would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1 and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001 than for Global R1 (median difference: 0.154 s-1; p = 0.027. Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min, hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  9. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Science.gov (United States)

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  10. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

    Science.gov (United States)

    Sanchez-Mut, Jose V.; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G.; Fernandez, Agustin F.; Astudillo, Aurora; Martin-Subero, Jose I.; Balint, Balazs; Fraga, Mario F.; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K.; Ferrer, Isidre

    2013-01-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease. PMID:24030951

  11. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  12. Mapping brain activation and information during category-specific visual working memory.

    Science.gov (United States)

    Linden, David E J; Oosterhof, Nikolaas N; Klein, Christoph; Downing, Paul E

    2012-01-01

    How is working memory for different visual categories supported in the brain? Do the same principles of cortical specialization that govern the initial processing and encoding of visual stimuli also apply to their short-term maintenance? We investigated these questions with a delayed discrimination paradigm for faces, bodies, flowers, and scenes and applied both univariate and multivariate analyses to functional magnetic resonance imaging (fMRI) data. Activity during encoding followed the well-known specialization in posterior areas. During the delay interval, activity shifted to frontal and parietal regions but was not specialized for category. Conversely, activity in visual areas returned to baseline during that interval but showed some evidence of category specialization on multivariate pattern analysis (MVPA). We conclude that principles of cortical activation differ between encoding and maintenance of visual material. Whereas perceptual processes rely on specialized regions in occipitotemporal cortex, maintenance involves the activation of a frontoparietal network that seems to require little specialization at the category level. We also confirm previous findings that MVPA can extract information from fMRI signals in the absence of suprathreshold activation and that such signals from visual areas can reflect the material stored in memory.

  13. A field map guided approach to non-rigid registration of brain EPI to structural MRI

    Science.gov (United States)

    Gholipour, Ali; Kehtarnavaz, Nasser; Briggs, Richard W.; Gopinath, Kaundinya S.

    2007-03-01

    It is known that along the phase encoding direction the effect of magnetic field inhomogeneity causes significant spatial distortions in fast functional MRI Echo Planar Imaging (EPI). In this work, our previously developed distortion correction technique via a non-rigid registration of EPI to anatomical MRI is improved by adding information from field maps to achieve a more accurate and efficient registration. Local deformation models are used in regions of distortion artifacts instead of using a global non-rigid transformation. The use of local deformations not only enhances the efficiency of the non-rigid registration by reducing the number of deformation model parameters, but also provides constraints to avoid physically incorrect deformations in undistorted regions. The accuracy and reliability of the non-rigid registration technique is improved by using an additional high-resolution gradient echo EPI scan. In-vivo validation is performed by comparing the similarity of the low-resolution EPI to various structural MRI scans before and after applying the computed deformation models. Visual inspection of the images, as well as Mutual Information (MI) and Normalized Cross Correlation (NCC) comparisons, reveal improvements within the sub-voxel range in the moderately distorted areas but not in the signal loss regions.

  14. Naturalistic fMRI Mapping Reveals Superior Temporal Sulcus as the Hub for the Distributed Brain Network for Social Perception

    Science.gov (United States)

    Lahnakoski, Juha M.; Glerean, Enrico; Salmi, Juha; Jääskeläinen, Iiro P.; Sams, Mikko; Hari, Riitta; Nummenmaa, Lauri

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life. PMID:22905026

  15. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception

    Directory of Open Access Journals (Sweden)

    Juha Marko Lahnakoski

    2012-08-01

    Full Text Available Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-tesla functional magnetic imaging (fMRI, a set of 137 short (~16 s each, total 27 min audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action and non-human sounds lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: 1 a fronto-temporal network responding to multiple social categories, 2 a fronto-parietal network preferentially activated to bodies, motion and pain, 3 a temporo-amygdalar network responding to faces, social interaction and speech, and 4 a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the posterior STS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  16. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception.

    Science.gov (United States)

    Lahnakoski, Juha M; Glerean, Enrico; Salmi, Juha; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta; Nummenmaa, Lauri

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  17. Mapping measures of microscopic diffusion anisotropy in human brain white matter in vivo with double-wave-vector diffusion-weighted imaging.

    Science.gov (United States)

    Lawrenz, Marco; Finsterbusch, Jürgen

    2015-02-01

    To demonstrate that rotationally invariant measures of the diffusion anisotropy on a microscopic scale can be mapped in human brain white matter in vivo. Echo-planar imaging experiments (resolution 3.0 × 3.0 × 3.0 mm(3) ) involving two diffusion-weighting periods (δ = 22 ms, Δ = 25 ms) in the same acquisition, so-called double-wave-vector or double-pulsed-field-gradient diffusion-weighting experiments, were performed on a 3 T whole-body magnetic resonance system with a long mixing time ( τm=45 ms) between the two diffusion weightings. The disturbing influences of background gradient fields, eddy currents, and the finite mixing time can be minimized using 84 direction combinations based on nine directions and their antipodes. In healthy volunteers, measures of the microscopic diffusion anisotropy ( IMA and MA indexes) could be mapped in white matter across the human brain. The measures were independent (i) of the absolute orientation of the head and of the diffusion directions and (ii) of the predominant fiber orientation. Compared to the fractional anisotropy derived from the conventional diffusion tensor, the double-wave-vector indexes exhibit a narrower distribution, which could reflect their independence of the fiber orientation distribution. Mapping measures of the microscopic diffusion anisotropy in human brain white matter is feasible in vivo and could help to characterize tissue microstructure in the healthy and pathological brain. © 2014 Wiley Periodicals, Inc.

  18. Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis.

    Science.gov (United States)

    Hackett, Mark J; McQuillan, James A; El-Assaad, Fatima; Aitken, Jade B; Levina, Aviva; Cohen, David D; Siegele, Rainer; Carter, Elizabeth A; Grau, Georges E; Hunt, Nicholas H; Lay, Peter A

    2011-07-21

    Understanding biochemical mechanisms and changes associated with disease conditions and, therefore, development of improved clinical treatments, is relying increasingly on various biochemical mapping and imaging techniques on tissue sections. However, it is essential to be able to ascertain whether the sampling used provides the full biochemical information relevant to the disease and is free from artefacts. A multi-modal micro-spectroscopic approach, including FTIR imaging and PIXE elemental mapping, has been used to study the molecular and elemental profile within cryofixed and formalin-fixed murine brain tissue sections. The results provide strong evidence that amino acids, carbohydrates, lipids, phosphates, proteins and ions, such as Cl(-) and K(+), leach from tissue sections into the aqueous fixative medium during formalin fixation of the sections. Large changes in the concentrations and distributions of most of these components are also observed by washing in PBS even for short periods. The most likely source of the chemical species lost during fixation is the extra-cellular and intra-cellular fluid of tissues. The results highlight that, at best, analysis of formalin-fixed tissues gives only part of the complete biochemical "picture" of a tissue sample. Further, this investigation has highlighted that significant lipid peroxidation/oxidation may occur during formalin fixation and that the use of standard histological fixation reagents can result in significant and differential metal contamination of different regions of tissue sections. While a consistent and reproducible fixation method may be suitable for diagnostic purposes, the findings of this study strongly question the use of formalin fixation prior to spectroscopic studies of the molecular and elemental composition of biological samples, if the primary purpose is mechanistic studies of disease pathogenesis.

  19. B1 mapping for bias-correction in quantitative T1 imaging of the brain at 3T using standard pulse sequences.

    Science.gov (United States)

    Boudreau, Mathieu; Tardif, Christine L; Stikov, Nikola; Sled, John G; Lee, Wayne; Pike, G Bruce

    2017-12-01

    B1 mapping is important for many quantitative imaging protocols, particularly those that include whole-brain T1 mapping using the variable flip angle (VFA) technique. However, B1 mapping sequences are not typically available on many magnetic resonance imaging (MRI) scanners. The aim of this work was to demonstrate that B1 mapping implemented using standard scanner product pulse sequences can produce B1 (and VFA T1 ) maps comparable in quality and acquisition time to advanced techniques. Six healthy subjects were scanned at 3.0T. An interleaved multislice spin-echo echo planar imaging double-angle (EPI-DA) B1 mapping protocol, using a standard product pulse sequence, was compared to two alternative methods (actual flip angle imaging, AFI, and Bloch-Siegert shift, BS). Single-slice spin-echo DA B1 maps were used as a reference for comparison (Ref. DA). VFA flip angles were scaled using each B1 map prior to fitting T1 ; the nominal flip angle case was also compared. The pooled-subject voxelwise correlation (ρ) for B1 maps (BS/AFI/EPI-DA) relative to the reference B1 scan (Ref. DA) were ρ = 0.92/0.95/0.98. VFA T1 correlations using these maps were ρ = 0.86/0.88/0.96, much better than without B1 correction (ρ = 0.53). The relative error for each B1 map (BS/AFI/EPI-DA/Nominal) had 95(th) percentiles of 5/4/3/13%. Our findings show that B1 mapping implemented using product pulse sequences can provide excellent quality B1 (and VFA T1 ) maps, comparable to other custom techniques. This fast whole-brain measurement (∼2 min) can serve as an excellent alternative for researchers without access to advanced B1 pulse sequences. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1673-1682. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario [University of Genoa and IRCCS AOU San Martino-IST, Nuclear Medicine Unit, Department of Health Science (DISSAL), Genoa (Italy); Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); Girtler, Nicola [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); University of Genoa and IRCCS AOU San Martino-IST, Clinical Psychology, Department of Neuroscience (DINOGMI), Genoa (Italy); Mandich, Paola [University of Genoa and IRCCS AOU San Martino-IST, Medical Genetics, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2016-07-15

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  1. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain.

    Directory of Open Access Journals (Sweden)

    Gabriele Lohmann

    Full Text Available Functional magnetic resonance data acquired in a task-absent condition ("resting state" require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google's PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular "betweenness centrality" - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.

  2. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain.

    Science.gov (United States)

    Lohmann, Gabriele; Margulies, Daniel S; Horstmann, Annette; Pleger, Burkhard; Lepsien, Joeran; Goldhahn, Dirk; Schloegl, Haiko; Stumvoll, Michael; Villringer, Arno; Turner, Robert

    2010-04-27

    Functional magnetic resonance data acquired in a task-absent condition ("resting state") require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google's PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular "betweenness centrality" - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.

  3. Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons

    Directory of Open Access Journals (Sweden)

    Peter Kochunov

    2010-05-01

    Full Text Available The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17-25 of 26 weeks total gestation. Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of ten primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length axis of cortical sulci was unrelated to the growth along the short (depth axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r=-0.60;p<.10, while the same trend for long axis was positive and not significant (p=0.3;p=0.40. These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.

  4. Age of language acquisition and cortical language organization in multilingual patients undergoing awake brain mapping.

    Science.gov (United States)

    Fernández-Coello, Alejandro; Havas, Viktória; Juncadella, Montserrat; Sierpowska, Joanna; Rodríguez-Fornells, Antoni; Gabarrós, Andreu

    2017-06-01

    OBJECTIVE Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language. METHODS Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap. RESULTS The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions. CONCLUSIONS Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired

  5. High-throughput dual-color precision imaging for brain-wide mapping of the connectome with cytoarchitectonic landmarks at the cellular level (Conference Presentation)

    Science.gov (United States)

    Luo, Qingming; Gong, Hui; Yuan, Jing; Li, Xiangning; Li, Anan; Xu, Tonghui

    2017-02-01

    Deciphering the fine morphology and precise location of neurons and neural circuits are crucial to enhance our understanding of brain function and diseases. Traditionally, we have to map brain images to coarse axial-sampling planar reference atlases to orient neural structures. However, this means might fail to orient neural projections at single-cell resolution due to position errors resulting from individual differences at the cellular level. Here, we present a high-throughput imaging method that can automatically obtain the fine morphologies and precise locations of both neurons and circuits, employing wide-field large-volume tomography to acquire three-dimensional images of thick tissue and implementing real-time soma counterstaining to obtain cytoarchitectonic landmarks during the imaging process. The reconstruction and orientation of brain-wide neural circuits at single-neuron resolution can be accomplished for the same mouse brain without additional counterstains or image registration. Using our method, mouse brain imaging datasets of multiple type-specific neurons and circuits were successfully acquired, demonstrating the versatility. The results show that the simultaneous acquisition of labeled neural structures and cytoarchitecture reference at single-neuron resolution in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. Our method provides a novel and effective tool for application in studies on genetic dissection, brain function and the pathology of the nervous system.

  6. The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment.

    Science.gov (United States)

    Vecchiato, G; De Vico Fallani, F; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F

    2010-08-30

    This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical tests, has gained interest. In the present experiment, we investigated the EEG signals from a mannequin acting as an experimental subject. Data have been collected while performing a neuromarketing experiment and analyzed with state of the art computational tools adopted in specialized literature. Results showed that electric data from the mannequin's head presents statistical significant differences in power spectra during the visualization of a commercial advertising when compared to the power spectra gathered during a documentary, when no adjustments were made on the alpha level of the multiple univariate tests performed. The use of the Bonferroni or Bonferroni-Holm adjustments returned correctly no differences between the signals gathered from the mannequin in the two experimental conditions. An partial sample of recently published literature on different neuroscience journals suggested that at least the 30% of the papers do not use statistical protection for the type I errors. While the occurrence of type I errors could be easily managed with appropriate statistical techniques, the use of such techniques is still not so largely adopted in the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus?

    Science.gov (United States)

    Curlik, D M; Shors, T J

    2013-01-01

    New neurons are produced each day in the hippocampus through the process of neurogenesis. Both mental and physical training can modify this process by increasing the number of new cells that mature into functional neurons in the adult brain. However, the mechanisms whereby these increases occur are not necessarily the same. Physical activity, especially aerobic exercise greatly increases the number of new neurons that are produced in the hippocampal formation. In contrast, mental training via skill learning increases the numbers that survive, particularly when the training goals are challenging. Both manipulations can increase cognitive performance in the future, some of which are reportedly mediated by the presence of new neurons in the adult hippocampus. Based on these data, we suggest that a combination of mental and physical training, referred to here as MAP training, is more beneficial for neuronal recruitment and overall mental health than either activity alone. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging.

    Science.gov (United States)

    Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H

    2009-09-15

    We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.

  9. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques.

    Science.gov (United States)

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.

  10. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Matrov, Denis; Panksepp, Jaak

    2011-10-01

    The search for novel antidepressants may be facilitated by pre-clinical animal models that relay on specific neural circuit and related neurochemical endpoint measures, which are anchored in concrete neuro-anatomical and functional neural-network analyzes. One of the most important initial considerations must be which regions of the brain are candidates for the maladaptive response to depressogenic challenges. Consideration of persistent differences or changes in the activity of cerebral networks can be achieved by mapping oxidative metabolism in ethologically or pathogenetically relevant animal models. Cytochrome oxidase histochemistry is a technique suitable to detect regional long-term brain activity changes relative to control conditions and has been used in a variety of animal models. This work is summarized and indicates that major changes occur mainly in subcortical areas, highlighting specific brain regions where some alterations in regional oxidative metabolism may represent adaptive changes to depressogenic adverse life events, while others may reflect failures of adaptation. Many of these changes in oxidative metabolism may depend upon the integrity of serotonergic neurotransmission, and occur in several brain regions shown by other techniques to be involved in endogenous affective circuits that control emotional behaviors as well as related higher brain regions that integrate learning and cognitive information processing. These brain regions appear as primary targets for further identification of endophenotypes specific to affective disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Comparative bioavailability studies with a new mixed-micelles solution of diazepam utilizing radioreceptor assay, psychometry and EEG brain mapping.

    Science.gov (United States)

    Saletu, B; Anderer, P; Kinsperger, K; Grünberger, J; Sieghart, W

    1988-10-01

    In a double-blind, placebo-controlled study the pharmacokinetic and pharmacodynamic properties of a standard solution of diazepam (DZ) (ValiumR) were compared with those of a novel diazepam mixed-micelles solution (DZ MM) (Valium MMR) both after i.v. and i.m. application utilizing radioreceptor assay, quantitative pharmaco-EEG and brain mapping techniques as well as psychometric and psychophysiological methods. The local tolerance was studied as well. The subjects received randomized and, in weekly intervals, following injections: (1) 10 mg DZ i.v. + placebo i.m.; (2) 10 mg DZ MM i.v. + placebo i.m.; (3) placebo i.v. + 10 mg DZ i.m.; (4) placebo i.v. + 10 mg DZ MM i.m.; (5) placebo i.v. + placebo i.m. Blood sampling, EEG-recordings, psychometric and psychophysiological tests as well as tolerance evaluations were carried out at 0, 1/2, 1, 2, 4, 6 and 8 h. Blood level evaluation demonstrated after i.m. application a significantly shortened tmax, a higher Cmax and generally higher plasma concentrations in the first and second hour following the mixed-micelles solution than the standard formulation, which suggests better absorption of the former than the latter in the muscle. Subsequent to i.v. administration, lower blood levels were observed between 30 min and 2 h after DZ MM than DZ. Power spectral density analysis of the EEG resulted in typical anxiolytic-sedative pharmaco-EEG profiles after all 4 active substances as compared with placebo. However, there were significant inter-drug differences as far as topographic aspects (pharmaco-EEG maps) were concerned. DZ MM i.v. induced significantly more initial but also late delta augmentation, alpha attenuation and centroid slowing than DZ i.v. which suggests more sedative effects at those times. Following i.m. application, a significantly more pronounced delta/theta attenuation, beta augmentation and centroid acceleration after DZ MM than DZ suggested more anxiolytic effects of the novel than the standard formulation

  12. The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery.

    Science.gov (United States)

    Duffau, Hugues

    2014-09-01

    While prominent in the traditional literature, the localizationist and static view of brain processing does not explain numerous observations of functional recovery following cerebral damages. Here, the goal is to revisit this classical modular and inflexible model by proposing a dynamic organization of brain circuits, which allows postlesional cerebral adaptative phenomena able to maintain neurological and cognitive functions, even in adults. In this state of mind, recent data provided by serial mappings performed in patients who underwent awake surgery for diffuse glioma infiltrating eloquent structures will be reviewed. Firstly, the use of intraoperative electrical mapping enables the realization of on-line anatomo-functional correlations both at cortical and subcortical levels, supporting a network distribution of the brain, and resulting in the reappraisal of cognitive models - notably regarding language. Secondly, combination of neuropsychological assessments and functional neuroimaging before and after operation demonstrates that it is possible to achieve massive resections of "critical" regions without eliciting permanent sequelae, thanks to reorganization of cerebral circuits. Thirdly, repeated surgeries in cases of tumor relapse show functional remapping in the same patients over time. Taken together, these findings open the window toward a huge plastic potential of human central nervous system (CNS) in adults. However, a better understanding of cerebral connectomics leads to the conclusion that the white matter connectivity constitutes a main limitation of such brain plasticity, explaining the lack of recovery in patients with extensive subcortical damages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Non invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions

    Science.gov (United States)

    2017-05-14

    is the first human study to measure the brain glutathione level and also perform various neuropsychological test to investigate any possible...relationship between the brain oxidative status and stress at a cellular, physiological as well as a psychological level. These stressors, in turn, have...experiment time. Absolute glutathione concentration (from human brain) was determined with respect to external reference containing pure glutathione

  14. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    Science.gov (United States)

    2017-05-14

    is the first human study to measure the brain glutathione level and also perform various neuropsychological test to investigate any possible...relationship between the brain oxidative status and stress at a cellular, physiological as well as a psychological level. These stressors, in turn, have...experiment time. Absolute glutathione concentration (from human brain) was determined with respect to external reference containing pure glutathione

  15. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients.

    Science.gov (United States)

    Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

    2014-01-01

    Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others' actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others' actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding.

  16. A Novel Feature-Map Based ICA Model for Identifying the Individual, Intra/Inter-Group Brain Networks across Multiple fMRI Datasets.

    Science.gov (United States)

    Wang, Nizhuan; Chang, Chunqi; Zeng, Weiming; Shi, Yuhu; Yan, Hongjie

    2017-01-01

    Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data analysis to evaluate functional connectivity of the brain; however, there are still some limitations on ICA simultaneously handling neuroimaging datasets with diverse acquisition parameters, e.g., different repetition time, different scanner, etc. Therefore, it is difficult for the traditional ICA framework to effectively handle ever-increasingly big neuroimaging datasets. In this research, a novel feature-map based ICA framework (FMICA) was proposed to address the aforementioned deficiencies, which aimed at exploring brain functional networks (BFNs) at different scales, e.g., the first level (individual subject level), second level (intragroup level of subjects within a certain dataset) and third level (intergroup level of subjects across different datasets), based only on the feature maps extracted from the fMRI datasets. The FMICA was presented as a hierarchical framework, which effectively made ICA and constrained ICA as a whole to identify the BFNs from the feature maps. The simulated and real experimental results demonstrated that FMICA had the excellent ability to identify the intergroup BFNs and to characterize subject-specific and group-specific difference of BFNs from the independent component feature maps, which sharply reduced the size of fMRI datasets. Compared with traditional ICAs, FMICA as a more generalized framework could efficiently and simultaneously identify the variant BFNs at the subject-specific, intragroup, intragroup-specific and intergroup levels, implying that FMICA was able to handle big neuroimaging datasets in neuroscience research.

  17. Mapping Circular Current for a Single Brain Cancer Cell’s Spatial-Temporal Orientations Based on a Memristor/Memcapacitor

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2014-12-01

    Full Text Available An increasing demand for improving neuronal imaging technologies in spatial- temporal resolution has emphasized in literature. Here we report a nanostructured memrisor/memcapacitor device is able to bio-communicate with the brain cancer cells without using tracers, antibodies and reagent. A “normal neuron” with a biomimetic acetylcholinesterase (ACHE active gorge was made by cross-linked multiple polymers on gold surface as Sensor 1 and an “abnormal neuron” without a hydrophobic ACHE lining as Sensor 2. A cyclic voltammetry (CV method was used. Three types of maps were constructed in light images, contour maps and in 3D dynamic interaction between cross-point location, direct-electron transfer and frequency. The spatial-temporal orientations of the dynamic interaction maps with and without cancer between 10-300 Hz were presented and compared in details regarding how the cancer broken the direct electron-relay circular current, how it changed the brain circuitry structure and its direction. Our results show Sensor 2 without a hydrophobic lining suffered more damage by the cancer than Sensor 1. The cancer’s behaviors toward the neuronal sensors were defined in spatial-temporal fine resolution/orientation in a single cancer concentration and the direction of the synapse network signaling pathway and the trajectory of cancer interaction were identified and mapped.

  18. Mapping of electrophysiological response to transcranial infrared laser stimulation on the human brain in vivo measured by electroencephalography (Conference Presentation)

    Science.gov (United States)

    Wang, Xinlong; Reddy, Divya Dhandapani; Gonzalez-Lima, F.; Liu, Hanli

    2017-02-01

    Transcranial infrared laser stimulation (TILS) is a non-destructive and non-thermal photobiomodulation therapy or process on the human brain; TILS uses infrared light from lasers or LEDs and has gained increased recognition for its beneficial effects on a variety of neurological and psychological conditions. While the mechanism of TILS has been assumed to stem from cytochrome-c-oxidase (CCO), which is the last enzyme in the electron transportation chain and is the primary photoacceptor, no literature is found to report electrophysiological response to TILS. In this study, a 64-channel electroencephalography (EEG) system was employed to monitor electrophysiological activities from 15 healthy human participants before, during and after TILS. A placebo experimental protocol was also applied for rigorous comparison. After recording a 3-minute baseline, we applied a 1064-nm laser with a power of 3.5W on the right forehead of each human participant for 8 minutes, followed by a 5-minute recovery period. In 64-channel EEG data analysis, we utilized several methods (root mean square, principal component analysis followed by independent component analysis, permutation conditional mutual information, and time-frequency wavelet analysis) to reveal differences in electrophysiological response to TILS between the stimulated versus placebo group. The analyzed results were further investigated using general linear model and paired t-test to reveal statistically meaningful responses induced by TILS. Moreover, this study will provide spatial mapping of human electrophysiological and possibly neural network responses to TILS for first time, indicating the potential of EEG to be an effective method for monitoring neurological improvement induced by TILS.

  19. Baby Brain Map

    Science.gov (United States)

    ... All Early Learning Child Care Early Literacy Early Math and Science Language and Communication Play School Readiness ... Member-Exclusive Resources The Bookstore ZERO TO THREE Journal Parent Favorites Newsletters Policymakers & Advocates Virtual Events CERO ...

  20. The minimum resting-state fNIRS imaging duration for accurate and stable mapping of brain connectivity network in children.

    Science.gov (United States)

    Wang, Jingyu; Dong, Qi; Niu, Haijing

    2017-07-25

    Resting-state functional near-infrared spectroscopy (fNIRS) is a potential technique for the study of brain functional connectivity (FC) and networks in children. However, the necessary fNIRS scanning duration required to map accurate and stable functional brain connectivity and graph theory metrics in the resting-state brain activity remains largely unknown. Here, we acquired resting-state fNIRS imaging data from 53 healthy children to provide the first empirical evidence for the minimum imaging time required to obtain accurate and stable FC and graph theory metrics of brain network activity (e.g., nodal efficiency and network global and local efficiency). Our results showed that FC was accurately and stably achieved after 7.0-min fNIRS imaging duration, whereas the necessary scanning time for accurate and stable network measures was a minimum of 2.5 min at low network thresholds. These quantitative results provide direct evidence for the choice of the resting-state fNIRS imaging time in children in brain FC and network topology study. The current study also demonstrates that these methods are feasible and cost-effective in the application of time-constrained infants and critically ill children.

  1. Brain hypoxia mapping in acute stroke: Back-to-back T2' MR versus18F-fluoromisonidazole PET in rodents.

    Science.gov (United States)

    Jensen-Kondering, Ulf; Manavaki, Roido; Ejaz, Sohail; Sawiak, Stephen J; Carpenter, T Adrian; Fryer, Tim D; Aigbirhio, Franklin I; Williamson, David J; Baron, Jean-Claude

    2017-10-01

    Background Mapping the hypoxic brain in acute ischemic stroke has considerable potential for both diagnosis and treatment monitoring. PET using 18 F-fluoro-misonidazole (FMISO) is the reference method; however, it lacks clinical accessibility and involves radiation exposure. MR-based T2' mapping may identify tissue hypoxia and holds clinical potential. However, its validation against FMISO imaging is lacking. Here we implemented back-to-back FMISO-PET and T2' MR in rodents subjected to acute middle cerebral artery occlusion. For direct clinical relevance, regions of interest delineating reduced T2' signal areas were manually drawn. Methods Wistar rats were subjected to filament middle cerebral artery occlusion, immediately followed by intravenous FMISO injection. Multi-echo T2 and T2* sequences were acquired twice during FMISO brain uptake, interleaved with diffusion-weighted imaging. Perfusion-weighted MR was also acquired whenever feasible. Immediately following MR, PET data reflecting the history of FMISO brain uptake during MR acquisition were acquired. T2' maps were generated voxel-wise from T2 and T2*. Two raters independently drew T2' lesion regions of interest. FMISO uptake and perfusion data were obtained within T2' consensus regions of interest, and their overlap with the automatically generated FMISO lesion and apparent diffusion coefficient lesion regions of interest was computed. Results As predicted, consensus T2' lesion regions of interest exhibited high FMISO uptake as well as substantial overlap with the FMISO lesion and significant hypoperfusion, but only small overlap with the apparent diffusion coefficient lesion. Overlap of the T2' lesion regions of interest between the two raters was ∼50%. Conclusions This study provides formal validation of T2' to map non-core hypoxic tissue in acute stroke. T2' lesion delineation reproducibility was suboptimal, reflecting unclear lesion borders.

  2. Analysis of brain fMRI time-series using HRF knowledge-based correlation classifier on unsupervised self-organizing neural network map

    Science.gov (United States)

    Erberich, Stephan G.; Bluml, Stefan; Nelson, Marvin D.

    2003-05-01

    Brain imaging and particular functional MRI (fMRI), which acquires brain volumes in time, reveals new understanding of the functional/structural relation in neuroscience. During fMRI imaging physiological state changes occur in the brain regions activated from the task paradigm which the subject performs in the scanner. These state changes can be depicted in the small veins of the activated region due to the blood oxygen level dependent (BOLD) effect. For each brain voxel in the fMRI experiment one accumulates a time series vector which has to be analyzed for similarity to the original task paradigm vector and its characteristic hemodynamic response function (HRF). Various analysis methods have been discussed for fMRI analysis, model-based statistical or unsupervised data-driven techniques. The purpose of this paper is to introduce a new method which combines two different approaches. We use an unsupervised self-organizing map (SOM) neural network to reduce the time series vector space by non-linear pattern recognition into a 2D table of representative time series wave-forms. Using a-priori knowledge of the HRF, either derived from a theoretical wave-form model or estimated from a brain region of interest (ROI), one can use correlation analysis between the time series patterns of the SOM table and the HRF to depict regions of activation specific to the HRF. An optional second SOM training with a reduce number of neurons of the best-matching time series to the HRF classification refines the second neural network pattern table. The learned time series pattern of each neuron and the corresponding brain voxels are superimposed onto the subject's brain image for visual investigation.

  3. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies.

    Science.gov (United States)

    Giussani, Carlo; Roux, Frank-Emmanuel; Ojemann, Jeffrey; Sganzerla, Erik Pietro; Pirillo, David; Papagno, Costanza

    2010-01-01

    Language functional magnetic resonance imaging (fMRI) has been used extensively in the past decade for both clinical and research purposes. Its integration in the preoperative imaging assessment of brain lesions involving eloquent areas is progressively more diffused in neurosurgical practice. Nevertheless, the reliability of language fMRI is unclear. To understand the reliability of preoperative language fMRI in patients operated on for brain tumors, the surgical studies that compared language fMRI with direct cortical stimulation (DCS) were reviewed. Articles comparing language fMRI with DCS of language areas were reviewed with attention to the lesion pathology, the magnetic field, the language tasks used pre- and intraoperatively, and the validation modalities adopted to establish the reliability of language fMRI. We tried to explore the effectiveness of language fMRI in gliomas. Nine language brain mapping studies compared the findings of fMRI with those of DCS. The studies are not homogeneous for tumor types, magnetic fields, pre- and intraoperative language tasks, intraoperative matching criteria, and results. Sensitivity and specificity were calculated in 5 studies (respectively ranging from 59% to 100% and from 0% to 97%). The contradictory results of these studies do not allow consideration of language fMRI as an alternative tool to DCS in brain lesions located in language areas, especially in gliomas because of the pattern of growth of these tumors. However, language fMRI conducted with high magnet fields is a promising brain mapping tool that must be validated by DCS in methodological robust studies.

  4. A review of monopolar motor mapping and a comprehensive guide to continuous dynamic motor mapping for resection of motor eloquent brain tumors.

    Science.gov (United States)

    Schucht, P; Seidel, K; Jilch, A; Beck, J; Raabe, A

    2017-06-01

    Monopolar mapping of motor function differs from the most commonly used method of intraoperative mapping, i.e. bipolar direct electrical stimulation at 50-60Hz (Penfield technique mapping). Most importantly, the monopolar probe emits a radial, homogenous electrical field different to the more focused inter-tip bipolar electrical field. Most users combine monopolar stimulation with the short train technique, also called high frequency stimulation, or train-of-five techniques. It consists of trains of four to nine monopolar rectangular electrical pulses of 200-500μs pulse length with an inter stimulus interval of 2-4msec. High frequency short train stimulation triggers a time-locked motor-evoked potential response, which has a defined latency and an easily quantifiable amplitude. In this way, motor thresholds might be used to evaluate a current-to-distance relation. The homogeneous electrical field and the current-to-distance approximation provide the surgeon with an estimate of the remaining distance to the corticospinal tract, enabling the surgeon to adjust the speed of resection as the corticospinal tract is approached. Furthermore, this stimulation paradigm is associated with a lower incidence of intraoperative seizures, allowing continuous stimulation. Hence, monopolar mapping is increasingly used as part of a strategy of continuous dynamic mapping: ergonomically integrated into the surgeon's tools, the monopolar probe reliably provides continuous/uninterrupted feedback on motor function. As part of this strategy, motor mapping is not any longer a time consuming interruption of resection but rather a radar-like, real-time information system on the spatial relationship of the current resection site to eloquent motor structures. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Thalamic Multisensory integration: Creating a neural network map of involved brain areas in music perception, processing and execution

    NARCIS (Netherlands)

    Jaschke, A.C.; Scherder, E.J.A.

    2013-01-01

    Music activates a wide array of neural areas involved in different functions besides the perception, processing and execution of music itself. Understanding musical processes in the brain has had multiple implications in the neuro- and health sciences. Engaging the brain with a multisensory stimulus

  6. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning

    DEFF Research Database (Denmark)

    Andersen, F; Watanabe, Hideaki; Bjarkam, Carsten

    2005-01-01

    developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland...

  7. Brain Susceptibility Changes in a Patient with Natalizumab-Related Progressive Multifocal Leukoencephalopathy: A Longitudinal Quantitative Susceptibility Mapping and Relaxometry Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Pontillo

    2017-06-01

    Full Text Available BackgroundBrain MRI plays an essential role in both diagnosis and follow-up of the JC virus infection of the brain. Recently, MR studies with susceptibility-weighted imaging (SWI sequences have shown hypointensities in U-fibers adjacent to white matter (WM lesions of progressive multifocal leukoencephalopathy (PML. This finding has been confirmed with the use of quantitative susceptibility mapping (QSM, allowing to hypothesize a paramagnetic effect in these regions. Here, we report the first longitudinal assessment of QSM and R2* maps in natalizumab-associated PML to evaluate serial changes in susceptibility contrast images and their role in PML diagnosis and follow-up.Case presentationWe report the case of a 42-year-old woman with multiple sclerosis (MS who eventually developed, after the 28th natalizumab infusion, subacute cognitive decline and received a laboratory-confirmed diagnosis of PML, leading to immediate drug discontinuation. Three months later, she suffered a new clinical exacerbation, with a brain scan revealing significant inflammatory activity compatible with the radiological diagnosis of an Immune Reconstitution Inflammatory Syndrome (IRIS. She was then treated with corticosteroids until the clinico-radiological spectrum became stable, with the final outcome of a severe functional impairment. Quantitative maps obtained in the early symptomatic stage clearly showed increased QSM and R2* values in the juxtacortical WM adjacent to PML lesions, which persisted during the subsequent disease course.Discussion and conclusionHigh QSM and R2* values in U-fibers adjacent to WM lesions were early and seemingly time-independent radiological findings in the presented PML case. This, coupled to the known absence of significant paramagnetic effect of new active MS lesions, could support the use of quantitative MRI as an additional tool in the diagnosis and follow-up of natalizumab-related PML in MS.

  8. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.

    Science.gov (United States)

    Fuxe, Kjell; Dahlström, Annica; Höistad, Malin; Marcellino, Daniel; Jansson, Anders; Rivera, Alicia; Diaz-Cabiale, Zaida; Jacobsen, Kirsten; Tinner-Staines, Barbro; Hagman, Beth; Leo, Giuseppina; Staines, William; Guidolin, Diego; Kehr, Jan; Genedani, Susanna; Belluardo, Natale; Agnati, Luigi F

    2007-08-01

    After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the

  9. Different uptake of 99mTc-ECD adn 99mTc-HMPAO in the same brains: analysis by statistical parametric mapping.

    Science.gov (United States)

    Hyun, Y; Lee, J S; Rha, J H; Lee, I K; Ha, C K; Lee, D S

    2001-02-01

    The purpose of this study was to investigate the differences between technetium-99m ethyl cysteinate dimer (99mTc-ECD) and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) uptake in the same brains by means of statistical parametric mapping (SPM) analysis. We examined 20 patients (9 male, 11 female, mean age 62+/-12 years) using 99mTc-ECD and 99mTc-HMPAO single-photon emission tomography (SPET) and magnetic resonance imaging (MRI) of the brain less than 7 days after onset of stroke. MRI showed no cortical infarctions. Infarctions in the pons (6 patients) and medulla (1), ischaemic periventricular white matter lesions (13) and lacunar infarction (7) were found on MRI. Split-dose and sequential SPET techniques were used for 99mTc-ECD and 99mTc-HMPAO brain SPET, without repositioning of the patient. All of the SPET images were spatially transformed to standard space, smoothed and globally normalized. The differences between the 99mTc-ECD and 99mTc-HMPAO SPET images were statistically analysed using statistical parametric mapping (SPM) 96 software. The difference between two groups was considered significant at a threshold of uncorrected P values less than 0.01. Visual analysis showed no hypoperfused areas on either 99mTc-ECD or 99mTc-HMPAO SPET images. SPM analysis revealed significantly different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains. On the 99mTc-ECD SPET images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the left superior temporal lobe and in the superior region of the cerebellum. On the 99mTc-HMPAO SPET images, relatively higher uptake was observed in the medial temporal lobes, thalami, periventricular white matter and brain stem. These differences in uptake of the two tracers in the same brains on SPM analysis suggest that interpretation of cerebral perfusion is possible using SPET with 99mTc-ECD and 99mTc-HMPAO.

  10. Simultaneous direct cortical motor evoked potential monitoring and subcortical mapping for motor pathway preservation during brain tumor surgery: is it useful?

    Science.gov (United States)

    Landazuri, Patrick; Eccher, Matthew

    2013-12-01

    The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors: clinical article.Seidel K, Beck J, Steiglitz L, Schucht P, Raabe A.J Neurosurg 2013; 118:287-296. Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST. A consecutive cohort of 100 patients underwent tumor surgery adjacent to the CST while simultaneous subcortical motor mapping and DCS-MEP monitoring were used. Evaluation was performed regarding the lowest subcortical mapping threshold (monopolar stimulation, train of 5 stimuli, interstimulus interval 4.0 milliseconds, pulse duration 500 microseconds) and signal changes in DCS-MEPs (same parameters, 4 contact strip electrode). Motor function was assessed 1 day after the surgery, at discharge, and at 3 months postoperatively. The lowest individual motor thresholds (MTs) were as follows (MT in mA, number of patients): >20 mA, n = 12; 11 to 20 mA, n = 13; 6 to 10 mA, n = 20; 4 to 5 mA, n = 30; and 1 to 3 mA, n = 25. Direct cortical stimulation showed stable signals in 70 patients, unspecific changes in 18, irreversible alterations in 8, and irreversible loss in 4 patients. At 3 months, 5 patients had a postoperative new or worsened motor deficit (lowest mapping MT 20 mA, 13 mA, 6 mA, 3 mA, and 1 mA). In all 5 patients, DCS-MEP monitoring alterations were documented (2 sudden irreversible threshold increases and 3 sudden irreversible

  11. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  12. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    Science.gov (United States)

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke?

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander

    2016-10-01

    Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. We Must Invest in Applied Knowledge of Computational Neurosciences and Neuroinformatics as an Important Future in Malaysia: The Malaysian Brain Mapping Project

    Science.gov (United States)

    Sumari, Putra; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-01-01

    The Academy of Sciences Malaysia and the Malaysian Industry-Government group for High Technology has been working hard to project the future of big data and neurotechnology usage up to the year 2050. On the 19 September 2016, the International Brain Initiative was announced by US Under Secretary of State Thomas Shannon at a meeting that accompanied the United Nations’ General Assembly in New York City. This initiative was seen as an important effort but deemed costly for developing countries. At a concurrent meeting hosted by the US National Science Foundation at Rockefeller University, numerous countries discussed this massive project, which would require genuine collaboration between investigators in the realms of neuroethics. Malaysia’s readiness to embark on using big data in the field of brain, mind and neurosciences is to prepare for the 4th Industrial Revolution which is an important investment for the country’s future. The development of new strategies has also been encouraged by the involvement of the Society of Brain Mapping and Therapeutics, USA and the International Neuroinformatics Coordinating Facility. PMID:28381924

  15. Efficacy Assessment of Endovascular Stenting in Patients with Unilateral Middle Cerebral Artery Stenosis Using Statistical Probabilistic Anatomical Mapping Analysis of Basal/Acetazolamide Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Won; Won, Kyoung Sook; Zeon, Seok Kil; Lee, Chang Young [Keimyung University, School of Medicine, Daegu (Korea, Republic of)

    2009-08-15

    The aim of this study was to evaluate the hemodynamic changes after endovascular stenting in patients with unilateral middle cerebral artery (MCA) stenosis using statistical probabilistic anatomical mapping (SPAM) analysis of basal/acetazolamide (ACZ) Tc-99m ECD brain perfusion SPECT. Eight patients (3 men and 5 women, 64.8{+-}10.5 years) who underwent endovascular stenting for unilateral MCA stenosis were enrolled. Basal/ACZ Tc-99m ECD brain perfusion SPECT studies were performed by one-day protocol before and after stenting. Using SPAM analysis, we compared basal cerebral perfusion (BCP) counts and cerebrovascular reserve (CVR) index of the MCA territory before stenting with those after stenting. After stenting, no patient had any complication nor additional stroke. In SPAM analysis, 7 out of the 8 patients had improved BCP counts of the MCA territory and 7 out of the 8 patients had improved CVR index of the MCA territory after stenting. Before stenting, the mean BCP counts and CVR index in the affected MCA territory were 47.1{+-}2.2 ml/min/100 g and -2.1{+-}2.9%, respectively. After stenting, the mean BCP counts and CVR index in the affected MCA territory were improved significantly (48.3{+-}2.9 ml/min/100 g, p=0.025 and 0.1{+-}1.3%, p=0.036). This study revealed that SPAM analysis of basal/ACZ brain perfusion SPECT would be helpful to evaluate hemodynamic efficacy of endovascular stenting in unilateral MCA stenosis.

  16. We Must Invest in Applied Knowledge of Computational Neurosciences and Neuroinformatics as an Important Future in Malaysia: The Malaysian Brain Mapping Project.

    Science.gov (United States)

    Sumari, Putra; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-03-01

    The Academy of Sciences Malaysia and the Malaysian Industry-Government group for High Technology has been working hard to project the future of big data and neurotechnology usage up to the year 2050. On the 19 September 2016, the International Brain Initiative was announced by US Under Secretary of State Thomas Shannon at a meeting that accompanied the United Nations' General Assembly in New York City. This initiative was seen as an important effort but deemed costly for developing countries. At a concurrent meeting hosted by the US National Science Foundation at Rockefeller University, numerous countries discussed this massive project, which would require genuine collaboration between investigators in the realms of neuroethics. Malaysia's readiness to embark on using big data in the field of brain, mind and neurosciences is to prepare for the 4th Industrial Revolution which is an important investment for the country's future. The development of new strategies has also been encouraged by the involvement of the Society of Brain Mapping and Therapeutics, USA and the International Neuroinformatics Coordinating Facility.

  17. Combining Self-Organizing Mapping and Supervised Affinity Propagation Clustering Approach to Investigate Functional Brain Networks Involved in Motor Imagery and Execution with fMRI Measurements

    Directory of Open Access Journals (Sweden)

    Jiang eZhang

    2015-07-01

    Full Text Available AbstractClustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM and supervised affinity propagation clustering (SAPC, is proposed and implemented to identify the motor execution (ME and motor imagery (MI networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  18. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    Science.gov (United States)

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  19. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity.

    Science.gov (United States)

    Rösler, J; Niraula, B; Strack, V; Zdunczyk, A; Schilt, S; Savolainen, P; Lioumis, P; Mäkelä, J; Vajkoczy, P; Frey, D; Picht, T

    2014-03-01

    This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10 Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients.

    Science.gov (United States)

    Lucas, Timothy H; McKhann, Guy M; Ojemann, George A

    2004-09-01

    The aim of this investigation was to address three questions in bilingualism research: 1) are multiple languages functionally separated within the bilingual brain; 2) are these languages similarly organized; and 3) does language organization in bilinguals mirror that in monolinguals? 9: During awake dominant-hemisphere craniotomy in each of 25 bilingual patients, the authors mapped both languages by using identical object-naming stimuli. Essential sites for primary (L1) and secondary (L2) languages were compared. Sites were photographically recorded and plotted onto an anatomically referenced grid system. Language organization in bilinguals was then compared with that in 117 monolinguals and 11 monolingual children. The authors found distinct language-specific sites as well as shared sites that support both languages. The L1 and L2 representations were similar in total cortical extent but significantly different in anatomical distribution. The L2-specific sites were located exclusively in the posterior temporal and parietal regions, whereas the L1 and shared sites could be found throughout the mapped regions. Bilinguals possessed seven perisylvian language zones, in which L2 sites were significantly underrepresented when compared with the distribution of language sites in monolinguals. These L2-restricted zones overlapped the primary language areas found in monolingual children, indicating that these zones become dedicated to L1 processing. These findings support three conclusions. First, it is necessary to map both languages in bilinguals because L1 and L2 sites are functionally distinct. Second, differences exist in the organization of L1 and L2 sites, with L2-specific sites located exclusively in the posterior temporal and parietal lobes. Third, language organization comparisons in bilingual and monolingual brains demonstrate the presence of L2-restricted zones, which are dedicated to L1.

  1. Involvement of the middle frontal gyrus in language switching as revealed by electrical stimulation mapping and functional magnetic resonance imaging in bilingual brain tumor patients.

    Science.gov (United States)

    Sierpowska, Joanna; Fernandez-Coello, Alejandro; Gomez-Andres, Alba; Camins, Àngels; Castañer, Sara; Juncadella, Montserrat; Gabarrós, Andreu; Rodríguez-Fornells, Antoni

    2018-02-01

    Neural basis of language switching and the cognitive models of bilingualism remain controversial. We explored the functional neuroanatomy of language switching implementing a new multimodal protocol assessing neuropsychological, functional magnetic resonance and intraoperative electrical stimulation mapping results. A prospective series of 9 Spanish-Catalan bilingual candidates for awake brain surgery underwent a specific language switching paradigm implemented both before and after surgery, throughout the electrical stimulation procedure and during functional magnetic resonance both pre- and postoperatively. All patients were harboring left-hemispheric intrinsic brain lesions and were presenting functional language-related activations within the affected hemisphere. Language functional maps were reconstructed on the basis of the intraoperative electrical stimulation results and compared to the functional magnetic resonance findings. Single language-naming sites (Spanish and Catalan), as well as language switching naming sites were detected by electrical stimulation mapping in 8 patients (in one patient only Spanish related sites were detected). Single naming points outnumbered the switching points and did not overlap with each other. Within the frontal lobe, the single language naming sites were found significantly more frequently within the inferior frontal gyrus as compared to the middle frontal gyrus [X 2 (1) = 20.3, p language switching and their neuropsychological scores did not differ significantly from the pre-surgical examinations. Our results suggest a functional division of the frontal cortex between naming and language switching functions, supporting that non-language specific cognitive control prefrontal regions (middle frontal gyrus) are essential to maintain an effective communication together with the classical language-related sites (inferior frontal gyrus). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: implication for longitudinal studies.

    Science.gov (United States)

    Eschenko, O; Canals, S; Simanova, I; Beyerlein, M; Murayama, Y; Logothetis, N K

    2010-02-01

    Magnetic resonance imaging (MRI) is widely used in basic and clinical research to map the structural and functional organization of the brain. An important need of MR research is for contrast agents that improve soft-tissue contrast, enable visualization of neuronal tracks, and enhance the capacity of MRI to provide functional information at different temporal scales. Unchelated manganese can be such an agent, and manganese-enhanced MRI (MEMRI) can potentially be an excellent technique for localization of brain activity (for review see Silva et al., 2004). Yet, the toxicity of manganese presents a major limitation for employing MEMRI in behavioral paradigms. We have tested systematically the voluntary wheel running behavior of rats after systemic application of MnCl(2) in a dose range of 16-80 mg/kg, which is commonly used in MEMRI studies. The results show a robust dose-dependent decrease in motor performance, which was accompanied by weight loss and decrease in food intake. The adverse effects lasted for up to 7 post-injection days. The lowest dose of MnCl(2) (16 mg/kg) produced minimal adverse effects, but was not sufficient for functional mapping. We have therefore evaluated an alternative method of manganese delivery via osmotic pumps, which provide a continuous and slow release of manganese. In contrast to a single systemic injection, the pump method did not produce any adverse locomotor effects, while achieving a cumulative concentration of manganese (80 mg/kg) sufficient for functional mapping. Thus, MEMRI with such an optimized manganese delivery that avoids toxic effects can be safely applied for longitudinal studies in behaving animals. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. Mapping the pharmacological modulation of brain oxygen metabolism: The effects of caffeine on absolute CMRO2 measured using dual calibrated fMRI.

    Science.gov (United States)

    Merola, Alberto; Germuska, Michael A; Warnert, Esther Ah; Richmond, Lewys; Helme, Daniel; Khot, Sharmila; Murphy, Kevin; Rogers, Peter J; Hall, Judith E; Wise, Richard G

    2017-07-15

    This study aims to map the acute effects of caffeine ingestion on grey matter oxygen metabolism and haemodynamics with a novel MRI method. Sixteen healthy caffeine consumers (8 males, age=24.7±5.1) were recruited to this randomised, double-blind, placebo-controlled study. Each participant was scanned on two days before and after the delivery of an oral caffeine (250mg) or placebo capsule. Our measurements were obtained with a newly proposed estimation approach applied to data from a dual calibration fMRI experiment that uses hypercapnia and hyperoxia to modulate brain blood flow and oxygenation. Estimates were based on a forward model that describes analytically the contributions of cerebral blood flow (CBF) and of the measured end-tidal partial pressures of CO2 and O2 to the acquired dual-echo GRE signal. The method allows the estimation of grey matter maps of: oxygen extraction fraction (OEF), CBF, CBF-related cerebrovascular reactivity (CVR) and cerebral metabolic rate of oxygen consumption (CMRO2). Other estimates from a multi inversion time ASL acquisition (mTI-ASL), salivary samples of the caffeine concentration and behavioural measurements are also reported. We observed significant differences between caffeine and placebo on average across grey matter, with OEF showing an increase of 15.6% (SEM±4.9%, ppower with EEG. Moreover the maps of the physiological parameters estimated illustrate the spatial distribution of changes across grey matter enabling us to localise the effects of caffeine with voxel-wise resolution. CBF changes were widespread as reported by previous findings, while changes in OEF were found to be more restricted, leading to unprecedented mapping of significant CMRO2 reductions mainly in frontal gyrus, parietal and occipital lobes. In conclusion, we propose the estimation framework based on our novel forward model with a dual calibrated fMRI experiment as a viable MRI method to map the effects of drugs on brain oxygen metabolism and

  4. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  5. Disrupted Brain Network in Progressive Mild Cognitive Impairment Measured by Eigenvector Centrality Mapping is Linked to Cognition and Cerebrospinal Fluid Biomarkers.

    Science.gov (United States)

    Qiu, Tiantian; Luo, Xiao; Shen, Zhujing; Huang, Peiyu; Xu, Xiaojun; Zhou, Jiong; Zhang, Minming

    2016-10-18

    Mild cognitive impairment (MCI) is a heterogeneous condition associated with a high risk of progressing to Alzheimer's disease (AD). Although functional brain network alterations have been observed in progressive MCI (pMCI), the underlying pathological mechanisms of network alterations remain unclear. In the present study, we evaluated neuropsychological, imaging, and cerebrospinal fluid (CSF) data at baseline across a cohort of: 21 pMCI patients, 33 stable MCI (sMCI) patients, and 29 normal controls. Fast eigenvector centrality mapping (fECM) based on resting-state functional MRI (rsfMRI) was used to investigate brain network organization differences among these groups, and we further assessed its relation to cognition and AD-related pathology. Our results demonstrated that pMCI had decreased eigenvector centrality (EC) in left temporal pole and parahippocampal gyrus, and increased EC in left middle frontal gyrus compared to sMCI. In addition, compared to normal controls, patients with pMCI showed decreased EC in right hippocampus and bilateral parahippocampal gyrus, and sMCI had decreased EC in right middle frontal gyrus and superior parietal lobule. Correlation analysis showed that EC in the left temporal pole was related to Wechsler Memory Scale-Revised Logical Memory (WMS-LM) delay score (r = 0.467, p = 0.044) and total tau (t-tau) level in CSF (r = -0.509, p = 0.026) in pMCI. Our findings implicate EC changes of different brain network nodes in the prognosis of pMCI and sMCI. Importantly, the association between decreased EC of brain network node and pathological changes may provide a deeper understanding of the underlying pathophysiology of pMCI.

  6. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus?

    OpenAIRE

    Curlik, D.M.; Shors, T.J.

    2012-01-01

    New neurons are produced each day in the hippocampus through the process of neurogenesis. Both mental and physical training can modify this process by increasing the number of new cells that mature into functional neurons in the adult brain. However, the mechanisms whereby these increases occur are not necessarily the same. Physical activity, especially aerobic exercise greatly increases the number of new neurons that are produced in the hippocamal formation. In contrast, mental training via ...

  7. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    Science.gov (United States)

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  8. Mapping the brain's orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks

    Directory of Open Access Journals (Sweden)

    Keil Andreas

    2004-10-01

    Full Text Available Abstract Background How does the brain convert sounds and phonemes into comprehensible speech? In the present magnetoencephalographic study we examined the hypothesis that the coherence of electromagnetic oscillatory activity within and across brain areas indicates neurophysiological processes linked to speech comprehension. Results Amplitude-modulated (sinusoidal 41.5 Hz auditory verbal and nonverbal stimuli served to drive steady-state oscillations in neural networks involved in speech comprehension. Stimuli were presented to 12 subjects in the following conditions (a an incomprehensible string of words, (b the same string of words after being introduced as a comprehensible sentence by proper articulation, and (c nonverbal stimulations that included a 600-Hz tone, a scale, and a melody. Coherence, defined as correlated activation of magnetic steady state fields across brain areas and measured as simultaneous activation of current dipoles in source space (Minimum-Norm-Estimates, increased within left- temporal-posterior areas when the sound string was perceived as a comprehensible sentence. Intra-hemispheric coherence was larger within the left than the right hemisphere for the sentence (condition (b relative to all other conditions, and tended to be larger within the right than the left hemisphere for nonverbal stimuli (condition (c, tone and melody relative to the other conditions, leading to a more pronounced hemispheric asymmetry for nonverbal than verbal material. Conclusions We conclude that coherent neuronal network activity may index encoding of verbal information on the sentence level and can be used as a tool to investigate auditory speech comprehension.

  9. Fast and accurate water content and T2{sup ⁎} mapping in brain tumours localised with FET-PET

    Energy Technology Data Exchange (ETDEWEB)

    Oros-Peusquens, A.-M., E-mail: a.m.oros-peusquens@fz-juelich.de [Institute of Neuroscience and Medicine – 4, Research Centre Juelich, 52425 Juelich (Germany); Keil, F.; Langen, K.J.; Herzog, H.; Stoffels, G. [Institute of Neuroscience and Medicine – 4, Research Centre Juelich, 52425 Juelich (Germany); Weiss, C. [Department of Neurosurgery, University Hospital Cologne, 50924 Cologne (Germany); Shah, N.J. [Institute of Neuroscience and Medicine – 4, Research Centre Juelich, 52425 Juelich (Germany); Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, 52074 Aachen (Germany)

    2014-01-11

    The availability of combined MR-PET scanners opens new opportunities for the characterisation of tumour environment. In this study, water content and relaxation properties of glioblastoma were investigated in five patients using advanced MRI. The region containing metabolically active tumour tissue was defined by simultaneously measured FET-PET uptake. The mean value of water content in tumour tissue – obtained noninvasively with high precision and accuracy for the first time – amounted to 84.5%, similar to the value for normal grey matter. Constancy of water content contrasted with a large variability of T2{sup ⁎} values in tumour tissue, qualitatively related to the magnetic inhomogeneity of tissue created by blood vessels and/or microbleeds. The quantitative MRI protocol takes 71/2 min of measurement time and is proposed for extended clinical use. -- Highlights: • Quantitative MRI and simultaneous FET-PET used for the study of brain tumours. • Quantitative water content and T2{sup ⁎} of the brain are reported in five glioblastoma patients. • The qMRI method achieves whole brain coverage in 71/2 min. • Water content in normal appearing tissue as well as tumour is constant within 1% for each class. • T2{sup ⁎} is highly variable within tumour volume and from patient to patient.

  10. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H215O-, and FDG-PET

    Directory of Open Access Journals (Sweden)

    James R. Moeller

    2006-01-01

    Full Text Available In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI, the general linear model (GLM is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1 verify activation of neural machinery we already understand and (2 discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.

  11. Synthesis and characterization of EADAM: a selective radioligand for mapping the brain serotonin transporters by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jarkas, Nachwa [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); McConathy, Jonathan [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States); Votaw, John R. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Voll, Ronald J. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Malveaux, Eugene [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Camp, Vernon M. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Williams, Larry [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Goodman, Robin R. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Kilts, Clinton D. [Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States); Goodman, Mark M. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States) and Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States)]. E-mail: mgoodma@emory.edu

    2005-01-01

    [{sup 11}C]N,N-Dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine ([{sup 11}C]EADAM) was synthesized in the development of a serotonin transporter (SERT) imaging ligand for positron emission tomography (PET). The methods of ligand synthesis, results of in vitro characterization, {sup 11}C labeling and in vivo micro-PET imaging studies of [{sup 11}C]EADAM in cynomolgus monkey brain are described. {sup 11}C was introduced into N,N-dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine () by alkylation of N-methyl-2-(2'-amino-4'-ethylphenylthio)benzylamine () in 32% radiochemical yield (end of bombardment [EOB], decay-corrected from [{sup 11}C]methyl iodide). Competition binding assays in cells stably expressing the transfected human dopamine transporter (DAT), SERT and norepinephrine transporter (NET) labeled with [{sup 3}H]WIN 35428 or [{sup 125}I]RTI-55, [{sup 3}H]citalopram and [{sup 3}H]nisoxetine, respectively, indicated the following order of SERT affinity: ADAM>EADAM>>fluvoxamine. The affinity of EADAM for DAT and NET was 500- and >1000-fold lower, respectively, than for SERT. Micro-PET brain imaging studies in a cynomolgus monkey demonstrated high [{sup 11}C]EADAM uptake in the striatum, thalamus and brainstem. [{sup 11}C]EADAM uptake in these brain regions peaked in less than 60 min following administration of [{sup 11}C]EADAM. The tissue-to-cerebellum ratios of the striatum, thalamus and brainstem were 1.67, 1.71 and 1.63, respectively, at 120 min postinjection of [{sup 11}C]EADAM. Analysis of monkey arterial plasma samples using high-pressure liquid chromatography determined there was no detectable formation of lipophilic radiolabeled metabolites capable of entering the brain. In a displacement experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was displaced 20-60 min after administration of citalopram. In a blocking experiment with citalopram in a cynomolgus monkey

  12. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase.

    Science.gov (United States)

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

  13. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Science.gov (United States)

    Boussida, Salem; Traoré, Amidou S; Durif, Franck

    2017-01-01

    Blood Oxygenation Level Dependent functional MRI (BOLD fMRI) during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may find application in

  14. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  15. Reward and motivation systems: a brain mapping study of early-stage intense romantic love in Chinese participants.

    Science.gov (United States)

    Xu, Xiaomeng; Aron, Arthur; Brown, Lucy; Cao, Guikang; Feng, Tingyong; Weng, Xuchu

    2011-02-01

    Early-stage romantic love has been studied previously in the United States and United Kingdom (Aron et al. [2005]: J Neurophysiol 94:327–337; Bartels and Zeki [2000]: Neuroreport 11:3829–3834; Ortigue et al. [2007]: J Cogn Neurosci 19:1218–1230), revealing activation in the reward and motivation systems of the brain. In this study, we asked what systems are activated for early-stage romantic love in Easterners, specifically Chinese participants? Are these activations affected by individual differences within a cultural context of Traditionality and Modernity? Also, are these brain activations correlated with later satisfaction in the relationship? In Beijing, we used the same procedure used by Aron et al. (Aron et al. [2005]: J Neurophysiol 94:327–337). The stimuli for 18 Chinese participants were a picture of the face of their beloved, the face of a familiar acquaintance, and a countback task. We found significant activations specific to the beloved in the reward and motivation systems, particularly, the ventral tegmental area and the caudate. The mid-orbitofrontal cortex and cerebellum were also activated, whereas amygdala, medial orbitofrontal, and medial accumbens activity were decreased relative to the familiar acquaintance. Self-reported Traditionality and Modernity scores were each positively correlated with activity in the nucleus accumbens, although in different regions and sides of the brain. Activity in the subgenual area and the superior frontal gyrus was associated with higher relationship happiness at 18-month follow-up. Our results show that midbrain dopamine-rich reward/motivation systems were activated by early-stage romantic love in Chinese participants, as found by other studies. Neural activity was associated with Traditionality and Modernity attitudes as well as with later relationship happiness for Chinese participants.

  16. Statistical parametric maps of {sup 18}F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Marti-Climent, Josep M. [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Collantes, Maria; Molinet, Francisco [Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain); Delgado, Mercedes; Garcia-Garcia, Luis; Pozo, Miguel A. [Universidad Complutense de Madrid, Brain Mapping Unit, Madrid (Spain); Juri, Carlos [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Pontificia Universidad Catolica de Chile, Department of Neurology, Santiago (Chile); Fernandez-Valle, Maria E. [Universidad Complutense de Madrid, MRI Research Center, Madrid (Spain); Gago, Belen [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Obeso, Jose A. [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Penuelas, Ivan [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain)

    2011-12-15

    Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to {sup 18}F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during {sup 18}F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in {sup 18}F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although

  17. Nonlinear functional connectivity network recovery in the human brain with mutual connectivity analysis (MCA): convergent cross-mapping and non-metric clustering

    Science.gov (United States)

    Wismüller, Axel; Abidin, Anas Z.; D'Souza, Adora M.; Wang, Xixi; Hobbs, Susan K.; Leistritz, Lutz; Nagarajan, Mahesh B.

    2015-03-01

    We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

  18. Statistical parametric maps of ¹⁸F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study.

    Science.gov (United States)

    Prieto, Elena; Collantes, María; Delgado, Mercedes; Juri, Carlos; García-García, Luis; Molinet, Francisco; Fernández-Valle, María E; Pozo, Miguel A; Gago, Belén; Martí-Climent, Josep M; Obeso, José A; Peñuelas, Iván

    2011-12-01

    Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to (18)F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during (18)F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in (18)F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although partial

  19. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks.

    Science.gov (United States)

    Shin, Yoon Kyum; Lee, Dong Ryul; Hwang, Han Jeong; You, Sung Joshua Hyun; Im, Chang Hwan

    2012-01-01

    The purpose of this study was to compare EEG topographical maps in normal children and children with cerebral palsy (CP) during motor execution and motor imagery tasks. Four normal children and four children with CP (mean age 11.6 years) were recruited from a community medical center. An EEG-based brain mapping system with 30 scalp sites (extended 10--20 system) was used to determine cortical reorganization in the regions of interest (ROIs) during four motor tasks: movement execution (ME), kinesthetic-motor imagery (KMI), observation of movement (OOM), and visual motor imagery (VMI). ROIs included the primary sensorimotor cortex (SMC), premotor cortex (PMC), and supplementary motor area (SMA). Descriptive analysis. Normal children showed increased SMC activation during the ME and KMI aswell as SMC and visual cortex (VC) activation during KMI. Children with CP showed similar activation in the SMC and other motor network areas (PMC, SMA, and VC). During the OOM and VMI tasks, the VC or occipital area were primarily activated in normal children, whereas the VC, SMC, and bilateral auditory areas were activated in children with CP. This is the first study demonstrating different neural substrates for motor imagery tasks in normal and children with CP.

  20. Effect-kinetics on brain protection of two codergocrine-mesylate preparations (Aramexe retard and Hydergine) by EEG mapping and psychometry under hypoxia.

    Science.gov (United States)

    Saletu, B; Grünberger, J; Anderer, P; Linzmayer, L; Pakesch, G; Zyhlarz, G

    1994-01-01

    In a double-blind, placebo-controlled study the effect-kinetics on brain protection of a new retard formulation of codergocrine-mesylate (CDM) (Aramexe retard, 5 mg) were investigated and compared with a standard CDM drug (5 mg Hydergine) utilizing blood gas analysis, EEG mapping and psychometry. A transient, reversible hypoxic hypoxidosis (i.e. impairment of cerebral metabolism due to hypoxia) was experimentally induced by a fixed gas combination of 9.8% oxygen (O(2)) and 90.2% nitrogen (N(2)) (found at an altitude of 6000 m), which was inhaled for 23 min under normobaric conditions by 18 healthy volunteers. After an adaptation session they received randomized 5 mg Aramexe retard, 5 mg Hydergine and placebo. Evaluation of blood gases, EEG mapping and psychometry was carried out at 0,2, 4,6, and 8 h after oral drug administration - each time under normoxic and hypoxic conditions. Blood gas analysis demonstrated a drop in SaO(2) from 99% under normoxia to 70% under hypoxia, in Po(2) from 100 to 33 mmHg, and in Pco(2) from 36 to 31 mmHg, while pH increased from 7.43 to 7.48. Base excess and standard bicarbonate remained stable. Under hypoxia EEG mapping exhibited an increase in delta/theta, a decrease of alpha and increase of beta activity, as well as a slowing of the centroid of the total power spectrum, which reflects deterioration of vigilance. Both CDM preparations significantly attenuated this vigilance decrement, with 5 mg Hydergine showing its encephalotropic peak effect in the second hour, 5 mg Aramexe retard in the sixth and eighth hours. At the behavioral level, hypoxic hypoxidosis induced a deterioration of the noo- and thymopsyche (by 53% under placebo), which was significantly mitigated by both 5 mg Aramexe retard (19%) and Hydergine (32%).

  1. Preoperative rTMS Language Mapping in Speech-Eloquent Brain Lesions Resected Under General Anesthesia: A Pair-Matched Cohort Study.

    Science.gov (United States)

    Hendrix, Philipp; Senger, Sebastian; Simgen, Andreas; Griessenauer, Christoph J; Oertel, Joachim

    2017-04-01

    The value of preoperative repetitive transcranial magnetic stimulation (rTMS) language mapping for function preservation in surgery of speech-eloquent lesions under general anesthesia remains to be determined. We prospectively enrolled 20 consecutive right-handed patients with a malignant, left-sided perisylvian language-eloquent brain tumor. All patients were subjected to surgical resection under general anesthesia guided by preoperative rTMS language mapping (rTMS group, 2014-2016). A matched-pair analysis with 20 patients who also underwent surgical resection under general anesthesia in the pre-rTMS era (pre-rTMS group, 2009-2013) was performed. Language performance status was ranked from grade 0 to grade 3 (none, mild, medium, severe). Rates of gross total resection, tumor residual, and complications were equal in both groups. Duration of surgery (P = 0.039) and inpatient stay (P = 0.001) were significantly shorter in the rTMS group. Preoperatively, 14 patients in the rTMS and 13 patients in the pre-rTMS group had language deficits (P = 0.380). One week after surgery, 8/14 patients (57.1%) in the rTMS group but only 1/13 patients (7.7%) in the pre-rTMS group experienced improvement of language performance status (P = 0.013). At 6 weeks follow-up, language performance status was significantly better in the rTMS group (P = 0.048). However, at 3 months follow-up, the rTMS and pre-rTMS groups showed an equal language performance status. Implementation of preoperative rTMS language mapping seems to provide a favorable early language outcome in patients undergoing surgical resection of language-eloquent lesions under general anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Lee, Y [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Ruschin, M [Odette Cancer Centre, Toronto, ON (Canada); Karam, I [Sunnybrook Odette Cancer Center, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution. Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of

  3. EEG brain mapping and psychometry in age-associated memory impairment after acute and 2-week infusions with the hemoderivative Actovegin: double-blind, placebo-controlled trials.

    Science.gov (United States)

    Saletu, B; Grünberger, J; Linzmayer, L; Anderer, P; Semlitsch, H V

    In a double-blind, placebo-controlled study the encephalotropic and psychotropic effects of Actovegin--a protein-free metabolically active hemoderivative improving oxygen and glucose utilization--were investigated in age-associated memory impairment (AAMI) patients, utilizing EEG brain mapping, psychometric and psychophysiological analyses. Each patient had a treatment of 2 weeks with 250 ml 20% Actovegin and 250 ml placebo daily with an interval of 3 weeks in between (the order of drugs sequence was randomized). Pharmacodynamic evaluations were carried out 0, 2, 4, 6 and 8 h after the administration of one single infusion on day 1 (acute effect), at 0 h on day 15 (subacute effect) as well as 2, 4, 6 and 8 h after one additional superimposed infusion on day 15 (superimposed effect). EEG brain mapping demonstrated that Actovegin exerted a significant action on the human brain function as compared with placebo characterized by a decrease of delta and theta, an increase of alpha-adjacent slow beta, a decrease of fast beta, an acceleration of the centroid of the delta/theta and alpha activity, a slowing of the beta centroid and an increase of the centroid of the total activity. Topographically the encephalotropic effects were mostly pronounced in the parietal, frontocentral and temporooccipital regions. These changes are indicative of an improvement of vigilance which was proven also by psychometric investigations at the behavioral level. Actovegin improved the noopsyche mostly in regard to attention, memory and rigidity/perseveration measures. In regard to the thymopsyche an improvement was noted in mood, affectivity, well-being and sedation. Psychophysiological evaluations demonstrated an increase in CFF, skin conductance, pupillary diameter and shortening of the latency and augmentation of the amplitude of the pupillary response. Time-efficacy calculations exhibited more effect after subacute than acute administration with the pharmacodynamic maximum in the 4th h

  4. Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map brain areas activated by operant behavior in trained rats.

    Science.gov (United States)

    Gálosi, Rita; Szalay, Csaba; Aradi, Mihály; Perlaki, Gábor; Pál, József; Steier, Roy; Lénárd, László; Karádi, Zoltán

    2017-04-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) offers unique advantages such as studying brain activation in freely moving rats, but its usefulness has not been previously evaluated during operant behavior training. Manganese in a form of MnCl 2 , at a dose of 20mg/kg, was intraperitoneally infused. The administration was repeated and separated by 24h to reach the dose of 40mg/kg or 60mg/kg, respectively. Hepatotoxicity of the MnCl 2 was evaluated by determining serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, albumin and protein levels. Neurological examination was also carried out. The animals were tested in visual cue discriminated operant task. Imaging was performed using a 3T clinical MR scanner. T1 values were determined before and after MnCl 2 administrations. Manganese-enhanced images of each animal were subtracted from their baseline images to calculate decrease in the T1 value (ΔT1) voxel by voxel. The subtracted T1 maps of trained animals performing visual cue discriminated operant task, and those of naive rats were compared. The dose of 60mg/kg MnCl 2 showed hepatotoxic effect, but even these animals did not exhibit neurological symptoms. The dose of 20 and 40mg/kg MnCl 2 increased the number of omissions and did not affect the accuracy of performing the visual cue discriminated operant task. Using the accumulated dose of 40mg/kg, voxels with a significant enhanced ΔT1 value were detected in the following brain areas of the visual cue discriminated operant behavior performed animals compared to those in the controls: the visual, somatosensory, motor and premotor cortices, the insula, cingulate, ectorhinal, entorhinal, perirhinal and piriform cortices, hippocampus, amygdala with amygdalohippocampal areas, dorsal striatum, nucleus accumbens core, substantia nigra, and retrorubral field. In conclusion, the MEMRI proved to be a reliable method to accomplish brain activity mapping in correlation with the operant behavior

  5. Mapping altered brain connectivity and its clinical associations in adult moyamoya disease: A resting-state functional MRI study.

    Science.gov (United States)

    Kazumata, Ken; Tha, Khin Khin; Uchino, Haruto; Ito, Masaki; Nakayama, Naoki; Abumiya, Takeo

    2017-01-01

    Detection of subtle ischemic injuries in moyamoya disease may enable optimization of timing of revascularization surgery, and could potentially improve functional outcomes. Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study functional organization of the brain, but it remains unclear whether rs-fMRI could elucidate distinct characteristics in moyamoya disease. Here, we aimed to determine changes in a conventional rs-fMRI measure and analyze any associations with clinical symptoms and cerebral hemodynamics. Thirty-one adults with moyamoya disease and 25 adult controls underwent rs-fMRI, in which we measured brain connectivity via temporal correlations of low-frequency BOLD signals. We identified the extent of between-group differences with multivoxel pattern analysis. Seed-based analysis was performed to determine associations with vascular lesions, symptoms, and regional cerebral blood flow (rCBF). There was significantly altered connectivity in the precentral gyrus, operculo-insular region, precuneus, cingulate cortex, and middle frontal gyrus in moyamoya disease. There was reduced connectivity in the left insula, left precuneus, right precentral, and right middle frontal regions, which form part of the salience, default mode, motor, and central executive networks, respectively. Patients with ischemic motor-related symptoms showed significantly decreased connectivity in precentral homotopic regions compared with those without, while there were no differences in vascular lesions or rCBF. Connectivity between the right occipital and left hippocampus was significantly associated with cognitive performance and posterior cerebral artery involvement. Our results demonstrate distinct alterations in the temporal correlations of low-frequency BOLD signals, predominantly in resting-state networks in moyamoya disease. Additionally, rs-fMRI measures were associated with ischemic motor-related symptoms and cognitive performance in the

  6. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, Department of Internal Medicine, Genoa (Italy); Piccardo, Arnoldo; Villavecchia, Giampiero [Galliera Hospital, Nuclear Medicine Unit, Department of Radiology, Genoa (Italy); Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio [University of Genoa, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); Piccini, Alessandra [Cell Biology Unit, National Cancer Research Institute, Genoa (Italy); Caroli, Anna [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy); Mario Negri Institute, Medical Imaging Unit, Biomedical Engineering Department, Bergamo (Italy); Frisoni, Giovanni [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy)

    2010-01-15

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  7. Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: Experience based on a series of 156 patients.

    Science.gov (United States)

    Zerroug, A; Gabrillargues, J; Coll, G; Vassal, F; Jean, B; Chabert, E; Claise, B; Khalil, T; Sakka, L; Feschet, F; Durif, F; Boyer, L; Coste, J; Lemaire, J-J

    2016-08-01

    Deep brain mapping has been proposed for direct targeting in stereotactic functional surgery, aiming to personalize electrode implantation according to individual MRI anatomy without atlas or statistical template. We report our clinical experience of direct targeting in a series of 156 patients operated on using a dedicated Inversion Recovery Turbo Spin Echo sequence at 1.5-tesla, called White Matter Attenuated Inversion Recovery (WAIR). After manual contouring of all pertinent structures and 3D planning of trajectories, 312 DBS electrodes were implanted. Detailed anatomy of close neighbouring structures, whether gray nuclei or white matter regions, was identified during each planning procedure. We gathered the experience of these 312 deep brain mappings and elaborated consistent procedures of anatomical MRI mapping for pallidal, subthalamic and ventral thalamic regions. We studied the number of times the central track anatomically optimized was selected for implantation of definitive electrodes. WAIR sequence provided high-quality images of most common functional targets, successfully used for pure direct stereotactic targeting: the central track corresponding to the optimized primary anatomical trajectory was chosen for implantation of definitive electrodes in 90.38%. WAIR sequence is anatomically reliable, enabling precise deep brain mapping and direct stereotactic targeting under routine clinical conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    Science.gov (United States)

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Functional mapping of dynamic happy and fearful facial expressions in young adults with familial risk for psychosis - Oulu Brain and Mind Study.

    Science.gov (United States)

    Pulkkinen, Johannes; Nikkinen, Juha; Kiviniemi, Vesa; Mäki, Pirjo; Miettunen, Jouko; Koivukangas, Jenni; Mukkala, Sari; Nordström, Tanja; Barnett, Jennifer H; Jones, Peter B; Moilanen, Irma; Murray, Graham K; Veijola, Juha

    2015-05-01

    Social interaction requires mirroring to other people's mental state. Psychotic disorders have been connected to social interaction and emotion recognition impairment. We compared the brain activity between young adults with familial risk for psychosis (FR) and matched controls during visual exposure to emotional facial expression. We also investigated the role of the amygdala, the key region for social interaction and emotion recognition. 51 FR and 52 control subjects were drawn from the Northern Finland 1986 Birth Cohort (Oulu Brain and Mind Study). None of the included participants had developed psychosis. The FR group was defined as having a parent with psychotic disorder according to the Finnish Hospital Discharge Register. Participants underwent functional MRI (fMRI) using visual presentation of dynamic happy and fearful facial expressions. FMRI data were processed to produce maps of activation for happy and fearful facial expression, which were then compared between groups. Two spherical regions of interest (ROIs) in the amygdala were set to extract BOLD responses during happy and fearful facial expression. BOLD responses were then compared with subjects' emotion recognition, which was assessed after fMRI. Psychophysiological interaction (PPI) for the left and right amygdala during happy and fearful facial expression was conducted using the amygdala as seed regions. FR subjects had increased activity in the left premotor cortex and reduced deactivation of medial prefrontal cortex structures during happy facial expression. There were no between-group differences during fearful facial expression. The FR group also showed a statistically significant linear correlation between mean amygdala BOLD response and facial expression recognition. PPI showed that there was a significant negative interaction between the amygdala and the dorsolateral prefrontal cortex (dlPFC) and superior temporal gyrus in FR subjects. Increased activations by positive valence in FR were

  10. Rapid high-resolution three-dimensional mapping of T1 and age-dependent variations in the non-human primate brain using magnetization-prepared rapid gradient-echo (MPRAGE) sequence

    Science.gov (United States)

    Liu, Junjie V.; Bock, Nicholas A.; Silva, Afonso C.

    2011-01-01

    The use of quantitative T1 mapping in neuroscience and neurology has raised strong interest in the development of T1-mapping techniques that can measure T1 in the whole brain, with high accuracy and precision and within short imaging and computation times. Here, we present a new inversion-recovery (IR) based T1-mapping method using a standard 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence. By varying only the inversion time (TI), but keeping other parameters constant, MPRAGE image signals become linear to exp(−TI/T1), allowing for accurate T1 estimation without flip angle correction. We also show that acquiring data at just 3 TIs, with the three different TI values optimized, gives maximum T1 precision per unit time, allowing for new efficient approaches to measure and compute T1. We demonstrate the use of our method at 7 Tesla to obtain 3D T1 maps of the whole brain in common marmosets at 0.60 mm resolution and within 11 minutes. T1 maps from the same individuals were highly reproducible across different days. Across subjects, the peak of cerebral gray matter T1 distribution was 1735±52 ms, and the lower edge of cerebral white matter T1 distribution was 1270±43 ms. We found a significant decrease of T1 in both gray and white matter of the marmoset brain with age over a span of 14 years, in agreement with previous human studies. This application illustrates that MPRAGE-based 3D T1 mapping is rapid, accurate and precise, and can facilitate high-resolution anatomical studies in neuroscience and neurological diseases. PMID:21376814

  11. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  12. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    Science.gov (United States)

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  13. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  14. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  15. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI).

    Science.gov (United States)

    Deoni, Sean C L

    2007-10-01

    To investigate an alternative approach to correct for flip angle inaccuracies in the driven equilibrium single pulse observation of T1 (DESPOT1) T1 mapping method. While DESPOT1 is a robust method for rapid whole-brain voxelwise mapping of the longitudinal relaxation time, the approach is inherently sensitive to inaccuracies in the transmitted flip angle, defined by the B1 field, which become more severe with increased field. Here we propose an extension of the DESPOT1 technique, involving the additional acquisition of an inversion-prepared SPGR image alongside the conventional multiangle DESPOT1 data. From these combined data both B1 and T1 may be determined with high accuracy and precision. The method is evaluated at 3T with phantom and in vivo imaging experiments, with derived T1 estimates compared with values calculated from multiple inversion time inversion recovery data. The method provides robust correction of flip angle variations, with less than 5% error compared with reference values for T1 between 300 msec and 2500 msec. The described approach, dubbed DESPOT1-HIFI, permits whole-brain T1 mapping at 3T, with 1 mm(3) isotropic voxels, in a clinically feasible time (approximately 10 minutes) with T1 accuracy greater than 5% and with high precision. (c) 2007 Wiley-Liss, Inc.

  16. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R

    2007-01-01

    quantitative proteomic analysis of three functionally distinct compartments of mouse brain: cortex, hippocampus, and cerebellum. In total, 976 unique peptides corresponding to 555 unique proteins were quantified. Up to 20-fold differences in the levels of some proteins between brain areas were measured...

  17. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George K.; Taylor, Ronald C.

    2016-07-01

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  18. Crazy-Quilt Brain.

    Science.gov (United States)

    Miller, Julie Ann

    1987-01-01

    Describes some of the common principles underlying the operation of the cortex in an effort to understand the human brain. Discusses the structure of the cortex, its specific areas, and its map-making abilities. Describes some of the recent discoveries about brain operation, development and functioning. (TW)

  19. Sex Differences of Brain Serotonin Synthesis in Patients with Irritable Bowel Syndrome Using α-[11C]methyl-L-tryptophan, Positron Emission Tomography and Statistical Parametric Mapping

    Directory of Open Access Journals (Sweden)

    Akio Nakai

    2003-01-01

    Full Text Available BACKGROUND: Irritable bowel syndrome (IBS is the most common functional bowel disorder and has a strong predominance in women. Recent data suggest that the brain may play an important role in the pathophysiology of IBS in the brain-gut axis. It is strongly suspected that serotonin (5-HT, a neurotransmitter found in the brain and gut, may be related to the pathophysiology of IBS. It is reported that a 5-HT3 antagonist is effective only in female patients with diarrhea-predominant IBS.

  20. Brain Basics

    Medline Plus

    Full Text Available ... About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain Brain ... called the hypothalamic-pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life— ...

  1. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain

    Directory of Open Access Journals (Sweden)

    Stern Charlene

    2005-07-01

    Full Text Available Abstract Background In eukaryotic cells, RNA-binding proteins (RBPs contribute to gene expression by regulating the form, abundance, and stability of both coding and non-coding RNA. In the vertebrate brain, RBPs account for many distinctive features of RNA processing such as activity-dependent transcript localization and localized protein synthesis. Several RBPs with activities that are important for the proper function of adult brain have been identified, but how many RBPs exist and where these genes are expressed in the developing brain is uncharacterized. Results Here we describe a comprehensive catalogue of the unique RBPs encoded in the mouse genome and provide an online database of RBP expression in developing brain. We identified 380 putative RBPs in the mouse genome. Using in situ hybridization, we visualized the expression of 323 of these RBP genes in the brains of developing mice at embryonic day 13.5, when critical fate choice decisions are made and at P0, when major structural components of the adult brain are apparent. We demonstrate i that 16 of the 323 RBPs examined show neural-specific expression at the stages we examined, and ii that a far larger subset (221 shows regionally restricted expression in the brain. Of the regionally restricted RBPs, we describe one group that is preferentially expressed in the E13.5 ventricular areas and a second group that shows spatially restricted expression in post-mitotic regions of the embryonic brain. Additionally, we find a subset of RBPs that share the same complex pattern of expression, in proliferating regions of the embryonic and postnatal NS and peripheral tissues. Conclusion Our data show that, in contrast to their proposed ubiquitous involvement in gene regulation, most RBPs are not uniformly expressed. Here we demonstrate the region-specific expression of RBPs in proliferating vs. post-mitotic brain regions as well as cell-type-specific RBP expression. We identify uncharacterized RBPs

  2. Mapping Numerical Processing, Reading, and Executive Functions in the Developing Brain: An fMRI Meta-Analysis of 52 Studies Including 842 Children

    Science.gov (United States)

    Houde, Olivier; Rossi, Sandrine; Lubin, Amelie; Joliot, Marc

    2010-01-01

    Tracing the connections from brain functions to children's cognitive development and education is a major goal of modern neuroscience. We performed the first meta-analysis of functional magnetic resonance imaging (fMRI) data obtained over the past decade (1999-2008) on more than 800 children and adolescents in three core systems of cognitive…

  3. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values

    DEFF Research Database (Denmark)

    Møller, Mette; Rodell, Anders; Gjedde, Albert

    2009-01-01

    The radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY) is a PET tracer of the serotonin 5HT(1A) receptors in the human brain. It is metabolized so rapidly in the circulation that it behaves more as a chemical microsphere than as a tracer subject to continuous exchange between the circulation and ...

  4. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using H-1 MR spectroscopy and diffusion tensor imaging

    NARCIS (Netherlands)

    Sijens, PE; Irwan, R; Potze, JH; Mostert, JP; De Keyser, J; Oudkerk, M

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion

  5. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Cindy Casteels

    Full Text Available UNLABELLED: Automated voxel-based or pre-defined volume-of-interest (VOI analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18F]FDG and dopamine transporter ([(18F]FECT small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM was explored for [(18F]FDG and [(18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA mice. METHODS: Twenty-three adult C57BL6 mice were scanned with [(18F]FDG and [(18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18F]FDG data were quantified using (1 an image-derived-input function obtained from the liver (cMRglc, using (2 standardized uptake values (SUVglc corrected for blood glucose levels and by (3 normalizing counts to the whole-brain uptake. Parametric [(18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. RESULTS: Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71. Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an

  6. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics provides information on how the brain works, how mental illnesses ...

  7. Brain Basics

    Science.gov (United States)

    ... Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  10. Mind Maps as a Lifelong Learning Tool

    Science.gov (United States)

    Erdem, Aliye

    2017-01-01

    Mind map, which was developed by Tony Buzan as a note-taking technique, is an application which has the power of uncovering the thoughts which the brain has about a subject from different viewpoints and which activate the right and left lobes of the brain together as an alternative to linear thought. It is known that mind maps have benefits such…

  11. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  12. Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Acheta domesticus.

    Science.gov (United States)

    Strambi, C; Cayre, M; Sattelle, D B; Augier, R; Charpin, P; Strambi, A

    1998-01-01

    The distribution of putative RDL-like GABA receptors and of gamma-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the alpha and beta lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immunoreactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain.

  13. Brain oxidative stress: detection and mapping of anti-oxidant marker 'Glutathione' in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy.

    Science.gov (United States)

    Mandal, Pravat K; Tripathi, Manjari; Sugunan, Sreedevi

    2012-01-06

    Glutathione (GSH) serves as an important anti-oxidant in the brain by scavenging harmful reactive oxygen species that are generated during different molecular processes. The GSH level in the brain provides indirect information on oxidative stress of the brain. We report in vivo detection of GSH non-invasively from various brain regions (frontal cortex, parietal cortex, hippocampus and cerebellum) in bilateral hemispheres of healthy male and female subjects and from bi-lateral frontal cortices in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All AD patients who participated in this study were on medication with cholinesterase inhibitors. Healthy young male (age 26.4±3.0) and healthy young female (age 23.6±2.1) subjects have higher amount of GSH in the parietal cortical region and a specific GSH distribution pattern (parietal cortex>frontal cortex>hippocampus ~ cerebellum) has been found. Overall mean GSH content is higher in healthy young female compared to healthy young male subjects and GSH is distributed differently in two hemispheres among male and female subjects. In both young female and male subjects, statistically significant (p=0.02 for young female and p=0.001 for young male) difference in mean GSH content is found when compared between left frontal cortex (LFC) and right frontal cortex (RFC). In healthy young female subjects, we report statistically significant positive correlation of GSH content between RFC and LFC (r=0.641, p=0.004) as well as right parietal cortex (RPC) and left parietal cortex (LPC) (r=0.797, p=0.000) regions. In healthy young male subjects, statistically significant positive correlation of GSH content was observed between LFC and LPC (r=0.481, p=0.032) regions. This statistical analysis implicates that in case of a high GSH content in LPC of a young male, his LFC region would also contain high GSH and vice versa. The difference in mean of GSH content between healthy young female control and female AD

  14. Modular Brain Networks.

    Science.gov (United States)

    Sporns, Olaf; Betzel, Richard F

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics.

  15. Mapping the distribution of language related genes FoxP1, FoxP2 and CntnaP2 in the brains of vocal learning bat species.

    Science.gov (United States)

    Rodenas-Cuadrado, Pedro M; Mengede, Janine; Baas, Laura; Devanna, Paolo; Schmid, Tobias A; Yartsev, Michael; Firzlaff, Uwe; Vernes, Sonja C

    2018-01-03

    Genes including FOXP2, FOXP1 and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique human phenotypes, a comparative approach is possible by addressing language-relevant traits in animal model systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalisations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1 and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult Phyllostomus discolor bat, which showed low levels of FoxP2 expression in the cortex, contrasting with patterns found in rodents and non-human primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviours in a mammalian model system. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  16. Mapping of rat brain using the Synuclein-1 monoclonal antibody reveals somatodendritic expression of alpha-synuclein in populations of neurons homologous to those vulnerable to Lewy body formation in human synucleopathies.

    Science.gov (United States)

    Andringa, Gerda; Du, Fu; Chase, Thomas N; Bennett, M Catherine

    2003-10-01

    The neuronal protein alpha-synuclein has been implicated in the pathogenesis of Parkinson disease and other neurodegenerative diseases. Although many studies report that alpha-synuclein expression is restricted to neuronal presynaptic terminals, this protein aggregates in Lewy bodies in somata that are typically distant from their axon terminals. Few studies have addressed this paradox and there has been no compelling explanation proposed for the apparent discrepancy between the locus of neuronal alpha-synuclein expression and the loci of Lewy bodies in the majority of Parkinson disease cases. We explored this issue by extensively characterizing the monoclonal antibody Synuclein-1 (Syn-1) and using this highly selective antibody to map the distribution of alpha-synuclein throughout rat brain and in human substantia nigra (SN). Additionally, alpha-synuclein expression in rat SN detected by 2 polyclonal antibodies against alpha-synuclein was compared with that detected by the Syn-1 antibody. In contrast with many previous reports, alpha-synuclein was detected by Syn-1 in neuronal somata and dendrites in restricted brain regions, as well as more ubiquitously in axons and terminals. The strongest alpha-synuclein neuronal expression in rat was found in brainstem and cortical regions that are homologous to regions prone to Lewy body formation in humans. The Syn-1 antibody labeled abundant somatodendritic alpha-synuclein in both rat and human SN, a major locus of Lewy body formation and neurodegeneration in Parkinson disease. By contrast, very few immunoreactive somata in the rat SN were labeled by the 2 polyclonal antibodies. We explore possible explanations for the differences in conflicting reports of patterns of alpha-synuclein expression in brain, including differences among antibodies.

  17. Cognitive maps

    OpenAIRE

    Kitchin, Rob

    2001-01-01

    A cognitive map is a representative expression of an individual's cognitive map knowledge, where cognitive map knowledge is an individual's knowledge about the spatial and environmental relations of geographic space. For example, a sketch map drawn to show the route between two locations is a cognitive map — a representative expression of the drawer's knowledge of the route between the two locations. This map can be analyzed using classification schemes or quantitatively using spatial statist...

  18. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  19. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging.

    Directory of Open Access Journals (Sweden)

    Brittney R Lins

    Full Text Available The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl-, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum using X-ray fluorescence imaging (XFI. We find that the choroid plexus was rich in Cl- and Fe while K+ levels increase further from the ventricle as Cl- levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl- surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.

  20. Relationship between brain perfusion SPECT and MMSE score in dementia of Alzheimer's type: a statistical parametric mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Kang, Eun Joo; Lee, Jae Sung [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2002-04-01

    The aim of this study was to identify the brain areas in which reductions of regional cerebral blood flow (rCBF) were correlated with decline of general mental function, measured by Mini-Mental State Examination (MMSE). Tc-99m HMPAO brain SPECT was performed in 9 probable AD patients at the initial and follow-up periods of 1.8 years (average) after the first study. MMSE scores were also measured in both occasions. The mean MMSE score of the initial study 16.4 (range: 5-24) and the mean MMSE score of the follow-up was 8.1 (range: 0-17). Each SPECT image was normalized to the cerebellar activity and a correlation analysis was performed between the level of rCBF in AD patients and the MMSE scores by voxel-based analysis using SPM99 software. Significant correlation was found between the blood-flow decrease in left inferior prefrontal region(BA 47) and left middle temporal region (BA 21) and the MMSE score changes. Additional areas such as anterior and posterior cingulate cortices, precuneus, and bilateral superior and middle prefrontal regions showed and similar trends. A relationship was found between reduction of regional cerebral blood flow in left prefrontal and temporal areas and decline of cognitive function in Alzheimer's diseases (AD) patients. This voxel-based analysis is useful in evaluating the progress of cognitive function in Alzheimer's disease.

  1. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    Science.gov (United States)

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; Howard, Daryl L.; Howland, John G.; Hackett, Mark J.

    2016-01-01

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl−, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl− and Fe while K+ levels increase further from the ventricle as Cl− levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl− surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models. PMID:27351594

  2. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    Science.gov (United States)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  3. Silicon Brains

    Science.gov (United States)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  4. Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-12-01

    This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures.

    Science.gov (United States)

    Perez, Pablo D; Hall, Gabrielle; Kimura, Tetsuya; Ren, Yan; Bailey, Rachel M; Lewis, Jada; Febo, Marcelo; Sahara, Naruhiko

    2013-02-04

    Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI) to investigate basal levels of brain activity in the rTg4510 and control mice. Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tau(P301L)-induced neurodegeneration.

  6. Brain Basics

    Medline Plus

    Full Text Available ... PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... depression experience when starting treatment. Gene Studies ... medication. This information may someday make it possible to predict who ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... fear hub," which activates our natural "fight-or-flight" response to confront or escape from a dangerous ...

  9. Brain Lesions

    Science.gov (United States)

    Symptoms Brain lesions By Mayo Clinic Staff A brain lesion is an abnormality seen on a brain-imaging test, such as ... tomography (CT). On CT or MRI scans, brain lesions appear as dark or light spots that don' ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  11. Concept Mapping.

    Science.gov (United States)

    Callison, Daniel

    2001-01-01

    Explains concept mapping as a heuristic device that is helpful in visualizing the relationships between and among ideas. Highlights include how to begin a map; brainstorming; map applications, including document or information summaries and writing composition; and mind mapping to strengthen note-taking. (LRW)

  12. Brain Basics

    Medline Plus

    Full Text Available ... Mental Illnesses Clinical Trials Outreach Research Priorities Funding Labs at NIMH News & Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain Brain Basics in Real Life Brain Research Glossary Brain Basics (PDF, 10 pages) ...

  13. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  14. In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l reveals reduced neural activity in memory formation structures

    Directory of Open Access Journals (Sweden)

    Perez Pablo D

    2013-02-01

    Full Text Available Abstract Background Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI to investigate basal levels of brain activity in the rTg4510 and control mice. Results Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Conclusion Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tauP301L-induced neurodegeneration.

  15. In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study.

    Science.gov (United States)

    Guo, Y; Gao, F; Wang, S; Ding, Y; Zhang, H; Wang, J; Ding, M-P

    2009-09-15

    Cerebral glucose hypometabolism is common in temporal lobe epilepsy (TLE). The temporospatial evolution of these metabolic changes during epileptogenesis remains to be determined. We measured the regional normalized cerebral metabolic rate for glucose (nCMRglc) with (18)F-fluorodeoxyglucose (FDG)-small animal positron emission tomography (microPET) in animals receiving systemic pilocarpine application. The microPET scan was performed on day 2 (early), day 7 (latent) and 42 days (chronic phase) after the initial status epilepticus. We found specific temporospatial changes in glucose utilization in rats during the course of epileptogenesis. In the early phase, the limbic structures underwent the largest decrease in glucose utilization. Most brain structures were still hypometabolic in the latent phase and recovered in the chronic phase. Conversely, the hippocampus and thalamus presented with persistent hypometabolism during epileptogenesis. The cerebellum and pons maintained normal glucose utilization during this process. We also found that severe glucose hypometabolism in the entorhinal cortex during the early phase was correlated with epileptogenesis, indicating the critical role of the entorhinal cortex in the early stages of TLE.

  16. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using {sup 1}H MR spectroscopy and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Irwan, Roy; Potze, Jan Hendrik; Oudkerk, Matthijs [University Medical Center Groningen, Department of Radiology, Hanzeplein 1, Groningen (Netherlands); Mostert, Jop P.; Keyser, Jacques de [University Medical Center Groningen, Department of Neurology, Groningen (Netherlands)

    2005-08-01

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion constant (ADC). After chemical shift imaging (point-resolved spectroscopy, repetition time/echo time 1,500 ms/135 ms) of a supraventricular volume of interest of 8 x 8 x 2 cm{sup 3} (64 voxels) MRS peak areas were matched to the results of DTI for the corresponding volume elements. Mean FA and NAA values were reduced in the ppMS patients (P<0.01, both) and the ADC increased (P<0.02). The spatial distribution of NAA showed strong correlation to ADC in both ppMS patients and controls (r =-0.74 and r= -0.70; P<0.00001, both), and weaker correlations to FA (r=0.49 and r=0.41; P<0.00001, all). FA and ADC also correlated significantly with Cho in patients and controls (P<0.00001, all). The relationship of Cho and NAA to the ADC and the FA and thus to the content of neuronal structures suggests that these metabolite signals essentially originate from axons (NAA) and the myelin sheath (Cho). This is of interest in view of previous reports in which Cho increases were associated with demyelination and the subsequent breakdown of neurons. (orig.)

  17. Developmental broadening of inhibitory sensory maps

    Science.gov (United States)

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-01-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps. PMID:28024159

  18. Developmental broadening of inhibitory sensory maps.

    Science.gov (United States)

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-02-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.

  19. Topodynamics of metastable brains

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  20. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    Science.gov (United States)

    Murugesan, Sugeerth; Bouchard, Kristofer; Brown, Jesse A.; Hamann, Bernd; Seeley, William W.; Trujillo, Andrew; Weber, Gunther H.

    2017-01-01

    We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parameters gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. To demonstrate the utility of our tool, we present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval. PMID:28113724

  1. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity.

    Science.gov (United States)

    Murugesan, Sugeerth; Bouchard, Kristofer; Brown, Jesse A; Hamann, Bernd; Seeley, William W; Trujillo, Andrew; Weber, Gunther H

    2016-05-09

    We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views-such as heat maps, node link diagrams and anatomical views-using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parameters gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. To demonstrate the utility of our tool, we present two case studies-exploring progressive supranuclear palsy, as well as memory encoding and retrieval.

  2. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... basic, working unit of the brain and nervous system, which processes and transmits information. neurotransmitter —A chemical produced by neurons that carries ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... learning more about how the brain grows and works in healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you to some of this science, such as: ... of the brain communicate and work with each other How changes in the brain ...

  5. CEPH maps.

    Science.gov (United States)

    Cann, H M

    1992-06-01

    There are CEPH genetic maps on each homologous human chromosome pair. Genotypes for these maps have been generated in 88 laboratories that receive DNA from a reference panel of large nuclear pedigrees/families supplied by the Centre d'Etude du Polymorphisme Humain. These maps serve as useful tools for the localization of both disease genes and other genes of interest.

  6. Korea Brain Initiative: Integration and Control of Brain Functions.

    Science.gov (United States)

    Jeong, Sung-Jin; Lee, Haejin; Hur, Eun-Mi; Choe, Youngshik; Koo, Ja Wook; Rah, Jong-Cheol; Lee, Kea Joo; Lim, Hyun-Ho; Sun, Woong; Moon, Cheil; Kim, Kyungjin

    2016-11-02

    This article introduces the history and the long-term goals of the Korea Brain Initiative, which is centered on deciphering the brain functions and mechanisms that mediate the integration and control of brain functions that underlie decision-making. The goal of this initiative is the mapping of a functional connectome with searchable, multi-dimensional, and information-integrated features. The project also includes the development of novel technologies and neuro-tools for integrated brain mapping. Beyond the scientific goals this grand endeavor will ultimately have socioeconomic ramifications that not only facilitate global collaboration in the neuroscience community, but also develop various brain science-related industrial and medical innovations. Copyright © 2016. Published by Elsevier Inc.

  7. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  8. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... brain. DNA —The "recipe of life," containing inherited genetic information that helps to define physical and some ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in brain development in children who develop bipolar disorder than children ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in brain development in children who develop bipolar disorder than children ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. She ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... about how the brain grows and works in healthy people, and how normal brain development and function ... chart how the brain develops over time in healthy people and are working to compare that with ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... unit of the brain and nervous system, which processes and transmits information. neurotransmitter —A chemical produced by ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Mental Illnesses Clinical Trials Outreach Outreach Home Stakeholder Engagement Outreach Partnership Program Alliance for Research Progress Coalition ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... in Real Life Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video ... and epigenetic changes can be passed on to future generations. Further understanding of genes and epigenetics may ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  2. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  3. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  4. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  5. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... axis —A brain-body circuit which plays a critical role in the body's response to stress. impulse — ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... time in healthy people and are working to compare that with brain development in people mental disorders. Genes and environmental ... the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... of cells in the body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function can go awry, leading ... the environment affect the brain The basic structure of the brain ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... basic working unit of the brain and nervous system. These cells are highly specialized for the function of conducting messages. ... specialized brain systems. We have many specialized brain systems that work ... research are listed below. Amygdala —The brain's "fear hub," which ...

  9. [Comparative study on effects of electroacupuncture stimulation of Shenmen (HT 7) and Taiyuan (LU 9) on P 300 of event-related potentials and brain electrical activity mapping in healthy young adults].

    Science.gov (United States)

    Hu, Wu-Bin; Hu, Ling; Dong, Chao-Yang; Cai, Rong-Lin; Zhou, Yi-Ping; Wang, Ke-Ming; Zhang, Cheng; Zhou, Feng

    2013-06-01

    To observe the effect difference of electroacupuncture (EA) stimulation of Shenmen (HT 7) and Taiyuan (LU 9) on P 300 of event-related potentials (ERPs) in volunteer subjects, so as to explore functional specificity of acupoints in processing cerebral information. Sixty healthy volunteer college students were randomly and equally divided into Shenmen (HT 7) group and Taiyuan (LU 9) group (30 persons/group). EA (2 Hz, 1 mA) was applied to bilateral Shenmen (HT 7) and Taiyuan (LU 9) for 15 min. The ERPs were acquired by averaging EEG activity following Oddba II auditory tone-double stimuli and brain electrical activity mapping (BEAM) acquired by means of Scan 4.5 collection and analysis system. Data were calculated and analyzed with SPSS 17.0 for Windows. After testing, the subjects were inquired about the perception for acupuncture stimulation and other sensations or psychological activities. Following EA stimulation of both HT 7 and LU 9, the amplitude of P 300 in the ERPs were significantly decreased in comparison with pre-EA stimulation in the same one group (P 0.05). But, EA of HT 7 had a slightly stronger effect in shortening P 300 latency. With regard to the potential intensity distribution of BEAM, there were some differences between HT 7 and LU 9 groups. The high potential responses for HT 7 were found mainly in the occipital lobe, and in the left parietal lobe and the right temporal lobe, whereas those for LU 9 were found to mainly disperse in the left occipital lobe and the parietal lobe. EA stimulation of HT 7 and LU 9 has a slight difference on lowering P 300 amplitude of ERPs, and may result in different distribution of the high potential responses in different lobes of the cerebral cortex in healthy subjects. The functional specificity of EA stimulation of different acupoints needs further study.

  10. Question Mapping

    Science.gov (United States)

    Martin, Josh

    2012-01-01

    After accepting the principal position at Farmersville (TX) Junior High, the author decided to increase instructional rigor through question mapping because of the success he saw using this instructional practice at his prior campus. Teachers are the number one influence on student achievement (Marzano, 2003), so question mapping provides a…

  11. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  12. Mapping Aesthetic Musical Emotions in the Brain

    Science.gov (United States)

    Ethofer, Thomas; Zentner, Marcel; Vuilleumier, Patrik

    2012-01-01

    Music evokes complex emotions beyond pleasant/unpleasant or happy/sad dichotomies usually investigated in neuroscience. Here, we used functional neuroimaging with parametric analyses based on the intensity of felt emotions to explore a wider spectrum of affective responses reported during music listening. Positive emotions correlated with activation of left striatum and insula when high-arousing (Wonder, Joy) but right striatum and orbitofrontal cortex when low-arousing (Nostalgia, Tenderness). Irrespective of their positive/negative valence, high-arousal emotions (Tension, Power, and Joy) also correlated with activations in sensory and motor areas, whereas low-arousal categories (Peacefulness, Nostalgia, and Sadness) selectively engaged ventromedial prefrontal cortex and hippocampus. The right parahippocampal cortex activated in all but positive high-arousal conditions. Results also suggested some blends between activation patterns associated with different classes of emotions, particularly for feelings of Wonder or Transcendence. These data reveal a differentiated recruitment across emotions of networks involved in reward, memory, self-reflective, and sensorimotor processes, which may account for the unique richness of musical emotions. PMID:22178712

  13. Mapping aesthetic musical emotions in the brain.

    Science.gov (United States)

    Trost, Wiebke; Ethofer, Thomas; Zentner, Marcel; Vuilleumier, Patrik

    2012-12-01

    Music evokes complex emotions beyond pleasant/unpleasant or happy/sad dichotomies usually investigated in neuroscience. Here, we used functional neuroimaging with parametric analyses based on the intensity of felt emotions to explore a wider spectrum of affective responses reported during music listening. Positive emotions correlated with activation of left striatum and insula when high-arousing (Wonder, Joy) but right striatum and orbitofrontal cortex when low-arousing (Nostalgia, Tenderness). Irrespective of their positive/negative valence, high-arousal emotions (Tension, Power, and Joy) also correlated with activations in sensory and motor areas, whereas low-arousal categories (Peacefulness, Nostalgia, and Sadness) selectively engaged ventromedial prefrontal cortex and hippocampus. The right parahippocampal cortex activated in all but positive high-arousal conditions. Results also suggested some blends between activation patterns associated with different classes of emotions, particularly for feelings of Wonder or Transcendence. These data reveal a differentiated recruitment across emotions of networks involved in reward, memory, self-reflective, and sensorimotor processes, which may account for the unique richness of musical emotions.

  14. Participatory Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    2016-01-01

    practice. In particular, mapping environmental damage, endangered species, and human-made disasters has become one focal point for environmental knowledge production. This type of digital map has been highlighted as a processual turn in critical cartography, whereas in related computational journalism......, it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This article looks at computer-assisted cartography as part of environmental knowledge production. It uses InfoAmazonia, the data-journalism platform on Amazon rainforests, as an example...

  15. The Maps Inside your Head

    CERN Document Server

    CERN. Geneva

    2018-01-01

    How do our brains make sense of a complex and unpredictable world? In this talk, I will discuss a physicist's approach to the neural topography of information processing in the brain. First I will review the brain's architecture, and how neural circuits map out the sensory and cognitive worlds. Then I will describe how highly complex sensory and cognitive tasks are carried out by the cooperative action of many specialized neurons and circuits, each of which has a simple function. I will illustrate my remarks with one sensory example and one cognitive example. For the sensory examples, I will consider the sense of smell ("olfaction"), whereby humans and other animals distinguish vast arrays of odor mixtures using very limited neural resources. For the cognitive example, I will consider the "sense of place", that is, how animals mentally represent their physical location. Both examples demonstrate that brains have evolved neural circuits that exploit sophisticated principles of mathematics - principles that sci...

  16. The Kantian brain: brain dynamics from a neurophenomenological perspective.

    Science.gov (United States)

    Fazelpour, Sina; Thompson, Evan

    2015-04-01

    Current research on spontaneous, self-generated brain rhythms and dynamic neural network coordination cast new light on Immanuel Kant's idea of the 'spontaneity' of cognition, that is, the mind's capacity to organize and synthesize sensory stimuli in novel, unprecedented ways. Nevertheless, determining the precise nature of the brain-cognition mapping remains an outstanding challenge. Neurophenomenology, which uses phenomenological information about the variability of subjective experience in order to illuminate the variability of brain dynamics, offers a promising method for addressing this challenge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Brain Basics

    Medline Plus

    Full Text Available ... are sent from one neuron to another. Share Science News New BRAIN Grants BRAIN Cell Census Launched ... human volunteers PubMed Central: An archive of life sciences journals NIH Research Fact Sheets NIH Office of ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... to change the way she thinks about and reacts to things that may trigger her depression. Several ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Careers at NIMH Staff Directories Getting to NIMH Transforming the understanding and treatment of mental illnesses. Search ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain involved in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) ...

  1. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... brain. Using MEG, some scientists have found a specific pattern of brain activity that may help predict ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... doctor that she had experienced long periods of deep sadness throughout her teenage years, but had never ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... but can still remember past events and learned skills, and carry on a conversation, all which rely ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's ... resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... go awry, leading to mental illnesses. Brain Basics will introduce you to some of this science, such ... released it increases the chance that the neuron will fire. This enhances the electrical flow among brain ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Functional magnetic resonance imaging (fMRI) is another important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, or MEG, can ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... front of the brain, which is linked to thought and emotion. It is also linked to reward ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... symptoms and family medical history. Epigenetic changes from stress or early-life experiences may have made it ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Evidence shows that they can be related to changes in the anatomy, physiology, and chemistry of the ... brain communicate and work with each other How changes in the brain can lead to mental disorders, ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics will introduce you to some of this science, such as: How the brain develops How ... cell, and responds to signals from the environment; this all helps the cell maintain its balance with ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... all. She was happily married and successful in business. Then, after a serious setback at work, she ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... The basic structure of the brain How different parts of the brain communicate and work with each ... of conducting messages. A neuron has three basic parts: Cell body which includes the nucleus, cytoplasm, and ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... and the environment affect the brain The basic structure of the brain How different parts of the ... for the cell to work properly including small structures called cell organelles. Dendrites branch off from the ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... Opportunities & Announcements Funding Strategy for Grants Application Process Managing Grants Clinical Research Training Labs at NIMH Labs ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... the brain How different parts of the brain communicate and work with each other How changes in ... communication signal sent between neurons by which neurons communicate with each other. magnetic resonance imaging (MRI) mdash; ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... Grants BRAIN Cell Census Launched How DNA Shapes Human Gene Expression More General Health Information from NIH ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... disorder and to tailor the treatment for a person's specific conditions. Such brain research help increase the understanding of how the brain grows and works and the effects of genes and environment on mental health. This ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... the results can affect many aspects of life. Scientists are continually learning more about how the brain ... the normal brain's structure develops and matures helps scientists understand what goes wrong in mental illnesses. Scientists ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ... of DNA. Sometimes this copying process is imperfect, leading to a gene mutation that causes the gene ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... The brain continues maturing well into a person's early 20s. Knowing how the brain is wired and ... for mental disorders. This could greatly help in early detection, more tailored treatments, and possibly prevention of ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... her feelings. Brain Research Modern research tools and techniques are giving scientists a more detailed understanding of ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... the body's response to stress. impulse —An electrical communication signal sent between neurons by which neurons communicate ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... in her life. She began to think of suicide because she felt like things weren't going ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Neurons & Neural Circuits Neurons are the basic working unit of the brain and nervous system. These cells ... A nerve cell that is the basic, working unit of the brain and nervous system, which processes ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or problems using dopamine in the thinking and feeling regions of the brain may play a role ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ... mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... as: How the brain develops How genes and the environment affect the brain The basic structure of the ... leaves the cell, and responds to signals from the environment; this all helps the cell maintain its balance ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... and her husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early- ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... and her husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early- ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... and aiding the flow of information to the front of the brain, which is linked to thought ... and aiding the flow of information to the front of the brain. DNA —The "recipe of life," ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... or problems using dopamine in the thinking and feeling regions of the brain may play a role ... depression helps Sarah to better cope with her feelings. Brain Research Modern research tools and techniques are ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... mainly involved in controlling movement and aiding the flow of information to the front of the brain, ... the neuron will fire. This enhances the electrical flow among brain cells required for normal function and ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... control specific body functions such as sleep and speech. The brain continues maturing well into a person's ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... it increases the chance that the neuron will fire. This enhances the electrical flow among brain cells ... This area of the brain also helps to control the amygdala during stressful events. Some research shows ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... the brain How different parts of the brain communicate and work with each other How changes in ... occur when this process does not work correctly. Communication between neurons can also be electrical, such as ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... treatment for a person's specific conditions. Such brain research help increase the understanding of how the brain grows and works and the effects of genes and environment on mental health. This knowledge is allowing scientists ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... How the brain develops How genes and the environment affect the brain The basic structure of the ... inside contents of the cell from its surrounding environment and controls what enters and leaves the cell, ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... of contact for receiving impulses on a neuron, branching off from the cell body. dopamine —A neurotransmitter ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... Publications Help for Mental Illnesses Clinical Trials Outreach Research Priorities Funding Labs at NIMH News & Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... a major mood circuit called the hypothalamic-pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain ... in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body circuit which plays ...

  14. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate have been ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain involved in ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain involved in creating and filing new memories. hypothalmic- ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons working together form ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... having trouble coping with the stresses in her life. She began to think of suicide because she ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into a person's early 20s. ... that regulates many functions, including mood, appetite, and sleep. synapse —The tiny gap between neurons, where nerve impulses are sent from one neuron to ... of Deep Brain Stimulation Brain’s Alertness Circuitry Revealed New BRAIN Grants ...

  20. Brain Aneurysm

    Science.gov (United States)

    ... inside of the brain (ventricles) or surrounding your brain and spinal cord to drain the excess fluid into an external bag. Sometimes it may then be necessary to introduce a shunt system — which consists of a ... brain and ending in your abdominal cavity. Rehabilitative therapy. ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... another important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, or ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as judgment, decision making and problem solving, ...

  3. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  4. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... of the enterprise is compared with a Reference Enterprise Model (REM). The REM is a CALS idealised enterprise providing full product support throughout the extended enterprise and containing different manufacturing aspects, e.g. component industry, process industry, and one-piece production. This CALS idealised...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  5. Cognitive maps

    DEFF Research Database (Denmark)

    Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann

    2014-01-01

    . Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...... and innovation field are related and under which dimensions they differ. The paper draws preliminary conclusions on the implications of the different world- views on the innovation process. With the growing importance of the design approach in innovation e.g. design thinking, a clear conception...

  6. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    towards a new political ecology. This type of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper...... looks at computer-assisted cartography as part of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia...

  7. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  8. Brain death.

    Science.gov (United States)

    Beresford, H R

    1999-05-01

    Current law in the United States authorizes physicians to diagnose brain death by applying generally accepted neurologic criteria for determining loss of function of the entire brain. This article offers a medical-legal perspective on problems that may arise with respect to the determination of brain death. These include the possibility of diagnostic error, conceptual disagreements that may constrain the use of neurologic criteria to diagnose death, and the conflation of brain death and loss of consciousness. This article also addresses legal aspects of the debate over whether to expand the definition of brain death to include permanent unconsciousness. Although existing laws draw a clear distinction between brain death and the persistent vegetative state, many courts have authorized removal of life support from individuals whose unconsciousness is believed to be permanent on proof that removal accords with preferences expressed before sentience was lost.

  9. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation potential. The paper further discusses how existing policymaking operates in a number of tensions one being......, the innovation map can act as a medium in which policymakers, interest organization and companies can develop and coordinate future innovation activities....

  10. Meal mapping

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Kügler, Jens; Olsen, Nina Veflen

    2013-01-01

    probabilities are subjected to multiple correspondence analysis and mapped into low-dimensional space. In a third step, the principal coordinates representing meal centres and side components in the correspondence analysis solution are subjected to cluster analysis to identify distinct groups of compatible...

  11. Mapping filmmaking

    DEFF Research Database (Denmark)

    Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik

    2010-01-01

    This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus...

  12. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper looks at computer-assisted cartography as part...

  13. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons working together form ...

  14. Feature selection based on SVM significance maps for classification of dementia

    NARCIS (Netherlands)

    E.E. Bron (Esther); M. Smits (Marion); J.C. van Swieten (John); W.J. Niessen (Wiro); S. Klein (Stefan)

    2014-01-01

    textabstractSupport vector machine significance maps (SVM p-maps) previously showed clusters of significantly different voxels in dementiarelated brain regions. We propose a novel feature selection method for classification of dementia based on these p-maps. In our approach, the SVM p-maps are

  15. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. The analysis shows a multifaceted landscape of innovation around an existing regime, built around existing ways of working...... and developed over generations. The regime is challenged from various niches and the socio-technical landscape through trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation...... potential. The paper further discusses how existing policymaking operates in a number of tensions one being between government and governance. Based on the concepts from SNM the paper introduces an innovation map in order to support the development of meta-governance policymaking. By mapping some...

  16. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability to move as they want to, resulting in ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... The brain's "fear hub," which activates our natural "fight-or-flight" response to confront or escape from a dangerous ... The brain's "fear hub," which helps activate the fight-or-flight response and is also involved in emotions and ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... will fire. This enhances the electrical flow among brain cells required for normal function and plays an important ... of neurons and their interconnections. neuron —A nerve cell that is the basic, working unit of the brain and nervous system, which processes and transmits information. ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... MSC 9663 Bethesda, MD 20892-9663 Follow Us Facebook Twitter YouTube Google Plus NIMH Newsletter NIMH RSS ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. She was happily married and successful in business. Then, after a serious setback at work, she ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... to the front of the brain, which is linked to thought and emotion. It is also linked to reward systems in the brain. Problems in ... Problems in making or using glutamate have been linked to many mental disorders, including autism , obsessive compulsive ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... axis —A brain-body circuit which plays a critical role in the body's response to stress. impulse — ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... And as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into a person's early 20s. ... Basics in Real Life—How Depression affects the Brain Meet Sarah ... had problems getting to sleep and generally felt tired, listless, and had no ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where mental disorders begin and perhaps how to slow or stop ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... thinking and feeling regions of the brain may play a role in disorders like schizophrenia or attention deficit hyperactivity ... the front of the brain that, in humans, plays a role in executive functions such as judgment, decision making ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... PTSD) . Prefrontal cortex (PFC) —Seat of the brain's executive functions, such as judgment, decision making, and problem solving. ... brain that, in humans, plays a role in executive functions such as judgment, decision making and problem solving, ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... our physical surroundings but also factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ... Life Brain Basics in Real Life—How Depression affects the Brain ... had problems getting to sleep and generally felt tired, listless, and had no ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... her symptoms were not caused by a stroke, brain tumor, or similar conditions, Sarah's doctor referred her to a psychiatrist, a type of medical doctor who is an expert on mental ... of serotonin in the brain and help reduce symptoms of depression. Sarah also ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... begun to chart how the brain develops over time in healthy people and are working to compare that with brain development in ... Other medical professionals who can diagnose mental disorders are psychologists or ... gets "the blues" from time to time. In contrast, major depression is a ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ... imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  15. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  16. [Brain concussion].

    Science.gov (United States)

    Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha

    2011-01-01

    Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.

  17. Reasoning Maps

    OpenAIRE

    Falcão, Renato Pinto de Queiroz

    2003-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Produção. Esta dissertação apresenta uma ferramenta de apoio à decisão, baseada na Metodologia Multicritérios de Apoio à Decisão - MCDA, através do desenvolvimento de um software denominado Reasoning Maps. O software permite, de maneira integrada, a construção de mapas cognitivos, suas diversas análises topológicas e o cadastramento e análise de alternativas. Abor...

  18. Projective mapping

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus

    2012-01-01

    instructions and influence heavily the product placements and the descriptive vocabulary (Dehlholm et.al., 2012b). The type of assessors performing the method influences results with an extra aspect in Projective Mapping compared to more analytical tests, as the given spontaneous perceptions are much dependent...... the applied framework, semantic restrictions, the choice of type of assessors and the validation of product separations. The applied framework concerns the response surface as presented to the assessor in different shapes, e.g. rectangular, square or round. Semantic restrictions are a part of the assessor...

  19. X marks the spot : structural and functional brain mapping in a genetically defined group at high risk of autism symptoms (47,XXY), and a comparison with idiopathic autism spectrum disorder

    NARCIS (Netherlands)

    Goddard, Marcia Naomi

    2015-01-01

    Klinefelter syndrome (47,XXY) is associated with a wide range of behavioral problems, including autism symptomatology. In the current thesis, brain structure and function were assesed in boys with 47,XXY, boys with idiopathic autism spectrum disorder, and non-clinical controls, using multiple

  20. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...