WorldWideScience

Sample records for brain mapping study

  1. Brain mapping

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available Cartography of the brain ("brain mapping" aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1 acquiring data about brain structure and function, (2 transformation of data into a common reference, (3 visualization and interpretation of results, and (4 databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prerequisite for multisubject, multidimensional and multimodal mapping is transformation of individual images to match a standard brain template. To produce brain maps, color, contours, and other visual cues are used to differentiate metabolic rates, electrical field potentials, receptor densities, and other attributes of structure or function. Databases are used to organize and archive data records. By relating the maps to cognitive functions and psychological models, brain mapping offers a prerequisite for the understanding of organizational principles of the human brain.

  2. Brain mapping

    OpenAIRE

    Blaž Koritnik

    2004-01-01

    Cartography of the brain ("brain mapping") aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1) acquiring data about brain structure and function, (2) transformation of data into a common reference, (3) visualization and interpretation of results, and (4) databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prere...

  3. Brain mapping as a tool to study neurodegeneration

    OpenAIRE

    Apostolova, Liana G.; Thompson, Paul M.

    2007-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder for those 65 years or older, currently affects 4.5 million Americans, and is predicted to rise to 13.2 million by the year 2050 in the U.S. alone. Neuroimaging and brain mapping techniques provide extraordinary power to understand AD, providing spatially detailed information on the extent and trajectory of the disease as it spreads in the living brain. Computational anatomy techniques, applied to large databases of brain M...

  4. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Egsgaard, L L; Jensen, R; Buchgreitz, L; Egsgaard, Line Lindhardt; Jensen, Rigmor Højland; Arendt-Nielsen, L; Bendtsen, L

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...

  5. Brain/MINDS: brain-mapping project in Japan

    OpenAIRE

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Calli...

  6. Mapping the brain

    International Nuclear Information System (INIS)

    With powerful new technologies such as positron tomography and superconducting quantum interference device that peer through the skull and see the brain at work, neuroscientists seek the wellsprings of thoughts and emotions, the genesis of intelligence and language. A functional map of the brain is thus obtained and its challenge is to move beyond brain structure to create a detailed diagram of which part do what. For that the brain's cartographers rely on a variety of technologies such as positron tomography and superconducting quantum interference devices. Their performances and uses are briefly reviewed. ills

  7. Mapping brains without coordinates

    OpenAIRE

    Kötter, Rolf; Wanke, Egon

    2005-01-01

    Brain mapping has evolved considerably over the last century. While most emphasis has been placed on coordinate-based spatial atlases, coordinate-independent parcellation-based mapping is an important technique for accessing the multitude of structural and functional data that have been reported from invasive experiments, and provides for flexible and efficient representations of information. Here, we provide an introduction to motivations, concepts, techniques and implications of coordinate-...

  8. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study

    OpenAIRE

    Langkammer, Christian; Schweser, Ferdinand; Krebs, Nikolaus; Deistung, Andreas; Goessler, Walter; Scheurer, Eva; Sommer, Karsten; Reishofer, Gernot; Yen, Kathrin; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen R

    2012-01-01

    Quantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic susceptibility distribution of tissue in vivo from gradient echo magnetic resonance phase images. It is commonly assumed that paramagnetic iron is the predominant source of susceptibility variations in gray matter as many studies have reported a reasonable correlation of magnetic susceptibility with brain iron concentrations in vivo. Instead of performing direct comparisons, however, all ...

  9. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.; Arendt-Nielsen, L.; Bendtsen, L.

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity in...

  10. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica – A Pilot Study

    Science.gov (United States)

    Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R.; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2*) and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman’s rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region) with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1). Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding. PMID:27171423

  11. Brain-mapping using robotized TMS.

    Science.gov (United States)

    Finke, M; Fadini, T; Kantelhardt, S; Giese, A; Matthaus, L; Schweikard, A

    2008-01-01

    We present first results of brain-mapping using robotic Transcranial Magnetic Stimulation. This non-invasive procedure enables the reliable detection of the representation of individual muscles or muscle groups in the motor-cortex. The accuracy is only exceeded by direct electrical stimulation of the brain during surgery. Brain-mapping using robotic TMS can also be used to detect displacements of brain regions caused by tumors. The advantage of TMS is that it is non-invasive. In this study, we compare results from statistical mapping with robotic TMS to results achieved from direct stimulation done during tumor surgery. To our knowledge this is the first study of this type. We mapped the representation of three muscle groups (forearm, pinky and thumb) in tumor patients with the robot-aided TMS protocol and with direct stimulation. The resulting maps agree within 5mm. PMID:19163572

  12. Golgi: interactive online brain mapping

    Directory of Open Access Journals (Sweden)

    Ramsay Alexander Brown

    2015-11-01

    Full Text Available Golgi (http://www.usegolgi.com is a prototype interactive brain map of the rat brain that helps researchers intuitively interact with neuroanatomy, connectomics, and cellular and chemical architecture. The flood of '-omic' data urges new ways to help researchers connect discrete findings to the larger context of the nervous system. Here we explore Golgi's underlying reasoning and techniques and how our design decisions balance the constraints of building both a scientifically useful and usable tool. We demonstrate how Golgi can enhance connectomic literature searches with a case study investigating a thalamocortical circuit involving the Nucleus Accumbens and we explore Golgi's potential and future directions for growth in systems neuroscience and connectomics.

  13. Anatomical correlates for category-specific naming of objects and actions: a brain stimulation mapping study.

    Science.gov (United States)

    Lubrano, Vincent; Filleron, Thomas; Démonet, Jean-François; Roux, Franck-Emmanuel

    2014-02-01

    The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. PMID:23015527

  14. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  15. BrainMap `95 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ``Human Brain Mapping and Modeling.`` The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center`s web site. A book will be published by John Wiley and Sons prior to the end of 1998.

  16. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    International Nuclear Information System (INIS)

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging

  17. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  18. A study on evaluation of frontal lobe epilepsy using statistical parametric mapping of brain perfusion SPECT

    International Nuclear Information System (INIS)

    This study investigates alteration of regional cerebral blood flow (rCBF) and identification of epileptic foci in interictal frontal lobe epilepsy (FLE) using statistical parametric mapping (SPM). Noninvasive rCBF measurements using 99mTc-ECD SPECT were performed on 23 patients with frontal lobe epilepsy and 49 age-matched normal subjects. The FLE patients were divided into three groups, 3 patients with dorsolateral and frontocentral seizures, 2 patients with supplementary motor seizures, and 18 patients with frontobasal-cingulate seizures by Mihara's classification determined by clinical and EEG findings. The SPM analysis revealed rCBF abnormality in frontal lobes in 12 patients when compared rCBF data for each patient with those for normal subjects in accordance with Mihara's classification in 8. On the contrary, rCBF abnormality in frontal lobes was detected in 4 patients by visual inspection in accordance with the classification in only one. The rCBF significantly decreased in orbito-frontal regions, frontopolar regions, and anterior cingulate gyrus in the group with frontobasal-cingulate seizures as compared with age-matched normal subjects with confounding covariates of plasma concentrations of antiepileptic drugs. These results suggest that SPM analysis of brain perfusion SPECT gives us useful information about frontal lobe epilepsy even in the interictal phase. (author)

  19. CLINICAL STUDY OF ISCHEMIC PENUMBRA REGION IN BRAIN ELECTRICAL ACTIVITY MAPPING

    Institute of Scientific and Technical Information of China (English)

    Liu Qingrui; Liu Mingshun; Gu Lanjie; Mei Fengjun

    2000-01-01

    Department of Neurology, Fourth Affiliated Hospital. Hebei Medical University, Shijiazhuang ABSTRACT OBJETIVE To study features and clinical usage of ischemic penumbra region(IPR) in brain electrical activity mapping(BEAM).BACKGROUND To explore the functional improvement index of IPR untraumaticly. METH0DS 69 patients with acute cerebral infarction were divided into two groups according to different therapeutic time window--early treatment group( 32 cases, treatment in 12 hours)and contral group (37 cases, treatment in 12-72 hours).They were analysed in BEAM pre-and post-treatment Results: BEAM showed that the power of infarcted core was decreased and IPR became smaller in slow waves significantly after treatment in early treatment group and this change was in good agreement with improvement of clinical functions and SPECT DISCUSSION The key to treat acute cerebral infarction was to improve functions of IPR as 8oos as possible, BEAM could show the location and size of IPR. CONCLUSION BEAM was one of important index in evaluating the function of IPR.

  20. Different brain networks underlying the acquisition and expression of contextual fear conditioning: a metabolic mapping study.

    Science.gov (United States)

    González-Pardo, H; Conejo, N M; Lana, G; Arias, J L

    2012-01-27

    The specific brain regions and circuits involved in the acquisition and expression of contextual fear conditioning are still a matter of debate. To address this issue, regional changes in brain metabolic capacity were mapped during the acquisition and expression of contextual fear conditioning using cytochrome oxidase (CO) quantitative histochemistry. In comparison with a group briefly exposed to a conditioning chamber, rats that received a series of randomly presented footshocks in the same conditioning chamber (fear acquisition group) showed increased CO activity in anxiety-related brain regions like the ventral periaqueductal gray, the ventral hippocampus, the lateral habenula, the mammillary bodies, and the laterodorsal thalamic nucleus. Another group received randomly presented footshocks, and it was re-exposed to the same conditioning chamber one week later (fear expression group). The conditioned group had significantly higher CO activity as compared with the matched control group in the following brain regions: the ventral periaqueductal gray, the central and lateral nuclei of the amygdala, and the bed nucleus of the stria terminalis. In addition, analysis of functional brain networks using interregional CO activity correlations revealed different patterns of functional connectivity between fear acquisition and fear expression groups. In particular, a network comprising the ventral hippocampus and amygdala nuclei was found in the fear acquisition group, whereas a closed reciprocal dorsal hippocampal network was detected in the fear expression group. These results suggest that contextual fear acquisition and expression differ as regards to the brain networks involved, although they share common brain regions involved in fear, anxiety, and defensive behavior. PMID:22173014

  1. Optical mapping of brain activity

    Czech Academy of Sciences Publication Activity Database

    Fejtová, M.; Otáhal, Jakub; Kubová, Hana; Konopková, Renata

    Praha: ČVUT Praha, 2006. s. 21-22. ISBN 80-01-03439-9. [Workshop CVUT. 20.02.2006-24.02.2006, Praha] R&D Projects: GA AV ČR 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : optical mapping * intrinsic signals * brain Subject RIV: ED - Physiology

  2. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  3. Creating probabilistic maps of the face network in the adolescent brain: A multi-centre functional MRI study

    International Nuclear Information System (INIS)

    Large-scale magnetic resonance (MR) studies of the human brain offer unique opportunities for identifying genetic and environmental factors shaping the human brain. Here, we describe a dataset collected in the context of a multi-centre study of the adolescent brain, namely the IMAGEN Study. We focus on one of the functional paradigms included in the project to probe the brain network underlying processing of ambiguous and angry faces. Using functional MR (fMRI) data collected in 1,110 adolescents, we constructed probabilistic maps of the neural network engaged consistently while viewing the ambiguous or angry faces; 21 brain regions responding to faces with high probability were identified. We were also able to address several methodological issues, including the minimal sample size yielding a stable location of a test region, namely the fusiform face area (FFA), as well as the effect of acquisition site (eight sites) and scanner (four manufacturers) on the location and magnitude of the fMRI response to faces in the FFA. Finally, we provided a comparison between male and female adolescents in terms of the effect sizes of sex differences in brain response to the ambiguous and angry faces in the 21 regions of interest. Overall, we found a stronger neural response to the ambiguous faces in several cortical regions, including the fusiform face area, in female (vs. male) adolescents, and a slightly stronger response to the angry faces in the amygdala of male (vs. female) adolescents. (authors)

  4. Exploring the brain's structural connectome: A quantitative stroke lesion-dysfunction mapping study.

    Science.gov (United States)

    Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman; Relkin, Norman; Villanueva, Mark; Raj, Ashish; Toglia, Joan; O'Dell, Michael; Iadecola, Costantino

    2015-06-01

    The aim of this work was to quantitatively model cross-sectional relationships between structural connectome disruptions caused by cerebral infarction and measures of clinical performance. Imaging biomarkers of 41 ischemic stroke patients (72.0 ± 12.0 years, 20 female) were related to their baseline performance in 18 cognitive, physical and daily life activity assessments. Individual estimates of structural connectivity disruption in gray matter regions were computed using the Change in Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated using routinely collected clinical magnetic resonance imagings. Partial Least Squares Regression (PLSR) was used to predict various acute impairment and activity measures from ChaCo scores and patient demographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons correction were implemented to minimize over-fitting and Type I errors. Multiple linear regression models based on lesion volume and lateralization information were constructed for comparison. All models based on connectivity disruption had lower Akaike Information Criterion and almost all had better goodness-of-fit values (R(2) : 0.26-0.92) than models based on lesion characteristics (R(2) : 0.06-0.50). Confidence intervals of PLSR coefficients identified brain regions important in predicting each clinical assessment. Appropriate mapping of eloquent functions, that is, language and motor, and replication of results across pathologies provided validation of this method. Models of complex functions provided new insights into brain-behavior relationships. In addition to the potential applications in prognostication and rehabilitation development, this quantitative approach provides insight into the structural networks underlying complex functions like activities of daily living and cognition. Quantitative analysis of big data will be invaluable in understanding complex brain-behavior relationships. PMID

  5. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  6. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  7. Applications of fMRI for Brain Mapping

    Directory of Open Access Journals (Sweden)

    Nivedita Daimiwal

    2012-11-01

    Full Text Available Brain-mapping techniques have proven to be vital in understanding the molecular, cellular, and functional mechanisms of the brain. Normal anatomical imaging can provide structural information on certain abnormalities in the brain. However there are many neurological disorders for which only structure studies are not sufficient. In such cases it is required to investigate the functional organization of the brain. Further it is necessary to study the brain functions under normal as well as diseased conditions. Brain mapping techniques can help in deriving useful and important information on these issues. Brain functions and brain area responsible for the particular activities like motor, sensory speech and memory process could be investigated. The authors provide an overview of various Brain Mapping techniques and fMRI signal processing methods.

  8. Applications of fMRI for Brain Mapping

    OpenAIRE

    Nivedita Daimiwal; Sundhararajan, M.; Revati Shriram

    2012-01-01

    Brain-mapping techniques have proven to be vital in understanding the molecular, cellular, and functional mechanisms of the brain. Normal anatomical imaging can provide structural information on certain abnormalities in the brain. However there are many neurological disorders for which only structure studies are not sufficient. In such cases it is required to investigate the functional organization of the brain. Further it is necessary to study the brain functions under normal as well as dise...

  9. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine;

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function, or...... for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any...

  10. Least-Square Conformal Brain Mapping with Spring Energy

    OpenAIRE

    Nie, Jingxin; Liu, Tianming; Li, Gang; Young, Geoffrey; Tarokh, Ashley; Guo, Lei; Wong, Stephen TC

    2007-01-01

    The human brain cortex is a highly convoluted sheet. Mapping of the cortical surface into a canonical coordinate space is an important tool for the study of the structure and function of the brain. Here, we present a technique based on least-square conformal mapping with spring energy for the mapping of the cortical surface. This method aims to reduce the metric and area distortion while maintaining the conformal map and computation efficiency. We demonstrate through numerical results that th...

  11. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine; Østergaard, Arne L.

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function, or...... for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any...... voxel relative to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and...

  12. Statistical mapping of metabolites in the medial wall of the brain: a proton echo planar spectroscopic imaging study.

    Science.gov (United States)

    Niddam, David M; Tsai, Shang-Yueh; Lin, Yi-Ru

    2015-03-01

    With magnetic resonance spectroscopic imaging (MRSI), it is possible to simultaneously map distributions of several brain metabolites with relatively good spatial resolution in a short time. Although other functional imaging modalities have taken advantage of population-based inferences using spatially extended statistics, this approach remains little utilized for MRSI. In this study, statistical nonparametric mapping (SnPM) was applied to two-dimensional MRSI data from the medial walls of the human brain to assess the effect of normal aging on metabolite concentrations. The effects of different preprocessing steps on these results were then explored. Short echo time MRSI of left and right medial walls was acquired in conjunction with absolute quantification of total choline, total creatine (tCr), glutamate and glutamine, myo-inositol, and N-acetyl-aspartate. Individual images were spatially warped to a common anatomical frame of reference. Age effects were assessed within SnPM as were the effects of voxel subsampling, variance smoothing, and spatial smoothing. The main findings were: (1) regions in the bilateral dorsal anterior cingulate and in the left posterior cingulate exhibited higher tCr concentrations with age; (2) voxel subsampling but not spatial smoothing enhanced the cluster-level statistical sensitivity; and (3) variance smoothing was of little benefit in this study. Our study shows that spatially extended statistics can yield information about regional-specific changes in metabolite concentrations obtained by short echo time MRSI. This opens up the possibility for systematic comparisons of metabolites in the medial wall of the brain. PMID:25338521

  13. Optogenetic approaches for functional mouse brain mapping

    OpenAIRE

    Diana H Lim; LeDue, Jeffrey; Mohajerani, Majid H.; Vanni, Matthieu P.; Murphy, Timothy H.

    2013-01-01

    To better understand the connectivity of the brain, it is important to map both structural and functional connections between neurons and cortical regions. In recent years, a set of optogenetic tools have been developed that permit selective manipulation and investigation of neural systems. These tools have enabled the mapping of functional connections between stimulated cortical targets and other brain regions. Advantages of the approach include the ability to arbitrarily stimulate brain reg...

  14. Functional brain mapping of psychopathology

    OpenAIRE

    Honey, G.; Fletcher, P.; BULLMORE, E.

    2002-01-01

    In this paper, we consider the impact that the novel functional neuroimaging techniques may have upon psychiatric illness. Functional neuroimaging has rapidly developed as a powerful tool in cognitive neuroscience and, in recent years, has seen widespread application in psychiatry. Although such studies have produced evidence for abnormal patterns of brain response in association with some pathological conditions, the core pathophysiologies remain unresolved. Although imaging techniques provi...

  15. Technical issues relating to the statistical parametric mapping of brain SPECT studies

    International Nuclear Information System (INIS)

    Full text: Statistical Parametric Mapping (SPM) is a software tool designed for the statistical analysis of functional neuro images, specifically Positron Emission Tomography and functional Magnetic Resonance Imaging, and more recently SPECT. This review examines some problems associated with the analysis of SPECT. A comparison of a patient group with normal studies revealed factors that could influence results, some that commonly occur, others that require further exploration. To optimise the differences between two groups of subjects, both spatial variability and differences in global activity must be minimised. The choice and effectiveness of co registration method and approach to normalisation of activity concentration can affect the optimisation. A small number of subject scans were identified as possessing truncated data resulting in edge effects that could adversely influence the analysis. Other problems included unusual areas of significance possibly related to reconstruction methods and the geometry associated with nonparallel collimators. Areas of extra cerebral significance are a point of concern - and may result from scatter effects, or mis registration. Difficulties in patient positioning, due to postural limitations, can lead to resolution differences. SPM has been used to assess areas of statistical significance arising from these technical factors, as opposed to areas of true clinical significance when comparing subject groups. This contributes to a better understanding of the effects of technical factors so that these may be eliminated, minimised, or incorporated in the study design. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  17. An MRI study of spatial probability brain map differences between first-episode schizophrenia and normal controls

    OpenAIRE

    Park, Hae-Jeong; Levitt, James; Shenton, Martha E.; Salisbury, Dean F.; Kubicki, Marek; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.

    2004-01-01

    We created a spatial probability atlas of schizophrenia to provide information about the neuroanatomic variability of brain regions of patients with the disorder. Probability maps of 16 regions of interest (ROIs) were constructed by taking manually parcellated ROIs from subjects’ magnetic resonance images (MRIs) and linearly transforming them into Talairach space using the Montreal Neurological Institute (MNI) template. ROIs included temporal, parietal, and prefrontal cortex subregions, with ...

  18. Single-subject statistical mapping of acute brain hypoxia in the rat following middle cerebral artery occlusion: a microPET study.

    Science.gov (United States)

    Takasawa, Masashi; Beech, John S; Fryer, Tim D; Jones, P Simon; Ahmed, Tahir; Smith, Rob; Aigbirhio, Franklin I; Baron, Jean-Claude

    2011-06-01

    No study so far has attempted to map the 3D topography of brain hypoxia in the individual rat in vivo following middle cerebral artery occlusion (MCAo). In a previous microPET study, we reported that (18)F-fluoromisonidazole ((18)F-MISO) trapping in the brain after MCAo was specific for the hypoxic viable tissue. Here, we used (18)F-MISO microPET to map the 3D topography of brain hypoxia in the acute stage of permanent distal MCAo in individual spontaneously hypertensive rats. Normal rats were also studied. (18)F-MISO was intravenously injected approximately 1 h after clip placement and PET data were acquired for 2 hours. Animals were sacrificed and the brains harvested 48 h later for infarct mapping using standard histopathology. As expected, continuous (18)F-MISO trapping was found over the affected relative to unaffected and control MCA cortex. Using single-subject voxel-based statistical mapping, tracer accumulation 90-120 min after injection was consistently significantly higher in the anterior MCA cortex (proximal relative to clip site) and gradually decreased towards posterior areas, a pattern consistent with the classic penumbra concept. The data also suggested that (i) a portion of the significant (18)F-MISO trapping area may sit outside the contours of the final infarct despite the permanent MCAo, suggesting that (18)F-MISO may be a marker not only of severe (penumbral) but also of milder (oligemic) hypoxia, and (ii) small portions of the final infarct may not exhibit early tracer trapping, suggesting that by the time the tracer was administered this tissue had already progressed to irreversible damage. This study shows the feasibility of single-subject mapping of brain hypoxia following MCAo in the rat, which has potential applications in pathophysiological investigations. PMID:21335004

  19. Preoperative motor system brain mapping using positron emission tomography and statistical parametric mapping: hints on cortical reorganisation

    OpenAIRE

    Meyer, P; Sturz, L; Sabri, O.; Schreckenberger, M; Spetzger, U; Setani, K; Kaiser, H.; Buell, U

    2003-01-01

    Objectives: This study investigated the applicability of statistical parametric mapping (SPM) for analysing individual preoperative brain mapping studies in patients with cerebral mass lesions for neurosurgical planning. The study further investigated if hints on functional reorganisation processes can be found.

  20. BrainMap '95 workshop. Final report

    International Nuclear Information System (INIS)

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ''Human Brain Mapping and Modeling.'' The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center's web site. A book will be published by John Wiley and Sons prior to the end of 1998

  1. Mapping human brain activity in vivo.

    OpenAIRE

    Mazziotta, J.C.

    1994-01-01

    A wide range of structural and functional techniques now exists to map the human brain in health and disease. These approaches span the gamut from external tomographic imaging devices (positron-emission tomography, single photon-emission computed tomography, magnetic resonance imaging, computed tomography), to surface detectors (electroencephalography, magnetoencephalography, transcranial magnetic stimulation), to measurements made directly on the brain's surface or beneath it (intrinsic sign...

  2. INTERFACE BETWEEN NEUROIMAGING AND BRAIN MAPPING IN COGNITIVE PSYCHOLOGY

    OpenAIRE

    Divyang H. Shah; Kiran M. Patel; Jignesh B. Patel; Jimit S. Patel; Charoo S. Garg; Dhrubo Jyoti Sen

    2011-01-01

    All neuroimaging can be considered part of brain mapping. Brain mapping can be conceived as a higher form of neuroimaging, producing brain images supplemented by the result of additional (imaging or non-imaging) data processing or analysis, such as maps projecting measures of behaviour onto brain regions (fMRI). Brain Mapping techniques are constantly evolving, and rely on the development and refinement of image acquisition, representation, analysis, visualization and interpretation technique...

  3. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    International Nuclear Information System (INIS)

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  4. Brain Mapping using Topology Graphs Obtained by Surface Segmentation

    OpenAIRE

    Vivodtzev, Fabien; Linsen, Lars; Hamann, Bernd; Joy, Kenneth I.; Olshausen, Bruno A.

    2005-01-01

    Brain mapping is a technique used to alleviate the tedious and time-consuming process of annotating brains by mapping existing annotations from brain atlases to individual brains. We introduce an automated surface-based brain mapping approach. After reconstructing a volume data set (trivariate scalar field) from raw imaging data, an isosurface is extracted approximating the brain cortex. The cortical surface can be segmented into gyral and sulcal regions by exploiting geometrical properties. ...

  5. Topodiagnostic investigations on the sympathoexcitatory brain stem pathway using a new method of three dimensional brain stem mapping

    OpenAIRE

    Marx, J.; IANNETTI, G.; Mika-Gruettner, A; Thoemke, F; Fitzek, S; Vucurevic, G; Urban, P.; Stoeter, P; Cruccu, G.; Hopf, H.

    2004-01-01

    Objectives: To study the incompletely understood sympathoexcitatory pathway through the human brain stem, using a new method of three dimensional brain stem mapping on the basis of digitally postprocessed magnetic resonance imaging (MRI).

  6. ALE meta-analysis workflows via the BrainMap database: progress towards a probabilistic functional brain atlas

    OpenAIRE

    Eickhoff, Simon B.; Florian Kurth; Fox, Peter M.; Turner, Jessica A.; Robinson, Jennifer L.

    2009-01-01

    With the ever-increasing number of studies in human functional brain mapping, an abundance of data has been generated that is ready to be synthesized and modeled on a large scale. The BrainMap database archives peak coordinates from published neuroimaging studies, along with the corresponding metadata that summarize the experimental design. BrainMap was designed to facilitate quantitative meta-analysis of neuroimaging results reported in the literature and supports the use of the activation...

  7. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients.

    Directory of Open Access Journals (Sweden)

    Cosimo Urgesi

    2014-05-01

    Full Text Available Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding.

  8. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  9. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  10. Mind maps in service of the mental brain activity

    OpenAIRE

    JOSIPOVIĆ JELIĆ, ŽELJKA; Demarin, Vida; Šoljan, Ivana

    2014-01-01

    Tony Buzan is the creator of the mind maps who based his mnemonic techniques of brain mapping on the terms of awareness and wide brain functionality as well as on the ability of memorizing, reading and creativity. He conceived the idea that regular practice improves brain functions but he also introduced radiant thinking and mental literacy. One of the last enormous neuroscience ventures is to clarify the brain complexity and mind and to get a complete insight into the mental brain acti...

  11. Mapping of language brain areas in patients with brain tumors.

    Science.gov (United States)

    Hyder, Rasha; Kamel, Nidal; Boon, Tang Tong; Reza, Faruque

    2015-08-01

    Language cortex in the human brain shows high variability among normal individuals and may exhibit a considerable shift from its original position due to tumor growth. Mapping the precise location of language areas is important before surgery to avoid postoperative language deficits. In this paper, the Magnetoencephalography (MEG) recording and the MRI scanning of six brain tumorous subjects are used to localize the language specific areas. MEG recordings were performed during two silent reading tasks; silent word reading and silent picture naming. MEG source imaging is performed using distributed source modeling technique called CLARA ("Classical LORETA Analysis Recursively Applied"). Estimated MEG sources are overlaid on individual MRI of each patient to improve interpretation of MEG source imaging results. The results show successful identification of the essential language areas and clear definition of the time course of neural activation connecting them. PMID:26736340

  12. Brain Maps on the Go: Functional Imaging During Motor Challenge in Animals

    OpenAIRE

    Holschneider, DP; Maarek, J-M I

    2008-01-01

    Brain mapping in the freely-moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (∼100 microns) appropriate...

  13. NI-34BRAIN LOCATIONS INVOLVED IN COGNITIVE ALTERATIONS AFTER RESECTIVE BRAIN SURGERY IDENTIFIED BY RESECTION PROBABILITY MAPS

    OpenAIRE

    Hendriks, Eef J.; Habets, Esther J.; Klein, Martin; Barkhof, Frederik; Vandertop, W. Peter; Taphoorn, Martin J; Hamer, Philip C. de Witt

    2014-01-01

    INTRODUCTION: Cognition is at risk in patients with brain tumors. Cognitive alterations, improvement or decline, may result from brain tumor surgery, as well as from other factors such as direct tumor effects, radiotherapy, chemotherapy, anti-epileptic drugs, and steroids. In this study, cognitive alterations after brain tumor surgery are quantified and correlated with brain location using resection probability maps, which is a new approach. METHODS: Adult patients were included, who had (1) ...

  14. P16.14BRAIN LOCATIONS INVOLVED IN COGNITIVE ALTERATIONS AFTER RESECTIVE BRAIN SURGERY IDENTIFIED BY RESECTION PROBABILITY MAPS

    OpenAIRE

    Hendriks, E.J.; Habets, E.J.; Klein, M.; Barkhof, F.; Vandertop, W.P.; Taphoorn, M J; Hamer, P.C. De Witt

    2014-01-01

    INTRODUCTION: Cognition is at risk in patients with brain tumors. Cognitive alterations, improvement or decline, may result from brain tumor surgery, as well as from other factors such as direct tumor effects, radiotherapy, chemotherapy, anti-epileptic drugs, and steroids. In this study, cognitive alterations after brain tumor surgery are quantified and correlated with brain location using resection probability maps, which is a new approach. METHODS: Adult patients were included, who had (1) ...

  15. Human brain somatic representation: a functional magnetic resonance mapping

    Science.gov (United States)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  16. Computational Efficiency: A Common Organizing Principle for Parallel Computer Maps and Brain Maps?

    OpenAIRE

    Nelson, Mark E.; Bower, James M

    1990-01-01

    It is well-known that neural responses in particular brain regions are spatially organized, but no general principles have been developed that relate the structure of a brain map to the nature of the associated computation. On parallel computers, maps of a sort quite similar to brain maps arise when a computation is distributed across multiple processors. In this paper we will discuss the relationship between maps and computations on these computers and suggest how simila...

  17. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  18. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian; Kilsdonk, Iris D; de Graaf, Wolter L; Frederiksen, Jette L; Fuglø, Dan; Yiannakas, Marios; Wheeler-Kingshott, Claudia A M; Enzinger, Christian; Rocca, Maria A; Sprenger, Till; Amman, Michael; Kappos, Ludwig; Filippi, Massimo; Rovira, Alex; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz

    2014-01-01

    PURPOSE: The R2* relaxation rate constant has been suggested as a sensitive measure for iron accumulation. The aim of this multi-center study was to assess the inter-scanner and inter-subject variability of R2* mapping and to investigate the relationship between brain volume and R2* in specific...... structures. METHODS: R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated by...

  19. Statistical parametric maps of 18F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study

    International Nuclear Information System (INIS)

    Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to 18F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during 18F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in 18F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although partial volume

  20. Statistical parametric maps of {sup 18}F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Marti-Climent, Josep M. [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Collantes, Maria; Molinet, Francisco [Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain); Delgado, Mercedes; Garcia-Garcia, Luis; Pozo, Miguel A. [Universidad Complutense de Madrid, Brain Mapping Unit, Madrid (Spain); Juri, Carlos [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Pontificia Universidad Catolica de Chile, Department of Neurology, Santiago (Chile); Fernandez-Valle, Maria E. [Universidad Complutense de Madrid, MRI Research Center, Madrid (Spain); Gago, Belen [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Obeso, Jose A. [Center for Applied Medical Research (CIMA), Movement Disorders Group, Neurosciences Division, Pamplona (Spain); Clinica Universidad de Navarra, Department of Neurology and Neurosurgery, Pamplona (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Pamplona (Spain); Penuelas, Ivan [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Center for Applied Medical Research (CIMA) and Clinica Universidad de Navarra, Small Animal Imaging Research Unit, Pamplona (Spain)

    2011-12-15

    Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to {sup 18}F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during {sup 18}F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in {sup 18}F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although

  1. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study.

    Science.gov (United States)

    Khan, Osaama H; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-05-01

    The subcortical connectivity underlying verbal perseveration (VP) remains poorly understood. We have previously reported that intraoperative electrical stimulation of the caudate nucleus during awake surgery resulted in VP. Here, our purpose is to study the white matter pathway underlying VP using subcortical stimulation mapping in a series of patients who underwent glioma resection. Eleven patients with a left hemispheric low grade glioma were operated on while awake. Intraoperative direct electrical stimulation was used both at cortical and subcortical levels while the patients carried out motor and naming tasks during the resection. All patients experienced VP during electrical stimulation performed at the level of different subcortical locations, which corresponded in the 11 cases to different parts of the left inferior fronto-occipital fascicle. Perseveration persisted into the postoperative days, but resolved completely by three months.Our original findings provide further insight into the neuroanatomical basis of VP, by supporting the role of left inferior fronto-occipital fascicle. Such data may have both fundamental and clinical implications. PMID:24347130

  2. Laser Doppler imaging for intraoperative human brain mapping.

    Science.gov (United States)

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging. PMID:19049824

  3. Phase congruency map driven brain tumour segmentation

    Science.gov (United States)

    Szilágyi, Tünde; Brady, Michael; Berényi, Ervin

    2015-03-01

    Computer Aided Diagnostic (CAD) systems are already of proven value in healthcare, especially for surgical planning, nevertheless much remains to be done. Gliomas are the most common brain tumours (70%) in adults, with a survival time of just 2-3 months if detected at WHO grades III or higher. Such tumours are extremely variable, necessitating multi-modal Magnetic Resonance Images (MRI). The use of Gadolinium-based contrast agents is only relevant at later stages of the disease where it highlights the enhancing rim of the tumour. Currently, there is no single accepted method that can be used as a reference. There are three main challenges with such images: to decide whether there is tumour present and is so localize it; to construct a mask that separates healthy and diseased tissue; and to differentiate between the tumour core and the surrounding oedema. This paper presents two contributions. First, we develop tumour seed selection based on multiscale multi-modal texture feature vectors. Second, we develop a method based on a local phase congruency based feature map to drive level-set segmentation. The segmentations achieved with our method are more accurate than previously presented methods, particularly for challenging low grade tumours.

  4. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis. PMID:26968145

  5. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective.

    Science.gov (United States)

    De Benedictis, Alessandro; Duffau, Hugues; Paradiso, Beatrice; Grandi, Enrico; Balbi, Sergio; Granieri, Enrico; Colarusso, Enzo; Chioffi, Franco; Marras, Carlo Efisio; Sarubbo, Silvio

    2014-08-01

    The temporo-parieto-occipital (TPO) junction is a complex brain territory heavily involved in several high-level neurological functions, such as language, visuo-spatial recognition, writing, reading, symbol processing, calculation, self-processing, working memory, musical memory, and face and object recognition. Recent studies indicate that this area is covered by a thick network of white matter (WM) connections, which provide efficient and multimodal integration of information between both local and distant cortical nodes. It is important for neurosurgeons to have good knowledge of the three-dimensional subcortical organisation of this highly connected region to minimise post-operative permanent deficits. The aim of this dissection study was to highlight the subcortical functional anatomy from a topographical surgical perspective. Eight human hemispheres (four left, four right) obtained from four human cadavers were dissected according to Klingler's technique. Proceeding latero-medially, the authors describe the anatomical courses of and the relationships between the main pathways crossing the TPO. The results obtained from dissection were first integrated with diffusion tensor imaging reconstructions and subsequently with functional data obtained from three surgical cases, all resection of infiltrating glial tumours using direct electrical mapping in awake patients. The subcortical limits for performing safe lesionectomies within the TPO region are as follows: within the parietal region, the anterior horizontal part of the superior longitudinal fasciculus and, more deeply, the arcuate fasciculus; dorsally, the vertical projective thalamo-cortical fibres. For lesions located within the temporal and occipital lobes, the resection should be tailored according to the orientation of the horizontal associative pathways (the inferior fronto-occipital fascicle, inferior longitudinal fascicle and optic radiation). The relationships between the WM tracts and the ventricle

  6. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective

    Science.gov (United States)

    De Benedictis, Alessandro; Duffau, Hugues; Paradiso, Beatrice; Grandi, Enrico; Balbi, Sergio; Granieri, Enrico; Colarusso, Enzo; Chioffi, Franco; Marras, Carlo Efisio; Sarubbo, Silvio

    2014-01-01

    The temporo-parieto-occipital (TPO) junction is a complex brain territory heavily involved in several high-level neurological functions, such as language, visuo-spatial recognition, writing, reading, symbol processing, calculation, self-processing, working memory, musical memory, and face and object recognition. Recent studies indicate that this area is covered by a thick network of white matter (WM) connections, which provide efficient and multimodal integration of information between both local and distant cortical nodes. It is important for neurosurgeons to have good knowledge of the three-dimensional subcortical organisation of this highly connected region to minimise post-operative permanent deficits. The aim of this dissection study was to highlight the subcortical functional anatomy from a topographical surgical perspective. Eight human hemispheres (four left, four right) obtained from four human cadavers were dissected according to Klingler's technique. Proceeding latero-medially, the authors describe the anatomical courses of and the relationships between the main pathways crossing the TPO. The results obtained from dissection were first integrated with diffusion tensor imaging reconstructions and subsequently with functional data obtained from three surgical cases, all resection of infiltrating glial tumours using direct electrical mapping in awake patients. The subcortical limits for performing safe lesionectomies within the TPO region are as follows: within the parietal region, the anterior horizontal part of the superior longitudinal fasciculus and, more deeply, the arcuate fasciculus; dorsally, the vertical projective thalamo-cortical fibres. For lesions located within the temporal and occipital lobes, the resection should be tailored according to the orientation of the horizontal associative pathways (the inferior fronto-occipital fascicle, inferior longitudinal fascicle and optic radiation). The relationships between the WM tracts and the ventricle

  7. Mapping Multiplex Hubs in Human Functional Brain Networks.

    Science.gov (United States)

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  8. Mapping Language Function in the Brain: A Review of the Recent Literature.

    Science.gov (United States)

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  9. Control-display mapping in brain-computer interfaces

    NARCIS (Netherlands)

    Thurlings, M.E.; Erp, J.B.F. van; Brouwer, A.-M.; Blankertz, B.; Werkhoven, P.J.

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimu

  10. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, Department of Internal Medicine, Genoa (Italy); Piccardo, Arnoldo; Villavecchia, Giampiero [Galliera Hospital, Nuclear Medicine Unit, Department of Radiology, Genoa (Italy); Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio [University of Genoa, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); Piccini, Alessandra [Cell Biology Unit, National Cancer Research Institute, Genoa (Italy); Caroli, Anna [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy); Mario Negri Institute, Medical Imaging Unit, Biomedical Engineering Department, Bergamo (Italy); Frisoni, Giovanni [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy)

    2010-01-15

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  11. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    International Nuclear Information System (INIS)

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  12. Awake brain mapping of cortex and subcortical pathways in brain tumor surgery.

    Science.gov (United States)

    Freyschlag, C F; Duffau, H

    2014-12-01

    Awake surgery is not a new technique: this is a new philosophy. Indeed, in surgery for diffuse gliomas performed in awake patients, the goal is not anymore to remove a "tumor mass" according to oncological boundaries (which in essence do not exist in infiltrating neoplasms), but to resect a part of the brain invaded by a chronic tumoral disease, according to functional limits both at cortical and subcortical levels. Therefore, intraoperative electrical mapping is accepted as the gold standard in order to gain information about the functionality of the underlying tissue when performing neuro-oncological surgery. This review should give the reader an overview of principles and indications of mapping of eloquent cortex and subcortical pathways with practical considerations for cerebral tumors. In gliomas, awake mapping has been demonstrated as increasing the surgical indications in so-called "critical areas" with nonetheless a significant decrease of postoperative morbidity‑while maximizing the extent of resection. Beyond clinical implications, awake surgery represents a unique opportunity to study neural networks underpinning sensorimotor, visuospatial, language, executive and even behavioral functions in humans. This led to propose new models of connectomics, breaking with the localizationist view of brain processing, and opening the window to the concept of neuroplasticity. In summary, awake mapping enables to make a link between surgical neurooncology and cognitive neurosciences, to improve both survival and quality of life of glioma patients. PMID:25418274

  13. Mapping Human Brain Function with MRI at 7 Tesla

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  14. Human brain mapping: Experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  15. Brain maps of Iowa gambling task

    Directory of Open Access Journals (Sweden)

    Chiu Yao-Chu

    2008-07-01

    Full Text Available Abstract Background Somatic Marker Hypothesis (SMH, based on clinical observations, delineates neuronal networks for interpreting consciousness generation and decision-making. The Iowa gambling task (IGT was designed to verify the SMH. However, more and more behavioral and brain imaging studies had reported incongruent results that pinpointed a need to re-evaluate the central representations of SMH. The current study used event-related fMRI (functional Magnetic Resonance Imaging to examine neural correlates of anticipation vs. outcome, wins vs. losses, and differential decks' contingencies of IGT. Results Behavioral results showed a prominent effect of frequency in driving choices. The insula and basal ganglia were activated during the anticipation phase while the inferior parietal lobule was activated during the outcome phase. The activation of medial prefrontal cortex was especially targeted during the high punishment contingencies. The data suggest that under uncertainty the normal decision makers can become myopic. Conclusion The insula and basal ganglia might play a vital role in long-term guidance of decision-making. Inferior parietal lobule might participate in evaluating the consequence and medial prefrontal cortex may service the function of error monitoring.

  16. Mapping brain development during childhood, adolescence and young adulthood

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  17. Brain microstructure mapping using quantitative and diffusion MRI

    International Nuclear Information System (INIS)

    This thesis is focused on the human brain microstructure mapping using quantitative and diffusion MRI. The T1/T2 quantitative imaging relies on sequences dedicated to the mapping of T1 and T2 relaxation times. Their variations within the tissue are linked to the presence of different water compartments defined by a specific organization of the tissue at the cell scale. Measuring these parameters can help, therefore, to better characterize the brain microstructure. The dMRI, on the other hand, explores the brownian motion of water molecules in the brain tissue, where the water molecules' movement is constrained by natural barriers, such as cell membranes. Thus, the information on their displacement carried by the dMRI signal gives access to the underlying cyto-architecture. Combination of these two modalities is, therefore, a promising way to probe the brain tissue microstructure. The main goal of the present thesis is to set up the methodology to study the microstructure of the white matter of the human brain in vivo. The first part includes the acquisition of a unique MRI database of 79 healthy subjects (the Archi/CONNECT), which includes anatomical high resolution data, relaxometry data, diffusion-weighted data at high spatio-angular resolution and functional data. This database has allowed us to build the first atlas of the anatomical connectivity of the healthy brain through the automatic segmentation of the major white matter bundles, providing an appropriate anatomical reference for the white matter to study individually the quantitative parameters along each fascicle, characterizing its microstructure organization. Emphasis was placed on the construction of the first atlas of the T1/T2 profiles along the major white matter pathways. The profiles of the T1 and T2 relaxation times were then correlated to the quantitative profiles computed from the diffusion MRI data (fractional anisotropy, radial and longitudinal diffusivities, apparent diffusion coefficient

  18. Mapping directionality specific volume changes using tensor based morphometry: An application to the study of gyrogenesis and lateralization of the human fetal brain

    OpenAIRE

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A.; Kim, Kio; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2012-01-01

    Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume...

  19. Mapping the chemistry of the brain

    International Nuclear Information System (INIS)

    The current status of chemical neuroanatomy is reviewed. It is shown how the detailed anatomy of the brain's chemical transmitters, of enzymes responsible for their formation, and of the receptor molecules on recipient nerve cells which allows them to recognize and repond to particular transmiters was made possible through major advances in immunohistochemistry, radioligand binding, and computerized tomography techniques. 15 refs., 2 figs

  20. Principal tools for exploring the brain and mapping its activity

    International Nuclear Information System (INIS)

    The electro-encephalography (EEG), magneto-encephalography (MEG), scanner, positron computed tomography, single photon emission computed tomography (SPECT) and NMR imaging are the main methods used to explore human brain and to do a mapping of its activity. These methods are described into details (principle, visualization, uses, advantages, disadvantages). They can be useful to detect the possible anomalies of the human brain. (O.M.)

  1. 类别特异性命名区脑定位的临床研究%Clinical study on brain mapping of category-specific naming cortices

    Institute of Scientific and Technical Information of China (English)

    白红民; 江涛; 王伟民; 李天栋; 王丽敏

    2010-01-01

    目的 研究人脑内是否存在类别特异性命名区.方法 13例功能区病变患者,术中唤醒状态下,皮层直接电刺激(DES)确定是否存在类别特异性命名区.结果 DES发现命名障碍区28个,错语4个:1个为名人面孔特异性错语,其余为三种类型命名均错语.命名不能24个:(1)名人面孔特异性脑区6个;(2)名人面孔和动物命名共同脑区4个;(3)动物和工具命名共同脑区10个;(4)三种类型命名共同脑区4个;(5)没有单独工具、单独动物或名人面孔和工具共同命名的脑区.结论 人脑内存在名人面孔特异性命名区,提示术中需增加名人面孔命名任务,以减少阴性刺激的发生率.%Objective To study the category specific cortices for naming famous faces,animals and tools in patients with lesions near eloquent areas.Methods Using awake procedures,the category specific naming cortices were detected by intraoperative direct electrical stimulation using a category specific naming task in 13 patients with brain lesions in cerebral hemisphere.Results 28 dysphasia cortical sites were found.Among four sites displayed paraphasia,one was face-specific,the other three sites were common for three categories.Among 24 sites displayed anoima,6 sites were face-specific,4 sites were common for both faces and animals,and 10 sites for both animals and tools.There was no site specific for naming animals only,naming tools only or common site for naming both famous faces and tools.Conclusion There are some cortices specific for naming of famous faces.This finding suggests pictures of famous faces should be adopted during intra-operative language mapping to get a broader map of language function,in order to minimize the incidence of "false-negative" stimulations and permanent post-operative deficits.

  2. Application of iterative image reconstruction to functional brain mapping

    International Nuclear Information System (INIS)

    Full text: The advantage of the iterative image reconstruction algorithms, such as the maximum likelihood expectation maximisation (ML-EM) algorithm in providing improved image signal-to-noise ratio (SNR)in the low count positron emission tomography (PET) studies makes it a suitable image reconstruction algorithm for PET functional brain mapping. The ML-EM algorithm improves the sensitivity and specificity of functional brain imaging compared to images reconstructed using the filtered back projection (FBP) algorithm. We optimised the ML-EM algorithm for maximum sensitivity with no loss of specificity (compared to the FBP algorithm) as a function of iteration number and t-value probability threshold. A receiver operating characteristic (ROC) for analysing a simulated 3D activation study was determined for each ML-EM iteration up to the twenty first iteration. At four ML-EM iterations and using a 0.05 t-value probability threshold, the ML-EM images identified the signal regions with 41% increased sensitivity and 6% decreased specificity compared to FBP images. Results for a human auditory stimulus activation study are also presented and discussed. In conclusion, the images reconstructed at four ML-EM iterations demonstrate improved statistical properties compared to images reconstructed using FBP algorithm

  3. Preoperative functional brain mapping with MEG and MR imaging

    International Nuclear Information System (INIS)

    This paper reports on the feasibility of using MEG and MR imaging data for postoperative planning in surgical procedures employing sterotaxic techniques. Stereotaxic frame and frameless examinations were performed with selective display of images and superimposed MEG data. The Talairach/Tournoux whole-brain proportional voxel technique of statistically determining the most likely anatomic structures in a voxel of brain allows more precise localization of MEG data. A detailed anatomic atlas library provides a powerful computer-based reference for evaluation. Correlations of MEG findings with well-established functional anatomic references may provide a noninvasive means of preoperative brain mapping

  4. Pre Operative Brain Mapping with Functional MRI in Patient with Brain Tumors: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Sina Hooshmand

    2010-05-01

    Full Text Available Background/Objective: Functional Magnetic Resonance Imaging (fMRI plays a significant role in pre-neurosurgical planning at present. FMRI is a possible candidate to replace invasive methods for determination of the language dominant hemisphere and cortical areas associated with language and memory. We used this method to explore language and motor functions in healthy volunteers before creating standard paradigms for Persian language. In this study, we used the standard protocol of language and motor brain mapping in patients harboring brain tumors."nPatients and Methods: Ten patients with brain tumor were included in this study. Each subject performed three to five language related tasks during fMRI scan and also one motor related task. These tasks included; "Word Generation" (WG, "Object Naming" (ON, and "Word Reading" (WR, "Word Production" (WP and "Reverse Word Reading" (RWR. They also performed the thumb apposition task for activating primary sensory-motor areas. Fifteen continuous slices were acquired, and data analysis was carried out using FSL 4.1. After evaluating the individual results, the lateralization index (LI for each subject-task was calculated and the dominant hemisphere for language production was reported. Also localization of critical language areas in the cerebral cortex was performed and the coordinates of epicenter for language production in Broca's area was calculated."nResults: We found that WP, RWR, and WG activate language related areas in the dominant hemisphere robustly in patients with brain tumors and can predict the dominant hemisphere along with eloquent language cortices. However, ON and WR fail to delineate these activation areas optimally. In addition, the results reveal that higher activation intensities are obtained by WP in the frontal lobe including Broca's area, whereas RWR leads to the highest LI among all examined tasks. In patients harboring brain tumors, precise lateralization and

  5. Regional cerebral blood flow in children with autism spectrum disorders: a quantitative 99mTc-ECD brain SPECT study with statistical parametric mapping evaluation

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-han; JING Jin; XIU Li-juan; CHENG Mu-hua; WANG Xin; BAO Peng; WANG Qing-xiong

    2011-01-01

    Background Autism spectrum disorders (ASD), which include autism, asperger syndrome (AS) and pervasive developmental disorder-not otherwise specified (PDD-NOS), are devastating neurodevelopmental disorders of childhood resulting in deficits in social interaction, repetitive patterns of behaviors, and restricted interests and activities. Single photon emission computed tomography (SPECT) is a common technique used to measure regional cerebral blood flow (rCBF). Several studies have measured rCBF in children with ASD using SPECT, however, findings are discordant. In addition, the majority of subjects used in these studies were autistic. In this study, we aimed to investigate changes in rCBF in children with ASD using SPECT.Methods A Technetium-99m-ethyl cysteinate dimmer (99mTc-ECD) brain SPECT study was performed on an ASD group consisting of 23 children (3 girls and 20 boys; mean age (7.2±3.0) years) who were diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-Ⅳ) criteria and an age-matched control group with 8children (1 girl and 7 boys, mean age (5.5±2.4) years). Image data were evaluated with Statistical Parametric Mapping,5th version (SPM5). A Student's t test for unpaired data was used to compare rCBF and asymmetry in the autism and corresponding control group. The covariance analysis, taking age as covariance, was performed between the ASD and control group.Results There was a significant reduction in rCBF in the bilateral frontal lobe (frontal poles, arcula frontal gyrus) and the bilateral basal ganglia in the autism group, and a reduction in the bilateral frontal, temporal, parietal, legumina nucleus and cerebellum in the AS group compared to the control. In addition, asymmetry of hemispheric hypoperfusion in the ASD group was observed. Inner-group comparison analysis revealed that rCBF decreased significantly in the bilateral frontal lobe (42.7%), basal nucleus (24.9%) and temporal lobe (22.8%) in the autism

  6. The Study of Fast T1 Mapping of Human Brain%大脑快速T1图谱成像研究

    Institute of Scientific and Technical Information of China (English)

    江克; 钟耀祖; 吴垠; 朱燕杰

    2016-01-01

    大脑快速 T1图谱成像是一种量化磁共振成像技术,可以为帕金森、癫痫、肝脑病等脑部疾病的诊断提供重要参考依据。现有的大脑快速 T1图谱成像技术可以将成像速度提高到几秒/层,然而主磁场、发射场的不均性(尤其在高场下)以及大脑内部结构的磁化率差异,降低了成像精确性,限制了其在临床上的推广应用。针对上述缺点,文章提出一种基于 TurboFLASH技术的大脑快速 T1图谱成像方法,并先后在计算机仿真实验、仿体以及人体试验中进行验证。实验结果表明,文章提出的方法测得的大脑组织 T1值与金标准及文献中报导的值非常接近(误差<3%),同时扫描速度提高到3秒/层,空间分辨率为1.1 mm×1.1 mm×4 mm,2分钟内即可完成全脑采集。%Fast brain T1 mapping is a quantitative technique of magnetic resonance imaging, and can provide important reference for the diagnosis of several brain diseases, such as Parkinson, epilepsy and hepatic encephalopathy. Fast T1 mapping techniques proposed previously had sped up acquisition to several seconds per slice. However, most of these techniques suffered seriously from the ifeld inhomogeneity of main ifeld, transmit ifeld and susceptibility artifacts, which decreased the imaging accuracy and limited the clinic applications. To overcome the above mentioned shortcomings, we proposed a fast brain T1 mapping technique based on TurboFLASH and evaluated it on computer simulation, phantom experiment, and human brain T1 mapping. Results showed that T1 values from the proposed method were very close to the gold standard and literature (differences being less than 3%). Besides, the proposed technique can increase the acquisition speed to 3s per slice (with a slice resolution of 1.1 mm×1.1 mm) and 2 min for the whole brain (with a 4 mm slice distance).

  7. Mapping the calcitonin receptor in human brain stem.

    Science.gov (United States)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J; Faull, Richard L M; Tajti, János; Edvinsson, Lars; Hay, Debbie L; Walker, Christopher S

    2016-05-01

    The calcitonin receptor (CTR) is relevant to three hormonal systems: amylin, calcitonin, and calcitonin gene-related peptide (CGRP). Receptors for amylin and calcitonin are targets for treating obesity, diabetes, and bone disorders. CGRP receptors represent a target for pain and migraine. Amylin receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract, the hypoglossal nucleus, the cuneate nucleus, spinal trigeminal nucleus, the gracile nucleus, and the inferior olivary nucleus. CTR staining was also observed in the area postrema, the lateral reticular nucleus, and the pyramidal tract. The extensive expression of CTR in the medulla suggests that CTR may be involved in a wider range of functions than currently appreciated. PMID:26911465

  8. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  9. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  10. Changes in Alcohol-Related Brain Networks Across the First Year of College: A Prospective Pilot Study Using fMRI Effective Connectivity Mapping

    OpenAIRE

    Adriene M. Beltz; Gates, Kathleen M.; Engels, Anna S.; Molenaar, Peter C. M.; Pulido, Carmen; Turrisi, Robert; Sheri A. Berenbaum; Gilmore, Rick O.; Wilson, Stephen J.

    2013-01-01

    The upsurge in alcohol use that often occurs during the first year of college has been convincingly linked to a number of negative psychosocial consequences and may negatively affect brain development. In this longitudinal functional magnetic resonance imaging (fMRI) pilot study, we examined changes in neural responses to alcohol cues across the first year of college in a normative sample of late adolescents. Participants (N=11) were scanned three times across their first year of college (sum...

  11. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  12. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    OpenAIRE

    Alderman, B L; Olson, R L; Brush, C J; Shors, T. J.

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of t...

  13. Paramagnetic artifact and safety criteria for human brain mapping

    OpenAIRE

    Seiyama, Akitoshi; Seki, Junji; Iwamoto, Mari; Yanagida, Toshio

    2005-01-01

    Biological effects of magnetic field and their safety criteria, especially effects of gradient magnetic field on the cerebral and pulmonary circulation during functional brain mapping are still unclear. Here we estimated that magnetically induced artifacts for the blood oxygenation level- and flow- based functional magnetic resonance imaging are less than 0.1%, and disturbance in the pulmonary circulation is less than 1.3% even if the field strength of magnetic resonance system is risen up to...

  14. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2005-07-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience.

  15. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    International Nuclear Information System (INIS)

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience

  16. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    123I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  17. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain.

    Science.gov (United States)

    Vandenberghe, Rik; Gillebert, Céline R

    2009-05-16

    Spatial-attentional deficits are highly prevalent following stroke. They can be clinically detected by means of conventional bedside tests such as target cancellation, line bisection and the visual extinction test. Until recently, lesion mapping studies and functional imaging of the intact brain did not agree very well on exactly which parietal areas play a key role in selective attention: the inferior parietal lobule or the intraparietal sulcus. Recently, the use of a contrastive approach in patients akin to that commonly used in functional imaging studies in healthy volunteers together with voxel-based lesion-symptom mapping have allowed to bring the patient lesion mapping much closer to the functional imaging results obtained in healthy controls. In this review we focus on converging evidence obtained from patient lesion studies and from fMRI studies in the intact brain in humans. This has yielded novel insights into the functional segregation between the middle third of the intraparietal sulcus, the superior parietal lobule and the temporoparietal junction in the intact brain and also enhanced our understanding of the pathogenetic mechanisms underlying deficits arising in patients. PMID:19118580

  18. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template.

    Science.gov (United States)

    Majka, Piotr; Chaplin, Tristan A; Yu, Hsin-Hao; Tolpygo, Alexander; Mitra, Partha P; Wójcik, Daniel K; Rosa, Marcello G P

    2016-08-01

    The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27099164

  19. Laser Doppler imaging for intraoperative human brain mapping

    OpenAIRE

    Raabe, A; Van De Ville, D.; Leutenegger, M.; Szelényi, A; Hattingen, E; R. Gerlach; Seifert, V.; Hauger, C.; Lopez, A; Leitgeb, R.; Unser, M.; Martin-Williams, E.J.; Lasser, T.

    2009-01-01

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predet...

  20. Homocysteine effects on brain volumes mapped in 732 elderly individuals

    OpenAIRE

    Rajagopalan, Priya; Hua, Xue; Toga, Arthur W.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2011-01-01

    Elevated homocysteine levels are a known risk factor for Alzheimer’s disease and vascular disorders. Here we applied tensor-based morphometry to brain magnetic resonance imaging scans of 732 elderly individuals from the Alzheimer’s Disease Neuroimaging Initiative study, to determine associations between homocysteine and brain atrophy. Those with higher homocysteine levels showed greater frontal, parietal, and occipital white matter atrophy in the entire cohort, irrespective of diagnosis, age,...

  1. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.; Pinborg, Lars H; Haugbøl, Steven; Frøkjær, Vibe G.; Holm, Søren; Paulson, Olaf B.; Knudsen, Gitte M

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  2. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.;

    2005-01-01

    delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method......The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...

  3. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  4. Brains studying brains: look before you think in vision

    OpenAIRE

    Zhaoping, L.

    2016-01-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknow...

  5. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    OpenAIRE

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.

  6. Modeling of activation data in the BrainMapTM database: Detection of outliers

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2002-01-01

    We describe a system for meta-analytical modeling of activation foci from functional neuroimaging studies. Our main vehicle is a set of density models in Talairach space capturing the distribution of activation foci in sets of experiments labeled by lobar anatomy. One important use of such densit...... atlases for outlier detection. Hum. Brain Mapping 15:146-156, 2002. © 2002 Wiley-Liss, Inc....

  7. Gender differences in working memory networks: A BrainMap meta-analysis

    OpenAIRE

    HILL, ASHLEY C.; Laird, Angela R.; Robinson, Jennifer L.

    2014-01-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likeli...

  8. Mapping Thalamocortical Networks in Rat Brain using Resting-State Functional Connectivity

    OpenAIRE

    Liang, Zhifeng; Li, Tao; King, Jean; Zhang, Nanyin

    2013-01-01

    Thalamocortical connectivity plays a vital role in brain function. The anatomy and function of thalamocortical networks have been extensively studied in animals by numerous invasive techniques. Non-invasively mapping thalamocortical networks in humans has also been demonstrated by utilizing resting-state functional magnetic resonance imaging (rsfMRI). However, success in simultaneously imaging multiple thalamocortical networks in animals is rather limited. This is largely due to the profound ...

  9. Brain and heart disease studies

    International Nuclear Information System (INIS)

    Highlights of important studies completed during the past year using the Donner 280-crystal positron ring tomograph are summarized in this article. Using rubidium-82, images of a brain tumor and an arteriovenous malformation are described. An image demonstrating methionine uptake in a patient with schizophrenia and an image reflecting sugar metabolism in the brain of a man with Alzheimer's disease are also included. Uptake of rubidium-82 in subjects before and after exercise is being investigated. The synthesis of new radiopharmaceuticals and the development of a new synthesis for C-taurine for use in the study of metabolism in the human heart are also being studied

  10. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  11. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. PMID:26912646

  12. Effect of linearization correction on statistical parametric mapping (SPM). A 99mTc-HMPAO brain perfusion SPECT study in mild Alzheimer's disease

    International Nuclear Information System (INIS)

    Statistical parametric mapping (SPM) was employed to investigate the regional decline in cerebral blood flow (rCBF) as measured by 99mTc-hexamethyl propylene amine oxime (HMPAO) single photon emission computed tomography (SPECT) in mild Alzheimer's disease (AD). However, the role of the post reconstruction image processing on the interpretation of SPM, which detects rCBF pattern, has not been precisely studied. We performed 99mTc-HMPAO SPECT in mild AD patients and analyzed the effect of linearization correction for washout of the tracer on the detectability of abnormal perfusion. Eleven mild AD (National Institute of Neurological and Communicative Disorders and National Institute of Radiological Sciences (NINCDS-ADRDA), male/female, 5/6; mean±SD age, 70.6±6.2 years; mean±SD mini-mental state examination score, 23.9±3.41; clinical dementia rating score, 1) and eleven normal control subjects (male/female, 4/7; mean±SD age, 66.8±8.4 years) were enrolled in this study. 99mTc-HMPAO SPECT was performed with a four-head rotating gamma camera. We employed linearization uncorrected (LU) and linearization corrected (LC) images for the patients and controls. The pattern of hypoperfusion in mild AD on LU and LC images was detected by SPM99 applying the same image standardization and analytical parameters. A statistical inter image-group analysis (LU vs. LC) was also performed. Clear differences were observed between the interpretation of SPM with LU and LC images. Significant hypoperfusion in mild AD was found on the LU images in the left posterior cingulate gyrus, right precuneus, left hippocampus, left uncus, and left superior temporal gyrus (cluster level, corrected p99mTc-HMPAO SPECT with or without linearization correction, which should be carefully evaluated when interpreting the pattern of rCBF changes in mild Alzheimer's disease. (author)

  13. Mapping Future Education and Training: Group Concept Mapping Study

    OpenAIRE

    Stoyanov, Slavi; HOOGVELD Bert; Kirschner, Paul A.

    2010-01-01

    Stoyanov, S., Hoogveld, A. W. M., & Kirschner, P. A. (2010). Mapping Future Education and Training: Group Concept Mapping Study. Heerlen, The Netherlands: Open University of the Netherlands; EU Forlic project.

  14. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  15. a multimodal mapping study

    Directory of Open Access Journals (Sweden)

    Barbara Tomasino

    2015-10-01

    Full Text Available Our environment is full of auditory events such as warnings or hazards, and their correct recognition is essential. We explored environmental sound (ES recognition in a series of studies. In study 1 we performed an Activation Likelihood Estimation (ALE meta-Analysis of neuroimaging studies addressing ES processing to delineate the network of areas consistently involved in ES processing. In study 2 we reported a series of 7 neurosurgical patients with lesions involving the areas found consistently activated by the ALE meta-analysis and tested their ES recognition abilities. In study 3 we investigated how the areas involved in ES might be functionally deregulated as an effect of lesion by performing an fMRI study on patients (in comparison to healthy controls. Areas found to be consistently activated in the ALE quantitative meta-analysis involved the STG/MTG, insula/rolandic operculum, parahippocampal gyrus and inferior frontal gyrus complex bilaterally. Some of these areas were found modulated by design choices, e.g., type of task, type of control condition, type of stimuli. Patients with lesions in these areas of the left and the right hemisphere had an impaired ES recognition. The most frequently lesioned area corresponded to the hippocampus/insula/superior temporal gyrus. For the most part, the patients’ responses were unrelated to the target sounds or were semantically related to the target sounds. The other type of responses were: auditorily related, semantically and auditorily related, and "I don't Know" answers. The fMRI evidenced deregulations of the activation reported in the right IFG and in the STG bilaterally and in the left insula. We showed that some of these clusters of activation truly reflect ES processing, whereas others are related to design choices. Our results allowed a parcelization of the activation found along the MTG/STG area

  16. Comparison of ADC map with trace map in the normal and infarct areas of the brains of stroke patients

    International Nuclear Information System (INIS)

    To compare ADC mapping with trace mapping in normal and infarct areas of the brains of stroke patients. Eighteen patients diagnosed on the basis of clinical and brain MRI examinations as suffering from brain infarction were included in this study (hyperacute-1, acute-4, subacute-12, chronic-1). Diffusion weighted images of three orthogonal directions of a patient's brain were obtained by means of a single shot EPI pulse sequence, using a diffusion gradient with four serial b-factors. Three ADC maps were then reconstructed by post-image processing and were summed pixel by pixel to yield a trace map. ROIs were selected in the normal areas of white matter, gray matter and CSF of one hemisphere, and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and right/left ratios of ADC and trace values were calculated. Using these values, we then compared the ADC map with the trace map, and compared the degree of anisotropic diffusion between white matter, gray matter and CSF. Except for three, whose infarct lesions were small and lay over white and gray matter, patients were divided into two groups. Those with infarct in the white matter (n=10) were assigned to one group, and those with infarct in the gray matter (n=5) to the other. ROIs were selected in the infarct area and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and infarct/contralateral ratios were calculated. We then compared ADC ratio with trace ratio in white matter and gray matter infarct. In normal white matter, the Dxx ratio was 0.980±0.098, the Dyy ratio 1.019±0.086, the Dzz ratio 0.999±0.111, and the trace ratio 0.995±0.031. In normal gray matter, the Dxx ratio was 1.001±0.058, the Dyy ratio 0.996±0.063, Dzz ratio 1.005±0.070, and the trace ratio 1.001±0.028. In CSF, the Dxx ratio was 1.002±0.064, the Dyy ratio 1.023±0.055, the Dzz ratio 0.999

  17. Functional brain mapping using H215O positron emission tomography (I): statistical parametric mapping method

    International Nuclear Information System (INIS)

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H215O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory

  18. The ERP brain topographic map study on mental rotation in schizophrenicPatients%精神分裂症患者心理旋转的ERP脑地形图研究

    Institute of Scientific and Technical Information of China (English)

    陈玖; 杨来启; 吴兴曲; 马文涛; 张彦; 邓自和; 刘光雄; 贾婷

    2012-01-01

    the right side was significantly higher than that in the left side in top - occipital lobe in both groups. Conclusion (1) Schizophrenia'mental rotating ability is impaired. And the mirror processing is impaired seriously, hinting the normal mirror processing mechanism of mental rotating may be different individually and can be converted reciprocally. (2) There is negative potential of response preparation and right dominant hemisphere in mental rotation. Patients with schizophrenia consumes more psychological resources in the process of response preparation. The study suggests that the brain topographic map of mental rotating disability may be used as assistant diagnostic index of schizophrenia.

  19. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    OpenAIRE

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    Alterations of brain connectional circuits are often associated with developing brain disorders. Pathology, however, can also trigger adaptive brain plasticity and compensatory connectivity changes. This paper provides a verified noninvasive framework for high-resolution mapping of living mouse brain connectional anatomy. We show that pathological changes in the formation of the cortical sheet, such as gross laminar distortions induced by reelin gene mutation in mice, lead to spectacular comp...

  20. The global thermospheric mapping study

    International Nuclear Information System (INIS)

    The Global Thermospheric Mapping Study (GTMS) is a multitechnique experimental pilot study of the Earth's thermosphere designed to map simultaneously its spatial and temporal morphology. This paper provides the background for the study and presents the analysis techniques employed at Millstone Hill and results to date on thermospheric structure and dynamics. The first latitudinal-temporal maps of exospheric temperature obtained from the incoherent scatter radar chain at 70W meridian are presented for the two solstice periods, revealing substantial seasonal differences between them. The observed structure shows a relatively depressed temperature at high latitude in summer in contrast to the mass spectrometer/incoherent scatter 1983 [MSIS-83] empirical model, which shows a maximum temperature at polar latitudes. The MSIS-83 model predictions are in good agreement with the observed latitudinal-temporal structure in winter. Comparison with the numerical predictions made for the June 26-28, 1984 period with the National Center for Atmospheric Research thermospheric general circulation model shows reasonable agreement in the latitudinal gradient but the observations indicate a cooler thermosphere by several hundred degrees. Neutral winds at mid-latitudes are presented showing the expected strong southward winds at night, which are found to be consistent with the temperature gradients observed in the latitudinal maps. There is good agreement in the June winds between the available numerical model calculations and the observations. Work performed elsewhere on the GTMS data base is summarized for completeness

  1. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  2. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors.

    Science.gov (United States)

    Spielmann, Kerstin; Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  3. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology. PMID:26544769

  4. Brain Mapping Center Opens at Institute of Biophysics

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Agroup of world-class scie, ntists in brain imaging came to China's capital to .witness the inauguration of the Beijing MRI Center for Brain Research, which was officially opened on May 25 at the CAS Institute of Biophysics.

  5. Mapping plasticity: sex/gender and the changing brain

    NARCIS (Netherlands)

    A. Kleinherenbrink

    2014-01-01

    There is a consensus in the neuroscientific literature that brains are either male or female, and that ‘brain sex’ is a fixed, immutable trait. Feminist critics have challenged this idea, raising questions, for example, about brain plasticity (the role of sociocultural factors in the emergence and e

  6. Brains studying brains: look before you think in vision

    Science.gov (United States)

    Zhaoping, Li

    2016-06-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its ‘conscious’ part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many ‘subconscious’ brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.

  7. Differential Recruitment of Brain Networks following Route and Cartographic Map Learning of Spatial Environments

    OpenAIRE

    Hui ZHANG; Copara, Milagros; Ekstrom, Arne D.

    2012-01-01

    An extensive neuroimaging literature has helped characterize the brain regions involved in navigating a spatial environment. Far less is known, however, about the brain networks involved when learning a spatial layout from a cartographic map. To compare the two means of acquiring a spatial representation, participants learned spatial environments either by directly navigating them or learning them from an aerial-view map. While undergoing functional magnetic resonance imaging (fMRI), particip...

  8. Proficient brain for optimal performance: the MAP model perspective.

    Science.gov (United States)

    Bertollo, Maurizio; di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the "neural efficiency hypothesis." We also observed more ERD as related to optimal-controlled performance in conditions of "neural adaptability" and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques. PMID:27257557

  9. Proficient brain for optimal performance: the MAP model perspective

    Science.gov (United States)

    di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques. PMID:27257557

  10. A DTI-Based Template-Free Cortical Connectome Study of Brain Maturation

    OpenAIRE

    Tymofiyeva, O; Hess, CP; Ziv, E; Lee, PN; Glass, HC; Ferriero, DM; Barkovich, AJ; Xu, D.

    2013-01-01

    Improved understanding of how the human brain is "wired" on a macroscale may now be possible due to the emerging field of MRI connectomics. However, mapping the rapidly developing infant brain networks poses challenges. In this study, we applied an automated template-free "baby connectome" framework using diffusion MRI to non-invasively map the structural brain networks in subjects of different ages, including premature neonates, term-born neonates, six-month-old infants, and adults. We obser...

  11. 抑郁症患者心理旋转的事件相关电位脑地形图研究%The ERP brain topographic map study on mental rotation of depressions

    Institute of Scientific and Technical Information of China (English)

    陈玖; 杨来启; 刘光雄; 吴兴曲; 张彦; 马文涛; 邓自和

    2012-01-01

    advantage hemisphere brain in normal,but mirror advantage hemisphere disappears in depressed patients.This study suggests the brain topographic map of mental rotation ability damaged can be used as the clinical auxiliary diagnosis index.%目的 探讨抑郁症患者心理旋转的事件相关电位(ERP)脑地形图的变化,完善抑郁症患者在空间能力方面的脑地形图功能联系.方法 对32例抑郁症患者和29例健康被试进行心理旋转任务的ERP测定.对其脑分布地形图的变化进行了对照观察.结果 (1)与对照组[错误率(29±9)%,反应时(604.74 ±54.39) ms]相比,抑郁症组合计错误率[(33±15)%]显著性升高,反应时[(755.22±70.18)ms]显著延长(P<0.05).(2)与对照组[ N100:PZ(-3.78 ±1.05)μV、CZ(-5.67±2.21)μV、P3(-2.34±0.59) μV、P4(-2.92±0.80)μV;P500:PZ(7.35±2.61) μV、CZ(7.65 ±2.42) μV、P3(6.53±2.11) μV、P4(7.29±2.57) μV]相比,抑郁症组合计波幅[N100:PZ(-0.31±0.09)μV、CZ(-2.27±0.57)μV、P3(-0.30±0.07)μV、P4(-0.33±0.08)μV;P500:PZ(6.04±2.16) μV、CZ(5.92±2.01) μV、P3(6.02±2.11)μV、P4(6.01±2.34)μV]显著性降低(P<0.05),左右顶枕叶兴奋性差异消失(P>0.05);N100抑郁症组正镜像兴奋性显著性降低(P<0.05);P500则正像兴奋性降低,镜像显著性升高(P<0.05).左右大脑顶枕叶相比,抑郁症组正像右顶枕叶兴奋性显著性偏高(P<0.05),而镜像的兴奋性差异消失(P>0.05),对照组正镜像右顶枕叶兴奋性都显著性偏高(P<0.05).结论 抑郁症患者心理旋转能力受损,即心理旋转反应准备负电位降低,正像存在优势半球,镜像优势半球消失.提示心理旋转能力受损的脑地形图可为临床诊断提供辅助指标.

  12. Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse

    OpenAIRE

    Yongsoo Kim; Kannan Umadevi Venkataraju; Kith Pradhan; Carolin Mende; Julian Taranda; Srinivas C. Turaga; Ignacio Arganda-Carreras; Lydia Ng; Michael J. Hawrylycz; Kathleen S. Rockland; H. Sebastian Seung; Pavel Osten

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference bra...

  13. Discovering Relations Between Mind, Brain, and Mental Disorders Using Topic Mapping

    OpenAIRE

    Poldrack, Russell A.; Mumford, Jeanette A.; Tom Schonberg; Donald Kalar; Bishal Barman; Tal Yarkoni

    2012-01-01

    Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain sy...

  14. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Natalia Arias

    2013-01-01

    Full Text Available Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE. In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx. We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups.

  15. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameter/s value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  16. Positron emission tomography (PET) study of the alterations in brain distribution of [11C]dethamphetamine in methamphetamine sensitized dog

    International Nuclear Information System (INIS)

    [11C]Methamphetamine ([11C]MAP) was synthesized by an automated on-line [11C]methylation system for positron emission tomography (PET) study. We newly produced a MAP sensitized dog by repeated MAP treatment and studied the brain distribution of [11C]MAP in the normal and the MAP sensitized dog. The maximal level of accumulation of [11C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. No difference was found in the metabolism of MAP between the two conditions. The significant increase of [11C]MAP in the MAP sensitized brain indicates that subchronic MAP administration causes some functional change in uptake site of MAP

  17. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study.

    Science.gov (United States)

    Motomura, Kazuya; Fujii, Masazumi; Maesawa, Satoshi; Kuramitsu, Shunichiro; Natsume, Atsushi; Wakabayashi, Toshihiko

    2014-07-01

    Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes. Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing. PMID:24655122

  18. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    Science.gov (United States)

    Popescu, Bogdan F. Gh; George, Martin J.; Bergmann, Uwe; Garachtchenko, Alex V.; Kelly, Michael E.; McCrea, Richard P. E.; Lüning, Katharina; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Harder, Sheri M.; Chapman, L. Dean; Pickering, Ingrid J.; Nichol, Helen

    2009-02-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  19. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    International Nuclear Information System (INIS)

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  20. 99mTc-HMPAO perfusion indices and brain-mapping in stroke patients

    International Nuclear Information System (INIS)

    It is the purpose of the study to establish correlations between 99mTc-HMPAO (hexamethylpropylenaminoxym) perfusion indices and changes in brain-mapping among patients with acute stroke. Forty-six patients with definitely proved stroke syndrome are investigated in the first 72 hours and 15 days after the onset of cerebrovascular accident using clinical, neuro-physiological and 99mTc-HMPAO SPECT methods. Regional and hemispheric perfusion asymmetry correlate with the brain-mapping cerebral disturbance (p < 0.001). In patients presenting focal hypoperfusion there is a significant correlation between perfusion indices and local EEG disturbance (r = 0.87). The dynamic study demonstrates a significant correlation between perfusion indices and electrical cerebral disturbance in the first 72 hours after the onset of the cerebrovascular accident. Fifteen days later no such correlation is documented. The obtained results demonstrate the essential practical bearing of 99mTc-HMPAO SPECT indices on the objective assessment of perfusion hemispheric and regional asymmetry in stroke patients, and the possibility of being used for indirect estimation of the regional cerebral blood flow in acute stroke patients against the background of visual and quantitative EEG changes (author)

  1. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  2. MAPPING BRAIN ANATOMICAL CONNECTIVITY USING WHITE MATTER TRACTOGRAPHY

    OpenAIRE

    Lazar, Mariana

    2010-01-01

    Integration of the neural processes in the human brain is realized through interconnections that exist between different neural centers. These interconnections take place through white matter pathways. White matter tractography is currently the only available technique for reconstructing the anatomical connectivity in the human brain non-invasively and in-vivo. The trajectory and terminations of white matter pathways are estimated from local orientations of nerve bundles. These orientations a...

  3. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  4. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  5. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (Pcorrecteduncorrected<0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  6. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    Science.gov (United States)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  7. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    International Nuclear Information System (INIS)

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus

  8. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  9. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An

    2013-01-01

    Background Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness.However,there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI.This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI.Methods We consecutively enrolled 17 patients with VS after HIBI,who experienced cardiopulmonary resuscitation.Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from t7 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis.Additionally,we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis.Results Compared with normal controls,the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus,bilateral posterior cingulate gyrus,bilateral middle frontal gyri,bilateral superior parietal gyri,bilateral middle occipital gyri,bilateral precentral gyri (PFEw correctecd <0.0001),and increased brain metabolism in bilateral insula,bilateral cerebella,and the brainstem (PFEw correctecd <0.0001).In covariance analysis,the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected <0.005).Conclusions Our study demonstrated that the precuneus,the posterior cingulate area and the frontoparietal cortex,which is a component of neural correlate for consciousness,may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI.In post-resuscitated HIBI,measurement of brain

  10. Spatial learning of the water maze: progression of brain circuits mapped with cytochrome oxidase histochemistry.

    Science.gov (United States)

    Conejo, N M; González-Pardo, H; Gonzalez-Lima, F; Arias, J L

    2010-03-01

    The progression of brain circuits involved in spatial learning tasks is still a matter of debate. In addition, the participation of individual regions at different stages of spatial learning remains a controversial issue. In order to address these questions, we used quantitative cytochrome oxidase histochemistry as a metabolic brain mapping method applied to rats (Rattus norvegicus) trained in a water maze for 1, 3 or 5 days of training. Sustained changes throughout training were found in the lateral septal nucleus and anteroventral thalamic nucleus. As compared to naïve or habituation groups, rats with 1 day of training in the spatial learning task showed involvement of the lateral mammillary nucleus, basolateral amygdala and anterodorsal thalamic nucleus. By 5 days of training, there were mean changes in the hippocampal CA3 field and the prefrontal cortex. The regions involved and their pattern of network interactions changed progressively over days of training. At 1-day there was an open serial network of pairwise correlations. At 3-days there was a more closed reciprocal network of intercorrelations. At 5-days there were three separate parallel networks. In addition, brain-behavior correlations showed that CA1 and CA3 hippocampal fields together with the parietal cortex are related to the mastery of the spatial learning task. The present study extends previous findings on the progressive contribution of neural networks to spatial learning. PMID:19969098

  11. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    Directory of Open Access Journals (Sweden)

    Chiara Cerami

    2015-01-01

    Full Text Available [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI, supporting the presence or the exclusion of Alzheimer's Disease (AD pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1 normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2 the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3 brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD subtypes in 7 and dementia with Lewy bodies (DLB in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up; and 4 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition.

  12. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    Science.gov (United States)

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  13. Brain-shift aware risk map for Deep Brain Stimulation Planning

    OpenAIRE

    Bilger, Alexandre; Essert, Caroline; Duriez, Christian; Cotin, Stéphane

    2012-01-01

    In Deep Brain Stimulation surgery, the efficiency of the procedure heavily relies on the accuracy of the placement of the stimulating electrode. Meanwhile, the effectiveness of the placement is difficult due to brain shifts occurring during and after the procedure. We propose an approach to overcome the limitations of current planning software that ignores brain shift. In particular, we consider the motion of vascular structures in order to reduce risks of dissecting a vessel during the proce...

  14. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    OpenAIRE

    Garrett, D.; Samanez-Larkin, G.; MacDonald, S; Lindenberger, U; McIntosh, A.; Grady, C.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brai...

  15. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  16. The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    OpenAIRE

    Bzdok Danilo; McKay D Reese; Saenz Juan J; Ray Kimberly L; Uecker Angela M; Fox P Mickle; Eickhoff Simon B; Laird Angela R; Laird Robert W; Robinson Jennifer L; Turner Jessica A; Turkeltaub Peter E; Lancaster Jack L; Fox Peter T

    2011-01-01

    Abstract Background Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging liter...

  17. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  18. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  19. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the possibil

  20. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Colantonio Angela

    2011-11-01

    Full Text Available Abstract Background The aim of this study is to show how geographical information systems (GIS can be used to track and compare hospitalization rates for traumatic brain injury (TBI over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation.

  1. Spectral and brain mapping analysis of EEG based on Pwelch in schizophrenic patients

    Science.gov (United States)

    Akbar, Y.; Khotimah, S. N.; Haryanto, F.

    2016-03-01

    The aim of this study is to investigate and analyze the differences of power spectral distribution in various frequency bands between healthy subjects and schizophrenic patients. Subjects in this study were 8 people consisting of 4 schizophrenic patients and 4 healthy subjects. Subjects were recorded from 12 electrodes with Electroencephalography (EEG). EEG signals were recorded during a resting eye-closed state for 4-6 minutes. Data were extracted and analyzed by centering and filtering, then performed using Welch Periodogram technique for the spectral estimation with a Hamming window. The results of this study showed that delta power spectral in schizophrenic patients increased ten times from healthy subjects; theta power spectral in schizophrenic patients increased three times from healthy subjects; alpha power spectral in schizophrenic patients decreased with an increase of one third of healthy subjects. These results were confirmed by Kolmogorov-Smirnov test showing there were significant differences between schizophrenic and healthy subjects on delta, theta and alpha brain wave. Based on the results of Brain Mapping analysis showed that there was significant increasing in the activity of delta waves and theta waves in frontal lobe of schizophrenics, whereas the alpha waves indicated a decrease in the occipital lobe in all schizophrenic patients.

  2. Application of statistical parametric mapping in PET and SPECT brain functional imaging

    International Nuclear Information System (INIS)

    Regional of interest (ROI) is the method regularly used to analyze brain functional imaging. But, due to its obvious shortcomings such as subjectivity and poor reproducibility, precise analyzing the brain function was seriously limited. Therefore, statistical parametric mapping (SPM) as an automatic analyze software was developed based on voxel or pixel to resolve this problem. Using numerous mathematical models, it can be used to statistically assess the whole brain pixel. Present review introduces its main principle, modular composition and practical application. It can be concluded, with development of neuroscience, the SPM software will be used more widely in relative field, like neurobiology, cognition and neuropharmacology

  3. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H215O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H215O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  4. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  5. A Gustotopic Map of Taste Qualities in the Mammalian Brain

    OpenAIRE

    Chen, Xiaoke; Gabito, Mariano; Peng, Yueqing; Ryba, Nicholas J. P.; Zuker, Charles S.

    2011-01-01

    The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. Here, we explored the logic of taste coding in the brain by examining how sweet, bitter, umami and saltiness are represented in the primary taste cortex. Using in vivo two-photon calcium-imaging we demonstrated striki...

  6. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    Science.gov (United States)

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal. PMID:27436534

  7. Differential recruitment of brain networks following route and cartographic map learning of spatial environments.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available An extensive neuroimaging literature has helped characterize the brain regions involved in navigating a spatial environment. Far less is known, however, about the brain networks involved when learning a spatial layout from a cartographic map. To compare the two means of acquiring a spatial representation, participants learned spatial environments either by directly navigating them or learning them from an aerial-view map. While undergoing functional magnetic resonance imaging (fMRI, participants then performed two different tasks to assess knowledge of the spatial environment: a scene and orientation dependent perceptual (SOP pointing task and a judgment of relative direction (JRD of landmarks pointing task. We found three brain regions showing significant effects of route vs. map learning during the two tasks. Parahippocampal and retrosplenial cortex showed greater activation following route compared to map learning during the JRD but not SOP task while inferior frontal gyrus showed greater activation following map compared to route learning during the SOP but not JRD task. We interpret our results to suggest that parahippocampal and retrosplenial cortex were involved in translating scene and orientation dependent coordinate information acquired during route learning to a landmark-referenced representation while inferior frontal gyrus played a role in converting primarily landmark-referenced coordinates acquired during map learning to a scene and orientation dependent coordinate system. Together, our results provide novel insight into the different brain networks underlying spatial representations formed during navigation vs. cartographic map learning and provide additional constraints on theoretical models of the neural basis of human spatial representation.

  8. Functional MR mapping of higher cognitive brain functions

    International Nuclear Information System (INIS)

    Fifteen normal subjects were examined on a conventional 1.5-T MR system to visualize cortical activation during the performance of high-level cognitive tasks. A computer-controlled videoprojector was employed to present psychometrically optimized activation paradigms. Reaction times and error rates of the volunteers were acquired online during stimulus presentation. The time course of cortical activation was measured in a series of strongly T2*-weighted gradient-echo images from three or four adjacent slices. For anatomical correlation, picture elements showing a stimulus-related significant signal increase were color-coded and superimposed on T1-weighted spin-echo images. Analysis of the fMRI data revealed a subtle (range 2-5%), but statistically significant increase in signal intensity during the periods of induced cortical activation. Judgment of semantic relatedness of word pairs, for example, activated selectively cortical areas in left frontal and left temporal brain regions. The strength of cortex activation in the semantic task decreased significantly in the course of stimulus presentation and was paralleled by a decrease in the corresponding reaction times. With its move into the area of cognitive neuroscience, fMRI calls both for the careful design of activation schemes and for the acquisition of behavioral data. For example, brain regions involved in language processing could only be identified clearly when psychometrically matched activation paradigms were employed. The reaction time data correlated well with selective learning and thus helped to facilitate interpretation of the fMRI data sets. (orig.)

  9. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.

    Science.gov (United States)

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-05-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler-Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  10. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-06-16

    Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  11. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    Science.gov (United States)

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  12. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    Science.gov (United States)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  13. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  14. Mapping small-world properties through development in the human brain: disruption in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Dardo Tomasi

    Full Text Available Evidence from imaging studies suggests that the human brain has a small-world network topology that might be disrupted in certain brain disorders. However, current methodology is based on global graph theory measures, such as clustering, C, characteristic path length, L, and small-worldness, S, that lack spatial specificity and are insufficient to identify regional brain abnormalities. Here we propose novel ultra-fast methodology for mapping local properties of brain network topology such as local C, L and S (lC, lL and lS in the human brain at 3-mm isotropic resolution from 'resting-state' magnetic resonance imaging data. Test-retest datasets from 40 healthy children/adolescents were used to demonstrate the overall good reliability of the measures across sessions and computational parameters (intraclass correlation > 0.5 for lC and lL and their low variability across subjects (< 29%. Whereas regions with high local functional connectivity density (lFCD; local degree in posterior parietal and occipital cortices demonstrated high lC and short lL, subcortical regions (globus pallidus, thalamus, hippocampus and amygdala, cerebellum (lobes and vermis, cingulum and temporal cortex also had high, lS, demonstrating stronger small-world topology than other hubs. Children/adolescents had stronger lFCD, higher lC and longer lL in most cortical regions and thalamus than 74 healthy adults, consistent with pruning of functional connectivity during maturation. In contrast, lFCD, lC and lL were weaker in thalamus and midbrain, and lL was shorter in frontal cortical regions and cerebellum for 69 schizophrenia patients than for 74 healthy controls, suggesting exaggerated pruning of connectivity in schizophrenia. Follow up correlation analyses for seeds in thalamus and midbrain uncovered lower positive connectivity of these regions in thalamus, putamen, cerebellum and frontal cortex (cingulum, orbitofrontal, inferior frontal and lower negative connectivity in

  15. Reproducibility of Quantitative Susceptibility Mapping in the Brain at Two Field Strengths From Two Vendors

    Science.gov (United States)

    Deh, Kofi; Nguyen, Thanh D.; Eskreis-Winkler, Sarah; Prince, Martin R.; Spincemaille, Pascal; Gauthier, Susan; Kovanlikaya, Ilhami; Zhang, Yan; Wang, Yi

    2015-01-01

    Purpose To assess the reproducibility of brain quantitative susceptibility mapping (QSM) in healthy subjects and in patients with multiple sclerosis (MS) on 1.5 and 3T scanners from two vendors. Materials and Methods Ten healthy volunteers and 10 patients were scanned twice on a 3T scanner from one vendor. The healthy volunteers were also scanned on a 1.5T scanner from the same vendor and on a 3T scanner from a second vendor. Similar imaging parameters were used for all scans. QSM images were reconstructed using a recently developed nonlinear morphology-enabled dipole inversion (MEDI) algorithm with L1 regularization. Region-of-interest (ROI) measurements were obtained for 20 major brain structures. Reproducibility was evaluated with voxel-wise and ROI-based Bland–Altman plots and linear correlation analysis. Results ROI-based QSM measurements showed excellent correlation between all repeated scans (correlation coefficient R ≥ 0.97), with a mean difference of less than 1.24 ppb (healthy subjects) and 4.15 ppb (patients), and 95% limits of agreements of within −25.5 to 25.0 ppb (healthy subjects) and −35.8 to 27.6 ppb (patients). Voxel-based QSM measurements had a good correlation (0.64 ≤ R ≤ 0.88) and limits of agreements of −60 to 60 ppb or less. Conclusion Brain QSM measurements have good interscanner and same-scanner reproducibility for healthy and MS subjects, respectively, on the systems evaluated in this study. PMID:25960320

  16. MR-based cerebral blood volume maps as a diagnostic tool for brain tumours

    International Nuclear Information System (INIS)

    Today contrast enhanced MR imaging is a reliable method for detecting mostly distinguishing between different histological types of tumours. In this study we use a MR-based method to measure the regional cerebral blood volume (rCBV). Using this technique we try to judge the grading and vitality of the tumours. 26 patients with various types of brain tumours were examined. To calculate rCBV-maps of one slice, low-dosed Gd-DTPA was injected as a bolus. Using the relaxation effect the obtained signal intensity-time curves were converted pixel-wise into rCBV images. For the tumours rCBV-ratios were calculated relative to the corresponding area in the contralateral hemisphere. In the investigated group all tumours were detected on the basis of a raised rCBV-ratio. Since only vital parts of the tumour are perfused, the rCBV maps may be used to determine the place of biopsy. (orig./MG)

  17. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  18. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  19. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  20. A 'more-than-representational' mapping study

    DEFF Research Database (Denmark)

    Lanng, Ditte Bendix

    2016-01-01

    In urban design mapping is a generative tool that can evoke site conditions and animate design potentials. James Corner has stated that a “map is already a project in the making” (1999b, p.216), and thereby points to the evocative ‘agency’ of mapping in composing a design project. This paper takes...... Corner’s essay as its starting point. It couples his considerations with non-representational research to elaborate mapping as a ‘more-than-representational’ tool with which to think and work when we seek to understand and evoke design sites in conjunction with the lived world. This coupling is done...... through a concrete mapping study of a suburban site of lived mobilities and mundane architectures. From this standpoint the paper elaborates three central attentions of mapping as a creative and reflected more-than-representational tool in urban design: the evocations of eventfulness of sites, intricate...

  1. Investigation of olfactory function in normal volunteers by Tc-99m ECD brain SPECT: analysis using statistical parametric mapping

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate olfactory function on Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers. The study populations were 8 subjects matched healthy volunteers (male: 6, female: 2, age range: 24-52 years). We performed baseline brain perfusion SPECT using 15 mCi of Tc-99m ECD in the silent dark room. After 2 hours, we obtained brain perfusion SPECT using 30 mCi of Tc-99m ECD after olfactory stimuli (butanol 3% ) on the same condition. All of the SPECT images were spatially transformed to standard space, smoothed and globally normalized. The difference between two sets of brain perfusion SPECT was considered significant at a threshold of uncorrected P values less than 0.003. SPM analysis revealed significantly higher uptake in the cingulate gyrus of right limbic lobe and left middle temporal gyrus on post-stimulation SPECT. The baseline and post-stimulation brain perfusion SPECT can helpful in the evaluation of olfactory function. Moreover, this study would be utilized in the diagnosis of anosmia

  2. Investigation of olfactory function in normal volunteers by Tc-99m ECD Brain SPECT: Analysis using statistical parametric mapping

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate olfactory function according to Tc-99m ECD uptake pattern in brain perfusion SPET of normal volunteer by means of statistical parametric mapping (SPM) analysis. The study population was 8 healthy volunteer subjects (M:F = 6:2, age range: 22-54 years, mean 34 years). We performed baseline brain perfusion SPET using 555 MBq of Tc-99m ECD in a silent dark room. Two hours later, we obtained brain perfusion SPET using 1110 MBq of Tc-99m ECD after 3% butanol solution under the same condition. All SPET images were spatially transformed to standard space smoothed and globally normalized. The differences between the baseline and odor-identification SPET images were statistically analyzed using SPM-99 software. The difference between two sets of brain perfusion SPET was considered significant at a threshold of uncorrected p values less than 0.01. SPM analysis revealed significant hyper-perfusion in both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on odor-identification SPET. This study shows that brain perfusion SPET can securely support other diagnostic techniques in the evaluation of olfactory function

  3. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  4. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14±5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  5. Discovering relations between mind, brain, and mental disorders using topic mapping.

    Directory of Open Access Journals (Sweden)

    Russell A Poldrack

    Full Text Available Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain systems in mental function. We further show that the same methods can be used to identify the relations between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel relations between mental disorders and mental functions via their common involvement of particular brain networks. This approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the structure of these disorders and the relations between them.

  6. MR diffusion tensor analysis of schizophrenic brain using statistical parametric mapping

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate diffusion anisotropy in the schizophrenic brain by voxel-based analysis of diffusion tensor imaging (DTI), using statistical parametric mapping (SPM). We studied 33 patients with schizophrenia diagnosed by diagnostic and statistical manual of mental disorders (DSM)-IV criteria and 42 matched controls. The data was obtained with a 1.5 T MRI system. We used single-shot spin-echo planar sequences (repetition time/echo time (TR/TE)=5000/102 ms, 5 mm slice thickness and 1.5 mm gap, field of view (FOV)=21 x 21 cm2, number of excitation (NEX)=4, 128 x 128 pixel matrix) for diffusion tensor acquisition. Diffusion gradients (b-value of 500 or 1000 s/mm2) were applied on two axes simultaneously. Diffusion properties were measured along 6 non-linear directions. The structural distortion induced by the large diffusion gradients was corrected, based on each T2-weighted echo-planar image (b=0 s/mm2). The fractional anisotropy (FA) maps were generated on a voxel-by-voxel basis. T2-weighted echo-planar images were then segmented into gray matter, white matter, and cerebrospinal fluid, using SPM (Wellcome Department of Imaging, University College London, UK). All apparent diffusion coefficient (ADC) and FA maps in native space were transformed to the stereotactic space by registering each of the images to the same template image. The normalized data was smoothed and analyzed using SPM. The significant FA decrease in the patient group was found in the uncinate fasciculus, parahippocampal white matter, anterior cingulum and other areas (corrected p<0.05). No significant increased region was noted. Our results may reflect reduced diffusion anisotropy of the white matter pathway of the limbic system as shown by the decreased FA. Manual region-of-interest analysis is usually more sensitive than voxel-based analysis, but it is subjective and difficult to set with anatomical reproducibility. Voxel-based analysis of the diffusion tensor data set

  7. 21st Century Skills Map: Social Studies

    Science.gov (United States)

    Partnership for 21st Century Skills, 2007

    2007-01-01

    This 21st Century Skills Map is the result of hundreds of hours of research, development and feedback from educators and business leaders across the nation. The Partnership for 21st Century Skills has issued this map for the core subject of Social Studies.

  8. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    Science.gov (United States)

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  9. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Directory of Open Access Journals (Sweden)

    Gesa Feenders

    Full Text Available Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor

  10. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  11. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia

  12. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. PMID:26975558

  13. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    Science.gov (United States)

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  14. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    International Nuclear Information System (INIS)

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  15. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Ganzetti, Marco; Mantini, Dante [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); University of Oxford, Department of Experimental Psychology, Oxford (United Kingdom); Wenderoth, Nicole [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); KU Leuven, Laboratory of Movement Control and Neuroplasticity, Faculty of Kinesiology and Rehabilitation Sciences, Leuven (Belgium)

    2015-09-15

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  16. Towards the "baby connectome": Mapping the structural connectivity of the newborn brain

    OpenAIRE

    Tymofiyeva, O; Hess, CP; Ziv, E; Tian, N; Bonifacio, SL; McQuillen, PS; Ferriero, DM; Barkovich, AJ; Xu, D.

    2012-01-01

    Defining the structural and functional connectivity of the human brain (the human "connectome") is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be der...

  17. The subtle body: an interoceptive map of central nervous system function and meditative mind-brain-body integration.

    Science.gov (United States)

    Loizzo, Joseph J

    2016-06-01

    Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. PMID:27164469

  18. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T2*-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  19. Invariant spatial information in sketch maps — a study of survey sketch maps of urban areas

    OpenAIRE

    Jia Wang; Angela Schwering

    2015-01-01

    It is commonly recognized that free-hand sketch maps are influenced by cognitive impacts and therefore sketch maps are incomplete, distorted, and schematized. This makes it difficult to achieve a one-to-one alignment between a sketch map and its corresponding geo-referenced metric map. Nevertheless, sketch maps are still useful to communicate spatial knowledge, indicating that sketch maps contain certain spatial information that is robust to cognitive impacts. In existing studies, sketch maps...

  20. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Tokyo Medical and Dental Univ. (Japan). Graduate School

    2001-02-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [{sup 15}O]water and [{sup 18}F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [{sup 11}C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  1. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    International Nuclear Information System (INIS)

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [15O]water and [18F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [11C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  2. Presurgical mapping with functional MRI. Comparative study with transcranial magnetic stimulation and intraoperative mapping

    International Nuclear Information System (INIS)

    The thumb movement was evoked by transcranical magnetic stimulation (TCS) for the mapping of the motor cortex. After the placement of the marker determined by TCS on the scalp, fMRI under motor tasks consisting of repetitive grasping was performed. For motor cortex activation, an axial oblique plane to maximize gray matter sampling in the rolandic cortex was employed in order to compare these different mapping techniques more precisely. Sixteen patients with brain tumors were included in this study. In nine patients, fMRI disclosed activation in one restricted gyrus or in the localized area around one restricted sulcus. Of these nine patients, preoperative TCS mapping corresponded closely with fMRI in six, while in the remaining three, the TCS marker fell between 1 and 2 cm apart from the fMRI-activated area. However, in these three patients, intraoperative electrocortical stimulation corresponded with the preoperative mapping with fMRI. In six patients, contiguous two gyri were activated by motor tasks. The TCS marker was disclosed on one of the two activated gyri. Of these six patients, the position of the TCS marker and fMRI-activated site corresponded with each other in four cases. They were found on the same gyrus but there was 1.0-2.0 cm distance between them in two cases. Intraoperative somatosensory evoked potential was monitored in two of these six cases. They corresponded well with the mapping by fMRI and TCS together. In only one patient, no significant activation area was obtained by fMRI because of excessive head motion during motor tasks. The TCS maker in this patients was identical with intraoperative electro-cortical stimulation mapping. (K.H.)

  3. Identifying environmental sounds: a multimodal mapping study

    Science.gov (United States)

    Tomasino, Barbara; Canderan, Cinzia; Marin, Dario; Maieron, Marta; Gremese, Michele; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran

    2015-01-01

    Our environment is full of auditory events such as warnings or hazards, and their correct recognition is essential. We explored environmental sounds (ES) recognition in a series of studies. In study 1 we performed an Activation Likelihood Estimation (ALE) meta-analysis of neuroimaging experiments addressing ES processing to delineate the network of areas consistently involved in ES processing. Areas consistently activated in the ALE meta-analysis were the STG/MTG, insula/rolandic operculum, parahippocampal gyrus and inferior frontal gyrus bilaterally. Some of these areas truly reflect ES processing, whereas others are related to design choices, e.g., type of task, type of control condition, type of stimulus. In study 2 we report on 7 neurosurgical patients with lesions involving the areas which were found to be activated by the ALE meta-analysis. We tested their ES recognition abilities and found an impairment of ES recognition. These results indicate that deficits of ES recognition do not exclusively reflect lesions to the right or to the left hemisphere but both hemispheres are involved. The most frequently lesioned area is the hippocampus/insula/STG. We made sure that any impairment in ES recognition would not be related to language problems, but reflect impaired ES processing. In study 3 we carried out an fMRI study on patients (vs. healthy controls) to investigate how the areas involved in ES might be functionally deregulated because of a lesion. The fMRI evidenced that controls activated the right IFG, the STG bilaterally and the left insula. We applied a multimodal mapping approach and found that, although the meta-analysis showed that part of the left and right STG/MTG activation during ES processing might in part be related to design choices, this area was one of the most frequently lesioned areas in our patients, thus highlighting its causal role in ES processing. We found that the ROIs we drew on the two clusters of activation found in the left and in

  4. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    Science.gov (United States)

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our

  5. Brain-Science Based Cohort Studies

    Science.gov (United States)

    Koizumi, Hideaki

    2011-01-01

    This article describes a number of human cohort studies based on the concept of brain-science and education. These studies assess the potential effects of new technologies on babies, children and adolescents, and test hypotheses drawn from animal and genetic case studies to see if they apply to people. A flood of information, virtual media,…

  6. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    OpenAIRE

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helpl...

  7. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI.

    Directory of Open Access Journals (Sweden)

    Xiang-zhen Kong

    Full Text Available Representing brain morphology as a network has the advantage that the regional morphology of 'isolated' structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics.

  8. Denoising and Frequency Analysis of Noninvasive Magnetoencephalography Sensor Signals for Functional Brain Mapping

    CERN Document Server

    Ukil, A

    2015-01-01

    Magnetoencephalography (MEG) is an important noninvasive, nonhazardous technology for functional brain mapping, measuring the magnetic fields due to the intracellular neuronal current flow in the brain. However, most often, the inherent level of noise in the MEG sensor data collection process is large enough to obscure the signal(s) of interest. In this paper, a denoising technique based on the wavelet transform and the multiresolution signal decomposition technique along with thresholding is presented, substantiated by application results. Thereafter, different frequency analysis are performed on the denoised MEG signals to identify the major frequencies of the brain oscillations present in the denoised signals. Time-frequency plots (spectrograms) of the denoised signals are also provided.

  9. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    International Nuclear Information System (INIS)

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer's disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects

  10. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  11. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter.

    Science.gov (United States)

    Buchbinder, Mara

    2015-10-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008-2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents' agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. PMID:24780561

  12. A DTI-based template-free cortical connectome study of brain maturation.

    Directory of Open Access Journals (Sweden)

    Olga Tymofiyeva

    Full Text Available Improved understanding of how the human brain is "wired" on a macroscale may now be possible due to the emerging field of MRI connectomics. However, mapping the rapidly developing infant brain networks poses challenges. In this study, we applied an automated template-free "baby connectome" framework using diffusion MRI to non-invasively map the structural brain networks in subjects of different ages, including premature neonates, term-born neonates, six-month-old infants, and adults. We observed increasing brain network integration and decreasing segregation with age in term-born subjects. We also explored how the equal area nodes can be grouped into modules without any prior anatomical information--an important step toward a fully network-driven registration and analysis of brain connectivity.

  13. In vivo Dynamic Studies of Brain Metabolism

    Institute of Scientific and Technical Information of China (English)

    LUO Xuechun; JIANG Yufeng; ZHANG Riqing

    2005-01-01

    Nuclear magnetic resonance (NMR) can noninvasively monitor intracellular concentrations and kinetic properties of numerous inorganic and organic compounds. A 31P NMR surface coil was used in vivo to dynamically measure phosphocreatine (PCr), adenosine triphosphate (ATP), and intracellular inorganic phosphate (Pi) levels in mouse brain during ischemia-reperfusion to study the damage of cerebral tissues caused by ischemia and effects of herbs on cerebral energy metabolism during ischemia-reperfusion. The study provides dynamic brain energy metabolism data during different periods. The data show that some herbs more rapidly increase the PCr level during the recovery phase than in the control group.

  14. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  15. The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development.

    Science.gov (United States)

    King, A J

    1993-09-01

    The experiments described in this review have demonstrated that the SC contains a two-dimensional map of auditory space, which is synthesized within the brain using a combination of monaural and binaural localization cues. There is also an adaptive fusion of auditory and visual space in this midbrain nucleus, providing for a common access to the motor pathways that control orientation behaviour. This necessitates a highly plastic relationship between the visual and auditory systems, both during postnatal development and in adult life. Because of the independent mobility of difference sense organs, gating mechanisms are incorporated into the auditory representation to provide up-to-date information about the spatial orientation of the eyes and ears. The SC therefore provides a valuable model system for studying a number of important issues in brain function, including the neural coding of sound location, the co-ordination of spatial information between different sensory systems, and the integration of sensory signals with motor outputs. PMID:8240794

  16. Statistical mapping of functional olfactory connections of the rat brain in vivo.

    Science.gov (United States)

    Cross, Donna J; Minoshima, Satoshi; Anzai, Yoshimi; Flexman, Jennifer A; Keogh, Bartholomew P; Kim, Yongmin; Maravilla, Kenneth R

    2004-12-01

    The olfactory pathway is a unique route into the brain. To better characterize this system in vivo, rat olfactory functional connections were mapped using magnetic resonance (MR) imaging and manganese ion (Mn2+) as a transport-mediated tracer combined with newly developed statistical brain image analysis. Six rats underwent imaging on a 1.5-T MR scanner at pre-administration, and 6, 12, 24, 36, 48, and 72 h and 5.5, 7.5, 10.5, and 13.5 days post-administration of manganese chloride (MnCl2) into the right nasal cavity. Images were coregistered, pixel-intensity normalized, and stereotactically transformed to the Paxinos and Watson rat brain atlas, then averaged across subjects using automated image analysis software (NEUROSTAT). Images at each time point were compared to pre-administration using a one-sample t statistic on a pixel-by-pixel basis in 3-D and converted to Z statistic maps. Statistical mapping and group averaging improved signal to noise ratios and signal detection sensitivity. Significant transport of Mn2+ was observed in olfactory structures ipsilateral to site of Mn2+ administration including the bulb, lateral olfactory tract (lo) by 12 h and in the tubercle, piriform cortex, ventral pallidum, amygdala, and in smaller structures such as the anterior commissure after 24 h post-administration. MR imaging with group-wise statistical analysis clearly demonstrated bilateral transsynaptic Mn2+ transport to secondary and tertiary neurons of the olfactory system. The method permits in vivo investigations of functional neuronal connections within the brain. PMID:15589097

  17. The analysis of several factors relevant to brain 18F-FDG metabolism by using the statistical parameter mapping

    International Nuclear Information System (INIS)

    Objective: To study the relationship of the regional brain 18F-fluorodeoxyglucose (FDG) metabolism and aging process, the dosage of the imaging agent, the level of blood sugar to cerebral PET (cPET) image data by using statistical parameter mapping (SPM) software. Methods: 18F-FDG cPET imaging data acquired from 30 healthy volunteers were collected and analyzed with SPM by the multiple linear regression model designed with dosage of tracer, and blood sugar level as explaining variables and the 18F-FDG accumulation as responding variables. Results: It's showed that the age, dosage and sugar level were all related with the 18F-FDG accumulation in the brain. The accumulation of the radiotracer in the brain areas like cingulate gyri, inferior temporal gyri of both sides and the cerebellum increased with the tracer dosage, and the blood sugar escalating and the 18F-FDG uptake in the brain areas like frontal lobes, parietal lobes, precentral gyri of both sides and cerebellum decreased at the same time, and the aging process led to a pancephalic 18F-FDG decrease. Conclusions: The injection dosage, sugar level and the age are all related with accumulation of the 18F-FDG, and the SPM software can be used to analyze the multiple factors relevant to cPET imaging data based on voxel level and so can explain the experimental results more correctly

  18. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration......High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors into...

  19. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Trygve B. Leergaard

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  20. Brain-wide map of efferent projections from rat barrel cortex.

    Science.gov (United States)

    Zakiewicz, Izabela M; Bjaalie, Jan G; Leergaard, Trygve B

    2014-01-01

    The somatotopically organized whisker barrel field of the rat primary somatosensory (S1) cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2) database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data. PMID:24550819

  1. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    International Nuclear Information System (INIS)

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques

  2. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    International Nuclear Information System (INIS)

    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm2, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare (χ2) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The χ2 of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, χ2 was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, χ2 values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, χ2 was not profoundly different from the χ2 value of white matter. Maps of the χ2 values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, χ2 enhancement was present within the solid part of the tumor. Conclusion: The deviation from a purely

  3. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  4. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    Science.gov (United States)

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates. PMID:25071558

  5. Anisotropy mapping in rat brains using Intermolecular Multiple Quantum Coherence Effects

    CERN Document Server

    Han, Yi

    2014-01-01

    This document reports an unconventional and rapidly developing approach to magnetic resonance imaging (MRI) using intermolecular multiple-quantum coherences (iMQCs). Rat brain images are acquired using iMQCs. We detect iMQCs between spins that are 10 {\\mu}m to 500 {\\mu}m apart. The interaction between spins is dependent on different directions. We can choose the directions on physical Z, Y and X axis by choosing correlation gradients along those directions. As an important application, iMQCs can be used for anisotropy mapping. In the rat brains, we investigate tissue microstructure. We simulated images expected from rat brains without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Because of the underlying low signal to noise ratio (SNR) in iMQCs, this anisotropy mapping method still has comparatively large potentials to grow. The ultimate goal of my project is to develop creative a...

  6. Brain mapping in a patient with congenital blindness – a case for multimodal approaches

    Directory of Open Access Journals (Sweden)

    Jarod L Roland

    2013-07-01

    Full Text Available Recent advances in basic neuroscience research across a wide range of methodologies have contributed significantly to our understanding of human cortical electrophysiology and functional brain imaging. Translation of this research into clinical neurosurgery has opened doors for advanced mapping of functionality that previously was prohibitively difficult, if not impossible. Here we present the case of a unique individual with congenital blindness and medically refractory epilepsy who underwent neurosurgical treatment of her seizures. Pre-operative evaluation presented the challenge of accurately and robustly mapping the cerebral cortex for an individual with a high probability of significant cortical re-organization. Additionally, a blind individual has unique priorities in one’s ability to read Braille by touch and sense the environment primarily by sound than the non-vision impaired person. For these reasons we employed additional measures to map sensory, motor, speech, language, and auditory perception by employing a number of cortical electrophysiologic mapping and functional magnetic resonance imaging methods. Our data show promising results in the application of these adjunctive methods in the pre-operative mapping of otherwise difficult to localize, and highly variable, functional cortical areas.

  7. 定量研究人脑结构DTI T2-weighted trace图与年龄的关系%Quantitative study of DTI T2-weighted trace parameter map in healthy human brain and its relation to aging

    Institute of Scientific and Technical Information of China (English)

    李翠宁; 刘怀军; 耿左军; 贾林燚; 池琛; 崔彩霞; 宋鹏; 刘瑞春

    2012-01-01

    Objective To quantitatively analysis the DTI T2-weighted trace (T2-WT) parameter map in different age of healthy human brain and its relation to age. Methods Data were acquired in fifty-eight healthy right-handed volunteers (22-76 years) . 28 subjects in middle-old age group ( > 40years) and 30 subjects in young group (≤40years) . All subjects underwent diffusion tensor imaging ( DTI) and conventional MRI with a GE 3.0T magnetic resonance system. Three DTI parameters T2-WT, fractional anisotropy ( FA ) and mean diffusivity ( MD ) were acquired from the MR work station. ROIs were determined at FA and MD maps. The ten structures T2-WT values were measured in the two groups. Quantitative analyzed the the T2-WT maps and its relation to age. Results In the young group, the value of T2-WT had a left-right asymmetries in pons, cerebral peduncle, anterior internal capsual, centrum seimioval and lenticular nucleus, left > right, P = 0.000 ~ 0. 024. Whereas in the middle-old age group, T2-WT values were lower than the young group except the lateral cerebral ventricle, and had a left superior only in centrum semioval ( P= 0.042 ). Significant negative correlation with age were found in pons, cerebral peduncle, three parts of the internal capsule and lenticular nucleus (P =0. 000 ~0. 038) . Conclusion T2-WT parameter map is more symmetry in middle-old age group. In pons, cerebral peduncle, three parts of internal capsule and lenticular nucleus,T2-WT values have significant negative correlations with age.%目的 定量研究不同年龄健康人脑结构扩散张量成像(DTI)的T2-WT参数图的特点及其与年龄的关系.方法 健康右利手志愿者58人,年龄22~76岁,按年龄分为青年(≤40岁)组30人,中老年(>40岁)组28人,采集人脑常规MRI及DTI图像,经后处理得到DTI的三种参数图:T2-WT、分数各向异性(FA)及平均扩散系数(MD)图,使用FA图及MD图设置兴趣区,测量人脑10个部位的参数值,定量分析不同年龄组T2

  8. Maps of receptor binding parameters in the human brain - a kinetic analysis of pet measurements

    International Nuclear Information System (INIS)

    A kinetic method is described for the estimation of neuroreceptor density as well as the rate constants for association and dissociation of rapidly equilibrating radioligands. The method is exemplified by positron emission tomographic measurements of the human brain using 11C-raclopride, a D2 dopamine receptor antagonist, and 11C-Ro 15-1788, a benzodiazepine receptor antagonist. Using a linear non iterative algorithm, regional binding characteristics were calculated and displayed poixel by pixel in brain maps. Data from repeated experiments on the same subject with different amounts of the unlabeled ligand were utilized. The binding characteristics were determined according to a two step procedure in which the time course of the free radioligand concentration was estimated from a reference region considered to be free of specific receptor binding sites. Alternative methods to determine the concentration of free radioligand are discussed. (orig.)

  9. INHERITED NEURODEVELOPMENTAL BRAIN DISEASES: APPLICATIONS OF HOMOZYGOSITY MAPPING TO IDENTIFY NEW GENETIC CAUSES OF DISEASE

    Directory of Open Access Journals (Sweden)

    Joseph G. Gleeson

    2008-06-01

    Full Text Available ObjectiveThe last two decades have seen major advancements in our understanding of some of the most common neurodevelopmental disorders in the field of child neurology. However, in the majority of individual patients, it is still not possible to arrive at a molecular diagnosis, due in part to lack of knowledge ofmolecular causes of these tremendously complex conditions. Common genetic disorders of brain development include septo-optic dysplasia, schizencephaly, holoprosencephaly, lissencephaly and hindbrain malformations. For each of these disorders, a critical step in brain development is disrupted. Specific genetic diagnosis is now possible in some patients with most of these conditions. For the remaining patients, it is possible to apply gene-mapping strategies using newly developed high-density genomic arrays to clone novel genes. This is especially important in countries like Iran where large family size and marriage between relatives makes these strategies tremendously powerful.

  10. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Bogdan F Gh; George, Martin J; McCrea, Richard P E; Devon, Richard M; George, Graham N; Hanson, Akela D; Chapman, L Dean; Nichol, Helen [Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan SK (Canada); Bergmann, Uwe; Garachtchenko, Alex V; Luening, Katharina [Stanford Synchrotron Radiation Laboratory, Menlo Park, CA (United States); Kelly, Michael E [Division of Neurosurgery, University of Saskatchewan, SK (Canada); Harder, Sheri M [Department of Medical Imaging, University of Saskatchewan, SK (Canada); Pickering, Ingrid J [Department of Geological Sciences, University of Saskatchewan, SK (Canada)], E-mail: h.nichol@usask.ca

    2009-02-07

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  11. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  12. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    Science.gov (United States)

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations. PMID:6165544

  13. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish?

    Science.gov (United States)

    Blanco, Ayelén M; Sánchez-Bretaño, Aída; Delgado, María J; Valenciano, Ana I

    2016-06-01

    Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc. PMID:27064922

  14. Connectivity concordance mapping: a new tool for model-free analysis of fMRI data of the human brain

    Directory of Open Access Journals (Sweden)

    Gabriele eLohmann

    2012-03-01

    Full Text Available Functional magnetic resonance data acquired in a task-absent condition ("resting state'' require new data analysis techniques that do not depend on an activation model. Here, we propose a new analysis method called "Connectivity Concordance Mapping (CCM".The main idea is to assign a label to each voxel based on the reproducibility of its whole-brain pattern of connectivity. Specifically, we compute the correlations across measurements of each voxel's correlation-based functional connectivity map, resulting in a voxelwise map of concordance values. Regions of high interscan concordance can be assumed to be functionally consistent, and may thus be of specific interest for further analysis. Here we present two fMRI studies to test the algorithm. The first is a eyes open/eyes closed paradigm designed to highlight the potential of the method in a relatively simple state-dependent domain. The second study is a longitudinal repeated measurement of a patient following stroke. Longitudinal clinical studies such as this may represent the most interesting domain of applications for this algorithm, as it provides an exploratory means to identify changes in connectivity, such as those during post-stroke recovery.

  15. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Directory of Open Access Journals (Sweden)

    Gonzalez-Brito Manuel

    2008-02-01

    Full Text Available Abstract Background Assessment of cerebral blood flow (CBF by SPECT could be important in the management of patients with severe traumatic brain injury (TBI because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia, or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI on cerebral blood flow (CBF by SPECT cerebral blood perfusion (CBP imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM. Results A significant area of hypoperfusion (P Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  16. Functional brain mapping using H215O positron emission tomography (II): mapping of human working memory

    International Nuclear Information System (INIS)

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H215O PET. Repeated H215O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system

  17. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    Science.gov (United States)

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  18. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  19. A study of rotational brain injury.

    Science.gov (United States)

    Misra, J C; Chakravarty, S

    1984-01-01

    Of concern in the paper is an investigation on brain injuries which may occur owing to an input angular acceleration of the head. The study is based on the use of an improved mathematical model for the cranium. The eccentricity of the braincase is incorporated through the consideration of a prolate spheroidal shell as the representative of the skull. Also the dissipative mechanical behaviour of the brain material (as per the observations of experimenters) has been accounted for by considering the material contained in the shell as viscoelastic. The problem is formulated in terms of prolate spheroidal coordinates. The singularities of the governing equations of motion (when expressed in the prolate coordinate system) are removed by a suitable transformation of the concerned dependent variable, viz. the one that stands for the angular displacement of a representative point of the system. In the first place the solution of the boundary value problem is sought in the Laplace transform space, by employing a finite difference technique. Use of the alternating-direction-implicit method together with Thomas algorithm was made for obtaining the angular acceleration in the transformed space. The Laplace inversion is also carried out with the help of numerical procedures (Gauss quadrature formula is used for this purpose). The results of the parametric study are presented through graphs. The plots illustrate the shear stresses and strains in the brain medium. A meaningful comparison of the computational results with those of previous investigations indicate that the eccentricity of the braincase plays a significant role in causing injury to the brain. PMID:6480621

  20. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    International Nuclear Information System (INIS)

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  1. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiye [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li, Lin [Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853 (China); Sun, Jie [Department of Endocrinology, PLA General Hospital, Beijing 100853 (China); Ma, Lin, E-mail: cjr.malin@vip.163.com [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2012-08-15

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  2. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods.

    Science.gov (United States)

    Wharton, Sam; Bowtell, Richard

    2010-11-01

    Optimisation and comparison of the performance of three different methods for calculating three-dimensional susceptibility maps of the whole brain from gradient-echo (phase and modulus) image data acquired at 7 T is described. The methods studied are a multiple-orientation method in which image data acquired with the head at several different angles to the main field are combined and two methods which use data acquired at a single orientation: the first of these is based on exclusion of some k-space data from the calculation (through thresholding of the dipolar field kernel), while the second incorporates a regularisation method that is based on using information from the modulus images. The methods were initially optimised via analysis of data from a phantom containing different compartments of known susceptibility. As part of this work, a novel high-pass filtering methodology was introduced to remove background fields from field maps based on phase data. The optimised methods were successfully applied to high-resolution (0.7 mm isotropic) whole-brain modulus and phase data acquired in vivo from five healthy male subjects, 25-30 years of age. The multiple-orientation method yielded high quality susceptibility maps, out-performing the single-orientation methods. Venous blood vessels as well as the substantia nigra and globus pallidus brain regions showed particularly high positive susceptibility offsets relative to surrounding tissue, consistent with high deoxyhemoglobin and non-heme iron content, respectively. To compare the performance of the different methods, regions of interest were drawn in deep grey matter structures and in cortical grey and white matter. The threshold-based approach was fast and simple to use, but underestimated susceptibility differences and showed significant artefacts due to noise amplification in difficult regions of k-space. The regularised single-orientation method yielded contrast dependent on the choice of spatial priors, but

  3. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  4. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior.

    Science.gov (United States)

    Bressan, Joris M A; Benz, Martin; Oettler, Jan; Heinze, Jürgen; Hartenstein, Volker; Sprecher, Simon G

    2014-01-01

    A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondyla obscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems. PMID:25698935

  5. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    The effects of high aluminum concentrations in rat brains were studied using 14C autoradiography to measure the uptake of 14C 2-deoxy-D-glucose (14C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 109 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  6. Study on MRI findings in postresuscitation brains

    International Nuclear Information System (INIS)

    We evaluated chronological changes in T1/T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) findings in patients with global cerebral ischemia compared to computed tomography (CT) and single photon emission computed tomography (SPECT) to determine the advantages this presents in determining a patient's prognosis. We retrospectively studied MRI in 28 patients resuscitated after cardiopulmonary arrest. Patients were divided by outcome into 4 groups -- good outcome in 5, moderate disability in 2, vegetative in 17, and 4 brain-dead. Those with good recovery had normal CT and MRI findings. Those with moderate disability demonstrated high signal intensity in basal ganglia and posterior cerebral cortex during the chronic period. All vegetative patients had abnormal CT findings and their T2-weighted images during the acute period demonstrated high signal intensity in the cerebral cortex and basal ganglia; T1-weighted image during the chronic period showed similar findings, while diffusion-weighted images indicated high signal intensity in the cerebral cortex from the very acute period, during which abnormal findings were seen in the cortex, putamen, and thalamus more frequently than in T2-weighted images. Moreover, regional cerebral blood flow significantly decreased during the chronic period. All brain-dead patients had CT findings of diffuse cerebral edema and loss of density difference between gray and white matter. T2-weighted images respectively showed an extraordinary high density difference between gray and white matter and diffusion-weighted images high signal density in the whole brain. MRI detects chronologic changes in postresuscitation brain damage better than CT findings. Diffusion-weighted images identify hypoxic-ischemic lesions during the very acute period. MRI thus appears useful in evaluating patient prognosis and care. (author)

  7. Can Taichi Reshape the Brain? A Brain Morphometry Study

    OpenAIRE

    Wei, Gao-Xia; Xu, Ting; Fan, Feng-Mei; Dong, Hao-Ming; Jiang, Li-Li; Li, Hui-Jie; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2013-01-01

    Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC) practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vert...

  8. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  9. Mapping adenosine A1 receptors in the cat brain by positron emission tomography with [11C]MPDX

    International Nuclear Information System (INIS)

    We evaluated the potential of [11C]MPDX as a radioligand for mapping adenosine A1 receptors in comparison with previously proposed [11C]KF15372 in cat brain by PET. Two tracers showed the same brain distribution. Brain uptake of [11C]MPDX (Ki=4.2 nM) was much higher and washed out faster than that of [11C]KF15372 (Ki=3.0 nM), and was blocked by carrier-loading or displaced with an A1 antagonist. The regional A1 receptor distribution evaluated with kinetic analysis is consistent with that previously measured in vitro. [11C]MPDX PET has a potential for mapping adenosine A1 receptors in brain

  10. Laser Unlocks Blood-Brain Barrier for Chemotherapy, Study Shows

    Science.gov (United States)

    ... nlm.nih.gov/medlineplus/news/fullstory_157444.html Laser Unlocks Blood-Brain Barrier for Chemotherapy, Study Shows ... 24, 2016 WEDNESDAY, Feb. 24, 2016 (HealthDay News) -- Laser surgery can open the protective blood-brain barrier, ...

  11. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  12. Refining language mapping by repetitive navigated transcranial magnetic stimulation in patients with left-sided perisylvian brain lesions

    OpenAIRE

    Ille, Sebastian

    2016-01-01

    The present thesis is based on two publications for which we performed language mapping in patients suffering from left-sided perisylvian brain lesions by repetitive navigated transcranial magnetic stimulation (rTMS), functional magnetic resonance imaging (fMRI), and direct cortical stimulation (DCS) during awake surgery. In summary, we ascertained that rTMS language mappings should be analyzed with specific thresholds in order to avoid false-positive results. Furthermore, we showed that b...

  13. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    Science.gov (United States)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  14. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose

    International Nuclear Information System (INIS)

    The efficacy of using the 18F-fluoro-deoxyglucose (18F-DG) for measuring regional cerebral glucose utilization in man during functional activation is demonstrated. Normal male volunteers subjected to sensory stimuli (visual, auditory, tactile) exhibited focal increases in glucose metabolism in response to the stimulus. Unilateral visual hemifield stimulation caused the contralateral striate cortex to become more active metabolically than the striate cortex ipsilateral to the stimulated hemifield. Similarly, stroking of the fingers and hand of one arm with a brush produced an increase in metabolism in the contralateral postcentral gyrus compared to the homologous ipsilateral region. The auditory stimulus, which consisted of monaural listening to either a meaningful or nonmeaningful story, caused an increase in glucose metabolism in the right temporal cortex independent of which ear was stimulated. These results demonstrate that the 18F-DG technique is capable of providing functional maps in vivo in the human brain

  15. Mapping Human Brain Capillary Water Lifetime: High-Resolution Metabolic Neuromaging

    Science.gov (United States)

    Rooney, William D.; Li, Xin; Sammi, Manoj K.; Bourdette, Dennis N.; Neuwelt, Edward A.; Springer, Charles S.

    2016-01-01

    Shutter-speed analysis of Dynamic-Contrast-Agent-(CA)-Enhanced normal, multiple sclerosis [MS], and glioblastoma [GBM] human brain data gives the mean capillary water molecule lifetime [τb] and blood volume fraction [vb; capillary density·volume product (′†·V)] in a high-resolution 1H2O MRI voxel [40 μL] or ROI. The equilibrium water extravasation rate constant, kpo [τb−1], averages 3.2 and 2.9 s−1 in resting-state normal white matter [NWM] and gray matter [NGM], respectively [n = 6]. The results {parenthesized} lead to three major conclusions. A) kpo differences are dominated by capillary water permeability [PW†], not size, differences. {NWM and NGM voxel kpo and vb values are independent. Quantitative analyses of concomitant population-averaged kpo,vb variations in normal and normal-appearing MS brain ROIs confirm PW† dominance.} B) PW† is dominated [> 95%] by a trans[endothelial]cellular pathway, not the PCA† para-cellular route. {In MS lesions and GBM tumors, PCA† increases but PW† decreases.} C) kpo tracks steady-state ATP production/consumption flux per capillary. {In normal, MS, and GBM brain, regional kpo correlates with literature MRSI ATP [positively] and Na+ [negatively] tissue concentrations. These suggest the PW† pathway is metabolically active. Excellent agreement of the relative NGM/NWM kpo·vb product ratio with the literature 31PMRSI-MT CMRoxphos ratio confirms the flux property.} We have previously shown the cellular water molecule efflux rate constant [kio] is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic co-operativities, polar brain endothelial, neuroglial, and neuronal cells form “gliovascular units.” We hypothesize a chain of water cycling processes transmits brain metabolic activity to kpo, letting it report neurogliovascular unit Na+,K+-ATPase activity. Cerebral kpo maps represent metabolic

  16. Analysis of brain SPECT with the statistical parametric mapping package SPM99

    International Nuclear Information System (INIS)

    Full text: The Statistical Parametric Mapping (SPM) package of the Welcome Department of Cognitive Neurology permits detection in the brain of different regional uptake in an individual subject or a population of subjects compared to a normal population. SPM does not require a-priori specification of regions of interest. Recently SPM has been upgraded from SPM96 to SPM99. Our aim was to vary brain SPECT processing options in the application of SPM to optimise the final statistical map in three clinical trials. The sensitivity of SPM depends on the fidelity of the preliminary spatial normalisation of each scan to the standard anatomical space defined by a template scan provided with SPM. We generated our own SPECT template and compared spatial normalisation to it and to SPM's internal PET template. We also investigated the effects of scatter subtraction, stripping of scalp activity, reconstruction algorithm, non-linear deformation and derivation of spatial normalisation parameters using co-registered MR. Use of our SPECT template yielded better results than with SPM's PET template. Accuracy of SPECT to MR co-registration was 2.5mm with SPM96 and 1.2mm with SPM99. Stripping of scalp activity improved results with SPM96 but was unnecessary with SPM99. Scatter subtraction increased the sensitivity of SPM. Non-linear deformation additional to linear (affine) transformation only marginally improved the final result. Use of the SPECT template yielded more significant results than those obtained when co registered MR was used to derive the transformation parameters. SPM99 is more robust than SPM96 and optimum SPECT analysis requires a SPECT template. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  18. Cognitive maps: what are they and why study them?

    OpenAIRE

    Kitchin, Rob

    1994-01-01

    It is often implicitly assumed by researchers that their readers understand what cognitive map and cognitive mapping are, and their justification for study. This paper differs in this respect by explaining explicitly the 'what' and 'why' questions often asked, demonstrating cognitive mapping's multidisciplinary research worth. First, it examines questions concerning what cognitive maps are, the confusion inherent from the use of the term 'map', and the usage and reasons for altern...

  19. Mapping Regional Drought Vulnerability: a Case Study

    Science.gov (United States)

    Karamouz, M.; Zeynolabedin, A.; Olyaei, M. A.

    2015-12-01

    Drought is among the natural disaster that causes damages and affects many people's life in many part of the world including in Iran. Recently, some factors such as climate variability and the impact of climate change have influenced drought frequency and intensity in many parts of the world. Drought can be divided into four categories of meteorological, hydrological, agricultural and social-economic. In meteorological the important feature is lack of rainfall. In hydrological drought river flows and dam storage are considered. Lack of soil moisture is the key factor in agricultural droughts while in social-economic type of drought the relation between supply and demand and social-economic damages due to water deficiency is studied. While the first three types relates to the lack of some hydrological characteristics, social-economic type of drought is actually the consequence of other types expressed in monetary values. Many indices are used in assessing drought; each has its own advantages and disadvantages and can be used for specific types of drought. Therefore knowing the types of drought can provide a better understanding of shortages and their characteristics. Drought vulnerability is a concept which shows the likelihood of damages from hazard in a particular place by focusing on the system status prior to the disaster. Drought vulnerability has been viewed as a potential for losses in the region due to water deficiency at the time of drought. In this study the application of vulnerability concept in drought management in East Azarbaijan province in Iran is investigated by providing vulnerability maps which demonstrates spatial characteristics of drought vulnerability. In the first step, certain governing parameters in drought analysis such as precipitation, temperature, land use, topography, solar radiation and ground water elevation have been investigated in the region. They are described in details and calculated in suitable time series. Vulnerabilities

  20. MAPPING REGIONAL DROUGHT VULNERABILITY: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    M. Karamouz

    2015-12-01

    Full Text Available Drought is among the natural disaster that causes damages and affects many people’s life in many part of the world including in Iran. Recently, some factors such as climate variability and the impact of climate change have influenced drought frequency and intensity in many parts of the world. Drought can be divided into four categories of meteorological, hydrological, agricultural and social-economic. In meteorological the important feature is lack of rainfall. In hydrological drought river flows and dam storage are considered. Lack of soil moisture is the key factor in agricultural droughts while in social-economic type of drought the relation between supply and demand and social-economic damages due to water deficiency is studied. While the first three types relates to the lack of some hydrological characteristics, social-economic type of drought is actually the consequence of other types expressed in monetary values. Many indices are used in assessing drought; each has its own advantages and disadvantages and can be used for specific types of drought. Therefore knowing the types of drought can provide a better understanding of shortages and their characteristics. Drought vulnerability is a concept which shows the likelihood of damages from hazard in a particular place by focusing on the system status prior to the disaster. Drought vulnerability has been viewed as a potential for losses in the region due to water deficiency at the time of drought. In this study the application of vulnerability concept in drought management in East Azarbaijan province in Iran is investigated by providing vulnerability maps which demonstrates spatial characteristics of drought vulnerability. In the first step, certain governing parameters in drought analysis such as precipitation, temperature, land use, topography, solar radiation and ground water elevation have been investigated in the region. They are described in details and calculated in suitable time

  1. The Morphogenic Mapping of the Brain and the Design of the Nervous System

    Directory of Open Access Journals (Sweden)

    Peter Sheesley

    2014-01-01

    Full Text Available This paper reports the discovery of a geometrical algorithm that provides a coherent step by step mechanical account of the structure of the nervous system, including the vertebrate brain, the spinal cord, the vertebral column, and the spinal nerves. The morphology of these organs and the observed steps of neural development are well described, consequent of centuries of study. But morphogenesis, the origin and cause of these forms, has not been studied since the last half of the nineteenth century. Neurology does not teach how the brain gained its shape, nor have any causative theories of brain formation been published in recent times. This paper proposes a hypothetical construction based on the discovery of a simple algorithm which generates topologically the form of the brain, the spinal cord, and the vertebral column by the deformation of a gridded segmented sphere by the inversion of its surface. The hypothetical model is in close analogy with nature: the blastula is a segmented gridded sphere which results from the subdivision of the egg. The first step of embryogenesis is gastrulation, where blastula is pressed to enter its own interior, pulling the surface inside out, forming the embryo.

  2. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99mTc and 123I for seeing the blood flow and receptors. PET using positron emitters like 15O and 18F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  3. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    Science.gov (United States)

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  4. Headache in acute ischaemic stroke: a lesion mapping study.

    Science.gov (United States)

    Seifert, Christian L; Schönbach, Etienne M; Magon, Stefano; Gross, Elena; Zimmer, Claus; Förschler, Anette; Tölle, Thomas R; Mühlau, Mark; Sprenger, Till; Poppert, Holger

    2016-01-01

    Headache is a common symptom in acute ischaemic stroke, but the underlying mechanisms are incompletely understood. The aim of this lesion mapping study was to identify brain regions, which are related to the development of headache in acute ischaemic stroke. Patients with acute ischaemic stroke (n = 100) were assessed by brain MRI at 3 T including diffusion weighted imaging. We included 50 patients with stroke and headache as well as 50 patients with stroke but no headache symptoms. Infarcts were manually outlined and images were transformed into standard stereotaxic space using non-linear warping. Voxel-wise overlap and subtraction analyses of lesions as well as non-parametric statistics were conducted. The same analyses were carried out by flipping of left-sided lesions, so that all strokes were transformed to the same hemisphere. Between the headache group as well as the non-headache there was no difference in infarct volumes, in the distribution of affected vascular beds or in the clinical severity of strokes. The headache phenotype was tension-type like in most cases. Subtraction analysis revealed that in headache sufferers infarctions were more often distributed in two well-known areas of the central pain matrix: the insula and the somatosensory cortex. This result was confirmed in the flipped analysis and by non-parametric statistical testing (whole brain corrected P-value Insular strokes turned out to be strongly associated with headache. As the insular cortex is a well-established region in pain processing, our results suggest that, at least in a subgroup of patients, acute stroke-related headache might be centrally driven. PMID:26603369

  5. Functional mapping of language networks in the normal brain using a word-association task

    Directory of Open Access Journals (Sweden)

    Ghosh Shantanu

    2010-01-01

    Full Text Available Background: Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. Aim: The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI in normal human subjects. Materials and Methods: Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2FNx01-weighted gradient-echo echo-planar imaging (GE-EPI sequence (TR 4523 ms, TE 64 ms, flip angle 90º with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2 with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Results: Single subject analysis of the functional data (FWE-corrected, P≤0.001 revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG, superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG, anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001 revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Conclusions: Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these

  6. Functional mapping of language networks in the normal brain using a word-association task

    International Nuclear Information System (INIS)

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar–occipital–fusiform–thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic

  7. Can Taichi reshape the brain? A brain morphometry study.

    Science.gov (United States)

    Wei, Gao-Xia; Xu, Ting; Fan, Feng-Mei; Dong, Hao-Ming; Jiang, Li-Li; Li, Hui-Jie; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2013-01-01

    Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC) practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT) to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise. PMID:23585869

  8. Can Taichi reshape the brain? A brain morphometry study.

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    Full Text Available Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise.

  9. From fMRI Data To Cognitive Models: Testing the ACT-R Brain Mapping Hypothesis with an Ex-Post Model

    OpenAIRE

    Lenk, Jan Ch.; Möbus, Claus; Özyurt, Jale; Thiel, Christiane M.; Claasen, Arno

    2011-01-01

    Recently, John R. Anderson proposed a correspondence between the modules of his cognitive architecture ACT-R and specific brain regions. This Brain Mapping Hypothesis allows the prediction of Blood-Oxygen-Level Dependent curves for these regions using cognitive models. These predictions may be compared to actual data from functional Magnetic Resonance Imaging experiments. While the Brain Mapping Hypothesis has been tested with very simple tasks mostly from algebraic problem solving, we ...

  10. Statistical physics, neural networks, brain studies

    International Nuclear Information System (INIS)

    An overview of some aspects of a vast domain, located at the crossroads of physics, biology and computer science is presented: (1) During the last fifteen years, physicists advancing along various pathways have come into contact with biology (computational neurosciences) and engineering (formal neural nets). (2) This move may actually be viewed as one component in a larger picture. A prominent trend of recent years, observable over many countries, has been the establishment of interdisciplinary centers devoted to the study of: cognitive sciences; natural and artificial intelligence; brain, mind and behaviour; perception and action; learning and memory; robotics; man-machine communication, etc. What are the promising lines of development? What opportunities for physicists? An attempt will be made to address such questions and related issues

  11. Statistical Physics, Neural Networks, Brain Studies

    Science.gov (United States)

    Toulouse, Gerard

    1999-01-01

    An overview of some aspects of a vast domain, located at the crossroads of physics, biology and computer science is presented: 1) During the last fifteen years, physicists advancing along various pathways have come into contact with biology (computational neurosciences) and engineering (formal neural nets). 2) This move may actually be viewed as one component in a larger picture. A prominent trend of recent years, observable over many countries, has been the establishment of interdisciplinary centers devoted to the study of: cognitive sciences; natural and artificial intelligence; brain, mind and behaviour; perception and action; learning and memory; robotics; man-machine communication, etc. What are the promising lines of development? What opportunities for physicists? An attempt will be made to address such questions, and related issues.

  12. Strategy Maps in University Management: A Comparative Study

    Science.gov (United States)

    Han, Shuangmiao; Zhong, Zhou

    2015-01-01

    In this study, the conceptual use of the strategy map approach and the strategy map which it produces have been adapted from the business sector and introduced as tools for achieving more effective strategic planning and management in higher education institutions (HEIs). This study discusses the development of strategy maps as transformational…

  13. The Role of MAP Kinase Cascade in Neonatal Brain Response to Hypoxia-Ischemic Insult

    OpenAIRE

    Thei, L. J.

    2014-01-01

    Babies that are born more than 8 weeks premature or those deprived of Oxygen during the perinatal period are susceptible to brain injury, particularly in conjunction with maternal or fetal infection, leading to neurological deficits later in life. Multiple studies have shown that even brief exposure to hypoxic conditions will cause rapid and selective increase in specific mitogen-activated protein kinases including extracellular signal - related kinase 1 and 2 (ERK1/2) and C-Jun N-te...

  14. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior

    OpenAIRE

    Jan Oettler; Volker Hartenstein; Sprecher, Simon G.

    2015-01-01

    A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardioco...

  15. Functional brain mapping of actual car-driving using [18F]FDG-PET

    International Nuclear Information System (INIS)

    This study aims at identifying the brain activation during actual car-driving on the road, and at comparing the results to those of previous studies on simulated car-driving. Thirty normal volunteers, aged 20 to 56 years, were divided into three subgroups, active driving, passive driving and control groups, for examination by positron emission tomography (PET) and [18F]2-deoxy-2-fluoro-D-glucose (FDG). The active driving subjects (n=10) drove for 30 minutes on quiet normal roads with a few traffic signals. The passive driving subjects (n=10) participated as passengers on the front seat. The control subjects (n=10) remained seated in a lit room with their eyes open. Voxel-based t-statistics were applied using SPM2 to search brain activation among the subgroups mentioned above. Significant brain activation was detected during active driving in the primary and secondary visual cortices, primary sensorimotor areas, premotor area, parietal association area, cingulate gyms, the parahippocampal gyrus as well as in thalamus and cerebellum. The passive driving manifested a similar-looking activation pattern, lacking activations in the premotor area, cingulate and parahippocampal gyri and thalamus. Direct comparison of the active and passive driving conditions revealed activation in the cerebellum. The result of actual driving looked similar to that of simulated driving, suggesting that visual perception and visuomotor coordination were the main brain functions while driving. In terms of attention and autonomic arousal, however, it seems there was a significant difference between simulated and actual driving possibly due to risk of accidents. Autonomic and emotional aspects of driving should be studied using an actual driving study-design. (author)

  16. High Resolution Mapping of Modafinil Induced Changes in Glutamate Level in Rat Brain

    OpenAIRE

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A.; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a re...

  17. The macular mapping test: a reliability study

    Directory of Open Access Journals (Sweden)

    Davies Leon N

    2005-08-01

    Full Text Available Abstract Background Age-related macular degeneration (ARMD is the leading cause of visual disability in people over 60 years of age in the developed world. The success of treatment deteriorates with increased latency of diagnosis. The purpose of this study was to determine the reliability of the macular mapping test (MMT, and to investigate its potential as a screening tool. Methods The study population comprised of 31 healthy eyes of 31 participants. To assess reliability, four macular mapping test (MMT measurements were taken in two sessions separated by one hour by two practitioners, with reversal of order in the second session. MMT readings were also taken from 17 age-related maculopathy (ARM, and 12 AMD affected eyes. Results For the normal cohort, average MMT scores ranged from 85.5 to 100.0 MMT points. Scores ranged from 79.0 to 99.0 for the ARM group and from 9.0 to 92.0 for the AMD group. MMT scores were reliable to within ± 7.0 points. The difference between AMD affected eyes and controls (z = 3.761, p = Conclusion The reliability data shows that a change of 14 points or more is required to indicate a clinically significant change. This value is required for use of the MMT as an outcome measure in clinical trials. Although there was no difference between MMT scores from ARM affected eyes and controls, the MMT has the advantage over the Amsler grid in that it uses a letter target, has a peripheral fixation aid, and it provides a numerical score. This score could be beneficial in office and home monitoring of AMD progression, as well as an outcome measure in clinical research.

  18. Case studies: Soil mapping using multiple methods

    Science.gov (United States)

    Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful

  19. MR connectomics: a conceptual framework for studying the developing brain

    OpenAIRE

    Patric eHagmann; Patricia Ellen Grant; Fair, Damien A.

    2012-01-01

    THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from i...

  20. Interphone study - on mobile phones and brain tumors

    International Nuclear Information System (INIS)

    Interphone study is the largest study on mobile phone use and risk of brain tumors that have been implemented. The study does not provide reliable answers to whether there is an increased risk of brain tumors using the mobile phone, but is an important contribution. (AG)

  1. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging.

    Science.gov (United States)

    George, J S; Aine, C J; Mosher, J C; Schmidt, D M; Ranken, D M; Schlitt, H A; Wood, C C; Lewine, J D; Sanders, J A; Belliveau, J W

    1995-09-01

    Integrated analyses of human anatomical and functional measurements offer a powerful paradigm for human brain mapping. Magnetoencephalography (MEG) and EEG provide excellent temporal resolution of neural population dynamics as well as capabilities for source localization. Anatomical magnetic resonance imaging (MRI) provides excellent spatial resolution of head and brain anatomy, whereas functional MRI (fMRI) techniques provide an alternative measure of neural activation based on associated hemodynamic changes. These methodologies constrain and complement each other and can thereby improve our interpretation of functional neural organization. We have developed a number of computational tools and techniques for the visualization, comparison, and integrated analysis of multiple neuroimaging techniques. Construction of geometric anatomical models from volumetric MRI data allows improved models of the head volume conductor and can provide powerful constraints for neural electromagnetic source modeling. These approaches, coupled to enhanced algorithmic strategies for the inverse problem, can significantly enhance the accuracy of source-localization procedures. We have begun to apply these techniques for studies of the functional organization of the human visual system. Such studies have demonstrated multiple, functionally distinct visual areas that can be resolved on the basis of their locations, temporal dynamics, and differential sensitivity to stimulus parameters. Our studies have also produced evidence of internal retinotopic organization in both striate and extrastriate visual areas but have disclosed organizational departures from classical models. Comparative studies of MEG and fMRI suggest a reasonable but imperfect correlation between electrophysiological and hemodynamic responses. We have demonstrated a method for the integrated analysis of fMRI and MEG, and we outline strategies for improvement of these methods. By combining multiple measurement techniques, we

  2. Self-Mapping in Treating Suicide Ideation: A Case Study

    Science.gov (United States)

    Robertson, Lloyd Hawkeye

    2011-01-01

    This case study traces the development and use of a self-mapping exercise in the treatment of a youth who had been at risk for re-attempting suicide. A life skills exercise was modified to identify units of culture called "memes" from which a map of the youth's self was prepared. A successful treatment plan followed the mapping exercise. The…

  3. Computed tomography studies of human brain movements

    International Nuclear Information System (INIS)

    Rhythmic brain movements have been revealed by sets of sequential computed tomography scans of human brains (seen retrospectively to be normal). These scans have shown that both (unenhanced) brain parenchymal density and the shapes of the elements of the supratentorial ventricular/cisternal system are subject to wave motions having similar periods - ranging from 26 s through 56 s, 77-96 s, 109 s and 224 s to 224 X 2 s (or even longer), with good correlation between peak values. These motions, as well as phase variations between the waves, suggest a peristaltic movement of cerebrospinal fluid through the ventricular/cisternal system with progressive axial damping

  4. Effects of haloperidol and cocaine pretreatments on brain distribution and kinetics of [11C]methamphetamine in methamphetamine sensitized dog: Application of PET to drug pharmacokinetic study

    International Nuclear Information System (INIS)

    Repeated administration of methamphetamine (MAP) causes behavioral sensitization in animals. We previously reported that the maximum accumulation level of [11C]MAP in the MAP-sensitized dog brain was 1.4 times higher than that in the control. In behavioral studies, haloperidol (a dopamine D2 receptor antagonist) prevents MAP-induced behavioral sensitization, and cocaine (a dopamine reuptake blocker) has the cross-behavioral sensitization with MAP. In the present study, to elucidate the relation between the MAP-induced behavioral sensitization and the pharmacokinetics of MAP, we investigated the effects of haloperidol and cocaine pretreatments on brain regional distribution and kinetics of [11C]MAP using positron emission tomography (PET). A significant increase of [11C]MAP uptake into the sensitized dog brain was prevented by haloperidol and cocaine pretreatments. These pharmacokinetic changes were not due to the changes in the rate of MAP metabolism. These results suggest haloperidol and cocaine can change the cerebral pharmacokinetic profile of MAP in the behavioral-sensitized dog. The variations of MAP-accumulation may affect the development or expression of MAP-induced behavioral sensitization

  5. Hindered diffusion of MRI contrast agents in rat brain extracellular micro-environment assessed by acquisition of dynamic T1 and T2 maps

    International Nuclear Information System (INIS)

    The knowledge of brain tissues characteristics (such as extracellular space and tortuosity) represents valuable information for the design of optimal MR probes for specific bio-markers targeting. This work proposes a methodology based on dynamic acquisition of relaxation time maps to quantify in vivo MRI contrast agent concentration after intracerebral injection in rat brain. It was applied to estimate the hindered diffusion in brain tissues of five contrast agents with different hydrodynamic diameters (DotaremW1 nm, P8464 nm, P7927 nm, P90422 nm and Gd-based emulsion 170 nm). In vivo apparent diffusion coefficients were compared with those estimated in an obstacle-free medium to determine brain extracellular space and tortuosity. At a 2 h imaging timescale, all contrast agents except the Gd-based emulsion exhibited significant diffusion through brain tissues, with characteristic times compatible with MR molecular imaging (≤70 min to diffuse between two capillaries). In conclusion, our experiments indicate that MRI contrast agents with sizes up to 22 nm can be used to perform molecular imaging on intra-cerebral bio-markers. Our quantification methodology allows a precise estimation of apparent diffusion coefficients, which is helpful to calibrate optimal timing between contrast agent injection and MRI observation for molecular imaging studies. (authors)

  6. A study of ICAM expression in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Lee, Seung Hoon; Hong, Seok Il [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    The purpose of this study is to test the possibility of using sICAM-1 as a marker for follow-up of treatment. The micro-ELISA method was adopted. The brain stem gliomas showed positive results in 67%. Overall, 23% of brain tumors showed positive results. It is possible that we can use sICAM-1 as a marker for metastatic brain tumors, and measurement after radiation therapy is not reliable. 6 refs. (Author) (Author).

  7. Variations in in vivo phosphorylation at the proline-rich domain of the microtubule-associated protein 2 (MAP2) during rat brain development.

    Science.gov (United States)

    Sánchez, C; Díaz-Nido, J; Avila, J

    1995-01-01

    Microtubule-associated protein 2 (MAP2) is an in vitro substrate for MAP kinase. Part of the phosphorylation occurs at the C-terminal microtubule-binding domain of the molecule which contains a cluster of putative consensus sites for MAP kinase on a proline-rich region. A peptide with the sequence RTPGTPG-TPSY, located at this region of the molecule, is efficiently phosphorylated by MAP kinase in vitro. An antibody (972) raised against this non-phosphorylated peptide has been used to test for in vivo phosphorylation at the proline-rich domain of the MAP2 molecule. The reaction of purified MAP2 with antibody 972 diminishes after in vitro phosphorylation by MAP kinase and is enhanced after in vitro dephosphorylation by alkaline phosphatase. A fraction of brain MAP2 isolated by iron-chelation affinity chromatography appears to be phosphorylated in vivo at the site recognized by antibody 972. There is some variation in the phosphorylation of MAP2 at the proline-rich region throughout rat brain development. MAP2C is more highly phosphorylated in the developing rat brain, whereas high-molecular-mass MAP2 is more extensively phosphorylated in the adult rat brain. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7887902

  8. The fuzzy brain. Vagueness and mapping connectivity of the human cerebral cortex

    Science.gov (United States)

    Haueis, Philipp

    2012-01-01

    While the past century of neuroscientific research has brought considerable progress in defining the boundaries of the human cerebral cortex, there are cases in which the demarcation of one area from another remains fuzzy. Despite the existence of clearly demarcated areas, examples of gradual transitions between areas are known since early cytoarchitectonic studies. Since multi-modal anatomical approaches and functional connectivity studies brought renewed attention to the topic, a better understanding of the theoretical and methodological implications of fuzzy boundaries in brain science can be conceptually useful. This article provides a preliminary conceptual framework to understand this problem by applying philosophical theories of vagueness to three levels of neuroanatomical research. For the first two levels (cytoarchitectonics and fMRI studies), vagueness will be distinguished from other forms of uncertainty, such as imprecise measurement or ambiguous causal sources of activation. The article proceeds to discuss the implications of these levels for the anatomical study of connectivity between cortical areas. There, vagueness gets imported into connectivity studies since the network structure is dependent on the parcellation scheme and thresholds have to be used to delineate functional boundaries. Functional connectivity may introduce an additional form of vagueness, as it is an organizational principle of the brain. The article concludes by discussing what steps are appropriate to define areal boundaries more precisely. PMID:22973199

  9. The fuzzy brain. Vagueness and the mapping connectivity of the human cortex.

    Directory of Open Access Journals (Sweden)

    Philipp Haueis

    2012-09-01

    Full Text Available While the past century of neuroscientific research has brought considerable progress in defining the boundaries of the human cerebral cortex, there are cases in which the demarcation of one area from another remains fuzzy. Despite the existence of clearly demarcated areas, examples of gradual transitions between areas are known since early cytoarchitectonic studies. Since multi-modal anatomical approaches and functional connectivity studies brought renewed attention to the topic, a better understanding of the theoretical and methodological implications of fuzzy boundaries in brain science can be conceptually useful. This article provides a preliminary conceptual framework to understand this problem by applying philosophical theories of vagueness to three levels neuroanatomical research. For the first two levels (cytoarchitectonics and fMRI studies, vagueness will be distinguished from other forms of uncertainty, such as imprecise measurement or ambiguous causal sources of activation. The article proceeds to discuss the implications of these levels for the anatomical study of connectivity between cortical areas. There, vagueness gets imported into connectivity studies since the network structure is dependent on the parcellation scheme thresholds have to be used to delineate functional boundaries. Functional connectivity may introduce an additional form of vagueness, as it is an organizational principle of the brain. The article concludes by discussing what steps are appropriate to define areal boundaries more precisely.

  10. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    Science.gov (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  11. NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain

    Directory of Open Access Journals (Sweden)

    Krzysztof Jacek Gorgolewski

    2015-04-01

    Full Text Available Here we present NeuroVault — a web based repository that allows researchers to store, share, visualize, and decode statistical maps of the human brain. NeuroVault is easy to use and employs modern web technologies to provide informative visualization of data without the need to install additional software. In addition, it leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps. The data are exposed through a public REST API enabling other services and tools to take advantage of it. NeuroVault is a new resource for researchers interested in conducting meta- and coactivation analyses.

  12. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    OpenAIRE

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibilit...

  13. Study of Uncertainty in Noise Mapping

    OpenAIRE

    Ausejo, M; López, Manuel Recuero; Asensio, C; Pagan Munoz, R Raul; Pavón, I

    2010-01-01

    Noise mapping is a complex process requiring a large amount of data from different sources, which are not always available. In the process, there are many factors involving simplifications, approaches and deviations that contribute to the final uncertainty of the result. An error in the final result of the noise map causes an incorrect amount of exposed population, as well as the design and implementation of inadequate or wrong noise action plans. The uncertainty analysis in the creation of n...

  14. In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM

    International Nuclear Information System (INIS)

    In the search for an in vivo marker of cholinergic neuronal integrity, the authors extended to human use the tracer (-)-5-[123I]iodobenzovesamicol (IBVM)). IBVM, an analog of vesamicol that binds to the acetylcholine transporter on presynaptic vesicles, was prepared with specific activity greater than 1.11 x 109 MBq mmole-1. After intravenous injection of [123I]IBVM, body distribution studies (n = 5) and brain SPECT studies (n = 5) were performed on normal human subjects (n = 10). SPECT images of the brain were collected sequentially over the first 4.5 hr following injection, and again 18 hr later. Data were realigned and transformed to stereotaxic coordinates, and localized activities were extracted for tracer kinetic analysis. The cerebral tracer input function was determined from metabolite-corrected radial arterial blood samples. The best data fit was obtained using a three-compartment model, including terms reflecting cerebral blood volume, exchange of free tracer between plasma and brain and specific binding. Dissociation of bound tracer was negligible for up to 4 hr. For the fitted parameters reflecting transport (K1) and binding site density index (k3, co-efficients of variation were approximately 8% in cortical regions of interest. Relative distributions corresponded well with post-mortem immunohistochemical values reported for the acetylcholine-synthesizing enzyme choline acetyltransferase, k3 (IBVM binding site density index), and tracer activity distribution at 22 hr, but not at 4 hr after injection. SPECT imaging of [123I]IBVM succeeds as an in vivo measure of cholinergic neuronal integrity and should be useful for the study of cerebral degenerative processes such as Alzheimer's disease. 24 refs., 4 figs., 3 tabs

  15. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning

    DEFF Research Database (Denmark)

    Andersen, F; Watanabe, Hideaki; Bjarkam, Carsten;

    2005-01-01

    developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland...... as identified on the average MRI template. The orthogonal planes were imposed using the line between stereotaxic zero and the optic chiasm. A series of mean MR images in the coronal, sagittal and horizontal planes were generated. To test the utility of the common coordinate system for functional....... After global normalization of these maps, an undirected search for differences between the groups was then performed using statistical parametric mapping. Using this method, we detected a statistically significant focal increase in CBF in the left cerebellum of the MPTP-lesioned group. We expect the...

  16. Magnetic resonance studies of brain function and neurochemistry

    OpenAIRE

    Uǧurbil, K.; Adriany, G.; Andersen, P; Chen, W.; Gruetter, R.; Hu, X.; Merkle, H; Kim, D.-S.; Kim, S. -G.; Strupp, J.; Zhu, X H; Ogawa, S

    2000-01-01

    In the short time since its introduction, magnetic resonance imaging (MRI) has rapidly evolved to become an indispensable tool for clinical diagnosis and biomedical research. Recently, this methodology has been successfully used for the acquisition of functional, physiological, and biochemical information in intact systems, particularly in the human body. The ability to map areas of altered neuronal activity in the brain, often referred to as functional magnetic resonance imaging (fMRI), is p...

  17. Edge density imaging: Mapping the anatomic embedding of the structural connectome within the white matter of the human brain

    OpenAIRE

    Owen, JP; Chang, YS; Mukherjee, P

    2015-01-01

    © 2015. The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative i...

  18. Brain imaging and brain function

    International Nuclear Information System (INIS)

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  19. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan

    OpenAIRE

    Itoh, Kanako; Hashimoto, Kenji; Shimizu, Eiji; Sekine, Yoshimoto; Ozaki, Norio; Inada, Toshiya; Harano, Mutsuo; Iwata, Nakao; Komiyama, Tokutaro; Yamada, Mitsuhiko; Sora,Ichiro; Nakata, Kenji; Ujike, Hiroshi; Iyo, Masaomi

    2005-01-01

    Several lines of evidence suggest that genetic factors might contribute to drug abuse vulnerability. Recent genomic scans for association demonstrated that the brain-derived neurotrophic factor (BDNF) gene was associated with drug abuse vulnerability. In this study, we analyzed association of two BDNF gene single nucleotide polymorphisms (SNPs), 132C>T (C270T named formerly) in the noncoding region of exon V and 196G >A (val66met) in the coding region of exon XIIIA, with methamphetamine (MAP)...

  20. Remarkable Reduction of MAP2 in the Brains of Scrapie-Infected Rodents and Human Prion Disease Possibly Correlated with the Increase of Calpain

    OpenAIRE

    Guo, Yan; Gong, Han-Shi; Zhang, Jin; Xie, Wu-Ling; Tian, Chan; Chen, Cao; Shi, Qi; Wang, Shao-Bin; Xu, Yin; Zhang, Bao-Yun; Dong, Xiao-Ping

    2012-01-01

    Microtubule-associated protein 2 (MAP2) belongs to the family of heat stable MAPs, which takes part in neuronal morphogenesis, maintenance of cellular architecture and internal organization, cell division and cellular processes. To obtain insight into the possible alteration and the role of MAP2 in transmissible spongiform encephalopathies (TSEs), the MAP2 levels in the brain tissues of agent 263K-infected hamsters and human prion diseases were evaluated. Western blots and IHC revealed that a...

  1. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  2. Accelerated brain aging in schizophrenia : A longitudinal pattern recognition study

    NARCIS (Netherlands)

    Schnack, Hugo G.; Van Haren, Neeltje E M; Nieuwenhuis, Mireille; Pol, Hilleke E Hulshoff; Cahn, Wiepke; Kahn, René S.

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  3. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age

    OpenAIRE

    Sutherland, Greg T.; Sheedy, Donna; Kril, Jillian J.

    2013-01-01

    The New South Wales Tissue Resource Centre (NSW TRC) at the University of Sydney, Australia is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency and alcoholic n...

  4. Study Suggests Brain Is Hard-Wired for Chronic Pain

    Science.gov (United States)

    ... News Release Tuesday, September 17, 2013 NIH-funded study suggests brain is hard-wired for chronic pain ... Apkarian, Ph.D., a senior author of the study and professor of physiology at Northwestern University Feinberg ...

  5. Mapped Chebyshev pseudospectral method to study multiple scale phenomena

    CERN Document Server

    alexandrescu, Adrian; Salgueiro, Jose R; Perez-Garcia, Victor M

    2007-01-01

    In the framework of mapped pseudospectral methods, we introduce a new polynomial-type mapping function in order to describe accurately the dynamics of systems developing almost singular structures. Using error criteria related to the spectral interpolation error, the new polynomial-type mapping is compared against previously proposed mappings for the study of collapse and shock wave phenomena. As a physical application, we study the dynamics of two coupled beams, described by coupled nonlinear Schr\\"odinger equations and modeling beam propagation in an atomic coherent media, whose spatial sizes differs up to several orders of magnitude. It is demonstrated, also by numerical simulations, that the accuracy properties of the new polynomial-type mapping outperforms in orders of magnitude the ones of the other studied mapping functions.

  6. Brain-oriented care in the NICU: a case study.

    Science.gov (United States)

    Bader, Lisa

    2014-01-01

    With the advances of technology and treatment in the field of neonatal care, researchers can now study how the brains of preterm infants are different from full-term infants. The differences are significant, and the outcomes are poor overall for premature infants as a whole. Caregivers at the bedside must know that every interaction with the preterm infant affects brain development-it is critical to the developmental outcome of the infant. The idea of neuroprotection is not new to the medical field but is a fairly new idea to the NICU. Neuroprotection encompasses all interventions that promote normal development of the brain. The concept of brain-oriented care is a necessary extension of developmental care in the NICU. By following the journey of 26-week preterm twin infants through a case study, one can better understand the necessity of brain-oriented care at the bedside. PMID:25161134

  7. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    International Nuclear Information System (INIS)

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm2. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R2 = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  8. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  9. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    International Nuclear Information System (INIS)

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  10. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Youl; Sun, Joo Sung; Kim, Sun Yong; Kim, Ji Hyung; Suh, Jung Ho; Cho, Kyung Gi; Kim, Jang Sung [Ajou University, School of Medicine, Su won (Korea, Republic of)

    2000-01-01

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  11. Structural MRI studies of language function in the undamaged brain

    OpenAIRE

    Richardson, F. M.; Price, C.J.

    2009-01-01

    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-bas...

  12. Magnetoencephalography in studies of human cognitive brain function.

    Science.gov (United States)

    Näätänen, R; Ilmoniemi, R J; Alho, K

    1994-09-01

    Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activity with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brain-imaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects of brain activity during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by EEG, magnetoencephalography holds great promise as a tool for revealing information-processing sequences of the human brain. PMID:7529443

  13. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  14. Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections.

    Science.gov (United States)

    Papp, Eszter A; Leergaard, Trygve B; Csucs, Gergely; Bjaalie, Jan G

    2016-01-01

    Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain (v2) by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data. PMID:27148038

  15. Preliminary study on computer automatic quantification of brain atrophy

    International Nuclear Information System (INIS)

    Objective: To study the variability of normal brain volume with the sex and age, and put forward an objective standard for computer automatic quantification of brain atrophy. Methods: The cranial volume, brain volume and brain parenchymal fraction (BPF) of 487 cases of brain atrophy (310 males, 177 females) and 1901 cases of normal subjects (993 males, 908 females) were calculated with the newly developed algorithm of automatic quantification for brain atrophy. With the technique of polynomial curve fitting, the mathematical relationship of BPF with age in normal subjects was analyzed. Results: The cranial volume, brain volume and BPF of normal subjects were (1 271 322 ± 128 699) mm3, (1 211 725 ± 122 077) mm3 and (95.3471 ± 2.3453)%, respectively, and those of atrophy subjects were (1 276 900 ± 125 180) mm3, (1 203 400 ± 117 760) mm3 and BPF(91.8115 ± 2.3035)% respectively. The difference of BPF between the two groups was extremely significant (P0.05). The expression P(x)=-0.0008x2 + 0.0193x + 96.9999 could accurately describe the mathematical relationship between BPF and age in normal subject (lower limit of 95% CI y=-0.0008x2+0.0184x+95.1090). Conclusion: The lower limit of 95% confidence interval mathematical relationship between BPF and age could be used as an objective criteria for automatic quantification of brain atrophy with computer. (authors)

  16. An autoradiographic map of (3H)diprenorphine binding in rat brain: effects of social interaction

    International Nuclear Information System (INIS)

    (3H)Diprenorphine binding was analyzed autoradiographically in the brains of 33 day old rat pups. A photographic atlas of diprenorphine binding in the coronal plane is provided to highlight the dispersion of opioid receptor systems through the brain. To determine whether brain opioid release may be induced by social interactions, half the animals were sacrificed following a 30 min period of social interaction while the other half were sacrificed following 30 min of social isolation. Opioid binding was higher in isolate-tested animals than socially-tested ones, suggesting that social interaction may promote endogenous brain opioid release

  17. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  18. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    NARCIS (Netherlands)

    Geurtsen, G.J.; Martina, J.D.; Heugten, C.M. van; Geurts, A.C.H.

    2008-01-01

    PURPOSE: To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. DESIGN: Prospective cohort study. SUBJECTS: Twenty-four participants with acquired brain injury (traumatic

  19. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    International Nuclear Information System (INIS)

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  20. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jin [Dept. of Radiology, Dongsan Hospital, Keimyung University, Daegu (Korea, Republic of); Lee, Joo Young [GE Healthcare, Seoul (Korea, Republic of); Chang, Hyuk Won [Dept. of Radiology, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  1. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    Science.gov (United States)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  2. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  3. Data management for genomic mapping applications: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, V.M.; Lewis, S.; McCarthy, J.; Olken, F.; Zorn, M.

    1992-05-01

    In this paper we describe a new approach to the construction of data management systems for genomic mapping applications in molecular biology, genetics, and plant breeding. We discuss the architecture of such systems and propose an incremental approach to the development of such systems. We illustrate the proposed approach and architecture with a case study of a prototype data management system for genomic maps.

  4. The brain as a distributed intelligent processing system: an EEG study.

    Directory of Open Access Journals (Sweden)

    Armando Freitas da Rocha

    Full Text Available BACKGROUND: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS, first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. METHODOLOGY AND PRINCIPAL FINDINGS: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Wechsler Adult Intelligence Scale and WISC (Wechsler Intelligence Scale for Children, and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. CONCLUSION: The present results support these claims and the neural efficiency hypothesis.

  5. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language

  6. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). PMID:24033426

  7. Vocal emotion of humanoid robots: a study from brain mechanism.

    Science.gov (United States)

    Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings. PMID:24587712

  8. Using MARCM to study Drosophila brain development.

    Science.gov (United States)

    Viktorin, Gudrun

    2014-01-01

    Mosaic analysis with a repressible cell marker (MARCM) generates positively labeled, wild-type or mutant mitotic clones by unequally distributing a repressor of a cell lineage marker, originally tubP-driven GAL80 repressing the GAL4/UAS system. Variations of the technique include labeling of both sister clones (twin spot MARCM), the simultaneous use of two different drivers within the same clone (dual MARCM), as well as the use of different repressible transcription systems (Q-MARCM). MARCM can be combined with any UAS-based construct, such as localized GFP fusions to visualize subcellular compartments, genes for rescue and ectopic expression, and modifiers of neural activity. A related technique, the twin spot generator, generates positively labeled clones without the use of a repressor, thus minimizing the lag time between clone induction and appearance of label. The present protocol provides a detailed description of a standard MARCM analysis of brain development that includes generation of MARCM stocks and crosses, induction of clones, brain dissection at various stages of development, immunohistochemistry, and confocal microscopy, and can be modified for similar experiments involving mitotic clones. PMID:24048928

  9. A 18F-FDG uptake study of brain and abnormal brain connection in advanced Parkinson's disease

    International Nuclear Information System (INIS)

    Objective: To assess the changes in regional glucose metabolism and abnormal brain connection in advanced Parkinson's disease (PD) with 18F-fluorodeoxyglucose (FDG) PET imaging. Methods: Ten advanced PD patients and 10 age-matched healthy subjects underwent 18F-FDG PET imaging at rest-state. Statistical parametric mapping (SPM) was used to investigate regional cerebral metabolic rate of glucose. Results: Compared to age-matched healthy subjects, the regional glucose metabolism increased in bilateral hippocampus, thalamus, precentral cortex (BA6) and lentiform, whereas decreased in bilateral prefrontal motor area (BA46, BA47), parietal area (BA7, BA39) in advanced PD cases. Conclusions: Hypermetabolism in thalamus and lentiform accompany with hypometabolism in prefrontal motor and parietal cortex area was found in advanced PD patients, thereby the abnormal functional connection showed by FDG PET imaging is helpful to the diagnosis and also for the study of the pathophysiology of PD

  10. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa;

    2013-01-01

    developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  11. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.;

    2014-01-01

    Purpose. Breathing induced dynamic B0 field perturbations in the head can lead to artefacts in ultra-high field MR by causing line broadening in spectroscopy and signal dropout, ghosting, displacement artifacts and blurring in imaging. It has recently been proposed to continuously stabilize...... the magnetic field by real-time updating of the shim fields, based on synchronous field measurements with external probes1,2. A thorough analysis of how accurate such field measurements at few (e.g. 16) positions outside the head can reflect the spatially varying dynamic fields inside the head is currently...... lacking. In this study a comparison between scanner-acquired field maps of the head, and corresponding field probe measurements is presented both during in- and expiration. In addition, the field probe measurements have been used to perform real-time updating of the linear shim- settings. Methods. Setup...

  12. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales.

    Science.gov (United States)

    Hogstrom, L J; Guo, S M; Murugadoss, K; Bathe, M

    2016-02-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  13. The Learning of Mind Mapping in Higher Education: A Comparative Study Between Universidad de Córdoba and Università di Roma-La Sapienza

    OpenAIRE

    Muñoz González; Juan Muñoz; Vega Gea; Esther María; Figueroa Flores; Jorge Francisco

    2014-01-01

    In this paper we propose Mind Mapping as a technique which enhances holistic learning or whole brain learning in higher education. The dynamics performed in the learning and application of Mind Mapping is part of a participatory approach in the classroom as an element of the learning process. The research approach follows a quantitative methodology. The results reflect the views of students about the learning of Mind Mapping and its effectiveness in the study. The findings indicate that menta...

  14. Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain.

    Science.gov (United States)

    Guo, Yan; Gong, Han-Shi; Zhang, Jin; Xie, Wu-Ling; Tian, Chan; Chen, Cao; Shi, Qi; Wang, Shao-Bin; Xu, Yin; Zhang, Bao-Yun; Dong, Xiao-Ping

    2012-01-01

    Microtubule-associated protein 2 (MAP2) belongs to the family of heat stable MAPs, which takes part in neuronal morphogenesis, maintenance of cellular architecture and internal organization, cell division and cellular processes. To obtain insight into the possible alteration and the role of MAP2 in transmissible spongiform encephalopathies (TSEs), the MAP2 levels in the brain tissues of agent 263K-infected hamsters and human prion diseases were evaluated. Western blots and IHC revealed that at the terminal stages of the diseases, MAP2 levels in the brain tissues of scrapie infected hamsters, a patient with genetic Creutzfeldt-Jakob disease (G114V gCJD) and a patient with fatal familial insomnia (FFI) were almost undetectable. The decline of MAP2 was closely related with prolonged incubation time. Exposure of SK-N-SH neuroblastoma cell line to cytotoxic PrP106-126 peptide significantly down-regulated the cellular MAP2 level and remarkably disrupted the microtubule structure, but did not alter the level of tubulin. Moreover, the levels of calpain, which mediated the degradation of a broad of cytoskeletal proteins, were significantly increased in both PrP106-126 treated SK-N-SH cells and brain tissues of 263K prion-infected hamsters. Our data indicate that the decline of MAP2 is a common phenomenon in TSEs, which seems to occur at an early stage of incubation period. Markedly increased calpain level might contribute to the reduction of MAP2. PMID:22272295

  15. Different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains: analysis by statistical parametric mapping

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the differences between technetium-99m ethyl cysteinate dimer (99mTc-ECD) and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) uptake in the same brains by means of statistical parametric mapping (SPM) analysis. We examined 20 patients (9 male, 11 female, mean age 62±12 years) using 99mTc-ECD and 99mTc-HMPAO single-photon emission tomography (SPET) and magnetic resonance imaging (MRI) of the brain less than 7 days after onset of stroke. MRI showed no cortical infarctions. Infarctions in the pons (6 patients) and medulla (1), ischaemic periventricular white matter lesions (13) and lacunar infarction (7) were found on MRI. Split-dose and sequential SPET techniques were used for 99mTc-ECD and 99mTc-HMPAO brain SPET, without repositioning of the patient. All of the SPET images were spatially transformed to standard space, smoothed and globally normalized. The differences between the 99mTc-ECD and 99mTc-HMPAO SPET images were statistically analysed using statistical parametric mapping (SPM) 96 software. The difference between two groups was considered significant at a threshold of uncorrected P values less than 0.01. Visual analysis showed no hypoperfused areas on either 99mTc-ECD or 99mTc-HMPAO SPET images. SPM analysis revealed significantly different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains. On the 99mTc-ECD SPET images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the left superior temporal lobe and in the superior region of the cerebellum. On the 99mTc-HMPAO SPET images, relatively higher uptake was observed in the medial temporal lobes, thalami, periventricular white matter and brain stem. These differences in uptake of the two tracers in the same brains on SPM analysis suggest that interpretation of cerebral perfusion is possible using SPET with 99mTc-ECD and 99mTc-HMPAO. (orig.)

  16. Neuroimaging studies of the aging HIV-1-infected brain

    OpenAIRE

    Holt, John L.; Kraft-Terry, Stephanie D.; Chang, Linda

    2012-01-01

    Highly active antiretroviral therapy (HAART) has increased life expectancy among HIV-infected individuals, and by 2015, at least half of all HIV-infected individuals will be over 50 years of age. Neurodegenerative processes associated with aging may be facilitated by HIV-1 infection, resulting in premature brain aging. This review will highlight brain abnormalities in HIV patients in the setting of aging, focusing on recent neuroimaging studies of the structural, physiological, functional and...

  17. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    International Nuclear Information System (INIS)

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  18. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  19. Statistical Approaches for the Study of Cognitive and Brain Aging

    Science.gov (United States)

    Chen, Huaihou; Zhao, Bingxin; Cao, Guanqun; Proges, Eric C.; O'Shea, Andrew; Woods, Adam J.; Cohen, Ronald A.

    2016-01-01

    Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers. To overcome those obstacles, we introduce several advanced statistical methods for analyzing data from cognitive and brain aging studies. Specifically, we introduce semiparametric models for modeling age effects, graphical models for brain network analysis, and penalized regression methods for selecting the most important markers in predicting cognitive outcomes. We illustrate these methods using the healthy aging data from the Active Brain Study. PMID:27486400

  20. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights.

    Science.gov (United States)

    Acquaah-Mensah, George K; Taylor, Ronald C

    2016-07-15

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen Brain Atlas mouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networks were learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations in mouse whole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD. PMID:27050105

  1. Ventricles of brain: A morphometric study by computerized tomography

    Directory of Open Access Journals (Sweden)

    Brij Raj Singh, Ujwal Gajbe, Amit Agrawal, Anilkumar Reddy Y, Sunita Bhartiya

    2014-04-01

    Full Text Available Introduction: As the human brain ages, characteristic structural changes occur that are considered to be normal and are expected. Thus the thorough knowledge of the age related normal changes that occur in the brain is required before any abnormal findings are analyzed. As ageing advances, the brain undergoes many gross and histopathological changes with regression of the brain tissue leading to the enlargement of the ventricles. To understand these changes the knowledge of normal morphometry and size of normal ventricular system of brain is important. Materials & Methods: For the present study 358 (Males – 207 and Females – 151 individuals Computerized Tomography (CT images of brain studied. Measurements of fourth ventricle, third ventricle and lateral ventricle were noted down from CT images and it was statistically analyzed. Results: After analysis it was observed that the height and width of the fourth ventricle was larger in males as compared to females. The length of the third ventricle was observed to be greater in females than in males. The width of the third ventricle it was observed to be greater in males than in females. Antero-posterior extent of the left frontal horn (males = 26.26 ± 2.94, 95% CI 25.86 – 26.66 mm and females = 26.53 ± 3.38, 95% CI 25.99 – 27.08 mm was greater than that of the right ones (males = 25.00 ± 3.18, 95% CI 24.57 – 25.44 mm and females = 25.34 ± 3.50, 95% CI 24.78 – 25.90 mm. Conclusion: Advances in sensitive imaging techniques like the Computerized Tomography helps in dramatic expansion of our understanding of the normal structure of brain. The present study has defined the morphometric measurements of the lateral ventricles, third ventricle, and fourth ventricle of the brain which has clinical correlations in diagnosis and for further line of treatment.

  2. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  3. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  4. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  5. The "frontal syndrome" revisited: lessons from electrostimulation mapping studies.

    Science.gov (United States)

    Duffau, Hugues

    2012-01-01

    For a long time, in a localizationist view of brain functioning, a combination of symptoms called "frontal syndrome" has been interpreted as the direct result of damages involving the frontal lobe(s). The goal of this review is to challenge this view, that is, to move to a hodotopical approach to lesion mapping, on the basis of new insights provided by intraoperative electrostimulation mapping investigations in patients who underwent awake surgery for cerebral tumors. These original data reported in the last decade break with the traditional dogma of a modular and fixed organization of the central nervous system, by switching to the concepts of cerebral connectivity and plasticity - i.e., a brain organization based on dynamic interrelationships between parallel distributed networks. According to this revisited model, "frontal symptoms" can be generated by tumor or electrostimulation not only of the frontal lobes, but also of cortical and subcortical (white matter pathways/deep gray nuclei) structures outside the frontal lobes: especially, stimulation of the superior longitudinal fascicle may elicit speech production disorders, syntactic disturbances, involuntary language switching or phonemic paraphasia (arcuate fascicle), stimulation of the inferior fronto-occipital fascicle can generate semantic paraphasia or deficit of cross-modal judgment, stimulation of the subcallosal fasciculus may elicit transcortical motor aphasia, while stimulation of the striatum induces preservations. On the other hand, it is also possible to perform extensive right or left frontal lobectomy in patients who continue to have a normal familial, social and professional life, without "frontal syndrome". Therefore, this provocative approach may open the door to a renewal in the modeling of brain processing as well as in its clinical applications, especially in the fields of cerebral surgery and functional rehabilitation. These findings illustrate well the need to reinforce links between

  6. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    Science.gov (United States)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  7. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    Directory of Open Access Journals (Sweden)

    Bangert Marc

    2003-10-01

    Full Text Available Abstract Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials induced by short (20 minute and long term (5 week piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard.

  8. Individual voxel-based analysis of brain magnetization transfer maps shows great variability of gray matter injury in the first stage of multiple sclerosis.

    Science.gov (United States)

    Jure, Lorena; Zaaraoui, Wafaa; Rousseau, Celia; Reuter, Françoise; Rico, Audrey; Malikova, Irina; Confort-Gouny, Sylviane; Cozzone, Patrick J; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2010-08-01

    In multiple sclerosis (MS), it seems likely that the variability of the long-term disability might be partly due to the variability of the early gray matter (GM) injury. In the present study, we assessed the variability of GM injury in early MS, using a method designed to determine individual pathological GM patterns. Eighteen patients presenting with a clinically isolated syndrome and 24 healthy matched control subjects were included in this study. Patients were explored using a 1.5 Tesla MR scanner (Magnetom Vision Plus; Siemens). Brain MR protocol included magnetization transfer ratio imaging (MTR). Statistical mapping analyses were performed to compare each subject's GM MTR maps with those of the whole group of control subjects (SPM5). The statistical threshold was taken to be the maximum P value showing no significant cluster when any control individual was compared with the whole control population. GM abnormalities were observed in 83% of the patients, ranging in size from 0.3 to 125 cm(3). Among the patients with GM abnormalities, 87% had abnormalities located in the temporal cortex, 80% in the frontal cortex, 80% in the limbic cortex, 73% in the posterior fossa, 53% in the deep GM, 47% in the parietal cortex, and 47% in the occipital cortex. Individual statistical mapping of MTR data, which gives a quantitative assessment of individual GM lesions, demonstrates great variability of grey matter injury in the first stage of multiple sclerosis. PMID:20677272

  9. eConnectome: A MATLAB Toolbox for Mapping and Imaging of Brain Functional Connectivity

    OpenAIRE

    He, Bin; Dai, Yakang; Astolfi, Laura; Babiloni, Fabio; Yuan, Han; Yang, Lin

    2010-01-01

    We have developed a MATLAB-based toolbox, eConnectome (electrophysiological connectome), for mapping and imaging functional connectivity at both the scalp and cortical levels from the electroencephalogram (EEG), as well as from the electrocorticogram (ECoG). Graphical user interfaces were designed for interactive and intuitive use of the toolbox. Major functions of eConnectome include EEG/ECoG preprocessing, scalp spatial mapping, cortical source estimation, connectivity analysis, and visuali...

  10. Mapping EEG-Potentials on the Surface of the Brain : a Strategy for Uncovering Cortical Sources

    OpenAIRE

    Junghöfer, Markus; Elbert, Thomas; Leiderer, Paul; Berg, Patrick; Rockstroh, Brigitte

    1997-01-01

    This paper describes a uniform method for calculating the interpolation of scalp EEG potential distibution, the current source density (CSD), the cortical potential distribution (cortical mapping) and the CSD ot the cortical potential distribution. It will be shown that interpolation and deblurring methods such as CSD or cortical mapping are not independent of the inverse problem in potential theory. Not only the resolution but also the accuracy of these techniques, especially those of deblur...

  11. Mapping the epileptic brain with EEG dynamical connectivity: Established methods and novel approaches

    Science.gov (United States)

    Papadopoulou, Margarita; Vonck, Kristl; Boon, Paul; Marinazzo, Daniele

    2012-11-01

    Several algorithms rooted in statistical physics, mathematics and machine learning are used to analyze neuroimaging data from patients suffering from epilepsy, with the main goals of localizing the brain region where the seizure originates from and of detecting upcoming seizure activity in order to trigger therapeutic neurostimulation devices. Some of these methods explore the dynamical connections between brain regions, exploiting the high temporal resolution of the electroencephalographic signals recorded at the scalp or directly from the cortical surface or in deeper brain areas. In this paper we describe this specific class of algorithms and their clinical application, by reviewing the state of the art and reporting their application on EEG data from an epileptic patient.

  12. 海洛因依赖者的脑电地形图%MAPS OF BRAIN ELECTRICAL ACTIVITY OF HEROIN ADDICTS

    Institute of Scientific and Technical Information of China (English)

    杨宝元; 张国印; 徐本树; 铁恩贵

    2001-01-01

    目的:了解海洛因依赖者存在戒断症状时的脑电地形图的特征。方法:用脑电图机记录32例有戒断症状的海洛因依赖者及34例正常人的脑电地形图并用计算机进行定量分析。结果:与对照组比较,海洛因依赖者(1)慢波频段(δ、θ)功率值增高;(2)α1、α2功率值减低;(3)快波频段(β1、β2)的枕区(O1、O2)功率值增高。结论:从脑电生理角度观察海洛因对大脑功能的损害是有意义的。%Objective: To study the character of the brain electricalactivity maps(BEAM) of heroin addicts with withdrawal syndromes. Method: The brain electrical activity maps ( BEAM ) of 32 heroin addicts with withdrawal syndromes and 34 normal controls were recorded with electroencephalograph and quantitatively analysed with computer. Result: In the BEAM of heroin addicts with withdrawal syndromes, the power values of slow wave(δ,θ) increased; α1 , α2 decreased; rapid wave frequency sect (β1, β2) in occipital area (O1,O2)increased. Conclusion: Observation of brain electrical physiology has some value in the assessment of the damage of cerebral function caused by heroin.

  13. High-Throughput, High-Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing.

    Science.gov (United States)

    Mikuni, Takayasu; Nishiyama, Jun; Sun, Ye; Kamasawa, Naomi; Yasuda, Ryohei

    2016-06-16

    A scalable and high-throughput method to identify precise subcellular localization of endogenous proteins is essential for integrative understanding of a cell at the molecular level. Here, we developed a simple and generalizable technique to image endogenous proteins with high specificity, resolution, and contrast in single cells in mammalian brain tissue. The technique, single-cell labeling of endogenous proteins by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (SLENDR), uses in vivo genome editing to insert a sequence encoding an epitope tag or a fluorescent protein to a gene of interest by CRISPR-Cas9-mediated homology-directed repair (HDR). Single-cell, HDR-mediated genome editing was achieved by delivering the editing machinery to dividing neuronal progenitors through in utero electroporation. We demonstrate that SLENDR allows rapid determination of the localization and dynamics of many endogenous proteins in various cell types, regions, and ages in the brain. Thus, SLENDR provides a high-throughput platform to map the subcellular localization of endogenous proteins with the resolution of micro- to nanometers in the brain. PMID:27180908

  14. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barapatre, Nirav, E-mail: barapatre@physik.uni-leipzig.d [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Morawski, Markus [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnalle 59, 04109 Leipzig (Germany); Butz, Tilman; Reinert, Tilo [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  15. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    International Nuclear Information System (INIS)

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  16. Mapping of kisspeptin fibres in the brain of the pro-oestrus rat

    DEFF Research Database (Denmark)

    Desroziers, E; Mikkelsen, J; Simonneaux, V; Grøftehauge, Morten Keller; Tillet, Y; Caraty, A; Franceschini, I

    2010-01-01

    rat brain by comparing precisely the immunoreactive pattern obtained with two antibodies: one specifically directed against kisspeptin-52 (Kp-52), the longest isoform, and the other directed against kisspeptin-10 (Kp-10) whose sequence is common to all putative mature isoforms. With both antibodies......, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular...

  17. Analysis of individual brain activation maps using hierarchical description and multiscale detection

    International Nuclear Information System (INIS)

    The authors propose a new method for the analysis of brain activation images that aims at detecting activated volumes rather than pixels. The method is based on Poisson process modeling, hierarchical description, and multiscale detection (MSD). Its performances have been assessed using both Monte Carlo simulated images and experimental PET brain activation data. As compared to other methods, the MSD approach shows enhanced sensitivity with a controlled overall type I error, and has the ability to provide an estimate of the spatial limits of the detected signals. It is applicable to any kind of difference image for which the spatial autocorrelation function can be approximated by a stationary Gaussian function

  18. Brain activation study during urine withhold by 99Tcm-HMPAO SPECT brain imaging

    International Nuclear Information System (INIS)

    Objective: Lose of urinary continence control is related with the pathological process of many brain damages. The aim of this study was to identify cerebral activation areas during withholding urine in healthy subjects with cerebral perfusion agent [99Tcm-hexamethylpropylene amine oxime (HMPAO)]. Methods: Fifteen right-handed healthy male volunteers (age ranged 24 to 45 years old) was recruited. All had two brain perfusion SPECT scans (15 volunteers with 30 scans). One was at resting state with empty bladder and the other was at urine withholding state with full bladder. The images were analyzed by neurological statistical image analysis software (NEUROSTAT) and was displayed on Z-score images at a significance threshold of P<0.05 with correction for multiple comparisons. Results: As compared with resting, the urine withholding state showed a significant increase cerebral perfusion in bilateral inferior frontal gyri, the right superior and middle temporal gyri, with the most significant in the right inferior frontal gyms. Conclusions: Although the control of urinary continence in healthy men was associated with bilateral inferior frontal gyri and the right superior and middle temporal gyri, the results showed that the right inferior frontal gyms might also be important. Moreover, the combination of brain perfusion SPECT and NEUROSTAT was a rather easy method for further understanding the mechanism of urinary control in brain and could be popularized as a research tool for clinical use. (authors)

  19. Mapping the Interdisciplinarity in Scientometric Studies

    Directory of Open Access Journals (Sweden)

    Mahmood Khosrowjerdi

    2013-03-01

    The data was extracted from Web of Science (WoS. The results showed that scientometric studies were a part of interdisciplinary studies. Furthermore, the library and information science and computer science had major contribution to this field.

  20. Rapid methods of landslide hazard mapping : Fiji case study

    OpenAIRE

    Greenbaum, D.; Bowker, M.R.; Dau, I.; Dropsy, H.; Greally, K.B.; McDonald, A; S. H. Marsh; Northmore, K.J.; O'Connor, E.A.; S. Prasad; Tragheim, D. G.

    1995-01-01

    A landslide hazard probability map can help planners (1) prepare for, and/or mitigate against, the effects of landsliding on communities and infrastructure, and (2) avoid or minimise the risks associated with new developments. The aims of the project were to establish, by means of studies in a few test areas, a generic method by which remote sensing and data analysis using a geographic information system (GIS) could provide a provisional landslide hazard zonation map. The provi...

  1. Positron emission tomography (PET) study of the alterations in brain pharmacokinetics of methamphetamine in methamphetamine sensitized animals

    International Nuclear Information System (INIS)

    I investigated the differences in brain pharmacokinetics of [11C]methamphetamine ([11C]MAP) in normal and MAP sensitized animals using positron emission tomography (PET). [11C]MAP was synthesized by an automated on-line [11C]methylation system. I newly produced MAP sensitized dog and monkey by repeated MAP treatment. The maximal level of accumulation of [11C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. This result suggests the changes in the pharmacokinetic profile of MAP in the brain affect the development or expression of MAP-induced behavioral sensitization. However, the overaccumulation of [11C]MAP in the sensitized monkey brain was not observed due to the influence of anesthesia. (author)

  2. Study Reveals Brain Biology behind Self-Control

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  3. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    International Nuclear Information System (INIS)

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (VCSF) and the T2 of CSF (T2,CSF) was calculated. The correlation between VCSF / T2,CSF and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2 of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  4. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  5. Integrated modeling of PET and DTI information based on conformal brain mapping

    Science.gov (United States)

    Zou, Guangyu; Xi, Yongjian; Heckenburg, Greg; Duan, Ye; Hua, Jing; Gu, Xiangfeng

    2006-03-01

    Recent advances in imaging technologies, such as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Diffusion Tensor Imaging (DTI) have accelerated brain research in many aspects. In order to better understand the synergy of the many processes involved in normal brain function, integrated modeling and analysis of MRI, PET, and DTI is highly desirable. Unfortunately, the current state-of-art computational tools fall short in offering a comprehensive computational framework that is accurate and mathematically rigorous. In this paper we present a framework which is based on conformal parameterization of a brain from high-resolution structural MRI data to a canonical spherical domain. This model allows natural integration of information from co-registered PET as well as DTI data and lays the foundation for a quantitative analysis of the relationship between diverse data sets. Consequently, the system can be designed to provide a software environment able to facilitate statistical detection of abnormal functional brain patterns in patients with a large number of neurological disorders.

  6. MR connectomics: a conceptual framework for studying the developing brain.

    Science.gov (United States)

    Hagmann, Patric; Grant, Patricia E; Fair, Damien A

    2012-01-01

    THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research. PMID:22707934

  7. MR Connectomics: A Conceptual Framework for Studying The Developing Brain

    Directory of Open Access Journals (Sweden)

    Patric eHagmann

    2012-06-01

    Full Text Available The combination of advanced neuroimaging techniques and major developments in complex network science, have given birth to a new framework for studying the brain: connectomics. This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today’s advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research.

  8. Gamification in Education: A Systematic Mapping Study

    Science.gov (United States)

    Dicheva, Darina; Dichev, Christo; Agre, Gennady; Angelova, Galia

    2015-01-01

    While gamification is gaining ground in business, marketing, corporate management, and wellness initiatives, its application in education is still an emerging trend. This article presents a study of the published empirical research on the application of gamification to education. The study is limited to papers that discuss explicitly the effects…

  9. Studying brain function with near-infrared spectroscopy concurrently with electroencephalography

    Science.gov (United States)

    Tong, Y.; Rooney, E. J.; Bergethon, P. R.; Martin, J. M.; Sassaroli, A.; Ehrenberg, B. L.; Van Toi, Vo; Aggarwal, P.; Ambady, N.; Fantini, S.

    2005-04-01

    Near-infrared spectroscopy (NIRS) has been used for functional brain imaging by employing properly designed source-detector matrices. We demonstrate that by embedding a NIRS source-detector matrix within an electroencephalography (EEG) standard multi-channel cap, we can perform functional brain mapping of hemodynamic response and neuronal response simultaneously. In this study, the P300 endogenous evoked response was generated in human subjects using an auditory odd-ball paradigm while concurrently monitoring the hemodynamic response both spatially and temporally with NIRS. The electrical measurements showed the localization of evoked potential P300, which appeared around 320 ms after the odd-ball stimulus. The NIRS measurements demonstrate a hemodynamic change in the fronto-temporal cortex a few seconds after the appearance of P300.

  10. Mean transit time image - a new method of analyzing brain perfusion studies

    International Nuclear Information System (INIS)

    Point-by-point calculation of the mean transit time based on gamma fit was used to analyze brain perfusion studies in a vertex view. The algorithm and preliminary results in normal brain and in different stages of cerebral perfusion abnormality (ischemia, stroke, migraine, tumor, abscess) are demonstrated. In contrast to the traditional methods using fixed, a priori defined regions of interest this type of mapping of the relative regions cerebral perfusion shows more clearly the irregular outlines of the disturbance. Right to left activity ratios in the arterial part of the time-activity curves showed significant correlation with the mean transit time ratios (Q1=1.185-0.192 Qsub(a), n=38, r=0.716, P<0.001). (orig.)

  11. Multi Rotor Uav at Different Altitudes for Slope Mapping Studies

    Science.gov (United States)

    Tahar, K. N.

    2015-08-01

    Most of consultation work only involves a small area, especially for slope mapping studies. The objective of this study is to evaluate the accuracy of slope mapping results from different altitudes at semi-undulated area and undulated area. Multi-rotor UAV is used as an instrument for data acquisition for this study. The images of slope were captured from five different altitudes in the same study area. All images were processed using photogrammetric software to produce digital elevation models and digital orthophoto. In this study, slope map from all different altitudes were identified and recorded for analysis purposes. It was found that the accuracy of slope is increase when altitude is increase. In conclusion, the condition of slope such as semi-undulated and undulated area did have an influence on the slope accuracy.

  12. The costs of disorders of the brain in Switzerland: an update from the European Brain Council Study for 2010

    OpenAIRE

    Maercker, Andreas; Perkonigg, A; Preisig, M; Schaller, K; Weller, M.

    2013-01-01

    BACKGROUND: In 2005, findings of the first "cost of disorders of the brain in Europe" study of the European Brain Council (EBC) showed that these costs cause a substantial economic burden to the Swiss society. In 2010 an improved update with a broader range of disorders has been analysed. This report shows the new findings for Switzerland and discusses changes. METHODS: Data are derived from the EBC 2010 census study that estimates 12-month prevalence of 12 groups of disorders of the brain...

  13. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    International Nuclear Information System (INIS)

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6±18.2 years; 46 females, mean age 40.6±19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  14. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  15. Mapping EEG-potentials on the surface of the brain: a strategy for uncovering cortical sources.

    Science.gov (United States)

    Junghöfer, M; Elbert, T; Leiderer, P; Berg, P; Rockstroh, B

    1997-01-01

    This paper describes a uniform method for calculating the interpolation of scalp EEG potential distribution, the current source density (CSD), the cortical potential distribution (cortical mapping) and the CSD of the cortical potential distribution. It will be shown that interpolation and deblurring methods such as CSD or cortical mapping are not independent of the inverse problem in potential theory. Not only the resolution but also the accuracy of these techniques, especially those of deblurring, depend greatly on the spatial sampling rate (i.e., the number of electrodes). Using examples from simulated and real (64 channels) data it can be shown that the application of more than 100 EEG channels is not only favourable but necessary to guarantee a reasonable accuracy in the calculations of CSD or cortical mapping. Likewise, it can be shown that using more than 250 electrodes does not improve the resolution. PMID:9104831

  16. Behavioral evidence of heterospecific bonding between the lamb and the human caregiver and mapping of associated brain network.

    Science.gov (United States)

    Guesdon, Vanessa; Nowak, Raymond; Meurisse, Maryse; Boivin, Xavier; Cornilleau, Fabien; Chaillou, Elodie; Lévy, Frédéric

    2016-09-01

    While behavioral mechanisms of bonding between young mammals and humans have been explored, brain structures involved in the establishment of such processes are still unknown. The aim of the study was to identify brain regions activated by the presence of the caregiver. Since human positive interaction plays an important role in the bonding process, activation of specific brain structures by stroking was also examined. Twenty-four female lambs reared in groups of three were fed and stroked daily by a female caregiver between birth and 5-7 weeks of age. At 4 weeks, an isolation-reunion-separation test and a choice test revealed that lambs developed a strong bond with their caregiver. At 5-7 weeks of age, lambs were socially isolated for 90min. They either remained isolated or met their caregiver who stroked them, or not, at regular intervals over a 90-min period. Neuronal activation was investigated at the end of the period for maximum c-Fos expression. Reunion with the caregiver appeased similarly the lambs whether stroking was provided or not. Stroking did not activate a specific brain network compared to no stroking. In both cases, brain regions associated with olfactory, visual and tactile cue processing were activated in the presence of the caregiver, suggesting a multisensory process involved. In addition, activation of the oxytocinergic system in the hypothalamic paraventricular nucleus induced by the presence of the caregiver suggests similar neuroendocrine mechanisms involved in inter-conspecific and animal-human bonding. PMID:27286409

  17. Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat

    OpenAIRE

    2011-01-01

    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve ...

  18. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    OpenAIRE

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological pa...

  19. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    Science.gov (United States)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  20. The effect of chemotherapy on rat brain PET: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)

    2010-10-15

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  1. DSC Study on Brain Tubulin and the Effect of Cisplatin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The thermal property of the polymerization of brain tubulin was studied by a high-sensitivity differential scanning calorimeter. The phenomenon that heat flows increased and decreased consistently and obviously was observed. This phenomenon was called heat flow oscillation. It was probably correlated to the dynamic instability of microtubules. The effect of cisplatin on it was reported, too.

  2. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    OpenAIRE

    Poitry-yamate, Carole; Gianoncelli, A; Kourousias, G.; Kaulich, B; Lepore, Mario; Gruetter, Rolf; M. Kiskinova

    2013-01-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribu...

  3. Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study

    OpenAIRE

    Shim, Youn K.; Mlynarek, Steven P.; van Wijngaarden, Edwin

    2009-01-01

    Background The etiology of childhood brain cancer remains largely unknown. However, previous studies have yielded suggestive associations with parental pesticide use. Objectives We aimed to evaluate parental exposure to pesticides at home and on the job in relation to the occurrence of brain cancer in children. Methods We included 526 one-to-one–matched case–control pairs. Brain cancer cases were diagnosed at < 10 years of age, and were identified from statewide cancer registries of four U.S....

  4. The Learning of Mind Mapping in Higher Education: A Comparative Study Between Universidad de Córdoba and Università di Roma-La Sapienza

    Directory of Open Access Journals (Sweden)

    Muñoz González

    2014-09-01

    Full Text Available In this paper we propose Mind Mapping as a technique which enhances holistic learning or whole brain learning in higher education. The dynamics performed in the learning and application of Mind Mapping is part of a participatory approach in the classroom as an element of the learning process. The research approach follows a quantitative methodology. The results reflect the views of students about the learning of Mind Mapping and its effectiveness in the study. The findings indicate that mental maps can be used with any type of material, making it a tool applicable to any university degree course.

  5. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism ...

  6. Does studying abroad induce a brain drain?

    NARCIS (Netherlands)

    H. Oosterbeek; D. Webbink

    2011-01-01

    This paper investigates whether studying abroad increases the propensity to live abroad later on. We use an instrumental variable approach based on cut-offs in the ranking of Dutch higher education graduates who applied for a scholarship programme for outstanding students. Applicants ranked above th

  7. A Method for Automated Classification of Parkinson's Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI.

    Science.gov (United States)

    Banerjee, Monami; Okun, Michael S; Vaillancourt, David E; Vemuri, Baba C

    2016-01-01

    Parkinson's disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  8. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI

    Science.gov (United States)

    Banerjee, Monami; Okun, Michael S.; Vaillancourt, David E.; Vemuri, Baba C.

    2016-01-01

    Parkinson’s disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  9. Results of whole brain radiotherapy in patients with brain metastases from breast cancer: a retrospective study

    International Nuclear Information System (INIS)

    Purpose: To analyze the factors that affect survival in patients with brain metastases (BM) from breast cancer who were treated with whole brain radiotherapy (WBRT). Methods and Materials: We identified 116 women with breast cancer who were treated with WBRT alone between February 1984 and September 2000. All patients had treatment and follow-up data available in their medical charts, which we extracted for this retrospective study. We evaluated a number of potential predictors of survival after WBRT: age, primary tumor stage, control of primary tumor, presence of other systemic metastases, site of systemic metastases, Karnofsky performance status, Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis class, total dose of WBRT, and number of BM. Eighteen patients received a total dose >3000 cGy and 7 received a partial brain boost. Results: For the entire cohort, the median survival from the start of WBRT was 4.2 months. The 1-year survival rate was 17%, and the 2-year survival rate was 2%. Using univariate analysis, only Karnofsky performance status (p=0. 0084), recursive partitioning analysis class (p=0. 0147), and total WBRT dose (p=0.0001) were predictive of longer survival. In multivariate analysis, Karnofsky performance status was the only significant predictor. Conclusion: Overall survival in breast cancer patients with BM treated with WBRT is poor. We recommend breast cancer patients with BM be enrolled in prospective trials to improve results

  10. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  11. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  12. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  13. STUDY OF BRAIN TUMOURS BY NOVE L MAGNETIC RESONANCE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Mohammad Shamim

    2015-01-01

    Full Text Available In the present study , thirty patients in the age range of 22 to 63 years of age were included after being diagnosed to be having brain tumour on CT scan or conventional MRI. In addition DWI , MRS , and PWI were carried out i n these patients. All the patients with suspicious malignant lesions were then subjected to FDG - PET examination . Histopathological correlation was obtained in all the patients to serve as gold standard against which other modalities will be assessed for th eir sensitivity , specificity , positive predictive value , negative predictive value and diagnostic accuracy. Out of thirty patients selected for this study , twenty cases were found to be malignant and ten cases were benign on Histopathological evaluation. Majority of malignant lesions were glioblastoma multiforme. Amongst benign cases , majorities were meningioma , one was a Granulomatous lesion and one was a benign cystic lesion. MRI including the novel techniques showed high sensitivity and spe cificity in identifying malignant brain lesions and has a future role in better characterization of brain tumours. Wherever available , it should be integrated in routine workup of patients presenting with brain tumours or for follow up of patients undergon e surgery / adjuvant chemotherapy.

  14. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain...... lists. Image-based indices can be created by singular value decomposition and by matching individual volumes against eigenimages. Individual experiments, sets of experiments as well as results from meta-analyses can be rendered as glyphs, cut-planes or isosurfaces in 3-dimensional Corner Cube...

  15. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Kumari, Veena; Peters, Emmanuelle; Guinn, Ashley; Fannon, Dominic; Russell, Tamara; Sumich, Alexander; Kuipers, Elizabeth; Williams, Steven C R; Ffytche, Dominic H

    2016-05-01

    Depressive symptoms are common in schizophrenia, often left untreated, and associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment and poor quality of life. The neural mechanisms underlying depression in psychosis are poorly understood. Given reports of altered brain response to negative facial affect in depressive disorders, we examined brain response to emotive facial expressions in relation to levels of depression in people with psychosis. Seventy outpatients (finalN= 63) and 20 healthy participants underwent functional magnetic resonance imaging during an implicit affect processing task involving presentation of facial expressions of fear, anger, happiness as well as neutral expressions and a (no face) control condition. All patients completed Beck Depression Inventory (BDI-II) and had their symptoms assessed on the Positive and Negative Syndrome Scale (PANSS). In patients, depression (BDI-II) scores associated positively with activation of the left thalamus, extending to the putamen-globus pallidus, insula, inferior-middle frontal and para-post-pre-central gyri during fearful expressions. Furthermore, patients with moderate-to-severe depression had significantly higher activity in these brain regions during fearful expressions relative to patients with no, minimal, or mild depression and healthy participants. The study provides first evidence of enhanced brain response to fearful facial expressions, which signal an uncertain source of threat in the environment, in patients with psychosis and a high level of self-reported depression. PMID:26712855

  16. Human brain mapping under increasing cognitive complexity using regional cerebral blood flow measurements and positron emission tomography.

    Science.gov (United States)

    Law, Ian

    2007-11-01

    Measurement of the regional cerebral blood flow (rCBF) is an important parameter in the evaluation of cerebral function. With positron emission tomography (PET) rCBF has predominantly been quantified using the short-lived radiotracer oxygen-15 labelled water (H 2 15 O) and an adaptation of the Kety one-tissue compartment autoradiographic model. The values attained in putative grey matter, however, are systematically underestimated because of the limited scanner resolution. For this reason we applied a dynamic kinetic two-tissue compartment model including a fast and a slow flow component each with a perfusable tissue fraction. In the fast component rCBF was 2-2.5 times greater than grey matter values using traditional autoradiography in both human and monkey. Visual stimulation in human gave a corrected rCBF increase of approximately 40%. Visual stimulation was also used to indirectly validate carbon-10 labelled carbondioxide ( 10 CO 2 ), a new very short-lived rCBF PET tracer with a half-life of only 19.3 seconds. This allowed an increase in the number of independent PET scans per subject from 12-14 using H 2 15 O to 64 using 10 CO 2 . The experiment demonstrated a maximal activation response in the visual cortex at a 10-15 Hz stimulation frequency. The use of the rCBF PET mapping technique is illustrated by studies of the organization of language and the oculomotor system. With respect to the former, we found confirmation of neuropsychological evidence of the involvement of the left supramarginal/angular gyrus in reading in Japanese of a phonologically based script system, Kana, and of the left posterior inferior temporal gyrus in reading of a morphogram based script system, Kanji. Concerning the organization of the oculomotor system we found overlapping areas in fronto-parietal cortex involved in maintaining visual fixation, and performing visually guided and imagined eye movements. These data show that overt eye movements are not a prerequisite of the

  17. Study on QSAR of brain radiopharmaceuticals of iodoamphetamines

    International Nuclear Information System (INIS)

    According to the Fick's law, it is assumed that brain radiopharmaceuticals can pass through Brain Blood Barrier by simple diffusion process. After investigation of parameters of fourteen iodoamphetamines, a linear relationship among initial brain uptake, partition coefficient, protein binding and molecular weight has been established. This relationship may be useful in designing new brain radiopharmaceuticals and predicting initial brain uptake

  18. Brain computer tomography in critically ill patients -- a prospective cohort study

    OpenAIRE

    Purmer Ilse M; van Iperen Erik P; Beenen Ludo F M; Kuiper Michael J; Binnekade Jan M; Vandertop Peter W; Schultz Marcus J; Horn Janneke

    2012-01-01

    Abstract Background Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients. Methods In a prospective observational study data were collected ...

  19. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose

    International Nuclear Information System (INIS)

    A model has been designed based on the assumptions of a steady state for glucose consumption, a first-order equilibration of the free 14C-DG pool in the tissue with the plasma level, and relative rates of phosphorylation of 14C-DG and glucose determined by their kinetic constants for hexokinase reaction. Using an operational equation based on this model, the metabolic rates of glucose are calculated in various regions of brain (utilizing brain slices and autoradiography). 14C is a beta emitter and therefore not suitable for noninvasive imaging in man. With the synthesis of 18F-2-deoxy-2-fluoro-D-glucose (18F-DG) all of the requirements for a suitable radiopharmaceutical for the determination of local cerebral metabolism have been met. This agent behaves very similarly to 14C-DG and therefore, using the above described model and emission tomography, it has become possible to measure regional cerebral metabolism for the first time in man

  20. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T.

    Science.gov (United States)

    Betts, Matthew J; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Nestor, Peter J; Düzel, Emrah

    2016-09-01

    Quantitative susceptibility mapping (QSM) has recently emerged as a novel magnetic resonance imaging (MRI) method to detect non-haem iron deposition, calcifications, demyelination and vascular lesions in the brain. It has been suggested that QSM is more sensitive than the more conventional quantifiable MRI measure, namely the transverse relaxation rate, R2*. Here, we conducted the first high-resolution, whole-brain, simultaneously acquired, comparative study of the two techniques using 7Tesla MRI. We asked which of the two techniques would be more sensitive to explore global differences in tissue composition in elderly adults relative to young subjects. Both QSM and R2* revealed strong age-related differences in subcortical regions, hippocampus and cortical grey matter, particularly in superior frontal regions, motor/premotor cortices, insula and cerebellar regions. Within the basal ganglia system-but also hippocampus and cerebellar dentate nucleus-, QSM was largely in agreement with R2* with the exception of the globus pallidus. QSM, however, provided superior anatomical contrast and revealed age-related differences in the thalamus and in white matter, which were otherwise largely undetected by R2* measurements. In contrast, in occipital cortex, age-related differences were much greater with R2* compared to QSM. The present study, therefore, demonstrated that in vivo QSM using ultra-high field MRI provides a novel means to characterise age-related differences in the human brain, but also combining QSM and R2* using multi-gradient recalled echo imaging can potentially provide a more complete picture of mineralisation, demyelination and/or vascular alterations in aging and disease. PMID:27181761

  1. Memory Networks in Tinnitus: A Functional Brain Image Study

    OpenAIRE

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes i...

  2. BRAIN-COMPUTER INTERFACE (BCI) LITERATURE - A BIBLIOMETRIC STUDY

    OpenAIRE

    Hamadicharef, Brahim

    2010-01-01

    Brain-Computer Interface (BCI) is a relatively young research field which has seen a growing interest with associated number of publications over the last two decades. In this study we present the first bibliometric analysis of the BCI literature (1990–2008) from the Thomson Reuters's Institute for Scientific Information (ISI) Web of Knowledge. Thus, the main objectives of this bibliometric study are: 1) to explore the growth of BCI literature, 2) to assess if it follows Lotka's law of scient...

  3. Mapping of SOA and RUP: DOA as Case Study

    CERN Document Server

    Hussain, Shahid; Ahmad, Bashir; Ahmed, Shakeel

    2010-01-01

    SOA (Service Oriented Architecture) is a new trend towards increasing the profit margins in an organization due to incorporating business services to business practices. Rational Unified Process (RUP) is a unified method planning form for large business applications that provides a language for describing method content and processes. The well defined mapping of SOA and RUP leads to successful completion of RUP software projects to provide services to their users. DOA (Digital Office Assistant) is a multi user SOA type application that provides appropriate viewer for each user to assist him through services. In this paper authors proposed the mapping strategy of SOA with RUP by considering DOA as case study.

  4. Mapping the updating process: common and specific brain activations across different versions of the running span task

    OpenAIRE

    Collette, Fabienne; Van der Linden, Martial; Laureys, Steven; Arigoni, Flavia; Del Fiore, Guy; Degueldre, Christian; Luxen, André; Salmon, Eric

    2007-01-01

    Neuroimaging studies exploring the neural substrates of executive functioning have only rarely investigated whether the non-executive characteristics of the experimental executive tasks could contribute to the observed brain activations. The aim of this study was to determine cerebral activity in three different tasks involving the updating executive function. The experimental updating tasks required subjects to process strings of items (respectively letters, words, and sounds) of unknown len...

  5. Porcine NAMPT gene: search for polymorphism, mapping and association studies

    Czech Academy of Sciences Publication Activity Database

    Čepica, Stanislav; Bartenschlager, H.; Óvilo, C.; Zrůstová, J.; Masopust, Martin; Fernández, A.; López, A.; Knoll, Aleš; Rohrer, G. A.; Snelling, W. M.; Geldermann, H.

    2010-01-01

    Roč. 41, č. 6 (2010), s. 646-651. ISSN 0268-9146 R&D Projects: GA ČR GA523/07/0353 Institutional research plan: CEZ:AV0Z50450515 Keywords : association study * carcass compositio * genetic mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.203, year: 2010

  6. A case study on point process modelling in disease mapping

    DEFF Research Database (Denmark)

    Møller, Jesper; Waagepetersen, Rasmus Plenge; Benes, Viktor;

    2005-01-01

    We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis (TBE), and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence...

  7. Connecting Brain Research to Classroom Learning: A Mixed-Method Study on How Teachers Apply Brain Research to Their Instruction

    Science.gov (United States)

    McAteer, Todd C.

    2010-01-01

    Purpose. The purpose of this study was to examine how knowledgeable teachers are in utilizing brain-researched instructional strategies. The research focused on determining which brain-researched strategies are implemented, the accuracy with which they are employed, and the degree to which they are utilized. A literature review revealed the most…

  8. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    Science.gov (United States)

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. PMID:21550290

  9. Use of Technology-Assisted Techniques of Mind Mapping and Concept Mapping in Science Education: A Constructivist Study

    Science.gov (United States)

    Balim, Ali Günay

    2013-01-01

    The study aims to investigate the effects of using mind maps and concept maps on students' learning of concepts in science courses. A total of 51 students participated in this study which used a quasi-experimental research design with pre-test/post-test control groups. The constructivist-inspired study was carried out in the sixth-grade…

  10. Distributed cognitive maps reflecting real distances between places and views in the human brain

    Directory of Open Access Journals (Sweden)

    Giorgia Committeri

    2014-09-01

    Full Text Available Keeping oriented in the environment is a multifaceted ability that requires knowledge of at least three pieces of information: one’s own location (“place” and orientation (“heading” within the environment, and which location in the environment one is looking at (“view”. We used functional magnetic resonance imaging (fMRI in humans to examine the neural signatures of these information. Participants were scanned while viewing snapshots which varied for place, view and heading within a virtual room. We observed adaptation effects, proportional to the physical distances between consecutive places and views, in scene-responsive (retrosplenial complex and parahippocampal gyrus, fronto-parietal and lateral occipital regions. Multivoxel pattern classification of signals in scene-responsive regions and in the hippocampus allowed supra-chance decoding of place, view and heading, and revealed the existence of map-like representations, where places and views closer in physical space entailed activity patterns more similar in neural representational space. The pattern of hippocampal activity reflected both view- and place-based distances, the pattern of parahippocampal activity preferentially discriminated between views, and the pattern of retrosplenial activity combined place and view information, while the fronto-parietal cortex only showed transient effects of changes in place, view, and heading. Our findings provide evidence for the presence of map-like spatial representations which reflect metric distances in terms of both one’s own and landmark locations.

  11. Distribution and densitometry mapping of L1-CAM Immunoreactivity in the adult mouse brain – light microscopic observation

    Directory of Open Access Journals (Sweden)

    Yamasaki Hironobu

    2003-04-01

    Full Text Available Abstract Background The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain. Results We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc. Conclusion L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

  12. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    Science.gov (United States)

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. PMID:24734987

  13. GIS-study and new Geomorphologic Mapping of Phobos

    Science.gov (United States)

    Kokhanov, Alexander; Lorenz, Cyrill; Karachevtseva, Irina

    2016-04-01

    Using raw images and processed orthoimages, obtained from "Mars Express", we have created a new GIS-catalog of grooves. During analysis, new grooves, not identified in earlier mapping attempts, were detected. For craters study the previously created catalog of craters with D >200 m [1] was used. The spatial orientation of individual grooves was estimated, which allows us to group them into several sets. All grooves in the catalog were divided into three morphological types: gutters (simple line depressions), chains of contiguous funnels, chains of noncontigual funnels. Studying craters we paid attention to its inner and outer morphology. The shape of some craters is different from the isometric. Among them were identified elliptical and polygonal craters. The study of inner morphology showed, that there prevails simple bowl-shaped craters. Also we identified a small population of craters with complex internal morphology [2], which, by analogy with similar lunar craters [3], divided into flat-bottomed, with a central mound and concentric craters. Moreover, based on elevation data, obtained from global digital elevation model [4] and calculation of relative depth, craters with D >2 km by the stage of degradation were classified. Focusing on a combination of grooves and craters, we have identified 15 morphological regions. A morphological unit was defined as a region with a certain type of relief, which differs from surrounding areas by the presence, orientation and spatial relations of groove systems and large craters (over 200 m). Each region may have its own geological history and consequently, specific history of regolith exposure. Finally, two geomorphologic maps of Phobos were created. One map represents the spatial distributions of grooves including their classifications by morphological types. The identified morphological regions are shown, and relief characteristics of these regions are briefly described. Geomorphologic map of craters shows the spatial

  14. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole;

    2015-01-01

    of 11C-yohimbine. With the lowest steady-state distribution volume (VT), determined in the corpus callosum, we calculated the binding potential (receptor availability) of the radioligand in other regions. Results: The linear regressions yielded similar estimates of the kinetic parameters. The...... cortical values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...

  15. Application of a semi-automatic ROI setting system for brain PET images to animal PET studies

    International Nuclear Information System (INIS)

    ProASSIST, a semi-automatic ROI (region of interest) setting system for human brain PET images, has been modified for use with the canine brain, and the performance of the obtained system was evaluated by comparing the operational simplicity for ROI setting and the consistency of ROI values obtained with those by a conventional manual procedure. Namely, we created segment maps for the canine brain by making reference to the coronal section atlas of the canine brain by Lim et al., and incorporated them into the ProASSIST system. For the performance test, CBF (cerebral blood flow) and CMRglc (cerebral metabolic rate in glucose) images in dogs with or without focal cerebral ischemia were used. In ProASSIST, brain contours were defined semiautomatically. In the ROI analysis of the test image, manual modification of the contour was necessary in half cases examined (8/16). However, the operation was rather simple so that the operation time per one brain section was significantly shorter than that in the manual operation. The ROI values determined by the system were comparable with those by the manual procedure, confirming the applicability of the system to these animal studies. The use of the system like the present one would also merit the more objective data acquisition for the quantitative ROI analysis, because no manual procedure except for some specifications of the anatomical features is required for ROI setting. (author)

  16. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    International Nuclear Information System (INIS)

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted

  17. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy

    Science.gov (United States)

    Quyen, Michel Le Van; Martinerie, Jacques; Adam, Claude; Varela, Francisco J.

    1999-03-01

    The degree of interdependence between intracranial electroencephalographic (EEG) channels was investigated in epileptic patients with temporal lobe seizures during interictal (between seizures) periods. With a novel method to characterize nonlinear cross-predictability, that is, the predictability of one channel using another channel as data base, we demonstrated here a possibility to extract information on the spatio-temporal organization of interactions between multichannel recording sites. This method determines whether two channels contain common activity, and often, whether one channel contains activity induced by the activity of the other channel. In particular, the technique and the comparison with surrogate data demonstrated that transient large-scale nonlinear entrainments by the epileptogenic region can be identified, this with or without epileptic activity. Furthermore, these recurrent activities related with the epileptic foci occurred in well-defined spatio-temporal patterns. This suggests that the epileptogenic region can exhibit very subtle influences on other brain regions during an interictal period and raises the possibility that the cross-predictability analysis of interictal data may be used as a significant aid in locating epileptogenic foci.

  18. High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain.

    Science.gov (United States)

    De Martino, Federico; Moerel, Michelle; Xu, Junqian; van de Moortele, Pierre-Francois; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-10-01

    The precise delineation of auditory areas in vivo remains problematic. Histological analysis of postmortem tissue indicates that the relation of areal borders to macroanatomical landmarks is variable across subjects. Furthermore, functional parcellation schemes based on measures of, for example, frequency preference (tonotopy) remain controversial. Here, we propose a 7 Tesla magnetic resonance imaging method that enables the anatomical delineation of auditory cortical areas in vivo and in individual brains, through the high-resolution visualization (0.6 × 0.6 × 0.6 mm(3)) of intracortical anatomical contrast related to myelin. The approach combines the acquisition and analysis of images with multiple MR contrasts (T1, T2*, and proton density). Compared with previous methods, the proposed solution is feasible at high fields and time efficient, which allows collecting myelin-related and functional images within the same measurement session. Our results show that a data-driven analysis of cortical depth-dependent profiles of anatomical contrast allows identifying a most densely myelinated cortical region on the medial Heschl's gyrus. Analyses of functional responses show that this region includes neuronal populations with typical primary functional properties (single tonotopic gradient and narrow frequency tuning), thus indicating that it may correspond to the human homolog of monkey A1. PMID:24994817

  19. Fracture mapping for radionuclide migration studies in the Climax granite

    International Nuclear Information System (INIS)

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift

  20. Fracture mapping for radionuclide migration studies in the Climax granite

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, R.; Springer, J.

    1981-05-01

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift.

  1. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ2=4.232, P2=0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  2. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception

    Directory of Open Access Journals (Sweden)

    Juha Marko Lahnakoski

    2012-08-01

    Full Text Available Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-tesla functional magnetic imaging (fMRI, a set of 137 short (~16 s each, total 27 min audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action and non-human sounds lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: 1 a fronto-temporal network responding to multiple social categories, 2 a fronto-parietal network preferentially activated to bodies, motion and pain, 3 a temporo-amygdalar network responding to faces, social interaction and speech, and 4 a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the posterior STS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  3. Fast and accurate water content and T2⁎ mapping in brain tumours localised with FET-PET

    International Nuclear Information System (INIS)

    The availability of combined MR-PET scanners opens new opportunities for the characterisation of tumour environment. In this study, water content and relaxation properties of glioblastoma were investigated in five patients using advanced MRI. The region containing metabolically active tumour tissue was defined by simultaneously measured FET-PET uptake. The mean value of water content in tumour tissue – obtained noninvasively with high precision and accuracy for the first time – amounted to 84.5%, similar to the value for normal grey matter. Constancy of water content contrasted with a large variability of T2⁎ values in tumour tissue, qualitatively related to the magnetic inhomogeneity of tissue created by blood vessels and/or microbleeds. The quantitative MRI protocol takes 71/2 min of measurement time and is proposed for extended clinical use. -- Highlights: • Quantitative MRI and simultaneous FET-PET used for the study of brain tumours. • Quantitative water content and T2⁎ of the brain are reported in five glioblastoma patients. • The qMRI method achieves whole brain coverage in 71/2 min. • Water content in normal appearing tissue as well as tumour is constant within 1% for each class. • T2⁎ is highly variable within tumour volume and from patient to patient

  4. Mapping number to space in the two hemispheres of the avian brain.

    Science.gov (United States)

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. PMID:27246250

  5. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    International Nuclear Information System (INIS)

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  6. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario [University of Genoa and IRCCS AOU San Martino-IST, Nuclear Medicine Unit, Department of Health Science (DISSAL), Genoa (Italy); Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); Girtler, Nicola [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); University of Genoa and IRCCS AOU San Martino-IST, Clinical Psychology, Department of Neuroscience (DINOGMI), Genoa (Italy); Mandich, Paola [University of Genoa and IRCCS AOU San Martino-IST, Medical Genetics, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2016-07-15

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  7. Adaptation of Fuzzy Cognitive Maps – a Comparison Study

    Directory of Open Access Journals (Sweden)

    Ladislav Madarász

    2010-10-01

    Full Text Available This paper deals with the experimental study and comparison of variousadaptation methods for setting-up parameters of fuzzy cognitive maps (FCMs. A survey isgiven of the best known methods, which are mostly based on unsupervised learning. Theauthors show better performance using supervised learning, namely least mean squareapproaches. Experiments were done on a simulation example of autonomous vehiclenavigation. The paper is concluded by comparing their efficacy and properties.

  8. Adaptation of Fuzzy Cognitive Maps – a Comparison Study

    OpenAIRE

    Ladislav Madarász; Ján Vaščák

    2010-01-01

    This paper deals with the experimental study and comparison of variousadaptation methods for setting-up parameters of fuzzy cognitive maps (FCMs). A survey isgiven of the best known methods, which are mostly based on unsupervised learning. Theauthors show better performance using supervised learning, namely least mean squareapproaches. Experiments were done on a simulation example of autonomous vehiclenavigation. The paper is concluded by comparing their efficacy and properties.

  9. Mapping the brain's orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks

    Directory of Open Access Journals (Sweden)

    Keil Andreas

    2004-10-01

    Full Text Available Abstract Background How does the brain convert sounds and phonemes into comprehensible speech? In the present magnetoencephalographic study we examined the hypothesis that the coherence of electromagnetic oscillatory activity within and across brain areas indicates neurophysiological processes linked to speech comprehension. Results Amplitude-modulated (sinusoidal 41.5 Hz auditory verbal and nonverbal stimuli served to drive steady-state oscillations in neural networks involved in speech comprehension. Stimuli were presented to 12 subjects in the following conditions (a an incomprehensible string of words, (b the same string of words after being introduced as a comprehensible sentence by proper articulation, and (c nonverbal stimulations that included a 600-Hz tone, a scale, and a melody. Coherence, defined as correlated activation of magnetic steady state fields across brain areas and measured as simultaneous activation of current dipoles in source space (Minimum-Norm-Estimates, increased within left- temporal-posterior areas when the sound string was perceived as a comprehensible sentence. Intra-hemispheric coherence was larger within the left than the right hemisphere for the sentence (condition (b relative to all other conditions, and tended to be larger within the right than the left hemisphere for nonverbal stimuli (condition (c, tone and melody relative to the other conditions, leading to a more pronounced hemispheric asymmetry for nonverbal than verbal material. Conclusions We conclude that coherent neuronal network activity may index encoding of verbal information on the sentence level and can be used as a tool to investigate auditory speech comprehension.

  10. Influence of attenuation correction and reconstruction techniques on the detection of hypoperfused lesions in brain SPECT studies

    International Nuclear Information System (INIS)

    Full text: Aim: To study the influence of attenuation correction and the reconstruction technique on the detection of hypoperfused lesions in brain SPECT imaging, Material and Methods: A simulation experiment was used in which the effects of attenuation and reconstruction were decoupled, A high resolution SPECT phantom was constructed using the BrainWeb database, In this phantom, activity values were assigned to grey and white matter (ratio 4:1) and scaled to obtain counts of the same magnitude as in clinical practice, The true attenuation map was generated by assigning attenuation coefficients to each tissue class (grey and white matter, cerebral spinal fluid, skull, soft and fatty tissue and air) to create a non-uniform attenuation map, The uniform attenuation map was calculated using an attenuation coefficient of 0.15 cm-1, Hypoperfused lesions of varying intensities and sizes were added. The phantom was then projected as typical SPECT projection data, taking into account attenuation and collimator blurring with the addition of Poisson noise, The projection data was reconstructed using four different methods of reconstruction: (1) filtered backprojection (FBP) with the uniform attenuation map; (2) FBP using the true attenuation map; (3) ordered subset expectation maximization (OSEM) (equivalent to 423 iterations) with a uniform attenuation map; and (4) OSEM with a true attenuation map. Different Gaussian postsmooth kernels were applied to the reconstructed images. Results: The analysis of the reconstructed data was performed using figures of merit such as signal to noise ratio (SNR), bias and variance. The results illustrated that uniform attenuation correction offered slight deterioration (less than 2%) with regard to SNR when compared to the ideal attenuation map. which in reality is not known. The iterative techniques produced superior signal to noise ratios (increase of 5 - 20 % depending on the lesion and the postsmooth) in comparison to the FBP methods

  11. The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment.

    Science.gov (United States)

    Vecchiato, G; De Vico Fallani, F; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F

    2010-08-30

    This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical tests, has gained interest. In the present experiment, we investigated the EEG signals from a mannequin acting as an experimental subject. Data have been collected while performing a neuromarketing experiment and analyzed with state of the art computational tools adopted in specialized literature. Results showed that electric data from the mannequin's head presents statistical significant differences in power spectra during the visualization of a commercial advertising when compared to the power spectra gathered during a documentary, when no adjustments were made on the alpha level of the multiple univariate tests performed. The use of the Bonferroni or Bonferroni-Holm adjustments returned correctly no differences between the signals gathered from the mannequin in the two experimental conditions. An partial sample of recently published literature on different neuroscience journals suggested that at least the 30% of the papers do not use statistical protection for the type I errors. While the occurrence of type I errors could be easily managed with appropriate statistical techniques, the use of such techniques is still not so largely adopted in the literature. PMID:20637802

  12. Synthesis and characterization of EADAM: a selective radioligand for mapping the brain serotonin transporters by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jarkas, Nachwa [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); McConathy, Jonathan [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States); Votaw, John R. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Voll, Ronald J. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Malveaux, Eugene [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Camp, Vernon M. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Williams, Larry [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Goodman, Robin R. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States); Kilts, Clinton D. [Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States); Goodman, Mark M. [Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322 (United States) and Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, GA 30322 (United States)]. E-mail: mgoodma@emory.edu

    2005-01-01

    [{sup 11}C]N,N-Dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine ([{sup 11}C]EADAM) was synthesized in the development of a serotonin transporter (SERT) imaging ligand for positron emission tomography (PET). The methods of ligand synthesis, results of in vitro characterization, {sup 11}C labeling and in vivo micro-PET imaging studies of [{sup 11}C]EADAM in cynomolgus monkey brain are described. {sup 11}C was introduced into N,N-dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine () by alkylation of N-methyl-2-(2'-amino-4'-ethylphenylthio)benzylamine () in 32% radiochemical yield (end of bombardment [EOB], decay-corrected from [{sup 11}C]methyl iodide). Competition binding assays in cells stably expressing the transfected human dopamine transporter (DAT), SERT and norepinephrine transporter (NET) labeled with [{sup 3}H]WIN 35428 or [{sup 125}I]RTI-55, [{sup 3}H]citalopram and [{sup 3}H]nisoxetine, respectively, indicated the following order of SERT affinity: ADAM>EADAM>>fluvoxamine. The affinity of EADAM for DAT and NET was 500- and >1000-fold lower, respectively, than for SERT. Micro-PET brain imaging studies in a cynomolgus monkey demonstrated high [{sup 11}C]EADAM uptake in the striatum, thalamus and brainstem. [{sup 11}C]EADAM uptake in these brain regions peaked in less than 60 min following administration of [{sup 11}C]EADAM. The tissue-to-cerebellum ratios of the striatum, thalamus and brainstem were 1.67, 1.71 and 1.63, respectively, at 120 min postinjection of [{sup 11}C]EADAM. Analysis of monkey arterial plasma samples using high-pressure liquid chromatography determined there was no detectable formation of lipophilic radiolabeled metabolites capable of entering the brain. In a displacement experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was displaced 20-60 min after administration of citalopram. In a blocking experiment with citalopram in a cynomolgus monkey

  13. Study of smartphone suitability for mapping of skin chromophores

    Science.gov (United States)

    Kuzmina, Ilona; Lacis, Matiss; Spigulis, Janis; Berzina, Anna; Valeine, Lauma

    2015-09-01

    RGB (red-green-blue) technique for mapping skin chromophores by smartphones is proposed and studied. Three smartphones of different manufacturers were tested on skin phantoms and in vivo on benign skin lesions using a specially designed light source for illumination. Hemoglobin and melanin indices obtained by these smartphones showed differences in both tests. In vitro tests showed an increment of hemoglobin and melanin indices with the concentration of chromophores in phantoms. In vivo tests indicated higher hemoglobin index in hemangiomas than in nevi and healthy skin, and nevi showed higher melanin index compared to the healthy skin. Smartphones that allow switching off the automatic camera settings provided useful data, while those with "embedded" automatic settings appear to be useless for distant skin chromophore mapping.

  14. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impendance recordings.

    Science.gov (United States)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    2000-07-01

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment studies brain impedance as a response to a general epileptiform insult caused by electrical stunning and ischemia caused by exsanguination. Brain impedance was recorded in 10 broiler chickens for each of three killing methods: whole body electrical stunning, which induces cardiac arrest; head only electrical stunning followed by exsanguination; and exsanguination without stunning. Brain impedance was converted into relative extracellular volume (ECV) values. Results showed that, immediately after electrical stunning, the ECV decreased 5.5% from base ECV. With exsanguination only, the ECV decreased from base ECV only after 4 min after neck cutting. The ECV decrease after 10 min did not differ between treatments. With a time of 228 s to reach one-half of the ECV decrease found at 10 min, electrical stunning resulted in a much faster change in ECV than exsanguination only (373 s). Within the head only stunning group, six animals showed a response similar to that found with whole body stunning; the other four animals responded similarly to the animals that were exsanguinated only. It was concluded that brain impedance recordings used with electrical stunning reflect brain damage. This damage was both epileptic and ischemic in nature. Whole body stunning induced immediate brain damage, suggesting that an adequate stun was delivered. The dual response found with head only stunning might indicate that this stunning method does not always produce an adequate stun. PMID:10901211

  15. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of atrophy correction on the results of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) in the context of normal aging. Before the human study was performed, a Hoffman 3D brain phantom experiment was carried out in order to validate a newly developed correction method for partial volume effects (PVEs). Brain FDG PET was then performed in 139 healthy Japanese volunteers (71 men, 68 women; age 24-81 years). PET images were corrected for PVEs using grey matter volume, which was segmented from co-registered magnetic resonance images and convoluted with the spatial resolution of the PET scanner. We investigated the correlation between advancing age and relative regional FDG activity, which was normalised to the global activity before and after PVE correction using Statistical Parametric Mapping 99. The PET image, when corrected for PVEs, provided more homogeneous tracer distribution in the whole phantom than in the original PET image. The human PET study of both sexes revealed significant negative correlations between age and relative FDG activity in the bilateral perisylvian and medial frontal areas before PVE correction. However, these negative correlations were largely resolved after PVE correction. Correction for PVEs was effective in our FDG PET study. The reduction in FDG uptake with advancing age that was detected by FDG PET without PVE correction could be accounted for largely by an age-related cerebral volume loss in the bilateral perisylvian and medial frontal areas. (orig.)

  16. The effects of Psychotropic drugs On Developing brain (ePOD) study : methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A.; Schouw, Marieke L. J.; Klomp, Anne; Tamminga, Hyke G. H.; Schrantee, Anouk G. M.; Bouziane, Cheima; de Ruiter, Michiel B.; Boer, Frits; Ruhe, Henricus G.; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J. L.; Reitsma, Hans B.; Geurts, Hilde M.; Reneman, Liesbeth

    2014-01-01

    Background: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of dif

  17. Anticipatory Processing in the Brain on the Perception of Müller-Lyer Illusionary Figures—A Brain Potential Study

    Science.gov (United States)

    Nomura, Shusaku; Sasaki, Shuntaro; Hirakawa, Masato; Hiwaki, Osamu

    2010-11-01

    We investigated the brain potential in relation with the recognition of Müller-Lyer (ML) illusionary figure, which was a famous optical illusion. Although it is frequently assumed that the ML illusionary effect could be derived from its geometrical construction, it derives the same length miss-estimation effect on the sense of touch; haptic illusion. Moreover it occurs in people who are blindfolded or congenital blind. Thus somehow higher information processing than the optical one within the brain could be expected to involve with the recognition of ML figure while few brain studies have demonstrated it. We then investigated the brain waves under subjects' perceiving ML illusionary figure. As a result the marked difference of the brain potential between ML and the control condition around the midline of parietal brain, where the multi-modal perception information was thought to associate within the brain, was observed. This result implies that the anticipatory processing on the perception of ML illusionary figures would be derived by integrating multi-sensory information.

  18. Topographic mapping of spontaneous and induced electrical activity of brain for people exposed to ionizing radiation as a result of ChNPP accident

    International Nuclear Information System (INIS)

    80 patients have been examined to study neurophysiological manifestations of the functional state of brain. Some features of the functional state of brain in the remote-in-time period (3 to 5 years since the accident) caused by ionizing radiation influence have been disclosed. For examined persons as compared to reference prevailing paroxysmal and spontaneous electrical activity of brain has been observed. 9 refs

  19. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  20. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  1. A voxel-based lesion study on facial emotion recognition after penetrating brain injury

    OpenAIRE

    Dal Monte, Olga; Krueger, Frank; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan

    2012-01-01

    The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed signif...

  2. Exploratory case-control study of brain tumors in adults

    International Nuclear Information System (INIS)

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies

  3. Urban Groundwater Mapping - Bucharest City Area Case Study

    Science.gov (United States)

    Gaitanaru, Dragos; Radu Gogu, Constantin; Bica, Ioan; Anghel, Leonard; Amine Boukhemacha, Mohamed; Ionita, Angela

    2013-04-01

    Urban Groundwater Mapping (UGM) is a generic term for a collection of procedures and techniques used to create targeted cartographic representation of the groundwater related aspects in urban areas. The urban environment alters the physical and chemical characteristics of the underneath aquifers. The scale of the pressure is controlled by the urban development in time and space. To have a clear image on the spatial and temporal distribution of different groundwater- urban structures interaction we need a set of thematic maps is needed. In the present study it is described the methodological approach used to obtain a reliable cartographic product for Bucharest City area. The first step in the current study was to identify the groundwater related problems and aspects (changes in the groundwater table, infiltration and seepage from and to the city sewer network, contamination spread to all three aquifers systems located in quaternary sedimentary formations, dewatering impact for large underground structures, management and political drawbacks). The second step was data collection and validation. In urban areas there is a big spectrum of data providers related to groundwater. Due to the fact that data is produced and distributed by different types of organizations (national agencies, private companies, municipal water regulator, etc) the validation and cross check process is mandatory. The data is stored and managed by a geospatial database. The design of the database follows an object-orientated paradigm and is easily extensible. The third step consists of a set of procedures based on a multi criteria assessment that creates the specific setup for the thematic maps. The assessment is based on the following criteria: (1) scale effect , (2) time , (3) vertical distribution and (4) type of the groundwater related problem. The final step is the cartographic representation. In this final step the urban groundwater maps are created. All the methodological steps are doubled

  4. Statistical parametric mapping for effects of verapamil on olfactory connections of rat brain in vivo using manganese-enhanced MR imaging

    International Nuclear Information System (INIS)

    We investigated the effect of verapamil on the transport of manganese in the olfactory connections of rat brains in vivo using statistical parametric mapping and manganese-enhanced magnetic resonance (MR) imaging. We divided 12 7-week-old male Sprague-Dawley rats into 2 groups of six and injected 10 μL of saline into the right nasal cavities of the first group and 10 μL of verapamil (2.5 mg/mL) into the other group. Twenty minutes after the initial injection, we injected 10 μL of MnCl2 (1 mol/L) into the right nasal cavities of both groups. We obtained serial T1-weighted MR images before administering the verapamil or saline and at 0.5, one, 24, 48, and 72 hours and 7 days after administering the MnCl2, spatially normalized the MR images on the rat brain atlas, and analyzed the data using voxel-based statistical comparison. Statistical parametric maps demonstrated the transport of manganese. Manganese ions created significant enhancement (t-score=36.6) 24 hours after MnCl2 administration in the group administered saline but not at the same time point in the group receiving verapamil. The extent of significantly enhanced regions peaked at 72 hours in both groups and both sides of the brain. The peak of extent in the right side brain in the group injected with saline was 70.2 mm3 and in the group with verapamil, 92.4 mm3. The extents in the left side were 64.0 mm3 for the group with saline and 53.2 mm3 for the group with verapamil. We applied statistical parametric mapping using manganese-enhanced MR imaging to demonstrate in vivo the transport of manganese in the olfactory connections of rat brains with and without verapamil and found that verapamil did affect this transport. (author)

  5. Manganese-Enhanced Magnetic Resonance Imaging for Mapping of Whole Brain Activity Patterns Associated with the Intake of Snack Food in Ad Libitum Fed Rats

    OpenAIRE

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2013-01-01

    Non-homeostatic hyperphagia, which is a major contributor to obesity-related hyperalimentation, is associated with the diet’s molecular composition influencing, for example, the energy content. Thus, specific food items such as snack food may induce food intake independent from the state of satiety. To elucidate mechanisms how snack food may induce non-homeostatic food intake, it was tested if manganese-enhanced magnetic resonance imaging (MEMRI) was suitable for mapping the whole brain activ...

  6. Construction and evaluation of F-18 FDG PET probabilistic MAP for voxel based analysis of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Im, K. C.; Kim, J. S.; Na, Y. S.; Moon, D. H.; Ryu, J. S. [Asan Medical Center, Seoul (Korea, Republic of)

    2007-07-01

    The purpose of this study was to develop F-18 FDG PET and MRI template for normal rat brain. Also, feasibility of SPM in detailed regional analysis of molecular changes in the rat brain was explored for F-18 FDG PET imaging of a model of traumatic brain injury (TBI). Ten normal rats were scanned with PET and MRI. The PET images were acquired with 3D mode using microPET focus 120 scanner after injection of 37 MBq F-18 FDG. T2-weighted MR images were acquired using 4.7T MRI system. A MRI-based spatial normalization was used. The PET images were coregistered to T2-weighted MR images. Maximum mutual information (MMI) registrations and affine spatial normalizations were performed using SPM2. The spatial normalization of the MRI to the standard MRI was applied to the integral images. The normalized PET images were averaged voxel wise to create PET template. Eight TBI model rats were subjected to a moderate lateral fluid percussion injury. At 2 days, 1 week, 3 weeks and 5 weeks post FPI, PET images of 8 TBI rats were acquired 4 times. TBI PET images were realigned, spatially normalized to a created PET-template and smoothed (8 mm FWHM). To assess the extent and severity of significant hypo metabolic lesions in TBI compared to normal controls were obtained by a two-sided t-test of SPM (uncorrected p < 0.001, 50 voxels). Visually acceptable PET and MRI templates were created. Registration errors were negligible when MMI procedure was used to register a translated or rotated image volume. Thirty-two PET studies of 8 TBI model subjects were obtained. SPM analysis showed injured distribution of decrease F-18 FDG uptake in TBI rats compared with normal rats. In SPM analysis, the extent and severity of significant hypo metabolic lesions were decreased according to a significant effect of time. At 5 weeks injured animals showed F-18 FDG uptake recovery using SPM analysis. These results indicate that voxel-based method will be useful for future longitudinal studies of rat brain.

  7. Comparative study on findings of the brain computed tomography (X-ray-CT) and dynamic topography of VEP (VDT)

    International Nuclear Information System (INIS)

    Comparative study between morphological Xray-CT and functional VDT was conducted on 20 cases of cerebral diseases with visual dysfunction. Subjects were patients with cerebral infarction, intracranial hemorrhage, hemispherectomy, traumatic brain atrophy, brain tumor, Creutzfeldt-Jakob disease, anoxic encephalopathy, porencephaly, microcephaly and optic tract lesion. VEP topography was performed by flash stimulation and brain electrical activity mappings were displayed by EEG topography computer. In 9 cases out of 20, abolished function in VDT was correlated to the defective findings of Xray-CT. Cases with homonymous hemianopsia showed 2 types of BEAM. In cases with a lesion in the inner surface of the occipital lobe, asymmetric electric activity was distributed along the sagittal axis of the scalp. While, in cases with outer surface lesion of the occipital lobe, asymmetric electric activity appeared along the coronary axis. In cases with multi focal brain lesions in Xray-CT, there was no regular tendency in abnormality of VDT. Various aberration of VEP and VDT, such as component defect, stagnation, reduction, condensation and abnormal flow were demonstrated. In a case of optic tract lesion, Xray-CT showed no pathological findings but VDT showed a remarkable asymmetry of brain activity. (author)

  8. Relationship between brain perfusion SPECT and MMSE score in dementia of Alzheimer's type: a statistical parametric mapping analysis

    International Nuclear Information System (INIS)

    The aim of this study was to identify the brain areas in which reductions of regional cerebral blood flow (rCBF) were correlated with decline of general mental function, measured by Mini-Mental State Examination (MMSE). Tc-99m HMPAO brain SPECT was performed in 9 probable AD patients at the initial and follow-up periods of 1.8 years (average) after the first study. MMSE scores were also measured in both occasions. The mean MMSE score of the initial study 16.4 (range: 5-24) and the mean MMSE score of the follow-up was 8.1 (range: 0-17). Each SPECT image was normalized to the cerebellar activity and a correlation analysis was performed between the level of rCBF in AD patients and the MMSE scores by voxel-based analysis using SPM99 software. Significant correlation was found between the blood-flow decrease in left inferior prefrontal region(BA 47) and left middle temporal region (BA 21) and the MMSE score changes. Additional areas such as anterior and posterior cingulate cortices, precuneus, and bilateral superior and middle prefrontal regions showed and similar trends. A relationship was found between reduction of regional cerebral blood flow in left prefrontal and temporal areas and decline of cognitive function in Alzheimer's diseases (AD) patients. This voxel-based analysis is useful in evaluating the progress of cognitive function in Alzheimer's disease

  9. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse.

    Science.gov (United States)

    Gould, B R; Zingg, H H

    2003-01-01

    The hypothalamic nonapeptide oxytocin (OT) has an established role as a circulating hormone but can also act as a neurotransmitter and as a neuromodulator by interacting with its central OT receptor (OTR). To understand the role of the OTR in the mouse brain we investigated the expression of the OTR gene at the cellular level. We targeted the lacZ reporter gene to the OTR gene locus downstream of the endogenous OTR regulatory elements. Using lactating mouse mammary gland as a control for OTR promoter directed specificity of lacZ gene expression, X-gal histochemistry on tissue sections confirmed that gene expression was restricted to the myoepithelial cells. We also identified for the first time in mice the expression of the OTR gene in neighbouring adipocytes. Further, investigation in the mouse brain identified numerous nuclei containing neurons expressing the OTR gene. Whilst some of these regions had been described for rat or sheep, the OTR-LacZ reporter mouse enabled the identification of novel sites of central OTR gene expression. These regions include the accessory olfactory bulb, the medial septal nucleus, the posterolateral cortical amygdala nucleus, the posterior aspect of the basomedial amygdala nucleus, the medial part of the supramammillary nucleus, the dorsotuberomammillary nucleus, the medial and lateral entorhinal cortices, as well as specific dorsal tegmental, vestibular, spinal trigeminal, and solitary tract subnuclei. By mapping the distribution of OTR gene expression, depicted through histochemical detection of beta-galactosidase, we were able to identify single OTR gene expressing neurons and small neuron clusters that would have remained undetected by conventional approaches. These novel sites of OTR gene expression suggest additional functions of the oxytocinergic system in the mouse. These results lay the foundation for future investigation into the neural role of the OTR and provide a useful model for further study of oxytocin functions in

  10. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    International Nuclear Information System (INIS)

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal

  11. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes

    DEFF Research Database (Denmark)

    Lassen, N A; Ingvar, D H

    1990-01-01

    Mapping of cortical and subcortical grey matter active during voluntary movements by means of measurements of local increases of CBF or CMR-Glucose is reviewed. Most of the studies concern observations in man during hand movements using the intracarotid Xenon-133 injection technique, an approach...... motor area SMA on both sides increase in CBF/CMR-glucose and even internally ("mentally") going through the trained movements, causes such changes; complex purposeful movements also activate the premotor cortex, a response that is bilateral with greatest response contralaterally. Studies in patients...

  12. Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping

    CERN Document Server

    Card, D A

    2000-01-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...

  13. Memory Networks in Tinnitus: A Functional Brain Image Study

    Science.gov (United States)

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  14. Functional brain studies with H215O-PET

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) with intravenous injection of H215O allows us to obtain regional cerebral blood flow (rCBF) images repeatedly within a short period of time. Since the increase of electrical activity in a specific brain region is followed by the abrupt increase of rCBF, the technique with H215O-PET is suitable for functional stimulation-activation studies. In this study, we examined the following fundamental issues : (1) reproducibility of rCBF during resting condition (2) effect of physiological stimulation on CBF (3) anatomical identification of activated area. Our data suggest that relative CBF images and their paired subtraction are suitable for tapping functional localization. The changes in rCBF in association cortex for more complicated tasks are, in general, smaller than those in primary cortex. Combination display of PET image with MR-3D reconstructed brain surface image in each subject is the most reliable technique for anatomical identification of activated site. (J.P.N.)

  15. STUDY ABOUT CLINICAL APPLICATION OF BRAIN ATLAS IN PAEDIATRICS

    Institute of Scientific and Technical Information of China (English)

    MENG Fanhang; LIU Cuiping; RENG Xiaoping; JIANG Lian

    2002-01-01

    Objectives To explore clinical application on brain atlas in paediatrics. Methode: Brain atlas was applied in diagnosis and treatment of paediatric diseases and its clinical value was discussed in 1990 ~2001. The manifestation of these diseases in brain atlas were analysed and the manifestation of CT of 67 cases and manifestations of EEG of 37 cases with that of BA were compared. Results The changes of cerebral electrical activity of these diseases were reflected objectively and showed directly in BA. Conclusion Brain atlas not only can point out quality of disease but also define position of disease. Therefore, brain atlas has important clinical value in paediatrics.

  16. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Brigo, Francesco; Seidl, Martin; Christova, Monica; Bergmann, Jürgen; Golaszewski, Stefan; Trinka, Eugen

    2013-04-01

    Plastic changes of neural circuits occur after spinal cord injury (SCI) at various level of the central nervous system. In this review we will focus on delineating the pathophysiological mechanisms of the brain plasticity changes following SCI, based on the existing neuroimaging and neurophysiological evidence in experimental models and humans. In animal experiments, reorganization of the sensory topography as well as of the topographical map of primary motor and premotor cortices have been reported in several studies. Brain imaging revealed that cortical representation in response to spared forelimb stimulation early enlarges and invades adjacent sensory-deprived hind limb territory. Electrophysiological studies demonstrated that the deafferentation due to SCI can immediately change the state of large cortical networks within 1h, and that these changes play a critical role in the functional reorganization after SCI. In humans neuroimaging also showed shifts of functional motor and sensory cortical representations that relate to the severity of SCI. In patients with cervical SCI, cortical forearm motor representations, as assessed by means of transcranial magnetic stimulation, may reorganize towards the intrinsic hand motor representation to maximize output to muscles of the impaired forearm. Excessive or aberrant reorganisation of cerebral cortex may also have pathological consequences, such as phantom sensations or neuropathic pain. Integrated neuroimaging and neurophysiological approaches may also lead to the development of new therapeutic strategies, which have the potential of enhancing sensorimotor recovery in patients with SCI. PMID:23396112

  17. Odour maps in the brain of butterflies with divergent host-plant preferences

    OpenAIRE

    Carlsson, M; Bisch-Knaden, S.; Schäpers, A.; Mozuraitis, R.; Hansson, B; Janz, N.

    2011-01-01

    Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, w...

  18. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study

    OpenAIRE

    Rafael Simas; Paulina Sannomiya; José Walber M. C Cruz; Cristiano de Jesus Correia; Fernando Luiz Zanoni; Maurício Kase; Laura Menegat; Isaac Azevedo Silva; Moreira, Luiz Felipe P.

    2012-01-01

    OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death–associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflatio...

  19. Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells

    OpenAIRE

    Lorger, M.; Lee, H.; Forsyth, J S; Felding-Habermann, B.

    2011-01-01

    Brain metastases occur in 20 to 40% of patients with metastatic breast cancer. The process is complex and depends on successful cancer cell evasion from the primary tumor, distribution and survival within the blood stream and cerebral microvasculature, penetration of the blood brain barrier and proliferation within the brain microenvironment. The initial steps of brain colonization are difficult to study in vivo. Therefore, in vitro assays have been developed to mimic this process. Most commo...

  20. A Delphi Study on Brain-based Instructional Model in Science

    OpenAIRE

    Duangkamon Charnsirirattana; Prasart Nuangchalerm

    2010-01-01

    Development of science instructional model for brain-based learning by using knowledge of the brain to be the tool designed of learning process is now interesting. This study aimed to develop science instructional model for brain-based learning. Delphi method was employed with 18 panel members. The findings can be showed that science instructional model for brain-based learning consisted of five steps of learning organization (PRADA- Preparation, Relaxation, Action, Discussion, and Applicatio...

  1. THE MICROBIOTA-GUT-BRAIN AXIS. A STUDY IN ZEBRAFISH (DANIO RERIO)

    OpenAIRE

    Borrelli, Luca

    2015-01-01

    The microbiota is essential in the host's physiology, development, reproduction, immune system, nutrient metabolism, in brain chemistry and behavior. The gut microbiota plays a crucial role in the bidirectional gut–brain axis, a communication that integrates the gut and central nervous system (CNS) activities, and thus, the concept of microbiota–gut–brain axis is emerging where the microbes have considered as signaling components in the gut-brain axis. Animal studies reveals, in particular, t...

  2. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  4. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  5. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R;

    2007-01-01

    Analysis of the brain proteome and studying brain diseases through clinical biopsies and animal disease models require methods of quantitative proteomics that are sensitive and allow identification and quantification of low abundant membrane proteins from minute amount of tissue. Taking advantage...

  6. Brain computer tomography in critically ill patients - a prospective cohort study

    International Nuclear Information System (INIS)

    Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients. In a prospective observational study data were collected during one year on the reasons to request a brain CT, expected abnormalities, abnormalities found by the radiologist and consequences for treatment. An “expected abnormality” was any finding that had been predicted by the physician requesting the brain CT. A brain CT was “diagnostically positive”, if the abnormality found was new or if an already known abnormality was increased. It was “diagnostically negative” if an already known abnormality was unchanged or if an expected abnormality was not found. The treatment consequences of the brain CT, were registered as “treatment as planned”, “treatment changed, not as planned”, “treatment unchanged”. Data of 225 brain CT in 175 patients were analyzed. In 115 (51%) brain CT the abnormalities found were new or increased known abnormalities. 115 (51%) brain CT were found to be diagnostically positive. In the medical group 29 (39%) of brain CT were positive, in the surgical group 86 (57%), p 0.01. After a positive brain CT, in which the expected abnormalities were found, treatment was changed as planned in 33%, and in 19% treatment was changed otherwise than planned. The results of this study show that the diagnostic and therapeutic yield of brain CT in critically ill patients is moderate. The development of guidelines regarding the decision rules for performing a brain CT in ICU patients is needed

  7. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

    International Nuclear Information System (INIS)

    Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis. (orig.)

  8. The noninvasive dissection of the human visual cortex: using FMRI and TMS to study the organization of the visual brain.

    Science.gov (United States)

    McKeefry, Declan J; Gouws, Andre; Burton, Mark P; Morland, Antony B

    2009-10-01

    The development of brain imaging techniques, such as fMRI, has given modern neuroscientists unparalleled access to the inner workings of the living human brain. Visual processing in particular has proven to be particularly amenable to study with fMRI. Studies using this technique have revealed the existence of multiple representations of visual space with differing functional roles across many cortical locations. Yet, although fMRI provides an excellent means by which we can localize and map different areas across the visual brain, it is less well suited to providing information as to whether activation within a particular cortical region is directly related to perception or behavior. These kinds of causal links can be made, however, when fMRI is combined with transcranial magnetic stimulation (TMS). TMS is a noninvasive technique that can bring about localized, transient disruption of cortical function and can induce functional impairments in the performance of specific tasks. When guided by the detailed localizing and mapping capabilities of fMRI, TMS can be used as a means by which the functional roles of different visual areas can be investigated. This review highlights recent insights that the techniques of fMRI and TMS have given us with regard to the function and contributions of the many different visual areas to human visual perception. PMID:19826171

  9. Aberrant emotion networks in early major depressive disorder patients: an eigenvector centrality mapping study.

    Science.gov (United States)

    Song, Z; Zhang, M; Huang, P

    2016-01-01

    Major depressive disorder (MDD) is a serious mental disorder that negatively affects the quality of life of many individuals, and is a heavy economic burden to society. In recent years it was thought that depression is a 'disconnection syndrome'. Disorganized brain activity and un-modulated emotion responses were considered the key neuropathologies underlying depression. In the present study, we investigated the alteration of whole brain network connectivity in 28 first-episode, drug-naive patients, using resting-state functional magnetic resonance imaging and a new analytical method called voxel-based eigenvector centrality mapping. We found that compared with normal controls, MDD patients had lower functional connectivity in the bilateral middle frontal gyrus, insula, hippocampus, amygdala and cerebellum, and higher functional connectivity in the medial prefrontal cortex. The functional connectivity strength at the right hippocampus (r=-0.413, P=0.032) and the right insula (r=-0.372, P=0.041) negatively correlated with the severity of the disease. We further examined coordination among these regions, and found that frontal-subcortical connection was reduced and insula-medial prefrontal cortex (mPFC) connection was increased. These results are consistent with previous hypotheses on the neural mechanism of MDD, and provide further evidence that emotion networks are already interrupted in early stages of depression. PMID:27219345

  10. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  11. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping

    Directory of Open Access Journals (Sweden)

    Christina Kay Kim

    2014-11-01

    Full Text Available Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf, precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials. We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca2+ signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development.

  12. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... to another. Share Science News Connectome Re-Maps Human Cortex ECT Lifts Depression, Sustains Remission in Older ...

  13. Frequency Map Studies for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Designing a lattice with sufficient dynamic aperture for the ILC Damping Rings is very challenging as the lattice needs to provide a small equilibrium emittance and at the same time a large aperture for the injected beam (including a large momentum acceptance). In addition, outside constraints have forced layout changes in the damping ring. Some of the layout changes had an impact on the dynamic aperture. In order to better understand the changes in dynamic aperture, frequency maps are studied. Those studies can help in identifying the reason for the changed dynamic aperture and in finding a good location for the betatron tunes and determining an upper limit for the chromaticities. A summary of recent studies and suggestions for improving the dynamic aperture by choosing a different tune are presented

  14. Gender differences in brain development in Chinese children and adolescents: a structural MRI study

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Yao, Li

    2008-03-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated gender differences in brain development through magnetic resonance imaging (MRI) data in 158 Chinese normal children and adolescents aged 7.26 to 22.80 years (mean age 15.03+/-4.70 years, 78 boys and 80 girls). Gender groups were matched for measures of age, handedness, education level. The customized brain templates, including T I-weighted image and gray matter (GM)/white matter (WM)/cerebro-spinal fluid (CSF) prior probability maps, were created from all participants. Results showed that the total intracranial volume (TIV), global absolute GM and global WM volume in girls were significantly smaller than those in boys. The hippocampus grew faster in girls than that in boys, but the amygdala grew faster in boys than that in girls. The rate of regional GM decreases with age was steeper in the left superior parietal lobule, bilateral inferior parietal lobule, left precuneus, and bilateral supramarginal gyrus in boys compared to girls, which was possibly related to better spatial processing ability in boys. Regional GM volumes were greater in bilateral superior temporal gyrus, bilateral inferior frontal gyrus and bilateral middle frontal gyrus in girls. Regional WM volumes were greater in the left temporal lobe, right inferior parietal and bilateral middle frontal gyrus in girls. The gender differences in the temporal and frontal lobe maybe be related to better language ability in girls. These findings may aid in understanding the differences in cognitive function between boys and girls.

  15. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer

    DEFF Research Database (Denmark)

    Grønberg, Bjørn H; Ciuleanu, Tudor; Fløtten, Øystein; Knuuttila, Aija; Abel, Edvard; Langer, Seppo W; Krejcy, Kurt; Liepa, Astra M; Munoz, Maria; Hahka-Kemppinen, Marjo; Sundstrøm, Stein

    2012-01-01

    Enzastaurin is a protein kinase C inhibitor with anti-tumor activity. This study was designed to determine if maintenance enzastaurin improved the outcome of whole brain radiotherapy (WBRT) in lung cancer (LC) patients with brain metastases (BMs).......Enzastaurin is a protein kinase C inhibitor with anti-tumor activity. This study was designed to determine if maintenance enzastaurin improved the outcome of whole brain radiotherapy (WBRT) in lung cancer (LC) patients with brain metastases (BMs)....

  16. Functional mapping - how to map and study the genetic architecture of dynamic complex traits.

    Science.gov (United States)

    Wu, Rongling; Lin, Min

    2006-03-01

    The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes. PMID:16485021

  17. Computational anatomy for studying use-dependant brain plasticity

    Science.gov (United States)

    Draganski, Bogdan; Kherif, Ferath; Lutti, Antoine

    2014-01-01

    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences. PMID:25018716

  18. Computational anatomy for studying use-dependant brain plasticity

    Directory of Open Access Journals (Sweden)

    Bogdan eDraganski

    2014-06-01

    Full Text Available In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g. myelin, iron and water content in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences.

  19. Computational anatomy for studying use-dependant brain plasticity

    OpenAIRE

    Draganski, Bogdan; Kherif, Ferath; Lutti, Antoine

    2014-01-01

    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structu...

  20. Computational anatomy for studying use-dependant brain plasticity

    OpenAIRE

    Bogdan eDraganski; Ferath eKherif; Antoine eLutti

    2014-01-01

    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure cha...

  1. A STUDY ON BRAIN – MACHINE INTERFACE (BMI)

    OpenAIRE

    Abdul Muqeeth*,

    2015-01-01

    A brain – machine interface (BMI), sometimes called a mind - machine interface (MMI), or sometimes called a direct neural interface (DNI), synthetic telepathy interface (STI) or a brain – machine interface (BMI), is a direct communication pathway between the brain and an external device. BCIs are often directed at assisting, augmenting, or repairing human cognitive or se nsory - motor functions. The field of BCI research and developmen...

  2. Baby Brain Map

    Science.gov (United States)

    ... How Partnering With Your Child’s Caregiver Supports Healthy Development Infographic Beyond the Word Gap Infographic Training Cradling Literacy: Building Teachers' Skills to Nurture Early Language and Literacy From Birth ...

  3. Whole Brain Radiotherapy With Hippocampal Avoidance and Simultaneously Integrated Brain Metastases Boost: A Planning Study

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility of using tomotherapy to deliver whole brain radiotherapy with hippocampal avoidance, hypothesized to reduce the risk of memory function decline, and simultaneously integrated boost to brain metastases to improve intracranial tumor control. Methods and Materials: Ten patients treated with radiosurgery and whole brain radiotherapy underwent repeat planning using tomotherapy with the original computed tomography scans and magnetic resonance imaging-computed tomography fusion-defined target and normal structure contours. The individually contoured hippocampus was used as a dose-limiting structure (2 and 5.8 ± 1.9 Gy2 for 2.5- and 1.0-cm FW, respectively. The mean treatment delivery time for the 2.5- and 1.0-cm FW plans was 10.2 ± 1.0 and 21.8 ± 1.8 min, respectively. Conclusion: Composite tomotherapy plans achieved three objectives: homogeneous whole brain dose distribution equivalent to conventional whole brain radiotherapy; conformal hippocampal avoidance; and radiosurgically equivalent dose distributions to individual metastases

  4. A CASE STUDY ON POINT PROCESS MODELLING IN DISEASE MAPPING

    Directory of Open Access Journals (Sweden)

    Viktor Beneš

    2011-05-01

    Full Text Available We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis (TBE, and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence of the risk on the covariates. Instead of using the common area level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics.

  5. A study of the usability of CGDI in health mapping

    DEFF Research Database (Denmark)

    Gao, Sheng; Mioc, Darka; Xialoun, Yi;

    CGDI for health mapping. New Brunswick and Maine are territorial neighbors which means there are significant volumes of goods and people traveling across our international border, thus infectious agents are likely to carry from one jurisdiction to the other. In this paper, with the purpose to make...... through the CGDI framework. With the evolvement of CGDI and health study, it would further facilitate the health data sharing and improve decision making efficiency and effectiveness.......Due to the recent outbreak of SARS and Bird Flu, the ability to strengthen health surveillance and control is highly appreciated. Since the health problem is strongly referenced with spatial locations, integrating geospatial technology in health study could support better decision making. Right now...

  6. Vergence in mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Dora Szymanowicz, OD, MS

    2012-10-01

    Full Text Available Vergence dysfunction in individuals with mild traumatic brain injury (mTBI may have a negative effect on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective and subjective measures of vergence to assess 21 adult patients with mTBI and nearwork symptoms. The results were compared with 10 control adult subjects. With respect to dynamic parameters, responses in those with mTBI were slowed, variable, and delayed. With respect to static parameters, reduced near point of convergence and restricted near vergence ranges were found in those with mTBI. The present results provide evidence for the substantial adverse effect of mTBI on vergence function.

  7. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    International Nuclear Information System (INIS)

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus

  8. Regional habit of coca chewing: Brain perfusion study

    International Nuclear Information System (INIS)

    A comparison was made of brain perfusion findings obtained using single photon emission computed tomography (SPECT) and 99Tcm-HMPAO (hexamethyl propylene amine oxime) in a study involving, on the one hand, cocaine dependent, HIV negative volunteers with different degrees of addiction (group G-II) and coca leaf chewers (group G-III) and, on the other, an abstinent control group (G-I). Urinary concentrations, determined by immunoassay, of benzolmethylecgonines (bmecg) - cocaine metabolites - were correlated with brain perfusion results. The maximum age of the subjects was 44 years. The results of neuropsychomotor examinations were normal for all of them. The number of persons in the different groups was as follows: three in G-I (control); seven in G-II (moderate and heavy cocaine users); and ten in G-III (continuous or intermittent coca leaf chewers). Cerebral SPECT readings were obtained with 30 mCi of 99Tcm-MPAO, after the appropriate quality checks on the instruments and radiochemicals. In G-I there were no perfusion irregularities and the urinary concentration were negative. In G-II (6/7) patchy asymmetric hypoperfusion was observed, with bmecg values of up to 17,000 ng/mL. In G-III (7/10) there appeared asymmetric areas of moderate hypoperfusion with left predominance and bmecg values above those of G-I, reaching 1000 ng/mL. Hypoperfused basal ganglions were observed in some G-II cases and, to a lesser extent, in G-III. The greats (in terms of number and dimensions) perfusion irregularities, with the highest bmecg values and the greatest probability of morbidity, occurred among the cocaine addicts (G-II). Among the coca leaf chewers (G-III), moderate spotted hypoperfusion was observed, also with left predominance and with moderate bmecg values. The study should be broadened in order to substantiate the findings. (author). 9 refs, 3 figs, 2 tabs

  9. Brain drain, brain gain or brain sharing?: New studies of the migration routes of scientists show that international mobility benefits all parties including countries that are net exporters of researchers

    OpenAIRE

    Hunter, Philip

    2013-01-01

    Scientific migration has long been seen in terms of brain drain and brain gain. Recent studies show that the reality is more complex and that even exporters of skilled scientists gain in the long term.

  10. Ultrastructural pathology of prion diseases revisited: brain biopsy studies.

    Science.gov (United States)

    Liberski, P P; Streichenberger, N; Giraud, P; Soutrenon, M; Meyronnet, D; Sikorska, B; Kopp, N

    2005-02-01

    We report here a detailed ultrastructural comparison of brain biopsies from 13 cases of Creutzfeldt-Jakob disease (CJD) and from one case of fatal familial insomnia (FFI). The latter disease has not heretofore benefited from ultrastructural study. In particular, we searched for tubulovesicular structures (TVS), 35-nm particles regarded as the only disease-specific structures at the level of thin-section electron microscopy. Our material consisted of brain biopsies obtained by open surgery from one FFI case from a new French family, one case of variant CJD (vCJD), nine cases of sporadic CJD (sCJD), two cases of iatrogenic (human growth hormone) CJD and one case of hereditary CJD (Val203Iso). The ultrastructural picture of the cerebral cortex of the FFI patient was virtually indistinguishable from that of CJD. TVS were found, albeit only after prolonged search. Typical spongiform change was observed, consisting of intracellular membrane-bound vacuoles containing secondary chambers (vacuoles within vacuoles) and amorphous material. Neuronal degeneration was widespread: some processes contained degenerating mitochondria and lysosomal electron-dense bodies and these met the criteria for neuroaxonal dystrophy. Other processes contained branching cisterns; still others were filled with electron-dense masses and amorphous vesicles. The overall ultrastructural appearance of variant CJD was similar to that of FFI cerebral cortex, except for a much higher number of cellular processes containing TVS. We detected TVS in the majority of sCJD cases that, in addition to typical spongiform change and robust astrocytic reaction, showed widespread neuritic and synaptic degeneration and autophagic vacuoles. We conclude that TVS are readily found in FFI, vCJD and sCJD and that widespread neuritic degeneration is a part of ultrastructural pathology in prion diseases. PMID:15634235

  11. MR Diffusion Studies of Human Brain in-vivo

    Directory of Open Access Journals (Sweden)

    M Nezamzadeh

    2005-10-01

    Full Text Available Diffusion MRI has become one of the most powerful tools for the detection of acute stroke. The signal attenuation caused by the diffusion process is normally assumed to be exponential .The decay constant which is often called the “apparent diffusion coefficient”(ADC is measured by 2 or 3 points in clinical applications yielding mono-exponential decay curves. The diffusion signal attenuation of water molecules on human brain was measured with a certain pulse sequence. The sequence was modified to work over a range of diffusion times and high gradients. The decay was measured precisely for 96 b-values up to the maximum possible gradient amplitude of 28.8 mT/m. A significant deviation from mono-exponential behavior was observed consistent to the multi-exponential model. The NNLS-diff computational code, using a non-negative least squares (NNLS algorithm was developed for the data analysis. The diffusion time dependence of human brain tissue was studied for diffusion times between 20 to 53 ms using 16 b-values ranged from b=0 to the maximum possible b-value in each case. At all diffusion times, there was a diffusion coefficient at approximately 1x10-3 mm2/s and another at about 6x10–5 mm2/s. For some diffusion times a small contribution at about 1x10 -2 mm2/s was also detected. Our results were consistent with work of others. However, we observe small diffusion time dependence for the smallest diffusion coefficient, which has not previously been reported. More work is required to identify the source of the new observation.

  12. Photoinduced surface voltage mapping study for large perovskite single crystals

    Science.gov (United States)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  13. Spatial memory extinction: a c-Fos protein mapping study.

    Science.gov (United States)

    Méndez-Couz, M; Conejo, N M; Vallejo, G; Arias, J L

    2014-03-01

    While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory. PMID:24315832

  14. The automatic brain: studies on practice and brain function in healthy subjects and patients with schizophrenia

    NARCIS (Netherlands)

    van Raalten, T.R.

    2009-01-01

    Practice makes perfect. The neural mechanisms behind the behavioral improvement of practice (automatization) however are largely unknown. Here we investigate how practice changes brain function and how this can improve our processing capacity. We also examine whether a deficit in automatization can

  15. Incidence of Brain Atrophy and Decline in Mini-Mental State Examination Score After Whole-Brain Radiotherapy in Patients With Brain Metastases: A Prospective Study

    International Nuclear Information System (INIS)

    Purpose: To determine the incidence of brain atrophy and dementia after whole-brain radiotherapy (WBRT) in patients with brain metastases not undergoing surgery. Methods and Materials: Eligible patients underwent WBRT to 40 Gy in 20 fractions with or without a 10-Gy boost. Brain magnetic resonance imaging or computed tomography and Mini-Mental State Examination (MMSE) were performed before and soon after radiotherapy, every 3 months for 18 months, and every 6 months thereafter. Brain atrophy was evaluated by change in cerebrospinal fluid-cranial ratio (CCR), and the atrophy index was defined as postradiation CCR divided by preradiation CCR. Results: Of 101 patients (median age, 62 years) entering the study, 92 completed WBRT, and 45, 25, and 10 patients were assessable at 6, 12, and 18 months, respectively. Mean atrophy index was 1.24 ± 0.39 (SD) at 6 months and 1.32 ± 0.40 at 12 months, and 18% and 28% of the patients had an increase in the atrophy index by 30% or greater, respectively. No apparent decrease in mean MMSE score was observed after WBRT. Individually, MMSE scores decreased by four or more points in 11% at 6 months, 12% at 12 months, and 0% at 18 months. However, about half the decrease in MMSE scores was associated with a decrease in performance status caused by systemic disease progression. Conclusions: Brain atrophy developed in up to 30% of patients, but it was not necessarily accompanied by MMSE score decrease. Dementia after WBRT unaccompanied by tumor recurrence was infrequent

  16. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    International Nuclear Information System (INIS)

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  17. Cross-frequency coupling of brain oscillations in studying motivation and emotion

    OpenAIRE

    Schutter, Dennis J. L. G.; Knyazev, Gennady G.

    2011-01-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the ...

  18. Naturkraft integration at Kaarstoe. Mapping study report 6 march 2009

    Energy Technology Data Exchange (ETDEWEB)

    Odland, Oeystein; Hoeie, Hans; Aanestad, Per; Hauge, Bjoern I.; Solvang, Svein; Boee, Stein Espen; Lervik, Steinar; Kristiansen, Arild

    2007-07-01

    Gassco is engaged in three different studies and projects related to reduce CO{sub 2} emissions at Kaarstoe; 1. Gassnova's CO{sub 2} capture, transport and storage projects at Kaarstoe and Mongstad (the CO{sub 2} Transportation Network), where Gassco role is to mature the transportation facilities of the project. An investment decision is planned for second half of 2009. 2. The Kaarstoe Flue Gas Capture pre-feasibility study initiated by the MPE to Gassco as operator of Gassled in connection with approval of the Kaarstoe Expansion Project 2010, to evaluate the potential of capturing the CO{sub 2} emissions at the Kaarstoe gas processing plant, and reported to the MPE 3 March 2009, and 3. This Naturkraft Integration Mapping Study initiated by MPE to meet the requirements set out by the letter to Gassco dated 3 December 2008 to evaluate possibilities to integrate existing Naturkraft's power plant with the Kaarstoe gas processing plant. In this Naturkraft Integration Study report Gassco has identified potential degrees of integration and resulting impact with respect to performance of both the Naturkraft power plant and the Kaarstoe gas processing plant. A major concern related to operations of the Kaarstoe gas processing plant is the regularity and availability issues related to natural gas and NGL export. The value of the petroleum transported over Kaarstoe on any day exceeds 200 million NOK. In addition also significant oil production will be shut down if the Kaarstoe gas processing plant is not operating. Hence the regularity of energy supply including steam is of utmost importance. The integration between Naturkraft and the gas processing plant is based on supplying energy (i.e. fuel gas, steam, heat and electricity) from Naturkraft's existing power plant, and therefore must be based on predictable and steady operations of the Naturkraft power plant. Naturkraft has only been in operation for a few weeks from the start-up of the power plant 1

  19. NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain

    OpenAIRE

    Gorgolewski, Krzysztof J; Varoquaux, Gael; Rivera, Gabriel; Schwartz, Yannick; Sochat, Vanessa V.; Ghosh, Satrajit S.; Maumet, Camille; Nichols, Thomas E.; Poline, Jean-Baptiste; Yarkoni, Tal; Margulies, Daniel S.; Poldrack, Russell A.

    2015-01-01

    NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations,...

  20. A Study of Asynchronous and Synchronous Discussion on Cognitive Maps in a Distributed Learning Environment.

    Science.gov (United States)

    Bhattacharya, Madhumita

    This paper reports on a comparative study of the use of asynchronous (bulletin board) and synchronous (chat) discussion on three learning units based on the cognitive maps developed by the learners. Cognitive maps have been found to be an effective tool for learners for discussion in a distributed learning environment. Cognitive maps provided…