WorldWideScience

Sample records for brain insulin receptor

  1. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  2. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects.

    Science.gov (United States)

    Werner, Haim; LeRoith, Derek

    2014-12-01

    The involvement of insulin, the insulin-like growth factors (IGF1, IGF2) and their receptors in central nervous system development and function has been the focus of scientific interest for more than 30 years. The insulin-like peptides, both locally-produced proteins as well as those transported from the circulation into the brain via the blood-brain barrier, are involved in a myriad of biological activities. These actions include, among others, neuronal survival, neurogenes, angiogenesis, excitatory and inhibitory neurotransmission, regulation of food intake, and cognition. In recent years, a linkage between brain insulin/IGF1 and certain neuropathologies has been identified. Epidemiological studies have demonstrated a correlation between diabetes (mainly type 2) and Alzheimer׳s disease. In addition, an aberrant decline in IGF1 values was suggested to play a role in the development of Alzheimer׳s disease. The present review focuses on the expression and function of insulin, IGFs and their receptors in the brain in physiological and pathological conditions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  3. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  4. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  5. Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin

    International Nuclear Information System (INIS)

    Lesniak, M.A.; Hill, J.M.; Kiess, W.; Rojeski, M.; Pert, C.B.; Roth, J.

    1988-01-01

    Receptors for insulin-like growth factor I (IGF-I) in rat brain were visualized using autoradiography with [125I]IGF-I. The binding of the labeled peptide was competed for fully by high concentrations of unlabeled IGF-I. At intermediate concentrations of unlabeled peptide the binding of [125I]IGF-I was competed for by unlabeled IGF-I more effectively than by IGF-II or insulin, which is typical of receptors for IGF-I. Essentially every brain section shows specific binding of IGF-I, and the pattern of binding of IGF-I to its receptors correlated well with the cytoarchitectonic structures. In parallel studies we showed that [125I]IGF-II was bound to tissue sections of rat brain and that the binding was competed for by an excess of unlabeled IGF-II. However, intermediate concentrations of unlabeled peptides gave inconclusive results. To confirm that the binding of [125I]IGF-II was to IGF-II receptors, we showed that antibodies specific for the IGF-II receptor inhibited the binding of labeled IGF-II. Furthermore, the binding of the antibody to regions of the brain section, visualized by the application of [125I]protein-A, gave patterns indistinguishable from those obtained with [125I]IGF-II alone. Again, the binding was very widely distributed throughout the central nervous system, and the patterns of distribution corresponded well to the underlying neural structures. Densitometric analysis of the receptors enabled us to compare the distribution of IGF-I receptors with that of IGF-II receptors as well as retrospectively with that of insulin receptors

  6. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  7. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    International Nuclear Information System (INIS)

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F.

    1989-01-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of [125I]insulin and [125I]IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of [125I]insulin and [125I] IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both [125I]insulin and [125I]IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain

  8. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  9. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  10. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  11. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  12. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  13. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    International Nuclear Information System (INIS)

    Brennan, W.A. Jr.

    1988-01-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of 32 P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation [61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively]. Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system

  15. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  16. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  17. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  18. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  19. Brain insulin signaling and Alzheimer's disease: current evidence and future directions.

    Science.gov (United States)

    Schiöth, Helgi B; Craft, Suzanne; Brooks, Samantha J; Frey, William H; Benedict, Christian

    2012-08-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

  20. Insulin in the brain: sources, localization and functions.

    Science.gov (United States)

    Ghasemi, Rasoul; Haeri, Ali; Dargahi, Leila; Mohamed, Zahurin; Ahmadiani, Abolhassan

    2013-02-01

    Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.

  1. Insulin, Aging, and the Brain: Mechanisms and Implications

    OpenAIRE

    Akintola, Abimbola A.; van Heemst, Diana

    2015-01-01

    There is now an impressive body of literature implicating insulin and insulin signaling in successful aging and longevity. New information from in vivo and in vitro studies concerning insulin and insulin receptors has extended our understanding of the physiological role of insulin in the brain. However, the relevance of these to aging and longevity remains to be elucidated. Here, we review advances in our understanding of the physiological role of insulin in the brain, how insulin gets into t...

  2. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  3. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  4. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  5. Insulin transport into the brain and cerebrospinal fluid.

    Science.gov (United States)

    Begg, Denovan P

    2015-01-01

    The pancreatic hormone insulin plays a well-described role in the periphery, based principally on its ability to lower circulating glucose levels via activation of glucose transporters. However, insulin also acts within the central nervous system (CNS) to alter a number of physiological outcomes ranging from energy balance and glucose homeostasis to cognitive performance. Insulin is transported into the CNS by a saturable receptor-mediated process that is proposed to be dependent on the insulin receptor. Transport of insulin into the brain is dependent on numerous factors including diet, glycemia, a diabetic state and notably, obesity. Obesity leads to a marked decrease in insulin transport from the periphery into the CNS and the biological basis of this reduction of transport remains unresolved. Despite decades of research into the effects of central insulin on a wide range of physiological functions and its transport from the periphery to the CNS, numerous questions remain unanswered including which receptor is responsible for transport and the precise mechanisms of action of insulin within the brain. © 2015 Elsevier Inc. All rights reserved.

  6. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer’s Disease Dementia

    Directory of Open Access Journals (Sweden)

    Jaume Folch

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ, which form senile plaques, neurofibrillary tangles (NFT and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the “peripheral” symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors.

  7. Insulin resistance in brain and possible therapeutic approaches.

    Science.gov (United States)

    Cetinkalp, Sevki; Simsir, Ilgin Y; Ertek, Sibel

    2014-01-01

    Although the brain has long been considered an insulin-independent organ, recent research has shown that insulin has significant effects on the brain, where it plays a role in maintaining glucose and energy homeostasis. To avoid peripheral insulin resistance, the brain may act via hypoinsulinemic responses, maintaining glucose metabolism and insulin sensitivity within its own confines; however, brain insulin resistance may develop due to environmental factors. Insulin has two important functions in the brain: controlling food intake and regulating cognitive functions, particularly memory. Notably, defects in insulin signaling in the brain may contribute to neurodegenerative disorders. Insulin resistance may damage the cognitive system and lead to dementia states. Furthermore, inflammatory processes in the hypothalamus, where insulin receptors are expressed at high density, impair local signaling systems and cause glucose and energy metabolism disorders. Excessive caloric intake and high-fat diets initiate insulin and leptin resistance by inducing mitochondrial dysfunction and endoplasmic reticulum stress in the hypothalamus. This may lead to obesity and diabetes mellitus (DM). Exercise can enhance brain and hypothalamic insulin sensitivity, but it is the option least preferred and/or continuously practiced by the general population. Pharmacological treatments that increase brain and hypothalamic insulin sensitivity may provide new insights into the prevention of dementia disorders, obesity, and type 2 DM in the future.

  8. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  9. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  10. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    Science.gov (United States)

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  11. Insulin: its binding to specific receptors and its stimulation of DNA synthesis and 2',3'-cyclic nucleotide phosphohydrolase in embryonic mouse brain cell cultures

    International Nuclear Information System (INIS)

    Shanker, G.; Pieringer, R.A.

    1986-01-01

    Previously, the authors demonstrated that ornithine decarboxylase was stimulated by insulin in cultures of embryonic mouse brain cells. In the present work, they have investigated the presence and specificity of insulin receptors in these cultures. A time study showed that maximum binding of 125 [I] labelled insulin was around 75 min. Other studies measured the influence of concentration and age on insulin binding. A displacement study using increasing concentrations of cold insulin, glucagon or growth hormone demonstrated that the specificity of the receptors for insulin was rather high. It was also found that insulin displayed a clear dose-dependent stimulation of thymidine incorporation into the brain cells. Insulin also stimulated the glial enzyme 2':3'-cyclic nucleotide phosphohydrolase (CNP-ase). The results suggest a dual role for insulin; it regulates both cell proliferation as well as differentiation

  12. Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits

    International Nuclear Information System (INIS)

    Frank, H.J.; Jankovic-Vokes, T.; Pardridge, W.M.; Morris, W.L.

    1985-01-01

    Insulin is a known growth factor in nonneural tissue, and recent studies have shown that there are insulin receptors throughout the adult and fetal central nervous system. Since insulin has only limited access to the adult brain, this study was undertaken to determine if insulin has increased availability to the newborn brain where it may act as a neonatal brain growth promoter. In vivo brain uptake of 125 I-insulin after a single-pass carotid injection was measured in newborn, 3-wk-old and 11-wk-old (adult) rabbits. The brain uptake index (BUI) relative to a 3 HOH reference was 22.0 +/- 1.1% (mean +/- SEM) for newborn, 12.8 +/- 0.6% for 3-wk-old, and 6.5 +/- 0.1% for adults. Specific 125 I-insulin binding to isolated cerebral microvessels was similarly increased in the newborn compared with the 3-wk-old and adult animals. Scatchard analysis revealed that the difference was due to an increase in receptor number with only minimal changes in the affinity. The increased availability of circulating insulin to the newborn brain was further corroborated by elevated CSF/serum and brain/serum insulin ratios in the newborn versus adult. These results suggest that insulin has increased access to the newborn brain where it may function as a growth factor

  13. Pathways for insulin access to the brain: the role of the microvascular endothelial cell

    OpenAIRE

    Meijer, Rick I.; Gray, Sarah M.; Aylor, Kevin W.; Barrett, Eugene J.

    2016-01-01

    New understanding of the directional flow of subarachnoid cerebrospinal fluid (CSF) through the Virchow-Robin space (VRS) to brain parenchyma, coupled with the demonstration here of rapid, insulin receptor-dependent trapping of plasma insulin by the brain microvasculature, underscores the direct role of insulin's blood-brain barrier transit to insulin delivery to the brain.

  14. [Targeting the brain through the nose. Effects of intranasally administered insulin].

    Science.gov (United States)

    Brünner, Y F; Benedict, C; Freiherr, J

    2013-08-01

    The assumption that the human brain is an insulin-independent organ was disproved with the discovery of insulin receptors in the central nervous system in the year 1978. Evidence has been provided for a high density of insulin receptors in brain regions responsible for cognitive memory processes (hippocampus) and for the regulation of appetite (hypothalamus). Accordingly, in animal studies an increased insulin level in the central nervous system leads to an improvement of hippocampal memory function and a decrease of food intake. Similar results were obtained in humans using the method of intranasal administration of insulin. Intranasal insulin reaches the brain and the cerebrospinal fluid via the olfactory epithelium and olfactory nerve fiber bundles leading through the lamina cribrosa to the olfactory bulb. Thus, this method renders the investigation of specific insulin effects in humans possible. The therapeutic potential of an intranasal insulin administration for the treatment of diseases for which an imbalance of the central nervous insulin metabolism is discussed (e.g. Alzheimer's disease, diabetes mellitus and obesity) can only be estimated with the help of further clinical studies.

  15. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors.

    Science.gov (United States)

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-05-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

  16. Insulin regulates brain function, but how does it get there?

    Science.gov (United States)

    Gray, Sarah M; Meijer, Rick I; Barrett, Eugene J

    2014-12-01

    We have learned over the last several decades that the brain is an important target for insulin action. Insulin in the central nervous system (CNS) affects feeding behavior and body energy stores, the metabolism of glucose and fats in the liver and adipose, and various aspects of memory and cognition. Insulin may even influence the development or progression of Alzheimer disease. Yet, a number of seemingly simple questions (e.g., What is the pathway for delivery of insulin to the brain? Is insulin's delivery to the brain mediated by the insulin receptor and is it a regulated process? Is brain insulin delivery affected by insulin resistance?) are unanswered. Here we briefly review accumulated findings affirming the importance of insulin as a CNS regulatory peptide, examine the current understanding of how peripheral insulin is delivered to the brain, and identify key gaps in the current understanding of this process. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Brain GLP-1 and insulin sensitivity.

    Science.gov (United States)

    Sandoval, Darleen; Sisley, Stephanie R

    2015-12-15

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels. Indeed, medications utilizing this system, including the long-acting GLP-1 analogs liraglutide and exenatide, are beneficial in reducing both blood sugars and body weight. GLP-1 analogs were long presumed to affect glucose control through their ability to increase insulin levels through peripheral action on beta cells. However, multiple lines of data point to the ability of GLP-1 to act within the brain to alter glucose regulation. In this review we will discuss the evidence for a central GLP-1 system and the effects of GLP-1 in the brain on regulating multiple facets of glucose homeostasis including glucose tolerance, insulin production, insulin sensitivity, hepatic glucose production, muscle glucose uptake, and connections of the central GLP-1 system to the gut. Although the evidence indicates that GLP-1 receptors in the brain are not necessary for physiologic control of glucose regulation, we discuss the research showing a strong effect of acute manipulation of the central GLP-1 system on glucose control and how it is relevant to type 2 diabetic patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Brain Insulin Signaling and Alzheimer's Disease: Current Evidence and Future Directions

    OpenAIRE

    Schiöth, Helgi B.; Craft, Suzanne; Brooks, Samantha J.; Frey, William H.; Benedict, Christian

    2011-01-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood–brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes as...

  19. Function of insulin in snail brain in associative learning.

    Science.gov (United States)

    Kojima, S; Sunada, H; Mita, K; Sakakibara, M; Lukowiak, K; Ito, E

    2015-10-01

    Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.

  20. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  1. Estrogen and insulin transport through the blood-brain barrier.

    Science.gov (United States)

    May, Aaron A; Bedel, Nicholas D; Shen, Ling; Woods, Stephen C; Liu, Min

    2016-09-01

    Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Science.gov (United States)

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  4. Glucose, insulin and the brain: modulation of cognition and synaptic plasticity in health and disease: a preface

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Bravenboer, B.

    2004-01-01

    The brain has long been viewed as an insulin-insensitive organ. Following the demonstration of insulin receptors in the brain, this assumption has been challenged, and a whole new field of research has emerged. Insulin appears to play a role in brain physiology, and disturbances of cerebral insulin

  5. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  6. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  7. INSULIN IN THE BRAIN: ITS PATHOPHYSIOLOGICAL IMPLICATIONS FOR STATES RELATED WITH CENTRAL INSULIN RESISTANCE, TYPE 2 DIABETES AND ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    ENRIQUE eBLÁZQUEZ

    2014-10-01

    Full Text Available Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the CNS, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes (T2DM and Alzheimer’s disease (AD. A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name type 3 diabetes for this association. There are links between AD and type 2 diabetes mellitus (T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein OGlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of

  8. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  9. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  10. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  11. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  12. Insulin and the Brain: A Sweet Relationship With Intensive Care.

    Science.gov (United States)

    Bilotta, F; Lauretta, M P; Tewari, A; Haque, M; Hara, N; Uchino, H; Rosa, G

    2017-01-01

    Insulin receptors (IRs) in the brain have unique molecular features and a characteristic pattern of distribution. Their possible functions extend beyond glucose utilization. In this systematic review, we explore the interactions between insulin and the brain and its implications for anesthesiologists, critical care physicians, and other medical disciplines. A literature search of published preclinical and clinical studies between 1978 and 2014 was conducted, yielding 5996 articles. After applying inclusion and exclusion criteria, 92 studies were selected for this systematic review. The IRs have unique molecular features, pattern of distribution, and mechanism of action. It has effects on neuronal function, metabolism, and neurotransmission. The IRs are involved in neuronal apoptosis and neurodegenerative processes. In this systematic review, we present a close relationship between insulin and the brain, with discernible effects on memory, learning abilities, and motor functions. The potential therapeutic effects extend from acute brain insults such as traumatic brain injury, brain ischemia, and hemorrhage, to chronic neurodegenerative diseases such as Alzheimer and Parkinson disease. An understanding of the wider effects of insulin conveyed in this review will prompt anaesthesiologists and critical care physicians to consider its therapeutic potential and guide future studies. © The Author(s) 2015.

  13. Insulin and IGF receptors are developmentally regulated in the chick embry eye lens

    International Nuclear Information System (INIS)

    Bassas, L.; Zelenka, P.S.; Serrano, J.; de Pablo, F.

    1987-01-01

    The authors have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [ 125 I]IGF and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study they used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyze whether changes of insulin and IGFI binding are correlated with changes in growth rate and differentiation state of the cells. They show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IFG-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age

  14. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  15. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  16. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain.

    Science.gov (United States)

    Scherer, Thomas; Lindtner, Claudia; O'Hare, James; Hackl, Martina; Zielinski, Elizabeth; Freudenthaler, Angelika; Baumgartner-Parzer, Sabina; Tödter, Klaus; Heeren, Joerg; Krššák, Martin; Scheja, Ludger; Fürnsinn, Clemens; Buettner, Christoph

    2016-06-01

    Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  18. CCK increases the transport of insulin into the brain.

    Science.gov (United States)

    May, Aaron A; Liu, Min; Woods, Stephen C; Begg, Denovan P

    2016-10-15

    Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.

    Science.gov (United States)

    Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    OpenAIRE

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.

    2014-01-01

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors ...

  1. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Takahashi, Hiroyuki; Takata, Fuyuko; Matsumoto, Junichi; Machida, Takashi; Yamauchi, Atsushi; Dohgu, Shinya; Kataoka, Yasufumi

    2015-02-20

    Insulin signaling in the hypothalamus plays an important role in food intake and glucose homeostasis. Hypothalamic neuronal functions are modulated by glial cells; these form an extensive network connecting the neurons and cerebral vasculature, known as the neurovascular unit (NVU). Brain pericytes are periendothelial accessory structures of the blood-brain barrier and integral members of the NVU. However, the interaction between pericytes and neurons is largely unexplored. Here, we investigate whether brain pericytes could affect hypothalamic neuronal insulin signaling. Our immunohistochemical observations demonstrated the existence of pericytes in the mouse hypothalamus, exhibiting immunoreactivity of platelet-derived growth factor receptor β (a pericyte marker), and laminin, a basal lamina marker. We then exposed a murine hypothalamic neuronal cell line, GT1-7, to conditioned medium obtained from primary cultures of rat brain pericytes. Pericyte-conditioned medium (PCM), but not astrocyte- or aortic smooth muscle cell-conditioned medium, increased the insulin-stimulated phosphorylation of Akt in GT1-7 cells in a concentration-dependent manner. PCM also enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor β without changing its expression or localization in cytosolic or plasma membrane fractions. These results suggest that pericytes, rather than astrocytes, increase insulin sensitivity in hypothalamic neurons by releasing soluble factors under physiological conditions in the NVU. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  3. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  4. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  5. Insulin receptors in the mammary gland

    International Nuclear Information System (INIS)

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of 125 I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less 125 I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less 125 I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands

  6. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  7. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    Science.gov (United States)

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  8. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  9. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  10. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  11. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  12. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  13. Deregulation of brain insulin signaling in Alzheimer's disease.

    Science.gov (United States)

    Chen, Yanxing; Deng, Yanqiu; Zhang, Baorong; Gong, Cheng-Xin

    2014-04-01

    Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.

  14. Insulin receptor degradation is accelerated in cultured lymphocytes from patients with genetic syndromes of extreme insulin resistance

    International Nuclear Information System (INIS)

    McElduff, A.; Hedo, J.A.; Taylor, S.I.; Roth, J.; Gorden, P.

    1984-01-01

    The insulin receptor degradation rate was examined in B lymphocytes that were obtained from peripheral blood of normal subjects and patients with several syndromes of extreme insulin resistance. The insulin receptors were surface labeled using Na 125 I/lactoperoxidase and the cells were returned to incubate in growth media. After varying periods of incubation, aliquots of cells were solubilized and the cell content of labeled receptor subunits were measured by immunoprecipitation with anti-receptor antibodies and NaDodSO4/polyacrylamide gel electrophoresis. In cell lines from four patients in whom the number of insulin receptors was reduced by greater than 90%, the rate of receptor loss was greater than normal (t1/2 equals 3.8 +/- 0.9 h vs. 6.5 +/- 1.2 h; mean +/- SD, P less than 0.01). However, a similar acceleration in receptor degradation was seen in cells from five patients with extreme insulin resistance but low-normal insulin receptor concentration (t1/2 equals 4.4 +/- 0.9 h). Thus, all the patients with genetic syndromes of insulin resistance had accelerated receptor degradation, regardless of their receptor concentration. By contrast, insulin receptors on cultured lymphocytes that were obtained from patients with extreme insulin resistance secondary to autoantibodies to the insulin receptor had normal receptor degradation (t1/2 equals 6.1 +/- 1.9 h). We conclude that (a) accelerated insulin receptor degradation is an additional feature of cells from patients with genetic forms of insulin resistance; (b) that accelerated insulin receptor degradation may explain the low-normal receptor concentrations that were seen in some patients with extreme insulin resistance; and (c) that accelerated degradation does not explain the decreased receptor concentration in patients with very low insulin receptor binding and, therefore, by inference, a defect in receptor synthesis must be present in this subgroup

  15. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  16. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  17. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  18. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  19. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  20. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  1. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  2. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway.

    Science.gov (United States)

    Kuo, Yung-Chih; Shih-Huang, Chun-Yuan

    2013-09-01

    Carmustine (BCNU)-loaded solid lipid nanoparticles (SLNs) were grafted with 83-14 monoclonal antibody (MAb) (83-14 MAb/BCNU-SLNs) and applied to the brain-targeting delivery. Human brain-microvascular endothelial cells (HBMECs) incubated with 83-14 MAb/BCNU-SLNs were stained to demonstrate the interaction between the nanocarriers and expressed insulin receptors (IRs). The results revealed that the particle size of 83-14 MAb/BCNU-SLNs decreased with an increasing weight percentage of Dynasan 114 (DYN). Storage at 4 °C for 6 weeks slightly deformed the colloidal morphology. In addition, poloxamer 407 on 83-14 MAb/BCNU-SLNs induced cytotoxicity to RAW264.7 cells and inhibited phagocytosis by RAW264.7 cells. An increase in the weight percentage of DYN from 0% to 67% slightly reduced the viability of RAW264.7 cells and promoted phagocytosis. Moreover, the transport ability of 83-14 MAb/BCNU-SLNs across the blood-brain barrier (BBB) in vitro enhanced with an increasing weight percentage of Tween 80. 83-14 MAb on MAb/BCNU-SLNs stimulated endocytosis by HBMECs via IRs and enhanced the permeability of BCNU across the BBB. 83-14 MAb/BCNU-SLNs can be a promising antitumor drug delivery system for transporting BCNU to the brain.

  3. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  4. NGA/Insulin receptor scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kurtaran, A; Virgolini, I [Vienna Univ. (Austria). Abt. fuer Nuklearmedizin; Angelberger, P [Ludwig Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)

    1994-10-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of `cold spots` for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of `cold spots` identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author).

  5. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  6. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  7. Insulin-receptors in diabetes and altered thyroidal status

    International Nuclear Information System (INIS)

    Chaujar, Meena; Subramanian, G.B.V.; Yadav, H.S.; Chauhan, U.P.S.

    1991-01-01

    Rats were made hypothyroid by treating with a single dose of 800 μCi of 131 I and hyperthyroid condition was created by administering 90 μg of thyroxine daily for 2 weeks. Diabetes was produced by administering single dose of alloxan monohydrate. Hypothyroid rats showed significant increase in 125 I-insulin binding with its liver plasma membrane receptors with respect to normal rats. In the case of hypothyroid diabetic rats such binding was greater as compared to hypothyroid rats without diabetes. Hyperthyroid rats with respect to normal control rats showed a decrease in 125 I-insulin binding to its liver plasma membrane receptors. When hyperthyroid rats were made diabetic, 125 I-insulin binding to its receptors was further decreased. The study infers that hyper-thyrodism further decreases insulin binding to its receptors which has already been decreased in diabetes. Hypothyroidism, on the other hand, improves upon the decreased insulin binding to its receptors in diabetes. (author). 16 refs., 6 figs., 2 tabs

  8. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  9. Insulin in the brain: there and back again.

    Science.gov (United States)

    Banks, William A; Owen, Joshua B; Erickson, Michelle A

    2012-10-01

    Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BECs), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, are themselves regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BECs, protect the integrity of the BBB and its ability to transport insulin. Most of insulin's known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer's disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain. Published by Elsevier Inc.

  10. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Insulin prevents mitochondrial generation of H₂O₂ in rat brain.

    Science.gov (United States)

    Muller, Alexandre Pastoris; Haas, Clarissa Branco; Camacho-Pereira, Juliana; Brochier, Andressa Wigner; Gnoatto, Jussânia; Zimmer, Eduardo Rigon; de Souza, Diogo Onofre; Galina, Antonio; Portela, Luis Valmor

    2013-09-01

    The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H₂O₂). The production of H₂O₂ also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F₀F₁ATP synthase) and ΔΨm to regulate mitochondrial H₂O₂ production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H₂O₂ production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H₂O₂ production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H₂O₂ production when complexes I and F₀F₁ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  13. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  14. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  15. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  16. Characterization of insulin-like growth factor I receptors in the median eminence of the brain and their modulation by food restriction

    International Nuclear Information System (INIS)

    Bohannon, N.J.; Corp, E.S.; Wilcox, B.J.; Figlewicz, D.P.; Dorsa, D.M.; Baskin, D.G.

    1988-01-01

    High affinity binding sites for 125I-labeled [Thr59]insulin-like growth factor I (IGF-I) were measured in rat median eminence by in vitro autoradiography with slide-mounted sections of frozen rat brain. Specific binding of 0.1 nM iodo-[Thr59]IGF-I to brain slices reached maximum by 12 h at 4 C and was unchanged at 24 h. Densitometry by computer digital image analysis of autoradiographic images indicated that specific binding of iodo-[Thr59]IGF-I to the median eminence was reversible. The specificity of binding was evaluated with competition of iodo-[Thr59]IGF-I with unlabeled [Thr59]IGF-I, rat IGF-II (multiplication-stimulating activity), and porcine insulin. All were recognized by the binding site, but the rank order of potency was [Thr59]IGF-I greater than IGF-II greater than insulin. Somatostatin was completely ineffective. Further, an antibody against the rat IGF-II receptor did not block binding of iodo-[Thr59]IGF-I to the median eminence. Fourteen days of food restriction (75% of food intake of controls) resulted in significant weight loss and reduction of plasma immunoreactive IGF-I in six food-restricted rats (0.9 +/- 0.1 U/ml) compared with values in six controls (2.6 +/- 0.5 U/ml; P less than 0.001). Binding of 125I-labeled [Thr59]IGF-I in the median eminence was significantly increased in the food-restricted rats, primarily due to an increase in the concentration of iodo-[Thr59]IGF-I-binding sites in the median eminence; the affinity (Kd) of binding was unchanged. The results indicate that the median eminence has type I IGF-I receptors, which become more numerous under metabolic conditions associated with decreased caloric intake and lowered plasma IGF-I levels

  17. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  18. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  19. A method to determine insulin responsiveness in synaptosomes isolated from frozen brain tissue.

    Science.gov (United States)

    Franklin, Whitney; Taglialatela, Giulio

    2016-03-01

    Studying the insulin signaling response at the synapse is an important approach to understand molecular mechanisms involved in disease-related neurodegenerative processes. We developed a method for studying the insulin responsiveness at the synaptic level by isolating functional synaptosomes from fresh or frozen tissue and exposing them to insulin in the presence of ATP (a critical step) to detect insulin receptor (IR) activation. We performed an ATP dose-response curve, insulin dose-response curve, and insulin response time course to optimize this method. We also demonstrated that our protocol reflects the degree of insulin responsiveness in vivo by using an animal model of known insulin resistance, AtENPP1-Tg mice. This method is advantageous over other methods detecting IR in total brain homogenates due to the ability to detect IR response without confounding contributions from other cell areas and cell types also expressing IR. Furthermore, ex vivo insulin stimulation can be compared to baseline synaptosomes obtained from the same animal which improves reliability and statistical power while decreasing the number of animals required to perform individual experiments. We have developed a reliable, efficient method to measure insulin-driven ex vivo phosphorylation of the synaptosomal insulin receptor that can reliably reflect the pre-existing insulin responsiveness status in the CNS of the animal. To the best of our knowledge, this is the first evidence of stimulation of isolated synaptosomes with insulin and a promising new technique to study the synaptic CNS insulin responsiveness under physiological or disease conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  1. Severe hypoglycaemia in a person with insulin autoimmune syndrome accompanied by insulin receptor anomaly type B.

    Science.gov (United States)

    Kato, T; Itoh, M; Hanashita, J; Itoi, T; Matsumoto, T; Ono, Y; Imamura, S; Hayakawa, N; Suzuki, A; Mizutani, Y; Uchigata, Y; Oda, N

    2007-11-01

    A rare case of the insulin autoimmune syndrome (IAS) accompanied by insulin receptor anomaly is reported. Antibodies to insulin and insulin receptor were determined in the patient with severe hypoglycaemia before and after the treatment with prednisolone. Titers of antibody to insulin and insulin receptors were 73.0% and 41.5%, respectively. Drug-induced lymphocyte stimulation tests were all negative for the suspicious drugs. Her HLA-DR was DRB1*0403/04051. Following steroid therapy, the formation of antibodies was suppressed and alleviated her symptoms. Scatchard analysis yielded findings specific to polyclonal antibodies. The changes in autoantibodies resulted in alleviation of the hypoglycemic symptoms as a result of steroid therapy.

  2. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  3. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  4. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    Science.gov (United States)

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Insulin sensitivity : modulation by the brain

    NARCIS (Netherlands)

    Coomans, Claudia Pascalle

    2012-01-01

    The studies in this thesis contribute to the understanding of the role of the brain in insulin sensitivity. We demonstrate that disturbances in circadian rhythm resulting in alterations in SCN output, can contribute to the development of insulin resistance. We also shown that insulin-stimulated

  7. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  8. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  9. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  10. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  11. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  12. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    Science.gov (United States)

    Sano, Hiroko; Nakamura, Akira; Texada, Michael J; Truman, James W; Ishimoto, Hiroshi; Kamikouchi, Azusa; Nibu, Yutaka; Kume, Kazuhiko; Ida, Takanori; Kojima, Masayasu

    2015-05-01

    The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  13. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats.

    Science.gov (United States)

    Dias, Jenny Pena; Gariépy, Helaine De Brito; Ongali, Brice; Couture, Réjean

    2015-07-01

    Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R, which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R. The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1Rneo mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.

  15. A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk

    DEFF Research Database (Denmark)

    Sanni, Samra Joke; Kulahin, Nikolaj; Jorgensen, Rasmus

    2017-01-01

    The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways....... To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc......). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin...

  16. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  17. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M

    2015-01-01

    It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  18. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Eichi Takeda

    2017-01-01

    Full Text Available Vasohibin-1 (Vash1, originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs. We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr, insulin receptor substrate 1 (irs-1, and insulin receptor substrate 2 (irs-2 in their white adipose tissue (WAT but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity.

  19. Acute up-regulation of the rat brain somatostatin receptor-effector system by leptin is related to activation of insulin signaling and may counteract central leptin actions.

    Science.gov (United States)

    Perianes-Cachero, A; Burgos-Ramos, E; Puebla-Jiménez, L; Canelles, S; Frago, L M; Hervás-Aguilar, A; de Frutos, S; Toledo-Lobo, M V; Mela, V; Viveros, M P; Argente, J; Chowen, J A; Arilla-Ferreiro, E; Barrios, V

    2013-11-12

    Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5 μg of leptin and sacrificed 1 or 6h later. Density of SRIF receptors was unchanged at 1h, whereas leptin increased the density of SRIF receptors at 6h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain

  20. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs

    Czech Academy of Sciences Publication Activity Database

    Jiráček, Jiří; Žáková, Lenka

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 167. ISSN 1664-2392 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : insulin receptor * insulin binding * analog * diabetes * glucose Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.675, year: 2016 http://journal.frontiersin.org/article/10.3389/fendo.2017.00167/full

  1. Retardation of fetal dendritic development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals.

    Science.gov (United States)

    Jing, Yu-Hong; Song, Yan-Feng; Yao, Ya-Ming; Yin, Jie; Wang, De-Gui; Gao, Li-Ping

    2014-10-01

    Hyperglycemia is an essential risk factor for mothers and fetuses in gestational diabetes. Clinical observation has indicated that the offspring of mothers with diabetes shows impaired somatosensory function and IQ. However, only a few studies have explored the effects of hyperglycemia on fetal brain development. Neurodevelopment is susceptible to environmental conditions. Thus, this study aims to investigate the effects of maternal hyperglycemia on fetal brain development and to evaluate insulin and insulin-like growth factor-I (IGF-I) signals in fetal brain under hyperglycemia or controlled hyperglycemia. At day 1 of pregnancy, gestational rats were intraperitoneally injected with streptozocin (60 mg/kg). Some of the hyperglycemic gestational rats were injected with insulin (20 IU, two times a day) to control hyperglycemia; the others were injected with saline of equal volume. The gestational rats were sacrificed at days 14, 16, and 18 of embryo development. The dendritic spines of subplate cortex neurons in the fetal brain were detected by Golgi-Cox staining. The mRNA levels of insulin receptors (IRs) and IGF-IR in the fetal brain were measured using qRT-PCR. The protein levels of synaptophysin, IR, and IGF-IR in the fetal brain were detected by western blot. No significant difference in fetal brain formation was observed between the maternal hyperglycemic group and insulin-treated group. By contrast, obvious retardation of dendritic development in the fetus was observed in the maternal hyperglycemic group. Similarly, synaptophysin expression was lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. The mRNA and protein expression levels of IRs in the fetal brain were higher in the hyperglycemic group than in the insulin-treated group. By contrast, the levels of IGF-IR in the brain were lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. These results suggested that

  2. Cloning and characterisation of Schistosoma japonicum insulin receptors.

    Directory of Open Access Journals (Sweden)

    Hong You

    2010-03-01

    Full Text Available Schistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology.We isolated, from S. japonicum, insulin receptors 1 (SjIR-1 and 2 (SjIR-2 sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2. SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR, suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells.Adult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against schistosomiasis.

  3. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  4. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Sanni, Samra J; Slaaby, Rita

    2012-01-01

    The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src...... for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can...

  5. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  6. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  7. Investigations on the insulin receptor of isolated fat cells

    International Nuclear Information System (INIS)

    Eichler, W.

    1980-01-01

    Fat cells, isolated from the epididymal adipose tissue of rats, were incubed with iodine 125 insulin after previous incubation with various antagonists. By varying the antagonist concentration, it was possible to determine the effect these substances have on the insulin receptor, i.e. the insulin similarity. By varying the preincubation time, toxicity of the test substances could be detected, which pretended repression effects; and by finally verying the incubation time the effects on the receptor via the membrane could be distinguished from direct receptor bindings of the antagonist. (orig./MG) [de

  8. How does brain insulin resistance develop in Alzheimer's disease?

    Science.gov (United States)

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available Recent studies have identified unique brain effects of insulin detemir (Levemir®. Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.In mice, we examined insulin detemir's prolonged brain exposure by continuous subcutaneous (s.c. application using either micro-osmotic pumps or daily s.c. injections and performed continuous radiotelemetric electrocorticography and locomotion recordings.Acute intracerebroventricular injection of insulin detemir activated cortical and locomotor activity significantly more than regular insulin in equimolar doses (0.94 and 5.63 mU in total, suggesting an enhanced acute impact on brain networks. However, given continuously s.c., insulin detemir significantly reduced cortical activity (theta: 21.3±6.1% vs. 73.0±8.1%, P<0.001 and failed to maintain locomotion, while regular insulin resulted in an increase of both parameters.The data suggest that permanently-increased insulin detemir levels in the brain convert its hyperstimulatory effects and finally mediate impairments in brain activity and locomotion. This observation might be considered when human studies with insulin detemir are designed to target the brain in order to optimize treatment regimens.

  11. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  12. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  13. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration.

    Science.gov (United States)

    Deochand, Chetram; Tong, Ming; Agarwal, Amit R; Cadenas, Enrique; de la Monte, Suzanne M

    2016-01-01

    Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.

  14. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  15. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  16. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    Science.gov (United States)

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Light regulation of the insulin receptor in the retina.

    Science.gov (United States)

    Rajala, Raju V S; Anderson, Robert E

    2003-10-01

    The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3- kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-beta-subunit (IR beta) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IR beta immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IR beta in outer-segment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IR beta now provide physiological relevance for the presence of these receptors in the retina.

  18. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice.

    Science.gov (United States)

    Lu, Jianghua; E, Lezi; Wang, Wenfang; Frontera, Jennifer; Zhu, Hao; Wang, Wen-Tung; Lee, Phil; Choi, In Young; Brooks, William M; Burns, Jeffrey M; Aires, Daniel; Swerdlow, Russell H

    2011-04-01

    Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions.

    Science.gov (United States)

    Heni, M; Kullmann, S; Ketterer, C; Guthoff, M; Linder, K; Wagner, R; Stingl, K T; Veit, R; Staiger, H; Häring, H-U; Preissl, H; Fritsche, A

    2012-06-01

    Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.

  20. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs.

    Science.gov (United States)

    Balbaa, Mahmoud; Abdulmalek, Shaymaa A; Khalil, Sofia

    2017-01-01

    Insulin resistance of the brain is a specific form of type2-diabetes mellitus (T2DM) and the active insulin-signaling pathway plays a neuroprotective role against damaging conditions and Alzheimer's progression. The present study identifies the mediated emerging effects of the Nigella sativa oil (NSO) on the memory enhancing process, its anti-oxidative, acetylcholinestrase (AChE) inhibition, anti-brain insulin resistance and anti-amyloidogenic activities. In addition, the possible role of some anti-diabetic drugs in the neuro-protection processes and their effect in combination with NSO and/or the insulin receptor inhibitor IOMe-AG538 were investigated. T2DM-induced rats were orally and daily administrated 2.0 ml NSO, 100 mg metformin (MT), 0.8 mg glimepiride (GI) and different combinations (100 mg MT & 2.0 ml NSO, 0.8 mg GI & 2.0 ml NSO and 2.0 ml NSO & intraperitoneal injection of 1/100 LD50 of IOMe-AG538) per kg body weight for 21 days. A significant increase in the brain lipid peroxidation and decrease in the antioxidant status with peripheral and central production of pro-inflammatory mediators were observed in diabetes-induced rats. The brain AChE was activated and associated with diminished brain glucose level and cholinergic function. In addition, the brain insulin resistance and the attenuated insulin signaling pathway (p-IRS/ p-AKT/p-GSK-3β) were accompanied by an augmentation in GSK-3β level, which in turn may contribute in the extensive alterations of Tau phosphorylation along with changes in PP2A level. Furthermore, neuronal loss and elevation in Aβ-42 plaque formation were observed due to a low IDE formation and an increased expression of p53, BACE1 and APP with diminished ADAM10, SIRT1 and BDNF levels. The expression profile of AD-related miRNAs in sera and brain tissues displayed its neuro-protection role. The treatment of diabetes-induced rats with NSO and the anti-diabetic drugs alone and/or in combination have the potential to suppress the

  1. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  2. Acute but not chronic activation of brain glucagon-like peptide-1 receptors enhances glucose-stimulated insulin secretion in mice.

    Science.gov (United States)

    Tudurí, E; Beiroa, D; Porteiro, B; López, M; Diéguez, C; Nogueiras, R

    2015-08-01

    To investigate the role of brain glucagon-like peptide-1 (GLP-1) in pancreatic β-cell function. To determine the role of brain GLP-1 receptor (GLP-1R) on β-cell function, we administered intracerebroventricular (i.c.v.) infusions of GLP-1 or the specific GLP-1 antagonist exendin-9 (Ex-9), in both an acute and a chronic setting. We observed that acute i.c.v. GLP-1 infusion potentiates glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance, whereas central GLP-1R blockade with Ex-9 impaired glucose excursion after a glucose load. Sustained activation of central nervous system GLP-1R, however, did not produce any effect on either GSIS or glucose tolerance. Similarly, ex vivo GSIS performed in islets from mice chronically infused with i.c.v. GLP-1 resulted in no differences compared with controls. In addition, in mice fed a high-fat diet we observed that acute i.c.v. GLP-1 infusion improved glucose tolerance without changes in GSIS, while chronic GLP-1R activation had no effect on glucose homeostasis. Our results indicate that, under non-clamped conditions, brain GLP-1 plays a functional neuroendocrine role in the acute regulation of glucose homeostasis in both lean and obese rodents. © 2015 John Wiley & Sons Ltd.

  3. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  4. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects.

    Science.gov (United States)

    Rizkalla, S W; Baigts, F; Fumeron, F; Rabillon, B; Bayn, P; Ktorza, A; Spielmann, D; Apfelbaum, M

    1986-09-01

    The effects of simple carbohydrates on erythrocyte insulin receptors, plasma insulin and plasma glucose were studied during four hypocaloric, hyperproteic, diets. One diet contained no carbohydrate; the other three contained 36 g of either glucose, galactose or fructose. These diets were given for a 14-day period to groups of moderately obese subjects. The hypocaloric carbohydrate-free diet produced a decrease in plasma insulin and glucose concentrations concomitant with an increase in the number of insulin receptors. A similar increase in insulin receptor number was found when the diet was supplemented with glucose or galactose, but not with fructose. The presence of fructose in the diet prevented any increase in insulin receptor number.

  5. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  6. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  7. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  9. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Science.gov (United States)

    Luo, Jiangnan; Lushchak, Oleh V; Goergen, Philip; Williams, Michael J; Nässel, Dick R

    2014-01-01

    A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  10. Interaction between the p21ras GTPase activating protein and the insulin receptor

    NARCIS (Netherlands)

    Pronk, G.J.; Medema, R.H.; Burgering, B.M.T.; Clark, R.; McCormick, F.; Bos, J.L.

    1992-01-01

    We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine

  11. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  12. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  13. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  14. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  15. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  16. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors

    NARCIS (Netherlands)

    Annenkov, A.; Rigby, A.; Amor, S.; Zhou, D.M.; Yousaf, N.; Hemmer, B.; Chernajovsky, Y.

    2011-01-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R)

  17. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes

    International Nuclear Information System (INIS)

    Okamoto, M.; Karasik, A.; White, M.F.; Kahn, C.R.

    1991-01-01

    To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32 P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein

  20. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  2. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  3. Regulation of brain insulin signaling: A new function for tau.

    Science.gov (United States)

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  4. Insulin-Resistant Brain State: the culprit in sporadic Alzheimer’s Disease?

    Science.gov (United States)

    Correia, Sónia C.; Santos, Renato X.; Perry, George; Zhu, Xiongwei; Moreira, Paula I.; Smith, Mark A.

    2011-01-01

    Severe abnormalities in brain glucose/energy metabolism and insulin signaling have been documented to take a pivotal role in early sporadic Alzheimer’s disease (sAD) pathology. Indeed, the “insulin-resistant brain state” has been hypothesized to form the core of the neurodegenerative events that occur in sAD. In this vein, intracerebroventricular administration of subdiabetogenic doses of streptozotocin (STZ) in rats can induce an insulin-resistant brain state, which is proposed as a suitable experimental model of sAD. This review highlights the involvement of disturbed brain insulin metabolism in sAD etiopathogenesis. Furthermore, current knowledge demonstrates that central STZ administration produces brain pathology and behavioral changes that resemble changes found in sAD patients. The STZ-intracerebroventricularly treated rat represents a promising experimental tool in this field by providing new insights concerning early brain alterations in sAD, which can be translated in novel etiopathogenic and therapeutic approaches in this disease. PMID:21262392

  5. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  6. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  7. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  8. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  9. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  10. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    1996-01-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  11. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  12. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  13. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  14. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice.

    Science.gov (United States)

    Stanley, Molly; Macauley, Shannon L; Caesar, Emily E; Koscal, Lauren J; Moritz, Will; Robinson, Grace O; Roh, Joseph; Keyser, Jennifer; Jiang, Hong; Holtzman, David M

    2016-11-16

    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP swe /PS1 dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections

  15. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How insulin engages its primary binding site on the insulin receptor

    Czech Academy of Sciences Publication Activity Database

    Menting, J. G.; Whittaker, J.; Margetts, M. B.; Whittaker, L. J.; Kong, G. K. W.; Smith, B. J.; Watson, C. J.; Žáková, Lenka; Kletvíková, Emília; Jiráček, Jiří; Chan, S. J.; Steiner, D. F.; Dodson, G. G.; Brzozowski, A. M.; Weiss, M. A.; Ward, C. W.; Lawrence, M. C.

    2013-01-01

    Roč. 493, č. 7431 (2013), s. 241-245 ISSN 0028-0836 R&D Projects: GA ČR GPP207/11/P430 Institutional support: RVO:61388963 Keywords : insulin * receptor * complex * crystal structure Subject RIV: CE - Biochemistry Impact factor: 42.351, year: 2013

  17. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  19. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    Directory of Open Access Journals (Sweden)

    Harish Vashisth

    2015-02-01

    Full Text Available Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD and Monte Carlo (MC simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.

  1. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1–40/42 and Phospho-Tau May Abet Alzheimer Development

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret

    2016-01-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat–fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1–40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1–40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. PMID:26895791

  2. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  3. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice.

    Science.gov (United States)

    Trueba-Saiz, A; Fernandez, A M; Nishijima, T; Mecha, M; Santi, A; Munive, V; Aleman, I Torres

    2017-02-01

    The role of IGF-1 and its receptor (IGF-1R) in brain pathology is still unclear. Thus, either reduction of IGF-IR or treatment with IGF-1, two apparently opposite actions, has proven beneficial in brain diseases such as Alzheimer's dementia. A possible explanation of this discrepancy is that IGF-1 down-regulates brain IGF-1R levels, as previously seen in a mouse Alzheimer's dementia model. We now explored whether under normal conditions IGF-1 modulates its receptor. We first observed that in vitro, IGF-1 reduced IGF-1R mRNA levels in all types of brain cells including neurons, astrocytes, microglia, endothelial cells, and oligodendrocytes. IGF-1 also inhibited its own expression in neurons and brain endothelium. Next, we analyzed the in vivo actions of IGF-1. Because serum IGF-1 can enter the brain, we injected mice with IGF-1 ip. As soon as 1 hour after the injection, decreased hippocampal IGF-1 levels were observed, followed by increased IGF-1 and IGF-1R mRNAs 6 hours later. Because environmental enrichment (EE) stimulates the entrance of serum IGF-1 into the brain, we analyzed whether a physiological entrance of IGF-1 also produced changes in brain IGF-1R. Stimulation of IGF-1R by EE triggered a gradual decrease in hippocampal IGF-1 levels. After 6 hours of EE exposure, IGF-1 levels reached a significant decrease in parallel with increased IGF-1R expression. After longer times, IGF-1R mRNA levels returned to baseline. Thus, under nonpathological conditions, IGF-1 regulates brain IGF-1R. Because baseline IGF-1R levels are rapidly restored, a tight control of brain IGF-1R expression seems to operate under physiological conditions. Copyright © 2017 by the Endocrine Society.

  4. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Nose-to-Brain delivery of insulin for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Martina Stützle

    2015-09-01

    Full Text Available The transport of small molecules, peptides and proteins via the olfactory epithelium and along olfactory and trigeminal nerve pathways from the nasal cavity to the brain is very well known and clinically established for central nervous system (CNS active drugs like oxytocin, sumatriptan or insulin. Insulin is a clinically well-established biopharmaceutical with a validated function in cognition. Central supply with insulin via intranasal administration improves cognition in animal models and in human, making insulin a so-called cognitive enhancer. Furthermore, dysregulation of insulin is implicated in the pathogenesis of Alzheimer’s disease, which is associated with lower levels of insulin in the cerebrospinal fluid and is involved in amyloid-beta (Ab regulation. Clinical trials with intranasal insulin implicate positive effects on learning and memory, but a massive lack of pharmacokinetic and efficacy data hamper a pharmacokinetic – pharmcodynamic relation and a possible clinical development as cognition enhancer. A lack of such data also prevents resolving the mechanisms involved in directing insulin to the central or to the peripheral compartment. Here we discuss the basic mechanism of Nose-to-Brain delivery, evidences for intranasal insulin as cognition enhancer, medical devices for intranasal delivery and safety aspects.

  6. Intrahepatic detection of insulin receptor substrate 2 in chronic hepatitis c patients

    International Nuclear Information System (INIS)

    Ahmed, N.; Rashid, A.; Bashir, Q.; Majeed, A.

    2017-01-01

    To detect hepatic insulin receptor substrate 2 in chronic hepatitis C patients. Study Design: Comparative study. Place and Duration of Study: Center for research in experimental and applied medicine (CREAM), Department of Biochemistry and Molecular Biology, Army Medical College and Holy Family Hospital Rawalpindi, from Dec 2011 to Nov 2012. Diagnosed patients of chronic hepatitis C were included in the study. Known cases of diabetes mellitus, patients with pancreatic disease and liver pathology other than hepatitis C were excluded from the study. Material and Methods: Twenty seropositive non diabetic HCV infected patients and 10 control subjects were recruited. Liver biopsy specimen was obtained from seropositive HCV patients while blood samples were obtained from controls as biopsy sample was not possible from normal controls. Both types of speciens were studied for detection of insulin receptor substrate 2 (IRS-2). Results: No alteration in the content of insulin receptor substrate 2 in both seropositive patients and control samples were detected. Conclusion: Hepatitis C virus has no effect on insulin receptor substrate 2 content thus indicating absence of hepatic insulin resistance in patients with HCV infection. (author)

  7. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  8. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    Torlinska T, Mackowiak P.; Nogowski L, Kozlik J.

    1996-01-01

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  9. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  10. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    International Nuclear Information System (INIS)

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15 0 C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37 0 C. Biochemical experiments utilizing 125 I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that ≅ 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis

  11. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    Science.gov (United States)

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret; Farese, Robert V

    2016-07-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  14. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  15. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  16. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... and control groups, respectively). Moreover, by selecting only the receptors that bound to anti-phosphotyrosine antibody, we found similar hyperinsulinemia-induced increases of this receptor fraction and its kinase activity in both study groups. In vitro activation of the immobilized receptors with 2 mmol...

  17. Autoimmune Hypoglycemia in a Patient with Characterization of Insulin Receptor Autoantibodies

    Directory of Open Access Journals (Sweden)

    Suk Chon

    2011-02-01

    Full Text Available BackgroundType B insulin resistance syndrome is a manifestation of autoantibodies to the insulin receptor that results in severe hyperglycemia and acanthosis nigricans. However, the mechanisms by which these autoantibodies induce hypoglycemia are largely unknown. In this paper, we report the case of patient with type B insulin resistance syndrome who presented with frequent severe fasting hypoglycemia and acanthosis nigricans.MethodsTo evaluate the mechanism of hypoglycemia, we measured the inhibition of insulin binding to erythrocytes and IM9 lymphocytes in a sample of the patient's dialyzed serum before and after immunosuppressive therapy.ResultsIn the patient's pre-treatment serum IgG, the binding of 125I-insulin to erythrocytes was markedly inhibited in a dose-dependent manner until the cold insulin level reached 10-9 mol/L. We also observed dose-dependent inhibition of insulin binding to IM9 lymphocytes, which reached approximately 82% inhibition and persisted even when diluted 1:20. After treatment with glucocorticoids, insulin-erythrocyte binding activity returned to between 70% and 80% of normal, while the inhibition of insulin-lymphocyte binding was reduced by 17%.ConclusionWe treated a patient with type B insulin resistance syndrome showing recurrent fasting hypoglycemia with steroids and azathioprine. We characterized the patient's insulin receptor antibodies by measuring the inhibition of insulin binding.

  18. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  19. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism.

    Science.gov (United States)

    Ott, V; Benedict, C; Schultes, B; Born, J; Hallschmid, M

    2012-03-01

    In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction. © 2011 Blackwell Publishing Ltd.

  20. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  1. Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras.GTP formation

    NARCIS (Netherlands)

    Osterop, A.P.R.M.; Medema, R.H.; Bos, J.L.; Zon, G.C.M. van der; Moller, D.E.; Flier, J.S.; Möller, W.; Maassen, J.A.

    1992-01-01

    We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell linme,o st of the p2lras warsa pidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L.

  2. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  3. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  5. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  6. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats

    International Nuclear Information System (INIS)

    Quirion, R.; Rowe, W.; Kar, S.; Dore, S.

    1997-01-01

    The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long-Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [ 125 I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [ 125 I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [ 125 I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [ 125 I]IGF-I, [ 125 I]IGF-II or [ 125 I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats, and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions, including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied.It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long-Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of aged animals. Hence

  7. Brain natriuretic peptide and insulin resistance in older adults.

    Science.gov (United States)

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  8. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Effects of insulin combined with idebenone on blood-brain barrier permeability in diabetic rats.

    Science.gov (United States)

    Sun, Yan-Na; Liu, Li-Bo; Xue, Yi-Xue; Wang, Ping

    2015-04-01

    This study investigates the effect of insulin combined with idebenone on blood-brain barrier (BBB) permeability in experimental streptozotocin-induced diabetic rats as well as the underlying mechanisms. With a diabetic rat model, we show that insulin and idebenone normalize body weight and water intake and restore BBB permeability and that their combination displays a synergistic effect. The results from transmission electron microscopy show that the combination of insulin and idebenone significantly closed the tight junction (TJ) in diabetic rats. The results from Western blotting in diabetic rats show that the upregulation of TJ-associated proteins occludin, and zonula occludens (ZO)-1 caused by the combination of insulin and idebenone is more remarkable than that with either agent alone. In addition, the activations of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and the expression levels of receptors for advanced glycation end-products (RAGE) and nuclear factor-κB (NF-κB) were significantly decreased after treatment with insulin and idebenone in diabetic rats. These results suggest that the combination of insulin and idebenone could decrease the BBB permeability in diabetic rats by upregulating the expression of occludin, claudin-5, and ZO-1 and that the ROS/AGE/RAGE/NF-κB signal pathway might be involved in the process. © 2014 Wiley Periodicals, Inc.

  10. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  11. Insulin receptor membrane retention by a traceable chimeric mutant

    OpenAIRE

    Giudice, Jimena; Jares, Elizabeth Andrea; Coluccio Leskow, Federico

    2015-01-01

    Background: The insulin receptor (IR) regulates glucose homeostasis, cell growth and differentiation. It has been hypothesized that the specific signaling characteristics of IR are in part determined by ligand-receptor complexes localization. Downstream signaling could be triggered from the plasma membrane or from endosomes. Regulation of activated receptor's internalization has been proposed as the mechanism responsible for the differential isoform and ligand-specific signaling. Re...

  12. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Science.gov (United States)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  13. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-01-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10 6 receptors per cell. The cell line with the highest 125 I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10 6 receptors with a K/sub d/ of 10 -9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 10 7 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  14. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides.

    Science.gov (United States)

    Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-01-10

    Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    International Nuclear Information System (INIS)

    Flores-Riveros, J.R.; Lane, M.D.

    1987-01-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ- 32 P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32 P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32 P radioactivity is found in site I and the rate of 32 P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  16. Receptor-mediated photo-cytotoxicity: synthesis of a photoactivatable psoralen derivative conjugated to insulin.

    Science.gov (United States)

    Gasparro, F P; Knobler, R M; Yemul, S S; Bisaccia, E; Edelson, R L

    1986-12-15

    4'-Aminomethyl-4,5',8-trimethylpsoralen has been chemically conjugated to insulin using a carbodiimide derivative. The psoralen moiety retains its photochemical reactivity as evidenced by its ability to crosslink DNA after exposure to long wavelength ultraviolet light (UVA, 320-400 nm). This chimeric molecule has been used to selectively kill a population of lymphocytes whose expression of insulin receptors has been stimulated with phytohemagglutinin. Insulin carries the psoralen into the cell via receptor-mediated endocytosis, where it is subsequently activated by exposure to UVA light. The UVA induced activity of AMT-insulin can be blocked by the presence of native insulin. The viability of unstimulated lymphocytes was not affected by AMT-insulin and UVA light. The hybrid insulin-psoralen molecule may be a prototype for a family of phototoxic drugs which can be selectively delivered to subsets of lymphocytes.

  17. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    Science.gov (United States)

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the

  18. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  19. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Science.gov (United States)

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  20. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Maria Niures P.S. Matioli

    Full Text Available Several studies have indicated that Diabetes Mellitus (DM can increase the risk of developing Alzheimer's disease (AD. This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection.

  1. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  2. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    International Nuclear Information System (INIS)

    Berhanu, P.

    1988-01-01

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation

  3. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva

    2015-01-01

    Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering...

  4. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Directory of Open Access Journals (Sweden)

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  5. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Schulz, Nadja; Drescher, Andrea; Bergheim, Ina; Machann, Jürgen; Schick, Fritz; Siegel-Axel, Dorothea; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Hennige, Anita M

    2014-01-01

    Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  6. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  7. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  8. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  9. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  10. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  11. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain.

    Science.gov (United States)

    Bader, R; Sarraf-Zadeh, L; Peters, M; Moderau, N; Stocker, H; Köhler, K; Pankratz, M J; Hafen, E

    2013-06-15

    In Drosophila, Insulin-like peptide 2 (Dilp-2) is expressed by insulin-producing cells in the brain, and is secreted into the hemolymph to activate insulin signaling systemically. Within the brain, however, a more local activation of insulin signaling may be required to couple behavioral and physiological traits to nutritional inputs. We show that a small subset of neurons in the larval brain has high Dilp-2-mediated insulin signaling activity. This local insulin signaling activation is accompanied by selective Dilp-2 uptake and depends on the expression of the Imaginal morphogenesis protein-late 2 (Imp-L2) in the target neurons. We suggest that Imp-L2 acts as a licensing factor for neuronal IIS activation through Dilp-2 to further increase the precision of insulin activity in the brain.

  12. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  13. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  14. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  15. Peroxisome Proliferator-Activated Receptors and Hepatitis C Virus-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Francesco Negro

    2009-01-01

    Full Text Available Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a, insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptor γ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.

  16. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  17. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women.

    Science.gov (United States)

    Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2013-01-01

    There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.

  19. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  20. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  1. Insulin/insulin like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms and new blocking strategies

    Directory of Open Access Journals (Sweden)

    Travis B Salisbury

    2015-02-01

    Full Text Available The insulin-like growth factor 1 receptor (IGF1R and the insulin receptor (IR are receptor tyrosine kinases (RTKs that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include: anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR and new therapeutic targeting strategies will be discussed.

  2. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  3. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  4. Insulin sensitivity affects corticolimbic brain responses to visual food cues in polycystic ovary syndrome patients.

    Science.gov (United States)

    Alsaadi, Hanin M; Van Vugt, Dean A

    2015-11-01

    This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.

  5. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  6. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  7. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin.

    Science.gov (United States)

    Kapan, Neval; Lushchak, Oleh V; Luo, Jiangnan; Nässel, Dick R

    2012-12-01

    Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in Drosophila. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and Dilp transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of Dilp2 and 5 in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult Drosophila.

  8. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  9. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Vanessa Deveaux

    Full Text Available BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT mice fed a high fat diet (HFD, that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-. PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.

  10. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  11. Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain

    International Nuclear Information System (INIS)

    Hynes, M.A.; Brooks, P.J.; Van Wyk, J.J.; Lund, P.K.

    1988-01-01

    Previous studies demonstrating the presence of immunoreactive insulin-like growth factors (IGFs) and their receptors in the brain suggest a role of the IGFs in the central nervous system. IGF-II has been implicated as the predominant IGF in brain of mature animals based on studies of immunoreactive peptide and of IGF-II mRNAs. To obtain information about the sites of synthesis of IGF-II in adult rat brain, a 32 P-labeled 31 base long synthetic oligodeoxyribonucleotide complementary in sequence to trailer peptide coding sequences in rat IGF-II mRNA (IGF-II 31 mer) was hybridized with coronal sections of fixed rat brain. The IGF-II 31 mer showed specific hybridization with the choroid plexus throughout rat brain, whereas in other brain regions, structures or cells, hybridization was not discernibly above background. These findings suggest that the choroid plexus is a primary site of synthesis of IGF-II, a probable source of IGF-II in cerebrospinal fluid, and a potential source of IGF-II for actions on target cells within the adult rat brain

  12. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    International Nuclear Information System (INIS)

    Keller, B.T.; Borchardt, R.T.

    1987-01-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of [ 125 I]-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23 0 C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37 0 C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37 0 C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation

  13. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  14. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  15. The SAMP8 mouse for investigating memory and the role of insulin in the brain.

    Science.gov (United States)

    Rhea, Elizabeth M; Banks, William A

    2017-08-01

    SAMP8 mice exhibit changes that commonly occur with normal aging late in life, but do so at a much earlier age. These changes include impairments in learning and memory as early as 8months of age and so the SAMP8 is a useful model to investigate those age-related brain changes that may affect cognition. As brain insulin signaling and memory decline with aging, the SAMP8 model is useful for investigating these changes and interventions that might prevent the decline. This review will summarize the SAMP8 mouse model, highlight changes in brain insulin signaling and its role in memory, and discuss intranasal insulin delivery in investigating effects on insulin metabolism and memory in the SAMP8 mice. Published by Elsevier Inc.

  16. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  17. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  18. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Karyn J Catalano

    Full Text Available Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.

  19. Insulin effect on [14C]-valine incorporation and its relation to hexokinase activity in developing brain

    International Nuclear Information System (INIS)

    Pal, N.; Bessman, S.P.

    1988-01-01

    Using minced brain cortex from fetal and postnatal rats, we studied the incorporation of [ 14 C]-valine into protein in the presence of insulin. We also assayed the particle bound and soluble hexokinase in these tissues. Insulin significantly stimulated the incorporation of [ 14 C]-valine into brain proteins from fetal stage upto 2 days of life. After this period the insulin effect was minimal, with no effect by day 5. The particle bound (40,000g pellet) brain hexokinase, on the other hand, remained low till about 2 days of life and then increased to almost adult level by 5 days. Our results show that there is an inverse relation between this anabolic effect of insulin and the particle bound hexokinase activity in the cortex of developing rat brain

  20. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  1. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  2. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin

    Science.gov (United States)

    Begg, Denovan P.; May, Aaron A.; Mul, Joram D.; Liu, Min; D’Alessio, David A.; Seeley, Randy J.

    2015-01-01

    Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake. PMID:25667307

  3. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  4. Fundamental studies on the insulin receptor in rabbit erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Y; Kagawa, S; Konishi, Y; Morimoto, H; Tsumura, Y [Hyogo Medical Coll. (Japan)

    1975-09-01

    The authors studied the binding of insulin to rabbit erythrocytes as a mode case in the hope of characterizing the physiologic role of the binding of insulin to receptor in both normal adults and patients. Specific binding sites for insulin were detected in rabbit erythrocytes. The characteristics of the binding were similar to those observed in other target tissues. The specific binding of /sup 125/I-labeled insulin was competitively inhibited by a small amount of unlabeled insulin and was completely inhibited by 1,000 ng/ml of unlabeled insulin. Glucagon, however, had no effect on the insulin binding to fat cells or liver membranes nor had it any effect on the binding of insulin to rabbit erythrocytes. Scatchard analysis of this binding reaction indicated two different binding sites with Ksub(aff)=3.2 x 10/sup 8//M, Ksub(diss)=3.1 x 10/sup -9/M; Ksub(aff)=1.4 x 10/sup 8//M, Ksub(diss)=7.1 x 10/sup -9/M respectively, and the binding capacities of each site were estimated at 0.011 ng/4 x 10/sup 8/ cells and 0.138 ng/4 x 10/sup 8/ cells. The binding of /sup 125/I-insulin to rabbit erythrocytes was a saturable function of the insulin concentration and was a linear function of cell concentration. The pH optimum for the reaction was 7.4 at 0/sup 0/C, the amount of insulin binding increased continuously under the reaction and this binding reaction reached a steady state after 10 to 15hr. On the other hand, the specific binding of insulin at higher temperatures showed maximal amounts after 20 to 30 min. and subsequently fell off at later time points.

  5. Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-07-01

    Full Text Available The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19, and adiponectin, Δw(21, were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes.

  6. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  7. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  8. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  9. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  10. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  11. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    Science.gov (United States)

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of Insulin Therapy using Hyper-insulinemic Normoglycemic Clamp on Inflammatory Response in Brain Dead Organ Donors.

    Science.gov (United States)

    Aljiffry, M; Hassanain, M; Schricker, T; Shaheen, M; Nouh, T; Lattermann, R; Salman, A; Wykes, L; Metrakos, P

    2016-05-01

    Brain death is a major stress that is associated with a massive inflammatory response and systemic hyperglycemia. Severe inflammation leads to increased graft immunogenicity and risk of graft dysfunction; while acute hyperglycemia aggravates the inflammatory response and increases the risk of morbidity and mortality. Insulin therapy not only controls hyperglycemia but also suppresses inflammation. The present study is to investigate the anti-inflammatory properties and the normoglycemia maintenance of high dose insulin on brain dead organ donors. 15 brain dead organ donors were divided into 2 groups, insulin treated (n=6) and controls (n=9). Insulin was provided for a minimum of 6 h using the hyperinsulinemic normoglycemic clamp technique. The changes of serum cytokines, including IL-6, IL-10, IL-1β, IL-8, TNFα, TGFα and MCP-1, were measured by suspension bead array immunoassay and glucose by a glucose monitor. Compared to controls, insulin treated donors had a significant lower blood glucose 4.8 (4-6.9) vs. 9 (5.6-11.7) mmol/L, pinsulin treated donors compared with those in controls. High dose insulin therapy decreases the concentrations of inflammatory cytokines in brain dead donors and preserves normoglycemia. High dose of insulin may have anti-inflammatory effects in brain dead organ donors and therefore, improve the quality of donor organs and potentially improve outcomes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.

    Science.gov (United States)

    Huang, Kun; Chan, Shu Jin; Hua, Qing-xin; Chu, Ying-Chi; Wang, Run-ying; Klaproth, Birgit; Jia, Wenhua; Whittaker, Jonathan; De Meyts, Pierre; Nakagawa, Satoe H; Steiner, Donald F; Katsoyannis, Panayotis G; Weiss, Michael A

    2007-11-30

    The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.

  14. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  15. Escitalopram ameliorates hypercortisolemia and insulin resistance in low birth weight men with limbic brain alterations

    DEFF Research Database (Denmark)

    Buhl, Christian Selmer; Stødkilde-Jørgensen, Hans; Videbech, Poul

    2018-01-01

    CONTEXT: Low birth weight (LBW, insulin resistance and limbic-hypothalamic-pituitary-adrenal (LHPA)-axis hyperactivity. OBJECTIVE: First aim was to study insulin action, LHPA-axis function and limbic brain structures in young, healthy LBW-men vs. normal birth...... levels and improved Rdsubmax by ∼24% (p=0.04). CONCLUSIONS: LBW vs. NBW displayed alterations in key brain structures modulating LHPA-axis, elevated free cortisol levels and insulin resistance. Escitalopram administration ameliorated these defects, suggesting a potential for LHPA-axis modulation...... weight controls (NBW) (Part 1). Second aim was to investigate the effects of Escitalopram vs. placebo treatment in LBW with regards to LHPA-axis and insulin sensitivity (Part 2). DESIGN SETTING, PARTICIPANTS AND INTERVENTION: Maximal (Rdmax) and sub-maximal (Rdsubmax) rates of insulin-stimulated glucose...

  16. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Paula I. Moreira

    2009-12-01

    Full Text Available Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ. Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  17. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  18. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  20. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  1. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor......) in young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  2. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  3. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    Science.gov (United States)

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  4. The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland.

    Science.gov (United States)

    Senthilkumaran, Manjula; Johnson, Michaela E; Bobrovskaya, Larisa

    2016-07-01

    In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5-9 to 2-3 mmol/L); however, plasma adrenaline concentration was increased 20-30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4-5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3-2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.

  5. Fundamental study on brain receptor mapping by neuronuclear medicine imaging. Quantitation of receptor autoradiography in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Shiro

    1988-04-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.).

  6. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain

    OpenAIRE

    Nelms, Keats; O'Neill, Thomas J.; Li, Shiqing; Hubbard, Stevan R.; Gustafson, Thomas A.; Paul, William E.

    1999-01-01

    . The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the ...

  7. Food image-induced brain activation is not diminished by insulin infusion.

    Science.gov (United States)

    Belfort-DeAguiar, R; Seo, D; Naik, S; Hwang, J; Lacadie, C; Schmidt, C; Constable, R T; Sinha, R; Sherwin, R

    2016-11-01

    The obesity epidemic appears to be driven in large part by our modern environment inundated by food cues, which may influence our desire to eat. Although insulin decreases food intake in both animals and humans, the effect of insulin on motivation for food in the presence of food cues is not known. Therefore, the aim of this study was to evaluate the effect of an intravenous insulin infusion on the brain response to visual food cues, hunger and food craving in non-obese human subjects. Thirty-four right-handed healthy non-obese subjects (19F/15M, age: 29±8 years.; BMI: 23.1±2.1 kg m -2 ) were divided in two groups matched by age and BMI; the insulin group (18 subjects) underwent a hyperinsulinemic-euglycemic-clamp, and the control group (16 subjects) received an intravenous saline infusion, while viewing high and low-calorie food and non-food pictures during a functional MRI scan. Motivation for food was determined via analog scales for hunger, wanting and liking ratings. Food images induced brain responses in the hypothalamus, striatum, amygdala, insula, ventromedial prefrontal cortex (PFC), dorsolateral PFC and occipital lobe (whole brain correction, Pinsulin and saline infusion groups. Hunger ratings increased throughout the MRI scan and correlated with preference for high-calorie food pictures (r=0.70; Pbrain activity nor food cravings were affected by hyperinsulinemia or hormonal status (leptin and ghrelin levels) (P=NS). Our data demonstrate that visual food cues induce a strong response in motivation/reward and cognitive-executive control brain regions in non-obese subjects, but that these responses are not diminished by hyperinsulinemia per se. These findings suggest that our modern food cue saturated environment may be sufficient to overpower homeostatic hormonal signals, and thus contribute to the current obesity epidemic.

  8. Peptide YY receptors in the brain

    International Nuclear Information System (INIS)

    Inui, A.; Oya, M.; Okita, M.

    1988-01-01

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site

  9. Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity.

    Science.gov (United States)

    Linder, Katarzyna; Schleger, Franziska; Ketterer, Caroline; Fritsche, Louise; Kiefer-Schmidt, Isabelle; Hennige, Anita; Häring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas

    2014-06-01

    Fetal programming plays an important role in the pathogenesis of type 2 diabetes. The aim of the present study was to investigate whether maternal metabolic changes during OGTT influence fetal brain activity. Thirteen healthy pregnant women underwent an OGTT (75 g). Insulin sensitivity was determined by glucose and insulin measurements at 0, 60 and 120 min. At each time point, fetal auditory evoked fields were recorded with a fetal magnetoencephalographic device and response latencies were determined. Maternal insulin increased from a fasting level of 67 ± 25 pmol/l (mean ± SD) to 918 ± 492 pmol/l 60 min after glucose ingestion and glucose levels increased from 4.4 ± 0.3 to 7.4 ± 1.1 mmol/l. Over the same time period, fetal response latencies decreased from 297 ± 99 to 235 ± 84 ms (p = 0.01) and then remained stable until 120 min (235 ± 84 vs 251 ± 91 ms, p = 0.39). There was a negative correlation between maternal insulin sensitivity and fetal response latencies 60 min after glucose ingestion (r = 0.68, p = 0.02). After a median split of the group based on maternal insulin sensitivity, fetuses of insulin-resistant mothers showed a slower response to auditory stimuli (283 ± 79 ms) than those of insulin-sensitive mothers (178 ± 46 ms, p = 0.03). Lower maternal insulin sensitivity is associated with slower fetal brain responses. These findings provide the first evidence of a direct effect of maternal metabolism on fetal brain activity and suggest that central insulin resistance may be programmed during fetal development.

  10. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    Science.gov (United States)

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  11. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mahmoud Balbaa

    2016-01-01

    Full Text Available The black cumin (Nigella sativa “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  12. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  13. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome?

    Science.gov (United States)

    Anthony, Karen; Reed, Laurence J; Dunn, Joel T; Bingham, Emma; Hopkins, David; Marsden, Paul K; Amiel, Stephanie A

    2006-11-01

    The rising prevalence of obesity and type 2 diabetes is a global challenge. A possible mechanism linking insulin resistance and weight gain would be attenuation of insulin-evoked responses in brain areas relevant to eating in systemic insulin resistance. We measured brain glucose metabolism, using [(18)F]fluorodeoxyglucose positron emission tomography, in seven insulin-sensitive (homeostasis model assessment of insulin resistance [HOMA-IR] = 1.3) and seven insulin-resistant (HOMA-IR = 6.3) men, during suppression of endogenous insulin by somatostatin, with and without an insulin infusion that elevated insulin to 24.6 +/- 5.2 and 23.2 +/- 5.8 mU/l (P = 0.76), concentrations similar to fasting levels of the resistant subjects and approximately threefold above those of the insulin-sensitive subjects. Insulin-evoked change in global cerebral metabolic rate for glucose was reduced in insulin resistance (+7 vs. +17.4%, P = 0.033). Insulin was associated with increased metabolism in ventral striatum and prefrontal cortex and with decreased metabolism in right amygdala/hippocampus and cerebellar vermis (P reward. Diminishing the link be-tween control of food intake and energy balance may contribute to development of obesity in insulin resistance.

  14. Improved Brain Insulin/IGF Signaling and Reduced Neuroinflammation with T3D-959 in an Experimental Model of Sporadic Alzheimer's Disease.

    Science.gov (United States)

    de la Monte, Suzanne M; Tong, Ming; Schiano, Irio; Didsbury, John

    2017-01-01

    Alzheimer's disease (AD) is associated with progressive impairments in brain insulin, insulin-like growth factor (IGF), and insulin receptor substrate (IRS) signaling through Akt pathways that regulate neuronal growth, survival, metabolism, and plasticity. The intracerebral streptozotocin (i.c. STZ) model replicates the full range of abnormalities in sporadic AD. T3D-959, an orally active PPAR-delta/gamma agonist remediates neurocognitive deficits and AD neuropathology in the i.c. STZ model. This study characterizes the effects of T3D-959 on AD biomarkers, insulin/IGF/IRS signaling through Akt pathways, and neuroinflammation in an i.c. STZ model. Long Evans rats were treated with i.c. STZ or saline, followed by daily oral doses of T3D-959 (1 mg/kg) or saline initiated 1 day (T3D-959-E) or 7 days (T3D-959-L) later through Experimental Day 28. Protein and phospho-protein expression and pro-inflammatory cytokine activation were measured in temporal lobe homogenates by duplex or multiplex bead-based ELISAs. i.c. STZ treatments caused neurodegeneration with increased pTau, AβPP, Aβ42, ubiquitin, and SNAP-25, and reduced levels of synaptophysin, IGF-1 receptor (R), IRS-1, Akt, p70S6K, mTOR, and S9-GSK-3β. i.c. STZ also broadly increased neuroinflammation. T3D-959 abrogated or reduced most of the AD neuropathological and biomarker abnormalities, increased/normalized IGF-1R, IRS-1, Akt, p70S6K, and S9-GSK-3β, and decreased expression of multiple pro-inflammatory cytokines. T3D-959-E or -L effectively restored insulin/IGF signaling, whereas T3D-959-L more broadly resolved neuroinflammation. AD remediating effects of T3D-959 are potentially due to enhanced expression of key insulin/IGF signaling proteins and inhibition of GSK-3β and neuroinflammation. These effects lead to reduced neurodegeneration, cognitive impairment, and AD biomarker levels in the brain.

  15. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    Science.gov (United States)

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  16. Brain expansion in patients with type II diabetes following insulin therapy: a preliminary study with longitudinal voxel-based morphometry.

    Science.gov (United States)

    Chen, Zhiye; Li, Jinfeng; Sun, Jie; Ma, Lin

    2014-01-01

    We performed a longitudinal analysis based on magnetic resonance (MR) imaging to investigate the brain structural and perfusion changes caused by insulin therapy in patients with type II diabetes. High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo images and flow-sensitive alternating inversion recovery (FAIR) images were obtained from 11 patients with type II diabetes before and 1 year after initiation of insulin therapy and 11 normal controls. Brain volume changes were investigated by a longitudinal voxel-based morphometry (VBM), and perfusion changes were evaluated by FAIR imaging between baseline and follow-up data. Significant regional gray matter (GM) expansion located in bilateral frontal, parietal, and left occipital lobes, and regional white matter (WM) expansion was shown in left precentral subcortical WM and right angular subcortical WM after insulin therapy (P Brain hyperperfusion was detected in bilateral frontal cortex, left occipital cortex, and right temporal cortex after insulin therapy (P brain expansion and hyperperfusion were demonstrated 1 year after initiation of insulin therapy, and insulin therapy could contribute to the brain volume gainment in the patients with type II diabetes. Copyright © 2013 by the American Society of Neuroimaging.

  17. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  18. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry

    2003-01-01

    . Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation......In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  19. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  20. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  1. Activation and Regulation of the Pattern Recognition Receptors in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kiyoshi Takatsu

    2013-09-01

    Full Text Available Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor family protein Radioprotective 105 (RP105/myeloid differentiation protein-1 (MD-1.

  2. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism.

    Directory of Open Access Journals (Sweden)

    Laurent Kappeler

    2008-10-01

    Full Text Available Mutations that decrease insulin-like growth factor (IGF and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.

  3. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice.

    Science.gov (United States)

    Wang, Pengwen; Su, Caixin; Feng, Huili; Chen, Xiaopei; Dong, Yunfang; Rao, Yingxue; Ren, Ying; Yang, Jinduo; Shi, Jing; Tian, Jinzhou; Jiang, Shucui

    2017-03-01

    Recent studies have shown the therapeutic potential of curcumin in Alzheimer's disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating that AD might be a brain-specific type of diabetes with progressive impairment of glucose utilisation and insulin signalling. We hypothesised that curcumin might target both the glucose metabolism and insulin signalling pathways. In this study, we monitored brain glucose metabolism in living APPswe/PS1dE9 double transgenic mice using a micro-positron emission tomography (PET) technique. The study showed an improvement in cerebral glucose uptake in AD mice. For a more in-depth study, we used immunohistochemical (IHC) staining and western blot techniques to examine key factors in both glucose metabolism and brain insulin signalling pathways. The results showed that curcumin ameliorated the defective insulin signalling pathway by upregulating insulin-like growth factor (IGF)-1R, IRS-2, PI3K, p-PI3K, Akt and p-Akt protein expression while downregulating IR and IRS-1. Our study found that curcumin improved spatial learning and memory, at least in part, by increasing glucose metabolism and ameliorating the impaired insulin signalling pathways in the brain.

  4. Brain-specific interaction of a 91-kDa membrane-bound protein with the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1996-01-01

    The cytoplasmic tail of the 300 kDa mannose 6-phosphate receptor (MPR 300-CT) is thought to play an important role in sorting and targeting of lysosomal enzymes and the insulin-like growth factor II along the biosynthetic and endocytic pathway. In this study a brain specific 91 kDa protein and a ...... in neuronal cells....

  5. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    Science.gov (United States)

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  6. New isatin derivative inhibits neurodegeneration by restoring insulin signaling in brain.

    Science.gov (United States)

    Aftab, Meha Fatima; Afridi, Shabbir Khan; Mughal, Uzma Rasool; Karim, Aneela; Haleem, Darakhshan Jabeen; Kabir, Nurul; Khan, Khalid M; Hafizur, Rahman M; Waraich, Rizwana S

    2017-04-01

    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An insulin receptor mutant (Asp707 → Ala), involved in leprechaunism, is processed and transported to the cell surface but unable to bind insulin

    NARCIS (Netherlands)

    L.M. 't Hart (Leen); D. Lindhout (Dick); G.C.M. van der Zon (Gerard); H. Kayserilli (Hülya); M.Y. Apak (Memnune); W.J. Kleijer (Wim); E.R. van der Vorm (Eric); J.A. Maassen (Johannes)

    1996-01-01

    textabstractWe have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) α subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR

  8. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    Science.gov (United States)

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.

  9. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation

    Directory of Open Access Journals (Sweden)

    Castaño Eduardo M

    2008-12-01

    Full Text Available Abstract Background Insulin degrading enzyme (IDE is implicated in the regulation of amyloid β (Aβ steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD. Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD, endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for

  11. Relationships between endothelin and insulin receptor of red blood cell and insulin resistance in patients with hypertension

    International Nuclear Information System (INIS)

    Tong Qian; Zheng Yang; Xu Hui

    2004-01-01

    Objective: To find the relationships between endothelin (ET) and insulin resistance (IR) and insulin receptor (INSR) in patients with essential hypertension. Methods: Forty patients including 20 cases of essential hypertension disease (EHD) and 20 health persons were divided into experimental group and control group. Blood glucose, serum insulin, ET and the number of erythrocyte INSR in all patients during fasting condition were detected by radioimmunoassay and radiometric analysis. Results: Both insulin sensitivity index (ISI) and the number of INSR in EHD group were much less than that of control group, on the contrary, ET level of EHD group was significantly higher than that of control group (P<0.05). Statistical analysis demonstrated a negative correlation between ET and ISI and INSR number existed in EHD group. Conclusion: IR is a common phenomenon in patient with EHD and possibly due to decrease of INSR number. The ET levels are higher in patients with EHD than that in health people and correlate with INSR, and the change of INSR number is the possible mediator for their relationship

  12. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    Science.gov (United States)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  13. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  14. Insulin-like growth factor receptor inhibitors: baby or the bathwater?

    Science.gov (United States)

    Yee, Douglas

    2012-07-03

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed.

  15. Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.

    Science.gov (United States)

    Kamat, Pradip K; Kalani, Anuradha; Rai, Shivika; Tota, Santosh Kumar; Kumar, Ashok; Ahmad, Abdullah S

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.

  16. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    Science.gov (United States)

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  17. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  18. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    Science.gov (United States)

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  19. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  20. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  1. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    Science.gov (United States)

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  2. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    Namba, Hiroki; Nakagawa, Keiichi; Iyo, Masaomi; Fukushi, Kiyoshi; Irie, Toshiaki

    1994-01-01

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  3. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance

    Directory of Open Access Journals (Sweden)

    James Gilchrist

    2012-08-01

    Full Text Available The mechanisms of alcohol-related peripheral neuropathy (ALPN are poorly understood. We hypothesize that, like alcohol-related liver and brain degeneration, ALPN may be mediated by combined effects of insulin/IGF resistance and oxidative stress. Adult male Long Evans rats were chronically pair-fed with diets containing 0% or 37% ethanol (caloric, and subjected to nerve conduction studies. Chronic ethanol feeding slowed nerve conduction in the tibial (p = 0.0021 motor nerve, and not plantar sensory nerve, but it did not affect amplitude. Histological studies of the sciatic nerve revealed reduced nerve fiber diameters with increased regenerative sprouts, and denervation myopathy in ethanol-fed rats. qRT-PCR analysis demonstrated reduced mRNA levels of insulin, IGF-1, and IGF-2 polypeptides, IGF-1 receptor, and IRS2, and ELISAs revealed reduced immunoreactivity for insulin and IGF-1 receptors, IRS-1, IRS-4, myelin-associated glycoprotein, and tau in sciatic nerves of ethanol-fed rats (all p < 0.05 or better. The findings suggest that ALPN is characterized by (1 slowed conduction velocity with demyelination, and a small component of axonal degeneration; (2 impaired trophic factor signaling due to insulin and IGF resistance; and (3 degeneration of myelin and axonal cytoskeletal proteins. Therefore, ALPN is likely mediated by molecular and signal transduction abnormalities similar to those identified in alcoholic liver and brain degeneration.

  4. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  5. Insulin receptor in mouse neuroblastoma cell line N18TG2: binding properties and visualization with colloidal gold.

    Science.gov (United States)

    Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G

    1992-08-01

    Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.

  6. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    Megyeri, K.

    1977-01-01

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125 I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  7. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  8. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  9. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  10. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  11. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  12. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  13. The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome

    Science.gov (United States)

    Liauchonak, Iryna; Dawoud, Fady; Riat, Yatin; Sambi, Manpreet; Jain, Justin; Kalaydina, Regina-Veronicka; Mendonza, Nicole; Bajwa, Komal

    2018-01-01

    Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term “metabolic syndrome”. Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood. PMID:29462993

  14. Purification of a putative brain somatostatin receptor

    International Nuclear Information System (INIS)

    He, Haitao; Johnson, K.; Thermos, K.; Reisine, T.

    1989-01-01

    The brain somatostatin receptor was purified by affinity chromatographic techniques. A protein of 60 kDa could be purified from rat brain. The protein was eluted from a [D-Trp 8 ]SRIF affinity column with either sodium acetate (pH 5.5) or free [D-Trp 8 ]SRIF. The binding of the protein to the affinity column was prevented by free [D-Trp 8 ]SRIF or the stable SRIF analogue SMS 201-996 but not by the inactive somatostatin 28-(1-14). The purified receptor could be covalently labeled by the 125 I-labeled SRIF analogue CGP 23996. Excess [D-Trp 8 ]SRIF blocked the binding of 125 I-labeled CGP 23996 to the purified receptor, but somatostatin 28-(1-14) did not affect the binding. A 60-kDa protein was also purified from the anterior pituitary cell line AtT-20, which has a high expression of SRIF receptors. In contrast, no 60-kDa protein could be purified from CHO cells, which have no detectable SRIF receptors. These findings present evidence for the purification of the SRIF receptor

  15. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Asseldonk, van E.J.P.; Poppel, van P.C.M.; Ballak, D.B.; Stienstra, Rinke; Netea, M.G.; Tack, C.J.

    2015-01-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity.In an open label proof-of-concept study, we included overweight

  16. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  17. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  18. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  19. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    Directory of Open Access Journals (Sweden)

    Melissa Ochoa

    Full Text Available Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy was provided by starch, glucose or fructose (n = 8 per diet. Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001, regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg. Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral

  20. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  1. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Teng Wei-Ping

    2010-11-01

    Full Text Available Abstract Background Although increasing evidence has indicated that brain insulin dysfunction is a risk factor for Alzheimer disease (AD, the underlying mechanisms by which insulin deficiency may impact the development of AD are still obscure. Using a streptozotocin (STZ-induced insulin deficient diabetic AD transgenic mouse model, we evaluated the effect of insulin deficiency on AD-like behavior and neuropathology. Results Our data showed that administration of STZ increased the level of blood glucose and reduced the level of serum insulin, and further decreased the phosphorylation levels of insulin receptors, and increased the activities of glycogen synthase kinase-3α/β and c-Jun N-terminal kinase in the APP/PS1 mouse brain. We further showed that STZ treatment promoted the processing of amyloid-β (Aβ precursor protein resulting in increased Aβ generation, neuritic plaque formation, and spatial memory deficits in transgenic mice. Conclusions Our present data indicate that there is a close link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.

  2. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  3. In vivo study about specific captation of 125 I-insulin by rat brain structures

    International Nuclear Information System (INIS)

    Sanvitto, G.L.

    1986-01-01

    The specific captation of 125 I-insulin was evaluated by brain structures, as olfactory bulbous, hypothalamus and cerebellum in rats, from in vivo experiences that including two different aspects: captation measure of 125 I-insulin after the intravenous injection of the labelled hormone, in fed rats and in rats with 48 h of fast or convulsion, procedure by the pentylene tetrazole; captation measure of 125 I-insulin after intra-cerebral-ventricular injection of the labelled hormone in fed rats. (C.G.C.)

  4. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J

    1999-01-01

    The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found...... either of the two mutated receptors lacked basal or stimulated IR beta-subunit autophosphorylation. A third brother who inherited both normal alleles has an normal muscle phenotype and insulin sensitivity, suggesting a direct linkage of these IR mutations with the CFTDM phenotype....

  5. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  6. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  7. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  8. SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase.

    OpenAIRE

    Kotani, K; Wilden, P; Pillay, T S

    1998-01-01

    We identified SH2-Balpha as an insulin-receptor-binding protein based on interaction screening in yeast hybrid systems and co-precipitation in cells. SH2-Balpha contains pleckstrin-homology ('PH') and Src homology 2 (SH2) domains and is closely related to APS (adapter protein with a PH domain and an SH2 domain) and lnk, adapter proteins first identified in lymphocytes. SH2-Balpha is ubiquitously expressed and is present in rat epididymal adipose tissue, liver and skeletal muscle, physiologica...

  9. Influence of reductive diet and physical aerobic training on binding and degradation of 125J-insulin by erythrocyte receptors in children with simple obesity

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Kasprzak, Z.; Banaszak, F.

    1994-01-01

    Insuline resistance, expressed by lower insuline binding by receptors, is related to the obesity. Improvement of the binding was observed together with reduction of body weight and in result of physical exercise. In the work was investigated an influence of complex result of reductive diet at the level of 1300-1500 kcal and systematic half-an-hour aerobic exercise on binding and degradation of 125 J-insulin by erythrocyte receptors in children with simple obesity. The rest binding of insulin by erythrocyte receptors in obese children was compared with the result observed in the children having normal body weight. Results of these researches confirm that systematic physical exercise connected with reductive diet improves the indexes of lipid balance, increases efficiency of the organism, estimated by maximal oxygen absorption, decreases body weight and improves binding of 125 J-insulin to erythrocyte receptors. (authors)

  10. The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Directory of Open Access Journals (Sweden)

    Lima M.H.M.

    1998-01-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1 which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.

  11. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C

    1988-01-01

    31P nuclear magnetic resonance (NMR) spectroscopy allows noninvasive studies of cerebral energy-rich phosphorous compounds in humans. In an attempt to characterize the relationship between peripheral blood glucose concentrations and whole-brain phosphate metabolism during insulin......-induced hypoglycemia, 31P NMR spectra were obtained before and after intravenous injection of insulin (0.15 IU/kg body wt) in six men. Compared with prehypoglycemic measurements, no significant changes were found in brain content of Pi, sugar phosphates, phosphocreatine, phosphodiesters, and ATP, and brain pH remained...... constant during the experiment. These results show that the integrated brain profile of energy-rich phosphorous compounds is unaffected by experimental insulin-induced hypoglycemia in humans....

  12. Identification of binding sites for an insulin-like growth factor (IGF-I) in the median eminence of the rat brain by quantitative autoradiography

    International Nuclear Information System (INIS)

    Bohannon, N.J.; Figlewicz, D.P.; Corp, E.S.; Wilcox, B.J.; Porte, D. Jr.; Baskin, D.G.

    1986-01-01

    The microanatomical location of IGF-I binding in the rat brain was determined by in vitro autoradiography with slide-mounted sections of frozen brain. Sections incubated in 0.1 nM [ 125 I]-iodo-IGF-I produced a dense grain concentration in regions of the autoradiographic image corresponding to the external palisade zone of the median eminence; other hypothalamic regions were not so heavily labeled. This reaction was significantly reduced in the presence of 100 nM IGF-I. Measurement of binding by computer digital image analysis of autoradiographic images showed that specific binding for IGF-I in the median eminence was 41.3 +/- 8 X 10(-3) fmol/mm2 (mean +/- SEM); nonspecific binding was 11.9 +/- 1.8 X 10(-3) fmol/mm2. In contrast, specific binding to other hypothalamic regions was uniformly lower. In a separate experiment, 1000 nM unlabeled insulin was added. Without insulin, specific binding was 23 +/- 0.9 X 10(-3) fmol/mm2; nonspecific binding was 8 +/- 0.5 X 10(-3) fmol/mm2. In the presence of 1000 nM unlabeled insulin, specific binding for [ 125 I]-iodo-IGF-I was 23 +/- 1 X 10(-3) fmol/mm2. The results suggest that a high concentration of receptors for an IGF-I-like molecule is present in the median eminence

  13. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  14. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Science.gov (United States)

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass indexmonetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  16. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  17. The somatotropic axis: Effects on brain and cognitive functions

    NARCIS (Netherlands)

    Quik, E.H.

    2012-01-01

    Both hormones of the somatotropic axis, insulin-like growth factor-1 (IGF-1) and growth hormone (GH) can cross the blood-brain barrier and bind to their receptors in neurons and glia throughout the brain. Features of aging resemble those of GHD and aging is also associated with a decline in the

  18. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  19. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  20. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer

    National Research Council Canada - National Science Library

    Bartucci, Monica

    2001-01-01

    .... Our goal was to study the role of the insulin-like growth factor I receptor (IGF-IR) in breast cancer. The IGF-IR is a multifunctional tyrosine kinase that has been recently implicated in breast tumor development and progression...

  1. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    Science.gov (United States)

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  2. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    Science.gov (United States)

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  3. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Corrie, Lu W; Rogers, Jessica A; Yamada, Hidetaka

    2011-06-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure was used to assess the effects of insulin and leptin on the reward system. Elevations in brain reward thresholds are indicative of a decrease in brain reward function. The bilateral administration of leptin into the VTA (15-500 ng/side) or Arc (15-150 ng/side) decreased food intake for 72 h. The infusion of leptin into the VTA or Arc resulted in weight loss during the first 48 (VTA) or 24 h (Arc) after the infusions. The administration of insulin (0.005-5 mU/side) into the VTA or Arc decreased food intake for 24 h but did not affect body weights. The bilateral administration of low, but not high, doses of leptin (15 ng/side) or insulin (0.005 mU/side) into the VTA elevated brain reward thresholds. Neither insulin nor leptin in the Arc affected brain reward thresholds. These studies suggest that a small increase in leptin or insulin levels in the VTA leads to a decrease in brain reward function. A relatively large increase in insulin or leptin levels in the VTA or Arc decreases food intake. Published by Elsevier B.V.

  4. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  5. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, R.; Brenner, W.; Apostolova, I.; Mester, J.; Clausen, M. [University Medical Center Hamburg-Eppendorf (Germany). Dept. of Nuclear Medicine; Santer, R. [University Medical Center Hamburg-Eppendorf (Germany). Center for Gynaecology, Obstetrics and Paediatrics; Silverman, D.H.S. [David Geffen School of Medicine at UCLA, Los Angeles, CA (United States). Dept. of Molecular and Medical Pharmacology

    2009-07-01

    FDG PET in hyperglycaemic subjects often suffers from limited statistical image quality, which may hamper visual and quantitative evaluation. In our study the following insulin bolus protocol is proposed for acute correction of hyperglycaemia (> 7.0 mmol/l) in brain FDG PET. (i) Intravenous bolus injection of short-acting insulin, one I.E. for each 0.6 mmol/l blood glucose above 7.0. (ii) If 20 min after insulin administration plasma glucose is {<=} 7.0 mmol/l, proceed to (iii). If insulin has not taken sufficient effect step back to (i). Compute insulin dose with the updated blood glucose level. (iii) Wait further 20 min before injection of FDG. (iv) Continuous supervision of the patient during the whole scanning procedure. The potential of this protocol for improvement of image quality in brain FDG PET in hyperglycaemic subjects was evaluated by computer simulations within the Sokoloff model. A plausibility check of the prediction of the computer simulations on the magnitude of the effect that might be achieved by correction of hyperglycaemia was performed by retrospective evaluation of the relation between blood glucose level and brain FDG uptake in 89 subjects in whom FDG PET had been performed for diagnosis of Alzheimer's disease. The computer simulations suggested that acute correction of hyperglycaemia according to the proposed bolus insulin protocol might increase the FDG uptake of the brain by up to 80%. The magnitude of this effect was confirmed by the patient data. The proposed management protocol for acute correction of hyperglycaemia with insulin has the potential to significantly improve the statistical quality of brain FDG PET images. This should be confirmed in a prospective study in patients. (orig.)

  6. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET

    International Nuclear Information System (INIS)

    Buchert, R.; Brenner, W.; Apostolova, I.; Mester, J.; Clausen, M.; Santer, R.; Silverman, D.H.S.

    2009-01-01

    FDG PET in hyperglycaemic subjects often suffers from limited statistical image quality, which may hamper visual and quantitative evaluation. In our study the following insulin bolus protocol is proposed for acute correction of hyperglycaemia (> 7.0 mmol/l) in brain FDG PET. (i) Intravenous bolus injection of short-acting insulin, one I.E. for each 0.6 mmol/l blood glucose above 7.0. (ii) If 20 min after insulin administration plasma glucose is ≤ 7.0 mmol/l, proceed to (iii). If insulin has not taken sufficient effect step back to (i). Compute insulin dose with the updated blood glucose level. (iii) Wait further 20 min before injection of FDG. (iv) Continuous supervision of the patient during the whole scanning procedure. The potential of this protocol for improvement of image quality in brain FDG PET in hyperglycaemic subjects was evaluated by computer simulations within the Sokoloff model. A plausibility check of the prediction of the computer simulations on the magnitude of the effect that might be achieved by correction of hyperglycaemia was performed by retrospective evaluation of the relation between blood glucose level and brain FDG uptake in 89 subjects in whom FDG PET had been performed for diagnosis of Alzheimer's disease. The computer simulations suggested that acute correction of hyperglycaemia according to the proposed bolus insulin protocol might increase the FDG uptake of the brain by up to 80%. The magnitude of this effect was confirmed by the patient data. The proposed management protocol for acute correction of hyperglycaemia with insulin has the potential to significantly improve the statistical quality of brain FDG PET images. This should be confirmed in a prospective study in patients. (orig.)

  7. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  8. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes

    Science.gov (United States)

    McNay, Ewan C.; Recknagel, Andrew K.

    2011-01-01

    Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cogntive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients. PMID:21907815

  9. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  10. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma.

    Science.gov (United States)

    Johnsen, Kasper Bendix; Burkhart, Annette; Melander, Fredrik; Kempen, Paul Joseph; Vejlebo, Jonas Bruun; Siupka, Piotr; Nielsen, Morten Schallburg; Andresen, Thomas Lars; Moos, Torben

    2017-09-04

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.

  11. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    Science.gov (United States)

    2013-02-01

    vitro have downregulated J GF1R making antibodies directed agai nst th is receptor ineffective. Inhlbition of IH may be necessary to manage ...monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 2009;27:580Q-7. 31. Drury s. Detre s. Leary A, Salter J, Reis-Filho J

  12. Comparative evaluation of optical methods and conventional isotope techniques for the detection of insulin receptors in heterogenous cell systems

    International Nuclear Information System (INIS)

    Thun, C.

    1984-01-01

    The findings of studies using radioactively labelled (I-125) insulin to characterise its binding to various heterogenous cell systems had led to a classification of the relevant receptors with those of high affinity and low capacity or vice versa. This, in turn, raised questions as to the binding properties of each individual cell or cell material of a heterogenous nature. Apparently homogenous (lymphocytes) and heterogenous (blood and islet cells) cell populations were investigated on the basis of various techniques for the separate evaluation of individual cells, which were cytofluorometry using FITC insulin and the analysis of gold insulin under the electron microscope. For the association kinetics and equilibration analysis or affinity and receptor quantity a radioactive tracer and light microscope were used. Insulin was shown to bind to erythrocytes, reticulocytes, monocytes and lymphocytes and this result finds confirmation in the relevant literature. Furthermore, binding parameters could be determined for isolated islet cells. Cytofluorometry pointed to the fact that the insulin receptors of an apparently homogenous cell system differed in affinity and number and permitted the use of a multiple parameter procedure. Thus, it holds out promise as a method to be routinely used in the clinical diagnosis of binding parameters, without requiring previous separation procedures that are complicated or involve a loss of material. Transmission electron microscopy permitted conclusions to be drawn as to the type of cell to which insulin is attached. Owing to the use of gold insulin it was possible to throw some light on the factors determining the fate of membrane-bound insulin during its uptake into the cell. (TRV) [de

  13. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  14. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor.

    Science.gov (United States)

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-12-12

    We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.

  15. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  16. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

    Czech Academy of Sciences Publication Activity Database

    Macháčková, Kateřina; Chrudinová, Martina; Radosavljević, Jelena; Potalitsyn, Pavlo; Křížková, Květoslava; Fábry, Milan; Selicharová, Irena; Collinsová, Michaela; Brzozowski, A. M.; Žáková, Lenka; Jiráček, Jiří

    2018-01-01

    Roč. 57, č. 16 (2018), s. 2373-2382 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin-like growth factor * insulin * receptor * analog Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.938, year: 2016 https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260

  17. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  18. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  19. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  20. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  1. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  2. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  3. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  4. Effects of insulin on hexose transport across blood-brain barrier in normoglycemia

    International Nuclear Information System (INIS)

    Namba, H.; Lucignani, G.; Nehlig, A.; Patlak, C.; Pettigrew, K.; Kennedy, C.; Sokoloff, L.

    1987-01-01

    The effects of insulin on 3-O-[ 14 C] methylglucose transport across the blood-brain barrier (BBB) were studied in conscious rats under steady-state normoglycemic conditions. The [ 14 C]methylglucose was infused intravenously at a constant rate, and animals were killed at various times between 5 and 30 min after the initiation of the infusion. The time course of the arterial plasma concentration of [ 14 C]methylglucose was determined in timed arterial blood samples taken during the infusion. Local cerebral tissue concentrations of [ 14 C]methylglucose at the time of killing were determined by quantitative autoradiography of brain sections. The rate constants for inward and outward transport of [ 14 C]methylglucose across the BBB, K 1 , and k 2 , respectively, were estimated by a least-squares, best-fit of a kinetic equation to the measured time courses of plasma and tissue concentrations. The equilibrium distribution ration, K 1 /k 2 , for [ 14 C]methylglucose in brain increased by ∼ 10-11% in the hyperinsulinemic animals. Because 3-O-[ 14 C]methylglucose shares the same carrier that transports glucose and other hexoses across the BBB, these results suggest that hyperinsulinemia decreases the rate constants for transport but increases the distribution space for hexoses in brain. These effects are, however, quite small and are probably minor or negligible when compared with the major effects of insulin in other tissues

  5. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Directory of Open Access Journals (Sweden)

    Sarah A Eisenstein

    Full Text Available Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30 and non-obese (n = 20; body mass index<30 adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methylbenperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting. Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting. In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding

  6. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.

    Science.gov (United States)

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R

    2017-09-01

    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  7. Quasi-Steady-State Analysis based on Structural Modules and Timed Petri Net Predict System’s Dynamics: The Life Cycle of the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jennifer Scheidel

    2015-12-01

    Full Text Available The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.

  8. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  9. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  10. Biodistribution and receptor imaging studies of insulin labelled with radioiodine in mice bearing H22 hepatocellular cacinoma

    International Nuclear Information System (INIS)

    Tang Gongshun; Kuang Anren; Liang Zenlu

    2004-01-01

    Objectives: It has been demonstrated that insulin receptor of hepatocellular carcinoma cells is overexpression. The biodistribution of 125I-insulin and receptor imaging studies of 131I-insulin in mice bearing solid liver tumor comprised of hepatic carcinoma H22 cells were performed to develop insulin as a carder of radioiodine. Methods: 1 )Insulin was radiolabeled with iodine-125 or iodine-131 using a Chloramines T method. Twenty mice bearing tumor were divided into 4 groups (n = 5 each) randomly. They were killed at 5, 15, 30, 60 min after 125I-insulin administered intravenously. The percentage of injected dose of 125I-insulin per gram of tissue(%ID/gdis) in mice bearing tumor were determined. 2) Another ten mice bearing tumor were selected to be as a inhibition group. They received cold insulin 2 mg intravenously 2 min ahead of administration of 125I-insulin and they were killed at 30 min (n=5) and 60 rain (n=5) randomly post 125I-insulin injection. The %ID/ginh and the inhibited rates[(%ID/gdis-%iD/ginh) %ID/gdis 100%] were obtained. 3) One tumor-mouse received 7.4 Mbq 13II-insulin intravenously, another received cold insulin 2 mg injection before 13II-insulin injection. Whole body images were carded out and the radioactivity ratios of tumor/normal were accounted at 60 min. Results: 1) The radiochemical purities of 125I-insulin and 13II-insulin were 96.7%-98.9%. The tumors uptake of the 125I-insulin increased gradually, its peak (%ID/gdis) was 3.44% 0.42% at 30 min, when the normal tissues uptake decreased sharply post-injection. The radioactivity ratio of the tumor/blood and tumor/muscle reached to 1.44 and 3.62 respectively at 60 min. 2)The tumor-inhibition rate was 32.07% at 30 min and 37.42% at 60 min. 3) A high radioactivity accumulation in tumor region could be seen in the mouse at 60 min post 131I-insulin injection. The radioactivity ratio of the tumor/normal tissue was 2.13 and it declined to 1.37 after received insulin 2 mg intervention. Conclusions

  11. GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development

    Science.gov (United States)

    Henschel, Oliver; Gipson, Keith E.; Bordey, Angelique

    2008-01-01

    GABA, acting via GABAA receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABAA receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABAA receptors. PMID:18537647

  12. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  13. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing...... the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we...... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...

  14. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  15. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    Science.gov (United States)

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  16. Impact of Single or Repeated Dose Intranasal Zinc-free Insulin in Young and Aged F344 Rats on Cognition, Signaling, and Brain Metabolism.

    Science.gov (United States)

    Anderson, Katie L; Frazier, Hilaree N; Maimaiti, Shaniya; Bakshi, Vikas V; Majeed, Zana R; Brewer, Lawrence D; Porter, Nada M; Lin, Ai-Ling; Thibault, Olivier

    2017-02-01

    Novel therapies have turned to delivering compounds to the brain using nasal sprays, bypassing the blood brain barrier, and enriching treatment options for brain aging and/or Alzheimer's disease. We conducted a series of in vivo experiments to test the impact of intranasal Apidra, a zinc-free insulin formulation, on the brain of young and aged F344 rats. Both single acute and repeated daily doses were compared to test the hypothesis that insulin could improve memory recall in aged memory-deficient animals. We quantified insulin signaling in different brain regions and at different times following delivery. We measured cerebral blood flow (CBF) using MRI and also characterized several brain metabolite levels using MR spectroscopy. We show that neither acute nor chronic Apidra improved memory or recall in young or aged animals. Within 2 hours of a single dose, increased insulin signaling was seen in ventral areas of the aged brains only. Although chronic Apidra was able to offset reduced CBF with aging, it also caused significant reductions in markers of neuronal integrity. Our data suggest that this zinc-free insulin formulation may actually hasten cognitive decline with age when used chronically. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor

    Czech Academy of Sciences Publication Activity Database

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-01-01

    Roč. 18, č. 12 (2016), s. 710-722 ISSN 2156-8952 R&D Projects: GA ČR GA14-17305S Institutional support: RVO:61388963 Keywords : insulin mimetics * insulin receptor * library * protein-protein interactions * scaffold * trifunctional Subject RIV: CE - Biochemistry Impact factor: 3.168, year: 2016 http://pubs.acs.org/doi/full/10.1021/acscombsci.6b00132

  18. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibi...... cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain....... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...... not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased...

  19. High-Fat Diet Augments VPAC1 Receptor-Mediated PACAP Action on the Liver, Inducing LAR Expression and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Masanori Nakata

    2016-01-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP acts on multiple processes of glucose and energy metabolism. PACAP potentiates insulin action in adipocytes and insulin release from pancreatic β-cells, thereby enhancing glucose tolerance. Contrary to these effects at organ levels, PACAP null mice exhibit hypersensitivity to insulin. However, this apparent discrepancy remains to be solved. We aimed to clarify the mechanism underlying the antidiabetic phenotype of PACAP null mice. Feeding with high-fat diet (HFD impaired insulin sensitivity and glucose tolerance in wild type mice, whereas these changes were prevented in PACAP null mice. HFD also impaired insulin-induced Akt phosphorylation in the liver in wild type mice, but not in PACAP null mice. Using GeneFishing method, HFD increased the leukocyte common antigen-related (LAR protein tyrosine phosphatase in the liver in wild type mice. Silencing of LAR restored the insulin signaling in the liver of HFD mice. Moreover, the increased LAR expression by HFD was prevented in PACAP null mice. HFD increased the expression of VPAC1 receptor (VPAC1-R, one of three PACAP receptors, in the liver of wild type mice. These data indicate that PACAP-VPAC1-R signaling induces LAR expression and insulin resistance in the liver of HFD mice. Antagonism of VPAC1-R may prevent progression of HFD-induced insulin resistance in the liver, providing a novel antidiabetic strategy.

  20. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  1. The importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation.

    Science.gov (United States)

    Dehghan-Shasaltaneh, Marzieh; Lanjanian, Hossein; Riazi, Gholam Hossein; Masoudi-Nejad, Ali

    2018-01-01

    Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction remains elusive because of the receptor's structural complexity and structural changes during the interaction. In this work, we tried to fractionate the interactions. Therefore, sequential docking method utilization of HADDOCK was used to achieve the mentioned goal, so the following processes were done: the first, two pdb files of IR i.e., 3LOH and 3W11 were concatenated using modeller. The second, flexible regions of IR were predicted by HingeProt. Output files resulting from HingeProt were uploaded into HADDOCK. Our results predict new salt bridges in the complex and emphasize on the role of salt bridges to maintain an inverted V structure of IR. Having an inverted V structure leads to activate intracellular signaling pathway. In addition to presence salt bridges to form a convenient structure of IR, the importance of α-chain of carboxyl terminal (α-CT) to interact with insulin was surveyed and also foretokened new insulin/IR contacts, particularly at site 2 (rigid parts 2 and 3). Finally, several conformational changes in residues Asn711-Val715 of α-CT were occurred, we suggest that α-CT is a suitable situation relative to insulin due to these conformational alterations.

  2. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  3. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    Full Text Available High-fat diet (HFD-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group or a HFD (60% of calorie from fat; HFD group for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a a significant decrease of insulin receptor substrate (IRS-1 phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment; this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a an inactivation of the IRS-1 and, consequentially, (b a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c a suppression of the ERK/CREB pathway, and (d a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity. It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  5. 123I-iomazenil brain receptor SPECT in focal epilepsy. In comparison with 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring

    International Nuclear Information System (INIS)

    Xu Hao; Wang Tongge; Huang Li; Michael Cordes

    1998-01-01

    Purpose: To evaluate the clinical value of 123 I-Iomazenil brain receptor SPECT in diagnosis of focal epilepsy in comparison with 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Methods 123 I-Iomazenil brain receptor SPECT was performed on 40 patients with focal epilepsy. The results were compared with those obtained by 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Results: In 40 patients, the sensitivity of Video/EEG monitoring for localization of epileptogenic area was 95% (38/40). The sensitivity of 123 I-iomazenil brain receptor SPECT, 99m Tc-HMPAO brain SPECT and MRI for localization of epileptogenic area compared with Video/EEG monitoring ('gold standard') was 65.8%(25/38), 55.3%(21/38) and 47.4%(18/38), respectively. The localization of epileptogenic area with 123 I-Iomazenil brain receptor SPECT was in concordance with Video/EEG monitoring in 20 patients, 99m Tc-HMPAO brain SPECT in 15 patients and MRI in 16 patients, respectively. The sensitivity of 123 I-Iomazenil brain receptor SPECT combined with MRI for localization of epileptogenic area was 84.2%(32/38). Conclusions: 123 I-Iomazenil brain receptor SPECT is a useful method in detecting and localizing epileptogenic area. The combination of 123 I-Iomazenil brain receptor SPECT and MRI has a high sensitivity for detecting epileptogenic area

  6. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  7. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    OpenAIRE

    Yee, Douglas

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response...

  8. Role of the Prostaglandin E2 EP1 Receptor in Traumatic Brain Injury

    Science.gov (United States)

    Glushakov, Alexander V.; Fazal, Jawad A.; Narumiya, Shuh; Doré, Sylvain

    2014-01-01

    Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic

  9. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  10. Insulin controls food intake and energy balance via NPY neurons

    Directory of Open Access Journals (Sweden)

    Kim Loh

    2017-06-01

    Full Text Available Objectives: Insulin signaling in the brain has been implicated in the control of satiety, glucose homeostasis and energy balance. However, insulin signaling is dispensable in energy homeostasis controlling AgRP or POMC neurons and it is unclear which other neurons regulate these effects. Here we describe an ancient insulin/NPY neuronal network that governs energy homeostasis across phyla. Methods: To address the role of insulin action specifically in NPY neurons, we generated a variety of models by selectively removing insulin signaling in NPY neurons in flies and mice and testing the consequences on energy homeostasis. Results: By specifically targeting the insulin receptor in both fly and mouse NPY expressing neurons, we found NPY-specific insulin signaling controls food intake and energy expenditure, and lack of insulin signaling in NPY neurons leads to increased energy stores and an obese phenotype. Additionally, the lack of insulin signaling in NPY neurons leads to a dysregulation of GH/IGF-1 axis and to altered insulin sensitivity. Conclusions: Taken together, these results suggest that insulin actions in NPY neurons is critical for maintaining energy balance and an impairment of this pathway may be causally linked to the development of metabolic diseases. Keywords: Hypothalamus, NPY, Insulin, Obesity

  11. GQ-16, a Novel Peroxisome Proliferator-activated Receptor gamma (PPAR gamma) Ligand, Promotes Insulin Sensitization without Weight Gain

    NARCIS (Netherlands)

    Amato, Angelica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Telles de Souza, Paulo; Mourao, Rosa H. V.; Saad, Mario J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcineia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report

  12. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  13. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders?

    Science.gov (United States)

    Hallschmid, M; Schultes, B

    2009-11-01

    Research on functions and signalling pathways of insulin has traditionally focused on peripheral tissues such as muscle, fat and liver, while the brain was commonly believed to be insensitive to the effects of this hormone secreted by pancreatic beta cells. However, since the discovery some 30 years ago that insulin receptors are ubiquitously found in the central nervous system, an ever-growing research effort has conclusively shown that circulating insulin accesses the brain, which itself does not synthesise insulin, and exerts pivotal functions in central nervous networks. As an adiposity signal reflecting the amount of body fat, insulin provides direct negative feedback to hypothalamic nuclei that control whole-body energy and glucose homeostasis. Moreover, insulin affects distinct cognitive processes, e.g. by triggering the formation of psychological memory contents. Accordingly, metabolic and cognitive disorders such as obesity, type 2 diabetes mellitus and Alzheimer's disease are associated with resistance of central nervous structures to the effects of insulin, which may derive from genetic polymorphisms as well as from long-term exposure to excess amounts of circulating insulin due to peripheral insulin resistance. Thus, overcoming central nervous insulin resistance, e.g. by pharmacological interventions, appears to be an attractive strategy in the treatment and prevention of these disorders. Enhancement of central nervous insulin signalling by administration of intranasal insulin, insulin analogues and insulin sensitisers in basic research approaches has yielded encouraging results that bode well for the successful translation of these effects into future clinical practice.

  14. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  15. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  16. Inhibition of central insulin-receptor signaling by S961 causes hyperglycemia and glucose intolerance in rats

    OpenAIRE

    Ajit Vikram; Gopabandhu Jena

    2011-01-01

    Genetic ablation studies confirmed the role of central insulin-receptor signaling (CIRS) in fuel metabolism. However, the need to examine the role of CIRS in glucose homeostasis under normal physiological condition is indispensable, as insulin affects the neuronal growth, differentiation and synaptic plasticity. Intracerebral administration of S961 induced hyperglycemia and glucose intolerance in normal rats, and provided direct evidence for the involvement of CIRS in the regulation of glucos...

  17. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    Science.gov (United States)

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A method for acetylcholinesterase staining of brain sections previously processed for receptor autoradiography.

    Science.gov (United States)

    Lim, M M; Hammock, E A D; Young, L J

    2004-02-01

    Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.

  19. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  20. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    Science.gov (United States)

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  1. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    Directory of Open Access Journals (Sweden)

    Achsah D. Keegan

    2018-05-01

    Full Text Available In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS was characterized as a member of the insulin receptor substrate (IRS family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  3. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Adan, R.A.H.; Szklarczyk, A.W.; Oosterom, J.; Brakkee, J.H.; Nijenhuis, W.A.; Schaaper, W.M.; Meloen, R.H.

    1999-01-01

    Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined

  4. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  5. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    Science.gov (United States)

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  6. Comparison between narcotic 'receptors' in the guinea-pig ileum and the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Terenius, L [Uppsala Univ. (Sweden)

    1975-01-01

    The receptors, i.e., specific binding molecules, for narcotic analgesics in the guinea-pig ileum and rat brain have been compared. The relative affinities of a number of narcotics for the two receptors were very similar and discrimination between stereoisomeric agents was identical. The dissociation constants for dihydromorphine binding were 0.78 nM for the ileum and 1.4 nM for the brain receptor, respectively. There was a good correspondance between receptor affinities on the ileum preparation and the literature data on biologic activity on the isolated ileum. Codeine, diphenoxylate, difenoxine and loperamide, which are used clinically for the treatment of diarrhoea showed no selectivity against the ileum receptor. The two latter drugs had a very high receptor affinity and their lack of narcotic activity after oral administration is probably attributable to lack of penetration of the CNS. Receptor binding in both ileum and brain preparations was inhibited by N-ethylmaleimide, Triton X-100, trypsin and phospholipase C. There were small quantitative differences in sensitivity to these agents but it is difficult to assess whether this is because of real differences between the receptor molecules or attributable to secondary effects. As previously described for the brain receptor, the ileum receptor appeared to be present in a fraction enriched in plasma membranes.

  7. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes.

    Directory of Open Access Journals (Sweden)

    Richard A Anderson

    Full Text Available Insulin resistance leads to memory impairment. Cinnamon (CN improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.

  9. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    Science.gov (United States)

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  10. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  11. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  12. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  13. Anti hyperglycaemic study of natural inhibitors for Insulin receptor.

    Science.gov (United States)

    Chatterjee, Subhojyoti; Narasimhaiah, Akshaya Lakshmi; Kundu, Sanjay; Anand, Santosh

    2012-01-01

    Diabetes is a metabolic disorder associated with either improper functioning of the beta-cells or wherein cells fail to use insulin properly. Insulin, the principal hormone regulates uptake of glucose from the blood into most of the cells except central nervous system. Therefore, deficiency of insulin or the insensitivity of its receptors plays a key role in all forms of diabetes. In the present work, attempt has been made to find out plant sources which show anti hyperglycaemic activity (AhG) (i.e. compounds that bring down the blood glucose level in the body). Ayurvedic plants showing AhG activity formed the basis of our study by using the platform of Computer Aided Drug Designing (CADD). Among 600 plants showing AhG activity, 500 compounds were selected and screened, out of which 243 compounds showed drug likeness property that can be used as therapeutic ligand/drug. Initial screening of such compounds was done based on their drug likeness or biochemical properties. Dynamic interaction of these molecules was captured through Protein-Ligand study. It also gave an insight of the binding pockets involved. Bench marking of all the parameters were done using the diabetic inhibitor drug, Glipizide. Pharmacokinetic studies of the compounds such as Aloins, Capparisine, Funiculosin and Rhein exhibited less toxicity on various levels of the body. As a conclusion these ligands can lay a foundation for a better anti-diabetic therapy. AhG - Anti hyperglycaemic, CADD - Computer Aided Drug Designing.

  14. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    Science.gov (United States)

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  15. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    Directory of Open Access Journals (Sweden)

    Nanda Gruben

    Full Text Available The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1, are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD, which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/- mice and wild type (WT mice into low-density lipoprotein receptor knock-out (Ldlr-/- mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS. Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  16. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  17. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  18. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  19. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  20. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  1. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  2. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  3. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  4. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  5. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    International Nuclear Information System (INIS)

    Pasmanik, M.; Callard, G.V.

    1988-01-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of [ 3 H]T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Binding activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish

  6. A fundamental study on brain receptor mapping by neuronuclear medicine imaging

    International Nuclear Information System (INIS)

    Tsuji, Shiro

    1988-01-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.)

  7. Distribution of kappa opioid receptors in the brain of young and old male rats

    International Nuclear Information System (INIS)

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  8. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  9. Central insulin administration improves odor-cued reactivation of spatial memory in young men.

    Science.gov (United States)

    Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica

    2015-01-01

    Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.

  10. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  11. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  12. Insulin, cognition, and dementia

    Science.gov (United States)

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  13. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Affholter, J.A.; Roth, R.A. (Stanford Univ. School of Medicine, CA (USA)); Cascieri, M.A.; Bayne, M.L. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA)); Brange, J. (Novo Research Institute, Bagsvaerd (Denmark)); Casaretto, M. (Deutsches Wollforschungsinstitut an der Technischen, Aachen (West Germany))

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants (B25-Asp)insulin and (B25-His)insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants (B1-24-His{sup 25}-NH{sub 2})insulin and (B1-24-Leu{sup 25}-NH{sub 2})insulin, but not (B1-24-Trp{sup 25}-NH{sub 2})insulin and (B1-24-Tyr{sup 25}-NH{sub 2})insulin. The truncated analogue with the lowest affinity for IDE ((B1-24-His{sup 25}-NH{sub 2})insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ.

  14. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    International Nuclear Information System (INIS)

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  15. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  16. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  17. In vivo brain dopaminergic receptor site mapping using 75Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    International Nuclear Information System (INIS)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a [ 75 Se]-radiolabeled pergolide mesylate derivative, [ 75 Se]-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of [ 75 Se]-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ([ 123 I]-iodoamphetamine). However, [ 123 I]-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that [ 75 Se]-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that [ 75 Se]-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals

  18. Evidence for thymopoietin and thymopoietin/α-bungarotoxin/nicotinic receptors within the brain

    International Nuclear Information System (INIS)

    Quik, M.; Babu, U.; Audhya, T.; Goldstein, G.

    1991-01-01

    Thymopoietin, a polypeptide hormone of the thymus that has pleiotropic actions on the immune, endocrine, and nervous systems, potently interacts with the neuromuscular nicotinic acetylcholine receptor. Thymopoietin binds to the nicotinic α-bungarotoxin (α-BGT) receptor in muscle and, like αBGT, inhibits cholinergic transmission at this site. Evidence is given that radiolabeled thymopoietin similarly binds to a nicotinic α-BGT-binding site within the brain and does so with the characteristics of a specific receptor ligand. Thus specific binding to neuronal membranes was saturable, of high affinity linear with increased tissue concentration, and readily reversible; half-time was ∼5 min for association and 10 min for dissociation. Binding of 125 I-labeled thymopoietin was displaced not only by unlabeled thymopoietin but also by α-BGT and the nicotinic receptor ligands d-tubocurarine and nicotine; various other receptor ligands (muscarinic, adrenergic, and dopaminergic) did not affect binding of 125 I-labeled thymopoietin. Thymopoietin was shown by ELISA to be present in brain extracts, displacement curves of thymus and brain extracts being parallel to the standard thymopoietin curve, and Western (immuno) blot identified in brain and thymus extracts a thymopoietin-immunoreactive polypeptide of the same molecular mass as purified thymopoietin polypeptide. The authors conclude that thymopoietin and thymopoietin-binding sites are present within the brain and that the receptor for thymopoietin is the previously identified nicotinic α-BGT-binding site of neuronal tissue

  19. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  20. Identification and Transcriptional Modulation of the Largemouth Bass, Micropterus salmoides, Vitellogenin Receptor During Oocyte Development by Insulin and Sex Steroids1

    Science.gov (United States)

    Dominguez, Gustavo A.; Quattro, Joseph M.; Denslow, Nancy D.; Kroll, Kevin J.; Prucha, Melinda S.; Porak, Wesley F.; Grier, Harry J.; Sabo-Attwood, Tara L.

    2012-01-01

    ABSTRACT Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E2), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E2 or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E2 or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  1. Brief exposure to obesogenic diet disrupts brain dopamine networks.

    Directory of Open Access Journals (Sweden)

    Robert L Barry

    Full Text Available We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT activity, which fine-tunes dopamine (DA signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week obesogenic high-fat (HF diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH.We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R availability using [18F]fallypride positron emission tomography (PET.We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling

  2. Research resource: new and diverse substrates for the insulin receptor isoform a revealed by quantitative proteomics after stimulation with igf-ii or insulin

    DEFF Research Database (Denmark)

    Morcavallo, Alaide; Gaspari, Marco; Pandini, Giuseppe

    2011-01-01

    progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine......-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators......, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited...

  3. Adrenergic receptors in frontal cortex in human brain.

    Science.gov (United States)

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  4. Changes in Brain 14-3-3 Proteins in Response to Insulin Resistance Induced by a High Palatable Diet.

    Science.gov (United States)

    Bock, Hugo; Zimmer, Aline Rigon; Zimmer, Eduardo Rigon; de Souza, Diogo Onofre Gomes; Portela, Luis Valmor Cruz; Saraiva-Pereira, Maria Luiza

    2015-08-01

    The 14-3-3 protein family takes part in a wide range of cellular processes and is expressed in all eukaryotic organisms. In mammals, seven isoforms (β, ε, η, γ, τ, ζ, and σ) have been identified. 14-3-3 proteins are suggested to modulate the insulin-signaling cascade in the brain. The aim of this study was to investigate whether insulin resistance state induced by high palatable diet modulates expression of the 14-3-3 proteins in brain. Wistar male rats (n = 8) were divided into two experimental groups: insulin resistant (IR), induced by high palatable diet, and control (CO) group. Biochemical parameters (glucose tolerance test and plasma lipid profile) were evaluated after 130 days. Brain structures (cortex and hippocampus) were dissected for evaluation of messenger RNA (mRNA) and protein levels of different 14-3-3 proteins. Statistical analyses included Student t test and Pearson correlation. Significant decrease was observed in Ywhah and in Ywahq mRNA levels in the cortex of IR group, while no changes were observed in the hippocampus. Significant increase of θ isoform was observed in hippocampus IR group by immunodetection, while no differences were detected in the remaining isoforms. Inverse correlation was observed between blood glucose levels in cortex IR group and both Ywhah and Ywhaq mRNA levels. Protein levels of Creb and phosphatidylinositide 3-kinases (PI3K) showed to be increased in the hippocampus. These alterations may be due to a compensatory effect of impaired insulin signaling. We demonstrated differential expression of 14-3-3 isoforms throughout brain regions of rats with IR. As a whole, our results indicate that brain 14-3-3 levels are influenced by different diets.

  5. Insulin use, hormone receptor status and hematopoietic cytokines׳ circulation in women with diabetes mellitus and breast cancer

    Directory of Open Access Journals (Sweden)

    Zachary A.P. Wintrob

    2017-04-01

    The data presented here is among the first to show a relationship between pre-existing use of injectable insulin in women diagnosed with breast cancer and type 2 diabetes mellitus, hematopoietic cytokine profiles at time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis evaluating the relationship between G-CSF, GM-CSF, and IL-7 stratified by insulin use, controls, as well as by estrogen and progesterone receptor status is also provided.

  6. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  7. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  8. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Insulin Protects against Brain Oxidative Stress with an Apparent Effect on Episodic Memory in Doxorubicin-Induced Cognitive Dysfunction in Wistar Rats.

    Science.gov (United States)

    Ramalingayya, Grandhi Venkata; Sonawane, Vishwajeet; Cheruku, Sri Pragnya; Kishore, Anoop; Nayak, Pawan G; Kumar, Nitesh; Shenoy, Rekha S; Nandakumar, Krishnadas

    2017-01-01

    The present study was aimed at assessing the protective effect of insulin against doxorubicin (DOX)-induced cognitive dysfunction in Wistar rats. Cognitive function for episodic memory was assessed by a novel object recognition task (NORT) in male Wistar rats. Oxidative stress markers-SOD, catalase, glutathione, and lipid peroxidation-in the hippocampus and frontal cortex were assessed using colorimetric methods. Doxorubicin treatment (2.5 mg/kg, i.p., every 5 days for 50 days) reduced recognition and discriminative indices in NORT with increased oxidative stress in the brain. A nonhypoglycemic dose of insulin (0.5 IU/kg, i.p.) significantly reduced brain oxidative stress (MDA) induced by doxorubicin with an increase in the antioxidant defense systems (SOD, catalase, and GSH). Rats treated with combined insulin and DOX spent comparatively more time with the novel object when compared to the non-novel objects; however, the observed difference was not statistically significant. An apparent improvement (p insulin reduces brain oxidative stress and apparently improves doxorubicin-induced cognitive dysfunction in Wistar rats.

  10. Relationship between tyrosine phosphorylation and protein expression of insulin receptor and insulin resistance in gestational diabetes mellitus.

    Science.gov (United States)

    Chu, Yong-li; Gong, Yu-dian; Su, Zhi-hui; Yu, Hong-na; Cui, Qing; Jiang, Hai-yang; Qu, Hong-mei

    2014-06-01

    The relationship between tyrosine phosphorylation (TP) and protein expression of insulin receptor (InsR) and insulin resistance (IR) in patients with gestational diabetes mellitus (GDM) was investigated. The InsR expression and TP in skeleton muscle tissue were determined by Western blotting and immunoprecipitation in women with GDM (GDM group, n=22), normal pregnant women (normal pregnancy group, n=22) and normal non-pregnant women (normal non-pregnant group, n=13). Fasting plasma glucose (FPG) and fasting insulin (FINS) were measured by oxidase assay and immunoradioassay. The results showed that the levels of FPG (5.61±0.78 mmol/L), FINS (15.42±5.13 mU/L) and Homeostasis model assessment-IR (HOMA-IR) (1.21±0.52) in GDM group were significantly higher than those in normal pregnancy group (4.43±0.46 mmol/L, 10.56±3.07 mU/L and 0.80±0.31 respectively) (Ppregnant group (7.56±2.31 mU/L and 0.47±0.26 respectively) (P0.05). TP of InsR with insulin stimulation was significantly decreased in GDM group (0.20±0.05) as compared with normal pregnancy group (0.26±0.06) (Pinsulin stimulation in normal pregnancy group was lower than that in normal non-pregnant group (0.31±0.06) (Pinsulin stimulation was negatively related with HOMA-IR in GDM group (r=-0.525, P0.05). It was suggested that there is no significant correlation between the protein expression of InsR in skeletal muscle and IR in GDM, but changes in TP of InsR are associated with IR in GDM.

  11. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    Science.gov (United States)

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  12. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  14. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  15. Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome: Possible Link to Mild Insulin Resistance.

    Science.gov (United States)

    Castellano, Christian-Alexandre; Baillargeon, Jean-Patrice; Nugent, Scott; Tremblay, Sébastien; Fortier, Mélanie; Imbeault, Hélène; Duval, Julie; Cunnane, Stephen C

    2015-01-01

    To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR). A battery of cognitive tests was administered to evaluate working memory, attention and executive function. The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035) compared to the Controls. The PCOS group had 9-14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018). A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05). Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group. The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer's disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted.

  16. Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome: Possible Link to Mild Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Christian-Alexandre Castellano

    Full Text Available To investigate whether cerebral metabolic rate of glucose (CMRglu is altered in normal weight young women with polycystic ovary syndrome (PCOS who exhibit mild insulin resistance.Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR. A battery of cognitive tests was administered to evaluate working memory, attention and executive function.The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035 compared to the Controls. The PCOS group had 9-14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018. A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05. Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group.The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer's disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted.

  17. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  18. Selective estrogen receptor modulators as brain therapeutic agents

    OpenAIRE

    Arévalo, María Ángeles; Santos-Galindo, María; Lagunas, Natalia; Azcoitia, I.; García-Segura, Luis M.

    2011-01-01

    Selective estrogen receptor modulators (SERMs), used for the treatment of breast cancer, osteoporosis, and menopausal symptoms, affect the nervous system. Some SERMs trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, neurodegenerative diseases, cognitive impairment, and affective disorders. New SERMs with specific actions on neurons and glial cells may represent promising therapeutic tools for the brain. © 2011 So...

  19. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun

    2006-01-01

    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  20. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V.

    1990-01-01

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  1. Aspartame Administration and Insulin Treatment Altered Brain Levels of CYP2E1 and CYP3A2 in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Nosti-Palacios, Rosario; Gómez-Garduño, Josefina; Molina-Ortiz, Dora; Calzada-León, Raúl; Dorado-González, Víctor Manuel; Vences-Mejía, Araceli

    2014-07-01

    This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity. © The Author(s) 2014.

  2. Low 5-HT1B receptor binding in the migraine brain

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Background The pathophysiology of migraine may involve dysfunction of serotonergic signaling. In particular, the 5-HT1B receptor is considered a key player due to the efficacy of 5-HT1B receptor agonists for treatment of migraine attacks. Aim To examine the cerebral 5-HT1B receptor binding....... Patients who reported migraine brain regions involved in pain modulation as regions of interest and applied a latent variable model (LVM) to assess the group effect on binding across these regions. Results Our data...... support a model wherein group status predicts the latent variable ( p = 0.038), with migraine patients having lower 5-HT1B receptor binding across regions compared to controls. Further, in a whole-brain voxel-based analysis, time since last migraine attack correlated positively with 5-HT1B receptor...

  3. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  4. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Czech Academy of Sciences Publication Activity Database

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, C. J.; Turkenburg, J. P.; Jiráček, Jiří; Brzozowski, A. M.

    2014-01-01

    Roč. 70, č. 10 (2014), s. 2765-2774 ISSN 0907-4449 R&D Projects: GA ČR GPP207/11/P430; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : insulin * insulin receptor * complex * active form * analog * structure Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  5. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of 125 I-IGF-I was specific for IGF-I with anIC 50 of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, 125 I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy

  6. The selfish brain: competition for energy resources.

    Science.gov (United States)

    Fehm, H L; Kern, W; Peters, A

    2006-01-01

    stimulate the activity of the PVN in a way similar to the activation by the hippocampus-amydala system. The activity of PVN is influenced by the hippocampal outflow which in turn is the consequence of a balance of low-affinity and high-affinity glucocorticoid receptors. This set-point can permanently be displaced by extreme stress situations, by starvation, exercise, hormones, drugs or by endocrine-disrupting chemicals. Disorders in the "energy on request" process will influence the allocation of energy and in so doing alter the body mass of the organism. In this "selfish brain theory" the neocortex and the limbic system play a central role in the pathogenesis of diseases, such as anorexia nervosa, obesity and diabetes mellitus type II. From these considerations it appears that the primary disturbance in obesity is a displacement of the hippocampal set-point of the system. The resulting permanent activation of the feedback system must result in a likewise permanent activation of the sympatico-adrenal system, which induces insulin resistance, hypertension and the other components of the metabolic syndrome. Available therapies for treatment of the metabolic syndrome (blockade of alpha- and beta-adrenergic receptors, insulin and insulin secretagogues) interfere with mechanisms, which must be considered compensatory. This explains why these therapies are disappointing in the long run. New therapeutic strategies based on the "selfish brain theory" will be discussed.

  7. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  8. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  9. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Directory of Open Access Journals (Sweden)

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  10. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    DEFF Research Database (Denmark)

    Wu, Jie; Liu, Qiang; Tang, Pei

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule...... governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co...... nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling....

  11. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: Quantitative autoradiography, species differences and comparison with kappa receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, N.A.; Hughes, J. (Addenbrookes Hospital Site, Cambridge (England))

    1989-05-01

    The opioid peptides, (3H)DAGO and (3H)DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. (3H)DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, (3H)DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with hotspots in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra.

  12. The correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Zhan Lan

    2017-04-01

    Full Text Available Objective: To study the correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury (TBI. Methods: 78 patients who were diagnosed with acute traumatic brain injury in our hospital between May 2014 and August 2016 were selected as the TBI group, and 90 healthy volunteers who received physical examination during the same period were selected as the control group. The peripheral blood was collected to detect glucose, insulin and nerve injury marker molecules, stress hormones as well as oxidative stress reaction products, and the insulin resistance index (HOMA-IR was calculated. Results: The HOMA-IR index of TBI group was significantly higher than that of control group (P<0.05; serum neuron-specific enolase (NSE, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1, S100β, myelin basic protein (MBP, glucagon, growth hormone, cortisol, malondialdehyde (MDA and 8-hydroxy-deoxyguanosine (8-OHdGlevels of TBI group were significantly higher than those of control group (P<0.05; serum NSE, UCH-L1, S100β, MBP, glucagon, growth hormone, cortisol, MDA and 8-OHdG levels of patients with high HOMA-IR were significantly higher than those of patients with low HOMA-IR (P<0.05. Conclusion: The insulin resistance increases significantly in patients with traumatic brain injury, and is closely related to the degree of cerebral injury and stress reaction.

  13. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  14. Effect of intrahippocampal CA1 injection of insulin on spatial learning and memory deficits in diabetic rats

    Directory of Open Access Journals (Sweden)

    Golbarg Ghiasi

    2011-03-01

    Full Text Available Background: Diabetes mellitus is one of the most important diseases in all over the world. Insulin and its receptor are found in specific area of CNS with a variety of regions-specific functions different from its role in direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin and insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory in diabetes are controversial and further investigation is necessary.Methods: Seventy male NMRI rats (250-300 g were randomly divided into control, diabetic, saline-saline, saline-insulin (12, 18 or 24 mU, diabetic-saline, diabetic-insulin (12, 18 or 24 mU groups. Diabetes was induced by streptozotocin (65 mg/kg, ip. Saline or insulin were injected bilaterally (1 µl/rat into CA1 region of hippocampus during 1 min. Thirty minutes later, water maze training was performed.Results: Insulin had a dose dependent effect. The spatial learning and memory were impaired with diabetes, and improved by insulin. Escape latency and swimming distance in a water maze in insulin treated animals were significantly lower (P<0.05 than control and diabetic groups. Percentage of time spent by animals in a target quarter in probe trial session showed a significant difference among groups. This difference was significant between insulin treated and the other groups (P<0.05.Conclusions: Our findings suggest that injection of insulin into hippocampal CA1 area may have a dose-dependent effect on spatial learning and memory in diabetic rats.

  15. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    Directory of Open Access Journals (Sweden)

    Elizabeth Silbermann

    2012-08-01

    Full Text Available Alcohol-related myopathy (Alc-M is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8 or 35.5% (N = 13 ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration.

  16. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  17. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  18. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bing-Feng Tian

    2018-07-01

    Full Text Available Objective: To study the correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury. Methods: A total of 110 patients with traumatic brain injury who were treated in our hospital between January 2015 and December 2016 were collected as the observation group, and 60 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. Serum GFAP, S100B and NSE levels as well as oxidative stress index and insulin resistance index levels of two groups of subjects were detected, and Pearson test was used to further evaluate the correlation of serum GFAP, S100B and NSE contents with oxidative stress response and insulin resistance in patients with traumatic brain injury. Results: Serum GFAP, S100B and NSE contents of observation group were significantly higher than those of normal control group; serum oxidative stress indexes MDA, MPO and LPO contents were higher than those of normal control group while SOD and TAC contents were lower than those of normal control group; serum insulin resistance indexes GLU, INS and HOMA-IR levels were higher than those of control group. Pearson test showed that serum GFAP, S100B and NSE contents in patients with traumatic brain injury were directly correlated with post-traumatic oxidative stress and insulin resistance. Conclusion: The serum GFAP, S100B and NSE contents increase in patients with traumatic brain injury, and the increase is directly correlated with the oxidative stress and insulin resistance.

  20. In vivo study of drug interaction with brain benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, O.; Shinotoh, H.; Ito, T.; Suzuki, K.; Hashimoto, K.; Yamasaki, T.

    1985-05-01

    The possibility of direct estimation of in vivo Bz receptor occupancy in brain was evaluated using C-11, or H-3-flumazepil (Ro15-1788). In animal experiments, 1 ..mu..Ci of H-3-Ro15-1788 was injected at 0.5 or 20 hr after i.v. injection of various dosage of clonazepam. Then radioactivity in cerebral cortex, cerebellum and blood at 5 min. after injection of the tracer was compared. Competitive inhibition of in vivo binding was clearly observed when clonazepam was pretreated at 0.5 hr before injection of the tracer. On the other hand, brain radioactivity was increased when clonazepam was administered at 20 hr before injection of the tracer. This increase in binding of H-3-Ro15-1788 might be caused by rebound of Bz receptor function by treatment with Bz agonist, and this rebound may have an important role in physiological function. Clinical investigation concerning drug interaction with brain Bz receptor was performed in normal volunteer and patients with neurological disorders. The distribution of C-11-Ro15-1788 in the brain of patients chronically treated with clonazepam were significantly heterogeneous. However, cerebral blood flow estimated with N-13 NH3 of these patients were normal.